Bezeichnung der Erfindung
Verfahren zur Kennzeichnung mehrerer Bauteile, Gruppe von Bauteilen,
Behälter zur Durchführung des Verfahrens und Wälzlager mit einem
Transponder und einer Speichereinrichtung
Beschreibung
Gebiet der Erfindung
Die Erfindung liegt auf dem Gebiet des Maschinenbaus und der Elektrotechnik und bezieht sich insbesondere auf die Kennzeichnung von Bauteilen.
In der Technik spielt zunehmend außer der reinen Funktion von Bauteilen auch deren Zuverlässigkeit und die hierzu zu erfolgende Qualitätskontrolle eine immer größere Rolle.
Für die Qualitätskontrolle ist die Individualisierung und entsprechende Kennzeichnung von Bauteilen schon im Produktionsprozess und auch nachfolgend bei der Wartung ein wichtiger Aspekt. Aufgrund einer Kennzeichnung können einzelne Bauteile bestimmten Produktionschargen zugeordnet werden und damit kann bei auftretenden Fehlern die gesamte Charge einer sofortigen Wartung oder sogar einem Austausch unterzogen werden, soweit die einzelnen Bauteile verfolgt werden können.
Im Produktionsprozess kann es wichtig sein, jedes einzelne Bauteil mit Informationen zu kennzeichnen, die die bereits durchlaufenen Produktionsschritte beziehungsweise die dabei aufgetretenen Parameter bezeichnen. Auch Maße beziehungsweise andere Eigenschaften der Bauteile können einer ent- sprechenden Kennzeichnung hinzugefügt werden. Hinzu treten oft noch Informationen über die Herstellungszeit, um später das Alter und den Verschleißzustand von Bauteilen zueinander in Beziehung setzen zu können.
Um Bauteile komfortabel kennzeichnen zu können, sind in den letzten Jah- ren zunehmend elektronische Mittel wie Speichereinrichtungen und Kommunikationsinterfaces eingeführt worden, mit denen sich durch Schreib- und Leseeinrichtungen die entsprechenden Informationen der Bauteile gewinnen und zusätzliche Informationen den Bauteilen mitgeben lassen.
Eine hervorragende Rolle hat dabei die RFID (radio frequency Identification) Technologie gespielt, die mit Hilfe von mit Radiowellen operierenden Transpondem und entsprechenden Speichereinrichtungen arbeitet. Entsprechende Transponder lassen sich inzwischen extrem funktionssicher und robust sowie mit kleinen Ausmaßen realisieren.
Eine besondere Eigenschaft solcher Transponder ist jedoch die gegebenenfalls eingeschränkte Reichweite in der Nähe metallischer Gegenstände, die es zum Beispiel schwierig macht, als Schüttgut vorliegende Bauteile, die selbst aus Metall bestehen, entsprechend anzusprechen oder auch solche Bauteile, die sich in einem metallischen Behälter befinden.
Aus der EP 1777599 A1 ist ein Verfahren zur Qualitätskontrolle von mechanischen Elementen bekannt geworden, das sich einer elektronischen Kennzeichnung der Bauteile mit kontaktloser Kommunikation bedient, die dazu verwendet wird, Informationen über einzelne Produktionsschritte im Bauteil selber abzuspeichern und damit für spätere Qualitätskontrollen zur Verfügung zu stellen.
Aus der DE 112004002234 T5 ist ein Wälzlager mit einer so genannten IC- Kennzeichnung bekannt, die auf der RFI D-Technologie basiert und die Speicherung von Daten im Lager selbst zulässt. Dort ist das Problem angesprochen, dass Laufringelemente des Lagers die zum Lesen beziehungsweise zum Schreiben verwendeten Mikrowellen teilweise absorbieren und damit die Kommunikation erschweren.
Aus der DE 102006024212 A1 ist eine komplette Radlagerungseinheit mit einer entsprechenden IC-Kennzeichnung bekannt. Damit kann die Rückver- folgbarkeit der entsprechenden Lagereinheit gewährleistet werden.
