EP2334467A1 - Method for connecting at least one turbine blade to a turbine disk or a turbine ring - Google Patents

Method for connecting at least one turbine blade to a turbine disk or a turbine ring

Info

Publication number
EP2334467A1
EP2334467A1 EP09764703A EP09764703A EP2334467A1 EP 2334467 A1 EP2334467 A1 EP 2334467A1 EP 09764703 A EP09764703 A EP 09764703A EP 09764703 A EP09764703 A EP 09764703A EP 2334467 A1 EP2334467 A1 EP 2334467A1
Authority
EP
European Patent Office
Prior art keywords
turbine
blade
ring
disk
connecting body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09764703A
Other languages
German (de)
French (fr)
Inventor
Thomas Uihlein
Bertram Kopperberger
Erich Steinhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2334467A1 publication Critical patent/EP2334467A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/006Making specific metal objects by operations not covered by a single other subclass or a group in this subclass turbine wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K13/00Welding by high-frequency current heating
    • B23K13/01Welding by high-frequency current heating by induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0053Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3046Co as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/32Selection of soldering or welding materials proper with the principal constituent melting at more than 1550 degrees C
    • B23K35/325Ti as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3061Fixing blades to rotors; Blade roots ; Blade spacers by welding, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/233Electron beam welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/23Manufacture essentially without removing material by permanently joining parts together
    • F05D2230/232Manufacture essentially without removing material by permanently joining parts together by welding
    • F05D2230/234Laser welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making
    • Y10T29/49321Assembling individual fluid flow interacting members, e.g., blades, vanes, buckets, on rotary support member

Definitions

  • the invention relates to a method for connecting at least one turbine blade with a turbine disk or a turbine ring for a turbine stage of a turbomachine, in particular a thermal gas turbine.
  • the invention further relates to a turbine stage specified in the preamble of claim 4 type for a turbine of a turbomachine and a turbomachine specified in the preamble of claim 6 Art.
  • Such a method of joining at least one turbine blade to a turbine disk or turbine ring and such a turbine stage comprising a turbine disk or turbine ring at least indirectly connected to one or more turbine blades are known in the art.
  • the turbine stage in turn serves for arrangement in a single-stage or multi-stage turbine of a turbomachine designed in particular as a thermal gas turbine.
  • the progress in gas turbine construction places ever higher demands on the materials used.
  • the turbine blades serving as guide vanes or blades are therefore essentially produced as polycrystalline, monocrystalline or directionally solidified castings from high-temperature-resistant base alloys.
  • turbine blades which are made of high-temperature composite materials.
  • Object of the present invention is therefore to provide a method of the type mentioned, which is cheaper and more flexible feasible.
  • Another object of the invention is to provide a corresponding turbine stage with a turbine disk or a turbine ring and at least one turbine blade, which is less expensive and more flexible to produce.
  • a connecting body is firstly formed on the at least one turbine blade by means of a cold gas spraying method and the connecting body is subsequently connected to the turbine disk by means of a fusion welding method connected to the turbine ring.
  • a cold spraying method is a coating method in which the material of the subsequent connecting body is applied to the turbine blade in powder form at very high speed. For this purpose, it may be provided that a gas heated to a comparatively low temperature is accelerated to supersonic speed by expansion in a nozzle (so-called Laval nozzle).
  • Pn of this gas are then introduced the powder particles and thereby accelerated to such high speeds that they form without melting or on impact with the turbine blade a firmly adhering layer with a high density and compactness.
  • the cold gas spraying process is preferably carried out such that the kinetic energy of the powder particles at the time of impact is not sufficient for a complete melting. As a result, a minimum heat input is ensured at the same time in the serving as a substrate turbine blade.
  • the impact velocity of the powder particles can be specifically adapted, for example, by optimized nozzle design, modified gas temperatures, higher gas pressures or altered particle sizes.
  • the turbine blade is connected by means of the fusion welding process via the connecting body indirectly with the turbine disk or the turbine ring.
  • all materials which can be plastically deformed, melt-weldable and withstand the later stresses during operation of an associated turbomachine can be used as the material of the connecting body.
  • the inventive method can thus be carried out considerably less expensive without high equipment costs. Since the connection between the turbine blade and the turbine disk or with the turbine ring takes place by means of the connecting body, moreover, the material and the geometry of the turbine blade of minor importance, whereby the method is particularly flexible feasible. It can basically be provided that the connecting body is formed in several parts.