Die DE 102005043773 A1 offenbart ein Lager mit einer RFID-Einrichtung, welche Lagerdaten empfängt und speichert und die entsprechenden Daten später zur Verfügung stellt. Die Daten werden zur Optimierung der Wartung verwendet und enthalten beispielsweise auch Betriebsparameter und Informationen über besondere Belastungszustände, die das Lager durchlaufen hat.
Vor dem Hintergrund des Standes der Technik liegt der vorliegenden Erfin- düng die Aufgabe zugrunde, ein Verfahren zu schaffen, mit dem eine Gruppe von Bauteilen, die jeweils über einen Transponder und eine Speichereinrichtung verfügen, möglichst effizient individualisiert gekennzeichnet werden können.
Gemäß der Erfindung wird die Aufgabe mit den Merkmalen des Patentanspruchs 1 des erfindungsgemäßen Verfahrens sowie durch eine Gruppe von Bauteilen gemäß Patentanspruch 13 gelöst. Die Erfindung bezieht sich zudem auf einen Behälter gemäß Patentanspruch 14 und auf ein Wälzlager gemäß Patentanspruch 15.
Der Erfindung liegt das Problem zugrunde, dass mehrere Bauteile, die ungekennzeichnet als Gruppe von Bauteilen vorliegen, möglichst effizient und individualisiert gekennzeichnet werden sollen, wobei der Aufwand an Zeit und Kosten minimiert werden soll. Die Erfindung löst die Aufgabe durch ein Verfahren, bei dem ein erstes gekennzeichnetes Bauteil mit zweiten, in seiner Reichweite angeordneten Bauteilen in Kontakt tritt, diesen Informationen übermittelt wobei diese sich unter Berücksichtigung der von dem ersten Bauteil übermittelten Informationen jeweils selbst kennzeichnen und wobei wenigstens ein zweites Bauteil nach seiner Kennzeichnung zu weiteren, noch nicht gekennzeichneten Bauteilen innerhalb seiner Reichweite in Kontakt tritt, um deren Kennzeichnung zu bewirken.
Dieses Verfahren geht davon aus, dass wenigstens ein Bauteil vorliegt, das eine folgende Generation von Bauteilen anspricht und diese durch ein ent- sprechendes Signal dazu auffordert, sich zu kennzeichnen. Die zweiten Bauteile gehören dabei einer Generation an, die auf die Generation des ersten Bauteils folgt. Die Generation ist somit ein erster Parameter, der das erste Bauteil von den zweiten Bauteilen unterscheidet. Die zweiten Bauteile müssen nun unter Verwendung der Informationen, die sie von dem ersten Bauteil erhalten haben, entsprechende Selbstkennzeichnungen finden. Dazu können sie entweder individuell jedes für sich mit dem ersten Bauteil kommunizieren, das dann die notwendig verschiedenen Kennzeichnungen der zweiten Bauteile verwaltet oder die zweiten Bauteile können untereinander kommunizieren, um gleich lautende Kennzeichnungen zu vermeiden. Beispiels- weise kann jedes Bauteil mit einem Algorithmus versehen sein, der dazu führt, dass es sich bei den übrigen Bauteilen derselben Generation meldet und seine Kennzeichnung anmeldet. Dasjenige Bauteil, das dies zuerst tut, wird von den übrigen akzeptiert und darf sich zuerst kennzeichnen. Danach wird dieser Vorgang wiederholt und dasjenige Bauteil der Generation, das sich als nächstes bei den übrigen meldet, vergibt sich die nächste Kennzeichnung bis dass alle Bauteile der Generation gekennzeichnet sind.
Es kann jedoch auch vorgesehen sein, dass jeweils das Bauteil der höheren Generation, also im genannten Beispiel das erste Bauteil den Bauteilen der zweiten Generation die entsprechenden Kennzeichnungen zuordnet, beispielsweise durch Zuordnung der Generationsnummer und Durchnummerie- rung.
Ein möglicher Kennzeichnungsparameter ist damit die Bezeichnung der Generation des jeweiligen Bauteils, das heißt die Bezeichnung der Anzahl der bis zu seiner Kennzeichnung bereits durchgeführten Kennzeichnungsläufe. Zudem kann ein Kennzeichnungsparameter in einem Zeitstempel bestehen, der beispielsweise den Zeitpunkt der Kennzeichnung bezeichnet.
Als Abschluss des bezeichneten Kennzeichnungsschrittes kann vorteilhaft das erste Bauteil die Kennzeichnungsdaten der zweiten Bauteile erfassen und speichern. Dies kann in der Folge für jedes Bauteil bezüglich der von ihm angesprochenen Bauteile der folgenden Generation gelten.
Zusätzlich oder alternativ kann es auch vorteilhaft sein, dass jedes zweite Bauteil alle Kennzeichnungsdaten der übrigen zweiten Bauteile erfasst und speichert. Auch dies kann für jede folgende Generation gelten, so dass ein Bauteil einer Generation die Kennzeichnungsdaten aller übrigen Bauteile derselben Generation und vorteilhaft zusätzlich auch der übrigen Generationen erfassen und speichern kann.
Damit ist es möglich, von außen über ein Lesegerät die Gruppe von Bauteilen anzusprechen und von einem einzigen Bauteil über dessen Transponder aus der Speichereinrichtung die Daten der gesamten Gruppe abzufragen.
Dies ist insbesondere dann vorteilhaft, wenn in einer Gruppe von Bauteilen nicht alle über Radiofrequenzkommunikation erreichbar sind, da die Bauteile sich gegenseitig abschatten, was beispielsweise der Fall ist, wenn sie als Schüttgut vorliegen und wenigstens teilweise aus Metall bestehen oder zwi- sehen ihnen Teile gelagert sind, die wenigstens teilweise aus Metall bestehen.
Ein ähnliches Problem ergibt sich bei Lagerung der Bauteile in einem metallischen Behälter, da auch dessen metallische Hülle entsprechende Radiofre- quenzkommunikation wenigstens teilweise abschirmt, so dass nur die Bauteile der obersten Schichten von einem Schreib/Lesegerät zu erreichen sind.
Vorteilhaft kann bei dem Verfahren vorgesehen sein, dass jedes ungekennzeichnete Bauteil vor seiner Kennzeichnung nur mit demjenigen bereits ge- kennzeichneten Bauteil kommuniziert, das als erstes in Kontakt zu ihm tritt.
Damit wird vermieden, dass die ungekennzeichneten Bauteile konkurrierend mit mehreren Bauteilen einer vorangehend gekennzeichneten Generation Kontakt aufnehmen und damit keine eindeutige Kennzeichnung gewährleis- tet werden könnte.
Da die bereits gekennzeichneten Bauteile eindeutig identifizierbar sind, können die noch ungekennzeichneten Bauteile in ihrer Kommunikation eindeutig festlegen, mit welchem der bereits gekennzeichneten Bauteile, die zu ihnen in Kontakt getreten sind, sie zur Festlegung ihrer eigenen Kennzeichnung kommunizieren wollen.
Das beschriebene Verfahren wird in aufeinander folgenden Generationen so lange wiederholt, bis sämtliche Bauteile angesprochen sind, wobei beispielsweise ein mit entsprechenden Bauteilen gefüllter Behälter nach und nach je nach der Reichweite der Kommunikation durchdrungen wird. Die Reichweite der Kommunikation kann beispielsweise durch die Sendestärke oder die Empfangsempfindlichkeit der Transponder festgelegt werden. Die Sendestärke und/oder die Empfangsempfindlichkeit kann bei den Transpon- dern einstellbar sein, um den geordneten Ablauf des Verfahrens zu verbessern.
Die Kommunikation zwischen den Transpondern ist vorteilhafterweise zeitsynchronisiert (z. B. TDMA: Time Division Multiple Access). Durch die zyklische Kommunikation werden Kollisionen vermieden. Für die Übertragung der Signale kann die Frequenzspreizung und das Frequenzsprungverfahren an- gewendet werden. Die Zuverlässigkeit der Übertragung lässt sich im Netzwerk dadurch erhöhen.