  • the connecting body is processed, in particular finished, before the fusion welding process.
  • Finely machined here is understood to mean preferably machining, whereby both a desired surface quality and a required dimensional accuracy of the connecting body can be ensured simply and inexpensively.
  • the connecting body is formed in the region of a blade root of the turbine blade and / or as a blade root of the turbine blade. This allows a simple and mechanically stable connection of the turbine blade with the turbine disk or the turbine ring via the connecting body.
  • the connecting body is formed in dependence on a geometry of the turbine blade and / or the turbine disc or the turbine ring. As a result, the method can be used particularly flexibly for the representation of different turbine stages.
  • Another aspect of the invention relates to a turbine stage for a turbine of a turbomachine, wherein the turbine stage is cheaper and more flexible to produce by at least one turbine blade is connected via a means of a cold gas spraying method formed on the turbine blade connecting body with the turbine disk or the turbine ring. Further resulting advantages can be taken from the previous descriptions.
  • the manufacturing costs of the turbine stage can be additionally reduced.
  • the turbine disk or the turbine ring and / or the turbine blade made of a nickel Base alloy and / or a cobalt-based alloy and / or a titanium aluminide and / or a metal matrix composite material and / or a ceramic matrix composite material is made.
  • the turbine stage reliably has the required mechanical and thermal properties for later use in an associated turbomachine and, moreover, can be adapted particularly flexibly to the particular requirement profile.
  • a further aspect of the invention relates to a turbomachine, in particular a thermal gas turbine, with a turbine which comprises a turbine stage with a turbine disk or a turbine ring which is or at least indirectly connected to at least one turbine blade, it being provided according to the invention that the Turbine disk or the turbine ring and the at least one turbine blade of the turbine stage by means of a method according to one of the preceding embodiments are interconnected or that the turbine stage is formed according to one of the preceding embodiments.
  • Fig. 1 is a front perspective view of a turbine blade
  • FIG. 2 is an oblique perspective view of a connecting body formed on a blade root of the turbine blade shown in FIG. 1; FIG. and
  • Fig. 3 is a fragmentary and perspective front view of a turbine disk which is connected via the connecting body with the turbine blade.
  • Fig. 1 shows a front perspective view of a turbine blade 10, the general structure of which is known from the prior art.
  • the turbine blade 10, which is made as a casting of a high temperature resistant nickel-based alloy, includes a radially outer shroud 12 and a radially inner blade root 14. Since the material from which the turbine blade 10 is made, is not or only very difficult melt weldable, is By means of a cold gas spraying process, a connecting body 16 shown in FIG. 2 in a perspective oblique view is formed in the region of the blade root 14 of the turbine blade 10.
  • the connecting body 16 which is formed from a plastically deformable and melt-weldable material, makes it possible to connect the turbine blade 10 to a turbine disk 18 in a subsequent step via a cost-effective fusion welding method.
  • a turbine ring (not shown) may be provided, wherein both the turbine disk 18 and the turbine ring may be formed in one or more parts.
  • the connecting body 16 forms the blade root 14.
  • the connecting body 16 is or is made of several parts, so that the connection between the turbine blade 10 and the turbine disk 18 takes place indirectly via a plurality of partial connecting bodies (not shown).
  • FIG. 3 shows a fragmentary and perspective frontal view of the turbine disk 18, which is connected to the turbine blade 10 in the region marked with arrow III via the connecting body 16, which is formed integrally in the present case.
  • a fusion welding method for example, an electron beam welding method, a laser welding method, an inductive high frequency pressure welding method and / or a low frequency inductive pressure welding method can be used. In principle, however, other welding methods familiar to the person skilled in the art can also be provided.
  • the connecting body 16 is finished prior to the fusion welding, whereby a simple geometrical adaptation between the turbine blade 10 and the turbine disk 18 is made possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Laser Beam Processing (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention relates to a method for connecting at least one turbine blade (10) to a turbine disk (18) or a turbine ring for a turbine stage of a turbomachine, particularly a thermal gas turbine, wherein first a connecting body (16) is produced on the at least one turbine blade (10) using a cold gas spraying method, and the connecting body (16) is subsequently connected to the turbine disk (18) or to the turbine ring using a fusion welding method. The invention further relates to a turbine stage for a turbine of a turbomachine and to a turbomachine having a turbine.