Der Kennzeichnungsvorgang wird vorteilhaft von einer gesonderten Sende- und Empfangseinheit oder durch einen Transponder, der z. B. die Funktion als Gateway aufweist, begonnen, der einem die Bauteile enthaltenen Behälter zugeordnet ist und der zu den, noch ungekennzeichneten, Bauteilen der Gruppe in Kontakt tritt, die dann die erste Generation von gekennzeichneten Bauteilen bilden.
Entsprechend können auch die Informationen, die die jeweiligen Bauteile über ihre Kennzeichnungen beziehungsweise die Kennzeichnungen der folgenden Generationen sammeln, in dem Transponder beziehungsweise der Speichereinrichtung gesammelt werden, die dem Behälter zugeordnet sind.
Hierzu ist es vorteilhaft vorgesehen, dass jedes Bauteil über seinen Transponder die Kennzeichnungen der von ihm kontaktierten Bauteile er- fasst, speichert und an das Bauteil, von dem es selbst vor seiner Kennzeichnung kontaktiert wurde, weiter gibt.
Zudem kann auch gemäß der Erfindung vorgesehen sein, dass jedes Bauteil mehrere, jeweils seinen Bauteilelementen zugeordnete Transponder aufweist, wobei die jeweils gleichartigen Bauteilelemente zugeordneten Transponder getrennten Klassen angehören.
Beispielsweise kann bei einem Lager den unterschiedlichen Lagerelementen jeweils ein Transponder und eine Speichereinrichtung zugeordnet sein, so dass die einzelnen Lagerelemente wie Innenring, Außenring, Lagerschilde, Dichtung, Käfig und Wälzkörper jeweils die Informationen über ihre eigenen Herstellungsbedingungen und/oder die durchlaufenen Betriebsstunden und Betriebsbedingungen tragen. Diese Informationen können vorteilhaft auch in einem Transponder des Lagers akkumuliert werden, der dann nach dem Zusammenbau des Lagers mit den Transpondern anderer Lager im Sinne des erfindungsgemäßen Verfahrens korrespondiert.
Die Transponder können auch nach jeweils getrennten Klassen organisiert werden, so dass beispielsweise alle Transponder von Außenringen der Lager untereinander kommunizieren und die entsprechenden Transponder von Innenringen oder Lagerschilden und so weiter.
Eine individualisierte Kennzeichnung einzelner Lagerteile ist vor der oder gleichzeitig mit der Kennzeichnung der Lager möglich.
Die Erfindung bezieht sich zudem auch auf eine Gruppe von Bauteilen mit Transpondern und Speichereinrichtungen, wobei jedes der Bauteile in seiner Speichereinrichtung seine eigene Kennzeichnung sowie Informationen über die Kennzeichnungen aller anderen Bauteile der Gruppe gespeichert hat sowie auf einen Behälter zur Durchführung des erfindungsgemäßen Verfahrens, wobei der Behälter eine für die Kommunikation der Transponder undurchlässige Hülle aufweist und dem Behälter ein Transponder und eine Speichereinrichtung zugeordnet ist.
Zudem bezieht sich die Erfindung auch auf ein Wälzlager mit wenigstens einem Transponder und einer Speichereinrichtung, bei dem die Speichereinrichtung eine individuelle Kennzeichnung enthält, die durch das erfindungsgemäße Verfahren erzeugt ist.
Bei einem Wälzlager kann, sofern einzelne Teile des Lagers jeweils mit Transpondern ausgestattet sind, auch über den Haupttransponder eine Selbstdiagnose durchgeführt werden, indem Informationen über die untergeordneten Transponder beziehungsweise die entsprechenden Bauteile zentral gespeichert und mit später erfassten Daten verglichen werden. Somit kann innerhalb des Lagers ermittelt werden, ob die vorgesehenen Lagerelemente vorhanden sind und sich in einem akzeptablen Zustand befinden.
Im Folgenden wird die Erfindung anhand eines Ausführungsbeispiels in einer Zeichnung gezeigt und nachfolgend beschrieben.