Description

Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring Method for connecting at least one turbine blade with a turbine disk or a turbine ring
Beschreibungdescription
Die Erfindung betrifft ein Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring für eine Turbinenstufe einer Strömungsmaschine, insbesondere einer thermischen Gasturbine. Die Erfindung betrifft weiterhin eine Turbinenstufe der im Oberbegriff des Patentanspruchs 4 angegebenen Art für eine Turbine einer Strömungsmaschine sowie eine Strömungsmaschine der im Oberbegriff des Patentanspruchs 6 angegebenen Art.The invention relates to a method for connecting at least one turbine blade with a turbine disk or a turbine ring for a turbine stage of a turbomachine, in particular a thermal gas turbine. The invention further relates to a turbine stage specified in the preamble of claim 4 type for a turbine of a turbomachine and a turbomachine specified in the preamble of claim 6 Art.
Ein derartiges Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring sowie eine derartige Turbinenstufe, welche eine Turbinenscheibe oder einen Turbinenring, die bzw. der zumindest mittelbar mit einer oder mehreren Turbinenschaufeln verbunden ist, umfasst, sind aus dem Stand der Technik bekannt. Die Turbinenstufe dient ihrerseits zur Anordnung in einer ein- oder mehrstufigen Turbine einer insbesondere als thermische Gasturbine ausgebildeten Strömungsmaschine. Der Fortschritt im Gasturbinenbau stellt dabei jedoch immer höhere Anforderungen an die verwendeten Werkstoffe. Die als Leit- oder Laufschaufeln dienenden Turbinenschaufeln werden daher im Wesentlichen als polykristalline, einkristalline oder gerichtet erstarrte Gussteile aus hochtemperaturfesten Basislegierungen hergestellt. Bekannt sind ebenfalls Turbinenschaufeln, die aus hochtemperaturfähigen Verbundwerkstoffen gefertigt sind.Such a method of joining at least one turbine blade to a turbine disk or turbine ring and such a turbine stage comprising a turbine disk or turbine ring at least indirectly connected to one or more turbine blades are known in the art. The turbine stage in turn serves for arrangement in a single-stage or multi-stage turbine of a turbomachine designed in particular as a thermal gas turbine. The progress in gas turbine construction, however, places ever higher demands on the materials used. The turbine blades serving as guide vanes or blades are therefore essentially produced as polycrystalline, monocrystalline or directionally solidified castings from high-temperature-resistant base alloys. Also known are turbine blades, which are made of high-temperature composite materials.
Diese Ausgestaltung führt jedoch dazu, dass die Turbinenschaufeln nicht oder nur sehr schwer schmelzschweißbar sind. Eine Verbindung mit einer schmelzschweißbaren Turbinenscheibe oder einem entsprechenden Turbinenring, die bzw. der aus einer Nickel- Basislegierang gefertigt sein kann, ist daher nicht über herkömmliche Schmelzschweißverfahren möglich und führt zu erheblichen Mehrkosten. Alternativ sind zum zumindest mittelbaren Verbinden zwischen Turbinenschaufel und Turbinenscheibe bzw. Turbinenring Reibschweiß- oder Diffusionsschweißverfahren bekannt, die jedoch einen hohen apparati- ven Aufwand erfordern. Zudem können bei diesen Schweißverfahren Temperaturen auftreten, die für übliche Basislegierungen unverträglich sind.However, this configuration leads to the fact that the turbine blades are not or only very difficult melt-weldable. A connection with a fusion weldable turbine disk or a corresponding turbine ring, which may be made of a nickel base alloy, is therefore not possible by conventional fusion welding methods and leads to considerable additional costs. Alternatively, friction welding or diffusion welding methods are known for at least indirect connection between the turbine blade and the turbine disk or turbine ring, but these have a high apparatus require ven effort. In addition, temperatures can occur in these welding processes, which are incompatible for common base alloys.
Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren der eingangs genannten Art zu schaffen, welches kostengünstiger und flexibler durchführbar ist. Eine weitere Aufgabe der Erfindung ist es, eine entsprechende Turbinenstufe mit einer Turbinenscheibe oder einem Turbinenring und wenigstens einer Turbinenschaufel bereitzustellen, welche kostengünstiger und flexibler herstellbar ist.Object of the present invention is therefore to provide a method of the type mentioned, which is cheaper and more flexible feasible. Another object of the invention is to provide a corresponding turbine stage with a turbine disk or a turbine ring and at least one turbine blade, which is less expensive and more flexible to produce.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Patentanspruch 1, eine Turbinenstufe mit den Merkmalen des Patentanspruchs 4 sowie durch eine Strömungsmaschine mit den Merkmalen des Patentanspruchs 6 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen und nicht-trivialen Weiterbildungen der Erfindung sind in den jeweiligen Unteransprüchen angegeben, wobei vorteilhafte Ausgestaltungen des Verfahrens - soweit anwendbar - als vorteilhafte Ausgestaltungen der Turbinenstufe und umgekehrt anzusehen sind.The object is achieved by a method according to claim 1, a turbine stage with the features of claim 4 and by a turbomachine with the features of claim 6. Advantageous embodiments with expedient and non-trivial developments of the invention are specified in the respective subclaims, wherein advantageous embodiments of the method - if applicable - are to be regarded as advantageous embodiments of the turbine stage and vice versa.
Bei einem erfindungsgemäßen Verfahren zum Verbinden wenigstens einer Turbinenschaufel mit einer Turbinenscheibe oder einem Turbinenring für eine Turbinenstufe einer Strömungsmaschine, insbesondere einer thermischen Gasturbine, wird zunächst mittels eines Kaltgasspritzverfahrens ein Verbindungskörper an der wenigstens einen Turbinenschaufel ausgebildet und der Verbindungskörper anschließend mittels eines Schmelzschweißverfahrens mit der Turbinenscheibe bzw. dem Turbinenring verbunden. Als Kaltgasspritzverfah- ren wird dabei ein Beschichtungsverfahren bezeichnet, bei dem der Werkstoff des späteren Verbindungskörpers in Pulverform mit sehr hoher Geschwindigkeit auf die Turbinenschaufel aufgebracht wird. Dazu kann vorgesehen sein, dass ein auf eine vergleichsweise geringe Temperatur aufgeheiztes Gas durch Expansion in einer Düse (sogenannte Lavaldüse) auf Überschallgeschwindigkeit beschleunigt wird. Pn dieses Gas werden anschließend die Pulverpartikel eingebracht und dabei auf so hohe Geschwindigkeiten beschleunigt, dass sie ohne An- oder Aufschmelzen beim Aufprall auf die Turbinenschaufel eine fest haftende Schicht mit einer hohen Dichte und Kompaktheit bilden. Das Kaltgasspritzverfahren wird dabei vorzugsweise derart durchgeführt, dass die kinetische Energie der Pulverpartikel zum Zeitpunkt des Aufpralls nicht für ein vollständiges Aufschmelzen ausreicht. Hierdurch wird gleichzeitig ein minimaler Wärmeeintrag in die als Substrat dienende Turbinenschaufel sichergestellt. Die Aufprallgeschwindigkeit der Pulverpartikel kann in Abhängigkeit des verwendeten Werkstoffs beispielsweise durch eine optimierte Düsenauslegung, veränderte Gastemperaturen, höhere Gasdrücke oder veränderten Partikelgrößen gezielt angepasst werden. Indem der Werkstoff des hierdurch ausgebildeten Verbindungskörpers weder auf- noch angeschmolzen wird, wird eine Oxidation der beteiligten Materialen zuverlässig verhindert. Anschließend wird die Turbinenschaufel mit Hilfe des Schmelzschweißverfahrens über den Verbindungskörper mittelbar mit der Turbinenscheibe oder dem Turbinenring verbunden. Grundsätzlich können daher als Werkstoff des Verbindungskörpers alle Materialen verwendet werden, die plastisch verformt werden können, schmelzschweißbar sind und den späteren Belastungen während des Betriebs einer zugeordneten Strömungsmaschine standhalten. Das erfindungsgemäße Verfahren kann somit ohne hohen apparativen Aufwand erheblich kostengünstiger durchgeführt werden. Da die Verbindung zwischen der Turbinenschaufel und der Turbinenscheibe bzw. mit dem Turbinenring vermittels des Verbindungskörpers erfolgt, ist darüber hinaus das Material und die Geometrie der Turbinenschaufel von untergeordneter Bedeutung, wodurch das Verfahren besonders flexibel durchführbar ist. Dabei kann grundsätzlich vorgesehen sein, dass der Verbindungskörper mehrteilig ausgebildet wird.In a method according to the invention for connecting at least one turbine blade with a turbine disk or a turbine ring for a turbine stage of a turbomachine, in particular a thermal gas turbine, a connecting body is firstly formed on the at least one turbine blade by means of a cold gas spraying method and the connecting body is subsequently connected to the turbine disk by means of a fusion welding method connected to the turbine ring. A cold spraying method is a coating method in which the material of the subsequent connecting body is applied to the turbine blade in powder form at very high speed. For this purpose, it may be provided that a gas heated to a comparatively low temperature is accelerated to supersonic speed by expansion in a nozzle (so-called Laval nozzle). Pn of this gas are then introduced the powder particles and thereby accelerated to such high speeds that they form without melting or on impact with the turbine blade a firmly adhering layer with a high density and compactness. The cold gas spraying process is preferably carried out such that the kinetic energy of the powder particles at the time of impact is not sufficient for a complete melting. As a result, a minimum heat input is ensured at the same time in the serving as a substrate turbine blade. Depending on the material used, the impact velocity of the powder particles can be specifically adapted, for example, by optimized nozzle design, modified gas temperatures, higher gas pressures or altered particle sizes. By the material of the thus formed connecting body is neither or not melted, oxidation of the materials involved is reliably prevented. Subsequently, the turbine blade is connected by means of the fusion welding process via the connecting body indirectly with the turbine disk or the turbine ring. In principle, therefore, all materials which can be plastically deformed, melt-weldable and withstand the later stresses during operation of an associated turbomachine can be used as the material of the connecting body. The inventive method can thus be carried out considerably less expensive without high equipment costs. Since the connection between the turbine blade and the turbine disk or with the turbine ring takes place by means of the connecting body, moreover, the material and the geometry of the turbine blade of minor importance, whereby the method is particularly flexible feasible. It can basically be provided that the connecting body is formed in several parts.
In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der Verbindungskörper vor dem Schmelzschweißverfahren bearbeitet, insbesondere feinbearbeitet, wird. Unter feinbearbeitet wird hierbei eine vorzugsweise spanabhebende Bearbeitung verstanden, wodurch sowohl eine gewünschte Oberflächengüte als auch eine geforderte Maßhaltigkeit des Verbindungskörpers einfach und kostengünstig sichergestellt werden kann.In an advantageous embodiment of the invention, it is provided that the connecting body is processed, in particular finished, before the fusion welding process. Finely machined here is understood to mean preferably machining, whereby both a desired surface quality and a required dimensional accuracy of the connecting body can be ensured simply and inexpensively.