Dabei zeigt
Figur 1 schematisch einen Behälter mit einem aus metallischen Objekten bestehenden Schüttgut;
Figur 2 symbolisch ein vermaschtes Netzwerk von Transpondem; Figur 3a ein Wälzlager in einer Seitenansicht;
Figur 3b verschiedene Transponder eines einzelnen Wälzlagers schematisch sowie Figur 4 schematisch eine Darstellung des Selbstkennzeichnungsprozesses der Transponder einer Gruppe von Bauteilen.
Die Figur 1 zeigt schematisch einen metallischen Behälter 1 , der mit einer Gruppe von Bauteilen 2, 3, 4, 5, 11 , 12 teilweise gefüllt ist, wobei die Bautei- Ie ein Schüttgut bilden, lose aufeinander liegen und aus einem Material bestehen, das elektromagnetische Wellen wenigstens teilweise abschirmt, beispielsweise aus Metall.
Die Bauteile können beispielsweise Wälzlager sein, die metallische Kompo- nenten enthalten oder gänzlich aus metallischen Teilen bestehen.
Jedes der Bauteile trägt wenigstens einen Transponder und eine Speichereinrichtung, wobei die einzelnen Transponder mitsamt der jeweiligen Speichereinrichtung als Punkte in der Mitte der Bauteile schematisch darge- stellt sind. Ein derartiger Transponder kann Signale empfangen und aussenden. Handelt es sich um einen RFID-Transponder, so ist eine so genannte Luftschnittstelle im Radiofrequenzbereich unter Verwendung elektromagnetischer Wellen vorgesehen. Es sind jedoch auch andere Funksignale zur Informationsübertragung denkbar. Grundsätzlich sind auch andere nicht lei- tungsgebundene Signale zur Verwirklichung des erfindungsgemäßen Verfahrens denkbar wie beispielsweise Infrarot- oder Ultraschallwellen.
Soll ermittelt werden, welche Bauteile in dem Behälter 1 vorhanden sind oder um welchen Behälter es sich handelt, so kann durch eine Sende- und Empfangseinheit 10 ein Anfragesignal in den Behälter 1 gesendet und auf eine Antwort gewartet werden. Enthalten die einzelnen Bauteile 2, 3, 4, 5 oder der Transponder 21 Kennzeichnungen, so können sie sich auf die Anfrage der Sende- und Empfangseinheit 10 identifizieren und entsprechende Signale zurücksenden.
Die weiter unten in dem Behälter liegenden Bauteile 11 , 12 werden das An- f ragesignal der Sende- und Empfangseinheit 10 nicht erhalten, da sie durch die über ihnen liegenden Bauteile elektromagnetisch abgeschirmt sind. Entsprechend ist es schwierig, durch einen Abfrageprozess festzustellen, welche Bauteile insgesamt in dem Behälter lagern.
Diesem Problem hilft die Erfindung dadurch ab, dass die Bauteile als ver- maschtes Netzwerk organisiert sind. Hierzu treten die Bauteile zueinander in Kontakt, das heißt, wegen der begrenzten Reichweite der Transponder tritt jedes einzelne Bauteil zu den übrigen Bauteilen in Kontakt, die es über seinen Transponder erreichen kann.
Daraufhin kopiert jedes Bauteil die von seinen erreichbaren Nachbarn erhaltenen Informationen in die Speichereinrichtung seines eigenen Transpon- ders und gibt diese Informationen an alle erreichbaren Nachbarn weiter. Nach mehreren Iterationsschritten dieser Kommunikation enthalten damit die Speichereinrichtungen aller in dem Behälter 1 befindlichen Bauteile Informationen über alle Bauteile.
Eine Abfrage durch die Sende- und Empfangseinheit 10 kann danach jedes der Bauteile erreichen und von diesem die Zahl und Identität aller in dem Behälter befindlichen Bauteile abfragen.