Weitere Vorteile ergeben sich, wenn der Verbindungskörper im Bereich eines Schaufelfußes der Turbinenschaufel und/oder als Schaufelfuß der Turbinenschaufel ausgebildet wird. Hierdurch ist eine einfache und mechanisch stabile Verbindung der Turbinenschaufel mit der Turbinenscheibe oder dem Turbinenring über den Verbindungskörper ermöglicht. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der Verbindungskörper in Abhängigkeit einer Geometrie der Turbinenschaufel und/oder der Tur- binenscheibe oder des Turbinenrings ausgebildet wird. Hierdurch kann das Verfahren besonders flexibel zur Darstellung unterschiedlicher Turbinenstufen verwendet werden.Further advantages result if the connecting body is formed in the region of a blade root of the turbine blade and / or as a blade root of the turbine blade. This allows a simple and mechanically stable connection of the turbine blade with the turbine disk or the turbine ring via the connecting body. In a further advantageous embodiment of the invention it is provided that the connecting body is formed in dependence on a geometry of the turbine blade and / or the turbine disc or the turbine ring. As a result, the method can be used particularly flexibly for the representation of different turbine stages.
Dabei hat es sich in weiterer Ausgestaltung als vorteilhaft gezeigt, wenn als Schmelzschweißverfahren ein Elektronenstrahlschweißverfahren und/oder ein Laserschweißverfahren und/oder ein induktives Hochfrequenzpressschweißverfahren und/oder ein induktives Niederfrequenzpressschweißverfahren verwendet wird. Hierdurch sind hohe Schweißgeschwindigkeiten mit extrem tiefen und schmalen Nähten bei geringem thermischen Verzug möglich.In another embodiment, it has proven to be advantageous if an electron beam welding method and / or a laser welding method and / or an inductive high frequency compression welding method and / or an inductive low frequency compression welding method is used as the fusion welding method. As a result, high welding speeds with extremely deep and narrow seams with low thermal distortion are possible.
Indem mehrere Turbinenschaufeln über jeweilige Verbindungskörper mit der Turbinenscheibe oder dem Turbinenring verbunden werden, kann eine vollständige Turbinenstufe für eine Strömungsmaschine mit den erfindungsgemäßen Vorteilen und insbesondere mit verringerten Kosten und einer erhöhten Flexibilität hergestellt werden.By connecting a plurality of turbine blades to the turbine disk or the turbine ring via respective connecting bodies, a complete turbine stage for a turbomachine with the advantages according to the invention and in particular with reduced costs and increased flexibility can be produced.
Ein weiterer Aspekt der Erfindung betrifft eine Turbinenstufe für eine Turbine einer Strömungsmaschine, wobei die Turbinenstufe kostengünstiger und flexibler herstellbar ist, indem wenigstens eine Turbinenschaufel über einen mittels eines Kaltgasspritzverfahrens an der Turbinenschaufel ausgebildeten Verbindungskörper mit der Turbinenscheibe oder dem Turbinenring verbunden ist. Weitere sich ergebende Vorteile sind aus den vorhergehenden Beschreibungen zu entnehmen.Another aspect of the invention relates to a turbine stage for a turbine of a turbomachine, wherein the turbine stage is cheaper and more flexible to produce by at least one turbine blade is connected via a means of a cold gas spraying method formed on the turbine blade connecting body with the turbine disk or the turbine ring. Further resulting advantages can be taken from the previous descriptions.
Indem der Verbindungskörper mittels eines Schmelzschweißverfahrens mit der Turbinenscheibe oder dem Turbinenring verbunden ist, können die Herstellungskosten der Turbinenstufe zusätzlich reduziert werden.By connecting the connecting body to the turbine disk or the turbine ring by means of a fusion welding method, the manufacturing costs of the turbine stage can be additionally reduced.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Turbinenscheibe oder der Turbinenring und/oder die Turbinenschaufel aus einer Nickel- Basislegierung und/oder einer Kobalt-Basislegierung und/oder einem Titan-Aluminid und/oder einem Metall-Matrix- Verbundwerkstoff und/oder einem Keramik-Matrix- Verbundwerkstoff gefertigt ist. Hierdurch besitzt die Turbinenstufe zuverlässig die geforderten mechanischen und thermischen Eigenschaften für den späteren Einsatz in einer zugeordneten Strömungsmaschine und kann zudem besonders flexibel an das jeweiligen An- forderungsprofϊls angepasst werden.In a further advantageous embodiment of the invention it is provided that the turbine disk or the turbine ring and / or the turbine blade made of a nickel Base alloy and / or a cobalt-based alloy and / or a titanium aluminide and / or a metal matrix composite material and / or a ceramic matrix composite material is made. As a result, the turbine stage reliably has the required mechanical and thermal properties for later use in an associated turbomachine and, moreover, can be adapted particularly flexibly to the particular requirement profile.
Ein weiterer Aspekt der Erfindung betrifft eine Strömungsmaschine, insbesondere eine thermischen Gasturbine, mit einer Turbine, welche eine Turbinenstufe mit einer Turbinenscheibe oder einem Turbinenring, die bzw. der zumindest mittelbar mit wenigstens einer Turbinenschaufel verbunden ist, umfasst, wobei erfindungsgemäß vorgesehen ist, dass die Turbinenscheibe bzw. der Turbinenring und die wenigstens eine Turbinenschaufel der Turbinenstufe mittels eines Verfahrens gemäß einem der vorhergehenden Ausführungsbeispiele miteinander verbunden sind bzw. dass die Turbinenstufe gemäß einem der vorhergehenden Ausführungsbeispiele ausgebildet ist. Die sich hieraus ergebenden Merkmalskombina- tionen und deren Vorteile sind aus den entsprechenden Beschreibungen zu entnehmen.A further aspect of the invention relates to a turbomachine, in particular a thermal gas turbine, with a turbine which comprises a turbine stage with a turbine disk or a turbine ring which is or at least indirectly connected to at least one turbine blade, it being provided according to the invention that the Turbine disk or the turbine ring and the at least one turbine blade of the turbine stage by means of a method according to one of the preceding embodiments are interconnected or that the turbine stage is formed according to one of the preceding embodiments. The resulting combination of features and their benefits can be found in the corresponding descriptions.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich anhand der nachfolgenden Beschreibung eines Ausführungsbeispiels sowie anhand der Zeichnungen. Dabei zeigt:Further advantages, features and details of the invention will become apparent from the following description of an embodiment and from the drawings. Showing:
Fig. 1 eine perspektivische Frontalansicht einer Turbinenschaufel;Fig. 1 is a front perspective view of a turbine blade;
Fig. 2 eine perspektivische Schrägansicht eines an einem Schaufelfuß der in Fig. 1 gezeigten Turbinenschaufel ausgebildeten Verbindungskörpers; undFIG. 2 is an oblique perspective view of a connecting body formed on a blade root of the turbine blade shown in FIG. 1; FIG. and
Fig. 3 eine ausschnittsweise und perspektivische Frontalansicht einer Turbinenscheibe, die über den Verbindungskörper mit der Turbinenschaufel verbunden ist. Fig. 1 zeigt eine perspektivische Frontalansicht einer Turbinenschaufel 10, deren allgemeiner Aufbau aus dem Stand der Technik bekannt ist. Die Turbinenschaufel 10, die als Gussteil aus einer hochtemperaturfesten Nickel-Basislegierung gefertigt ist, umfasst ein radial äußeres Deckband 12 und einen radial inneren Schaufelfuß 14. Da das Material, aus dem die Turbinenschaufel 10 gefertigt ist, nicht oder nur sehr schwer schmelzschweißbar ist, wird mittels eines Kaltgasspritzverfahrens ein in Fig. 2 in perspektivischer Schrägansicht dargestellter Verbindungskörper 16 im Bereich des Schaufelfußes 14 der Turbinenschaufel 10 ausgebildet. Der Verbindungskörper 16, welcher aus einem plastisch verformbaren und schmelzschweißbaren Material ausgebildet wird, ermöglicht es, die Turbinenschaufel 10 in einem anschließenden Schritt über ein kostengünstiges Schmelzschweißverfahren mit einer Turbinenscheibe 18 zu verbinden. Grundsätzlich kann anstelle der Turbinenscheibe 18 ein Turbinenring (nicht gezeigt) vorgesehen sein, wobei sowohl die Turbinenscheibe 18 als auch der Turbinenring ein- oder mehrteilig ausgebildet sein können. Es kann weiterhin vorgesehen sein, dass der Verbindungskörper 16 den Schaufelfuß 14 bildet. Ebenso kann grundsätzlich vorgesehen sein, dass der Verbindungskörper 16 mehrteilig bzw. mehrstückig ausgebildet ist bzw. wird, so dass die Verbindung zwischen der Turbinenschaufel 10 und der Turbinenscheibe 18 mittelbar über mehrere Teilverbindungskörper (nicht gezeigt) erfolgt.Fig. 3 is a fragmentary and perspective front view of a turbine disk which is connected via the connecting body with the turbine blade. Fig. 1 shows a front perspective view of a turbine blade 10, the general structure of which is known from the prior art. The turbine blade 10, which is made as a casting of a high temperature resistant nickel-based alloy, includes a radially outer shroud 12 and a radially inner blade root 14. Since the material from which the turbine blade 10 is made, is not or only very difficult melt weldable, is By means of a cold gas spraying process, a connecting body 16 shown in FIG. 2 in a perspective oblique view is formed in the region of the blade root 14 of the turbine blade 10. The connecting body 16, which is formed from a plastically deformable and melt-weldable material, makes it possible to connect the turbine blade 10 to a turbine disk 18 in a subsequent step via a cost-effective fusion welding method. Basically, instead of the turbine disk 18, a turbine ring (not shown) may be provided, wherein both the turbine disk 18 and the turbine ring may be formed in one or more parts. It may further be provided that the connecting body 16 forms the blade root 14. Likewise, in principle it can be provided that the connecting body 16 is or is made of several parts, so that the connection between the turbine blade 10 and the turbine disk 18 takes place indirectly via a plurality of partial connecting bodies (not shown).
Fig. 3 zeigt eine ausschnittsweise und perspektivische Frontalansicht der Turbinenscheibe 18, die im mit Pfeil III markierten Bereich über den vorliegend einstückig ausgebildeten Verbindungskörper 16 mit der Turbinenschaufel 10 verbunden ist. Als Schmelzschweißverfahren kann beispielsweise ein Elektronenstrahlschweißverfahren, ein Laserschweißverfahren, ein induktives Hochfrequenzpressschweißverfahren und/oder ein induktives Niederfrequenzpressschweißverfahren verwendet werden. Grundsätzlich können jedoch auch andere, dem Fachmann geläufige Schweißverfahren vorgesehen sein. Weiterhin kann vorgesehen sein, dass der Verbindungskörper 16 vor dem Schmelzschweißen feinbearbeitet wird, wodurch eine einfache geometrische Anpassung zwischen der Turbinenschaufel 10 und der Turbinenscheibe 18 ermöglicht ist. Indem mehrere Turbinenschaufeln 10 in analoger Weise mit der Turbinenscheibe 18 verbunden werden, um eine vollständige Turbinenstufe für eine Turbine einer thermischen Gasturbine herzustellen. Dabei kann grundsätzlich vorgesehen sein, dass das Verfahren auch zur Herstellung von Verdichterstufen für einen Verdichter einer Strömungsmaschine bzw. zum Verbinden von Verdichterschaufeln mit einer Verdichterscheibe verwendet wird. FIG. 3 shows a fragmentary and perspective frontal view of the turbine disk 18, which is connected to the turbine blade 10 in the region marked with arrow III via the connecting body 16, which is formed integrally in the present case. As a fusion welding method, for example, an electron beam welding method, a laser welding method, an inductive high frequency pressure welding method and / or a low frequency inductive pressure welding method can be used. In principle, however, other welding methods familiar to the person skilled in the art can also be provided. Furthermore, it can be provided that the connecting body 16 is finished prior to the fusion welding, whereby a simple geometrical adaptation between the turbine blade 10 and the turbine disk 18 is made possible. By connecting a plurality of turbine blades 10 in an analogous manner to the turbine disk 18 to produce a complete turbine stage for a turbine of a thermal gas turbine. It can basically be provided that the method is also used for the production of compressor stages for a compressor of a turbomachine or for connecting compressor blades with a compressor disk.