Damit dieser beschriebene Kommunikationsprozess funktioniert muss zunächst sichergestellt werden, dass die einzelnen Bauteile sich in einem Ini- tialisierungsprozess kennzeichnen, soweit dies nicht schon früher geschehen ist. Dazu kann von der Sende- und Empfangseinheit 10, wie in der Figur 2 dargestellt, ein Initialisierungsimpuls an die Bauteile gesendet werden, der von einem der Bauteile 2 zuerst empfangen und quittiert wird. Diesem Bauteil 2 wird dann von der Sende- und Empfangseinheit 10 ein Zeitstempel geschickt, der in der Speichereinrichtung des Transponders des Bauteils 2 gespeichert wird. Das Bauteil erhält die Information, dass es das erste gekennzeichnete Bauteil ist und speichert diese Information als Teil der Selbst- kennzeichnung. Es ist somit als Bauteil 1 der Generation 1 identifiziert.
Im nächsten Schritt sendet das Bauteil 2 innerhalb der Reichweite seines Transponders einen zweiten Initialisierungsimpuls, der von den Bauteilen 3, 4, 5, 13 empfangen wird. Die einzelnen Bauteile 3, 4, 5 13 nummerieren sich nach einem festgelegten Algorithmus durch, der beispielsweise berücksichtigen kann, in welcher Reihenfolge die Bauteile den zweiten Initialisierungsimpuls von dem Bauteil 2 erhalten haben oder in welcher Reihenfolge sie diesen quittiert haben.
Danach hat jedes der Bauteile 3, 4, 5, 13 die Nummer seiner Generation, nämlich die Zahl 2, sowie eine laufende Nummer und einen Zeitstempel gespeichert. Diese Größen werden zusätzlich an das Bauteil 2 geschickt sowie unter den Bauteilen 3, 4, 5, 13 ausgetauscht. Somit verfügen jetzt alle Bauteile der ersten und zweiten Generation über Informationen über die Identität der bereits gekennzeichneten Bauteile.
Jedes der Bauteile 3, 4, 5, 13 sendet nun seinerseits einen dritten Initialisierungsimpuls an die potentiellen Bauteile der dritten Generation. Zur Kennzeichnung erhalten diese die Zahl 3 als Nummer der Generation sowie beispielsweise die Identität des Bauteils, das sie kontaktiert hat, sowie einen Zeitstempel. Auch diese Informationen werden sowohl innerhalb einer Generation als auch zu den übergeordneten Generationen mitgeteilt, so dass am Ende des beschriebenen iterativen Prozesses sämtliche Bauteile in dem Behälter 1 die Informationen über alle Bauteile enthalten.
Die Figur 3a zeigt beispielhaft ein Wälzlager, wie dies beispielsweise als Schüttgut in dem Behälter 1 vorliegen kann. Derartige Wälzlager weisen üblicherweise einen Außenring 14, einen Innenring 15, Dichtung 23 sowie Wälzkörper 16 und einen Käfig 22 zur Führung der Wälzkörper auf, wobei die meisten Bestandteile eines Wälzlagers zumindest im höheren Belas- tungsbereich aus Metall bestehen.
Bei dem gezeigten Wälzlager sind zudem Transponder 17 im Außenring sowie 18 im Innenring dargestellt. Die Wälzkörper 16, der Käfig 22 und die Dichtung 23 können ebenfalls entsprechende Transponder aufweisen. Die Transponder der verschiedenen Bestandteile eines Lagers können zueinander in Kommunikation treten, so dass die Information über die verschiedenen Bauteile ausgetauscht und beispielsweise in einem hierarchisch priorisierten Transponder gespeichert werden können.
In der Figur 3b ist eine solche Struktur von Transpondem gezeigt, wobei der hierarchisch priorisierte Transponder mit 17 bezeichnet ist, während die untergeordneten Transponder mit 18, 19, 20 bezeichnet sind. Das System kann so eingerichtet sein, dass hauptsächlich der priorisierte Transponder 17 nach außen mit anderen Wälzlagern kommuniziert und die untergeordne- ten Transponder 18, 19, 20 nur zur Kommunikation innerhalb eines Lagers
vorgesehen und befähigt sind. Dies kann beispielsweise durch eine Codierung oder getrennte Frequenzbereiche der entsprechenden Transponder realisiert werden.