Claims

Patentansprüche claims
1. Verfahren zum Verbinden wenigstens einer nicht oder nur sehr schwer schmelzschweißbaren Turbinenschaufel (10) mit einer schmelzschweißbaren Turbinenscheibe (18) oder einem schmelzschweißbaren Turbinenring für eine Turbinenstufe einer Strömungsmaschine, insbesondere einer thermischen Gasturbine, bei welchem zunächst mittels eines Kaltgasspritzverfahrens ein geometrisch definierter Verbindungskörper (16) an der wenigstens einen Turbinenschaufel (10) ausgebildet und der Verbindungskörper (16) anschließend mittels eines Schmelzschweißverfahrens mit der Turbinenscheibe (18) oder mit dem Turbinenring verbunden wird, wobei der Verbindungskörper (16) im Bereich eines Schaufelfußes (14) der Turbinen- schaufel (10) und/oder als Schaufelfuß (14) der Turbinenschaufel (10) in Abhängigkeit einer Geometrie der Turbinenschaufel (10) und/oder der Turbinenscheibe (18) oder des Turbinenrings ausgebildet wird und vor dem Schmelzschweißverfahren feinbearbeitet wird.1. A method for joining at least one turbine blade (10) which can not be welded or melted with a fusion weldable turbine disk (18) or a melt-weldable turbine ring for a turbine stage of a turbomachine, in particular a thermal gas turbine, in which first a geometrically defined joint body (by means of a cold gas spraying method) 16) is formed on the at least one turbine blade (10) and the connecting body (16) is then connected to the turbine disk (18) or to the turbine ring by means of a fusion welding method, wherein the connecting body (16) in the region of a blade root (14) of the turbine Shovel (10) and / or as a blade root (14) of the turbine blade (10) is formed depending on a geometry of the turbine blade (10) and / or the turbine disk (18) or the turbine ring and is finished before the fusion welding process.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Schmelzschweißverfahren ein Elektronenstrahlschweißverfahren und/oder ein Laserschweißverfahren und/oder ein induktives Hochfrequenzschweißverfahren und/oder ein induktives Niederfrequenzschweißverfahren verwendet wird.2. The method according to claim 1, characterized in that as a fusion welding method, an electron beam welding method and / or a laser welding method and / or an inductive high frequency welding method and / or an inductive low frequency welding method is used.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass mehrere Turbinenschaufeln (10) über jeweilige Verbindungskörper (16) mit der Turbinenscheibe (18) oder dem Turbinenring verbunden werden.3. The method according to claim 1 or 2, characterized in that a plurality of turbine blades (10) via respective connecting body (16) with the turbine disk (18) or the turbine ring are connected.
4. Turbinenstufe für eine Turbine einer Strömungsmaschine, insbesondere einer thermischen Gasturbine, mit einer Turbinenscheibe (18) oder einem Turbinenring, welche bzw. welcher zumindest mittelbar mit wenigstens einer Turbinenschaufel (10) verbunden ist, dadurch gekennzeichnet, dass die wenigstens eine Turbinenschaufel (10) über einen mittels eines Kaltgasspritz- verfahrens an der Turbinenschaufel (10) ausgebildeten, geometrisch definierten Verbindungskörper (16) mit der Turbinenscheibe (18) oder dem Turbinenring verbunden ist, wobei der Verbindungskörper (16) im Bereich eines Schaufelfußes (14) der Turbinenschaufel (10) und/oder als Schaufelfuß (14) der Turbinenschaufel (10) in Abhängigkeit einer Geometrie der Turbinenschaufel (10) und/oder der Turbinenscheibe (18) oder des Turbinenrings ausgebildet ist, für seine Verbindung mit der Turbinenscheibe (18) oder dem Turbinenring feinbearbeitet ist und mittels eines Schmelzschweißverfahrens mit der Turbinenscheibe (18) oder mit dem Turbinenring verbunden ist.4. turbine stage for a turbine of a turbomachine, in particular a thermal gas turbine, with a turbine disk (18) or a turbine ring, which is or at least indirectly connected to at least one turbine blade (10), characterized in that the at least one turbine blade (10) is connected to the turbine disk (18) or the turbine ring via a geometrically defined connecting body (16) formed on the turbine blade (10) by means of a cold gas spraying method, wherein the connecting body (16) in the region of a blade root (14) of the turbine blade (10) and / or as a blade root (14) of the turbine blade (10) is formed depending on a geometry of the turbine blade (10) and / or the turbine disk (18) or the turbine ring, for his Joint with the turbine disk (18) or the turbine ring is finished and is connected by means of a fusion welding process with the turbine disk (18) or with the turbine ring.
5. Turbinenstufe nach Anspruch 4, dadurch gekennzeichnet, dass die Turbinenscheibe (18) oder der Turbinenring und/oder die Turbinenschaufel (10) aus einer Nickel-Basislegierung und/oder einer Kobalt-Basislegierung und/oder einem Titan- Aluminid und/oder einem Metall-Matrix- Verbundwerkstoff und/oder einem Keramik-Matrix-Verbundwerkstoff gefertigt ist.5. turbine stage according to claim 4, characterized in that the turbine disk (18) or the turbine ring and / or the turbine blade (10) made of a nickel-based alloy and / or a cobalt-based alloy and / or a titanium aluminide and / or a Metal matrix composite material and / or a ceramic matrix composite material is made.
6. Strömungsmaschine, insbesondere thermische Gasturbine, mit einer Turbine, welche eine Turbinenstufe mit einer Turbinenscheibe (18) oder einem Turbinenring, die bzw. der zumindest mittelbar mit wenigstens einer Turbinenschaufel (10) verbunden ist, umfasst, dadurch gekennzeichnet, dass die Turbinenscheibe (18) oder der Turbmenring und die wenigstens eine Turbinenschaufel (10) der Turbinenstufe mittels eines Verfahrens gemäß einem der Ansprüche 1 bis 3 miteinander verbunden sind und/oder dass die Turbinenstufe gemäß einem der Ansprüche 4 oder 5 ausgebildet ist. 6. turbomachine, in particular a thermal gas turbine, with a turbine, which has a turbine stage with a turbine disk (18) or a turbine ring, which is connected at least indirectly to at least one turbine blade (10), characterized in that the turbine disk ( 18) or the turbine ring and the at least one turbine blade (10) of the turbine stage by means of a method according to one of claims 1 to 3 are interconnected and / or that the turbine stage is designed according to one of claims 4 or 5.
EP09764703A 2008-10-16 2009-10-16 Method for connecting at least one turbine blade to a turbine disk or a turbine ring Withdrawn EP2334467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008052030A DE102008052030B4 (en) 2008-10-16 2008-10-16 Method for connecting at least one turbine blade with a turbine disk or a turbine ring
PCT/DE2009/001438 WO2010043210A1 (en) 2008-10-16 2009-10-16 Method for connecting at least one turbine blade to a turbine disk or a turbine ring

Publications (1)

Publication Number Publication Date
EP2334467A1 true EP2334467A1 (en) 2011-06-22

Family

ID=41528648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09764703A Withdrawn EP2334467A1 (en) 2008-10-16 2009-10-16 Method for connecting at least one turbine blade to a turbine disk or a turbine ring

Country Status (5)