Damit wird eine Selbstdiagnose des Wälzlagers möglich, indem beispielsweise Zeitstempel der einzelnen Transponder und damit Herstellungszeiten der Bestandteile des Lagers erfasst und abgeglichen werden können. Auch das Fehlen von Teilen kann auf diese Weise automatisiert festgestellt werden.
Insgesamt kann jedes Wälzlager durch den beschriebenen automatisierten Prozess sich selbst unter Verwendung eines Zeitstempels kennzeichnen, so dass beispielsweise innerhalb eines Behälters eine Produktionscharge eine bestimmte, auch später nach einem gewissen Verschleiß der Lager abfrag- bare Gruppenkennzeichnung trägt. Aufgrund dieser Kennzeichnung kann jedes Lager später identifiziert und bezüglich seiner Standzeit analysiert werden. Auch die Herkunft beziehungsweise Produktionscharge jedes Lagers kann somit nach verfolgt werden. Sollten einzelne Chargen Probleme aufweisen, so können die zugehörigen Lager leicht identifiziert und ausge- tauscht werden.
Figur 4 zeigt noch einmal schematisch den Vorgang der Selbstkennzeichnung, wobei mehrere Reihen von Transpondern untereinander dargestellt sind und jede Reihe eine Generation darstellt. Die Sende- und Empfangs- einheit 10 gehört dabei nicht zu den zu kennzeichnenden Bauteilen sondern gibt nur den Initialisierungsimpuls für die Kennzeichnung.
Alle Transponder 30, 31 , 32, 33, die ihren Initialisierungsimpuls direkt von der Sende- und Empfangseinheit 10 erhalten, gehören zur ersten Generation und kennzeichnen sich entsprechend inklusive Generationsnummer, Zeitstempel und Durchnummerierung.
Jeder dieser Transponder 30, 31 , 32, 33 versucht nun, die innerhalb seiner Reichweite liegenden übrigen Transponder 34, 35 zu erreichen, denen die nächste Generationsnummer samt aktualisiertem Zeitstempel und Durchnummerierung zugeordnet wird. Wird ein Transponder der zweiten Generati- on von mehreren Transpondern der ersten Generation kontaktiert, so wird eine Prioritätsregelung befolgt, die beispielsweise darin bestehen kann, dass der Transponder mit demjenigen Transponder der höheren Generation in Kontakt tritt, der ihn zuerst kontaktiert hat. Es sind jedoch auch andere Prioritätsregelungen denkbar.
Dadurch, dass jeder Transponder nach seiner eigenen Selbstkennzeichnung nur einmal einen Initialisierungsimpuls an seine benachbarten Transponder abgibt, ist sicher gestellt, dass der gesamte Selbstkennzeichnungsprozess nach endlicher Zeit beendet wird.
Die Kennzeichnungsdaten werden dann über alle Generationen mitgeteilt, so dass jeder der Transponder Daten über alle übrigen Transponderkennzeich- nungen beziehungsweise Bauteilkennzeichnungen enthält.
Werden später gekennzeichnete Bauteile in einen Behälter gefüllt, so können diese sich durch Ausbildung eines vermaschten Netzes ähnlich wie bei der Selbstkennzeichnung sehr schnell organisieren und sich gegenseitig über das gebildete Netzwerk darüber informieren, welche Bauteile in dem Behälter vorhanden sind. Hierdurch wird sichergestellt, dass auch bei ge-
genseitiger Abschirmung mittels eines Senders/Empfängers durch Ansprechen wenigstens eines Bauteils Informationen über den Gesamtinhalt des Behälters erfasst werden können.
Durch die Erfindung wird damit ohne organisatorischen Aufwand die Selbstorganisation einer Gruppe von Bauteilen sowohl bei der ersten Kennzeichnung als auch später bei einer beliebigen Erfassung wesentlich vereinfacht.
Bezugszeichenliste
1 metallischer Behälter
2, 3, 4, 5, 11, 12, 13 Bauteile 10 Sende- und Empfangseinheit
14 Außenring
15 Innenring
16 Wälzkörper
17 priorisierter Transponder 18, 19, 20 untergeordnete Transponder
21 Transponder für Behälter
30, 31 , 32, 33, 34, 35 Transponder