Country Link
US (1) US20110217176A1 (en)
EP (1) EP2334467A1 (en)
CA (1) CA2740094A1 (en)
DE (1) DE102008052030B4 (en)
WO (1) WO2010043210A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034337A1 (en) 2010-08-14 2012-02-16 Mtu Aero Engines Gmbh Method for connecting a turbine blade with a turbine disk or a turbine ring
DE102010048336A1 (en) * 2010-10-13 2012-04-19 Mtu Aero Engines Gmbh Component and method for forming, repairing and / or constructing such a component
DE102010051534A1 (en) * 2010-11-16 2012-05-16 Mtu Aero Engines Gmbh Forming an adapter for connecting blade to rotor base body of turbomachine, comprises applying material layer on connecting surface of blade to form first adapter portion and applying second material on first adapter portion
DE102011086831B3 (en) * 2011-11-22 2012-11-08 Lufthansa Technik Ag Method for repairing a gas turbine component
US10309232B2 (en) * 2012-02-29 2019-06-04 United Technologies Corporation Gas turbine engine with stage dependent material selection for blades and disk
DE102012211986B3 (en) * 2012-07-10 2013-08-29 Rofin-Baasel Lasertech Gmbh & Co. Kg Method for marking components of an engine for an aircraft
DE102016218488A1 (en) 2016-09-27 2018-03-29 Bayerische Motoren Werke Aktiengesellschaft Method for improving the weldability of a connection part
FR3063663B1 (en) * 2017-03-13 2021-02-26 Mecachrome France PROCESS FOR MANUFACTURING COMPLEX SHAPED METAL ALLOY PARTS
CN114211204B (en) * 2021-12-21 2023-02-03 北京星航机电装备有限公司 Gamma-shaped half-section end ring and superplastic forming method thereof
CN114700599B (en) * 2022-05-18 2023-02-28 中国航空制造技术研究院 Blade based on discharge plasma diffusion welding

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392281A (en) * 1941-07-10 1946-01-01 Allis Chalmers Mfg Co Method of making welded blade structures
US2579583A (en) * 1945-01-29 1951-12-25 Allis Chalmers Mfg Co Segmental blading
US2778095A (en) * 1952-01-03 1957-01-22 Maschf Augsburg Nuernberg Ag Method of welding turbine blades
US2831958A (en) * 1955-12-01 1958-04-22 Gen Electric Bladed rotor
US3003745A (en) * 1957-10-31 1961-10-10 Bendix Corp Turbine wheel containment
US4602411A (en) * 1984-01-13 1986-07-29 Westinghouse Electric Corp. Method for fabricating a rotor disc assembly
DE3521664A1 (en) * 1985-06-18 1986-12-18 BBC Aktiengesellschaft Brown, Boveri & Cie., Baden, Aargau METHOD FOR FASTENING BLADES ON THE CIRCUMFERENCE OF THE ROTOR BODY OF A STEAM TURBINE
US5609471A (en) * 1995-12-07 1997-03-11 Allison Advanced Development Company, Inc. Multiproperty rotor disk and method of manufacture
US6364971B1 (en) * 2000-01-20 2002-04-02 Electric Power Research Institute Apparatus and method of repairing turbine blades
JP2003269106A (en) * 2002-03-11 2003-09-25 Toshiba Corp Steam turbine
US6969238B2 (en) * 2003-10-21 2005-11-29 General Electric Company Tri-property rotor assembly of a turbine engine, and method for its preparation
US6905728B1 (en) * 2004-03-22 2005-06-14 Honeywell International, Inc. Cold gas-dynamic spray repair on gas turbine engine components
US20050220995A1 (en) * 2004-04-06 2005-10-06 Yiping Hu Cold gas-dynamic spraying of wear resistant alloys on turbine blades
DE102004032975A1 (en) * 2004-07-08 2006-02-09 Mtu Aero Engines Gmbh A method of joining vane blades to vane roots or rotor disks in the manufacture and / or repair of gas turbine blades or integrally bladed gas turbine rotors
DE502006000502D1 (en) * 2005-03-03 2008-05-08 Mtu Aero Engines Gmbh A method of friction welding joining a blade to a rotor body with movement of a joining member disposed between the blade and the rotor body
DE102006029619B3 (en) * 2006-06-23 2007-07-26 Siemens Ag Process to vary the thickness of coating applied to metal component by generation of standing, acoustic transverse surface wave during exposure to cold gas
EP1903127A1 (en) * 2006-09-21 2008-03-26 Siemens Aktiengesellschaft Process of manufacturing of workpieces by cold gas spraying and turbine workpiece
DE102006056489A1 (en) * 2006-11-30 2008-06-05 Bayerische Motoren Werke Ag Connecting steel component with aluminum component by fusion welding useful in car body construction, comprises applying aluminum layer on steel component by injecting aluminum particles by cold gas injection with high speed
DE102006060021A1 (en) * 2006-12-19 2008-06-26 Ecka Granulate Gmbh & Co. Kg Preparing heavy-duty coating composition containing e.g. tin, useful to coat on e.g. bearings, comprises introducing an input stock of the composition into a cold gas spraying system, cold gas spraying of metal layers on a base metal
US8618440B2 (en) * 2007-01-04 2013-12-31 Siemens Energy, Inc. Sprayed weld strip for improved weldability
DE102008057188A1 (en) * 2008-11-13 2010-05-20 Mtu Aero Engines Gmbh Method of making or repairing integral bladed gas turbine rotors
DE102009048632A1 (en) * 2009-10-08 2011-04-14 Mtu Aero Engines Gmbh joining methods
DE102009049707A1 (en) * 2009-10-17 2011-07-28 MTU Aero Engines GmbH, 80995 Method for producing a rotor or stator blade and such a blade
US8918996B2 (en) * 2011-05-04 2014-12-30 General Electric Company Components and processes of producing components with regions having different grain structures

Also Published As

Publication number Publication date
DE102008052030B4 (en) 2011-06-16
US20110217176A1 (en) 2011-09-08
DE102008052030A1 (en) 2010-04-22
CA2740094A1 (en) 2010-04-22
WO2010043210A8 (en) 2011-05-12
WO2010043210A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
DE102008052030B4 (en) Method for connecting at least one turbine blade with a turbine disk or a turbine ring
JP3219154B2 (en) Repairing method for forged products
EP2317078B2 (en) Abrasive single-crystal turbine blade
EP2353750B1 (en) Welding and forging process for producing a component
DE102010037690A1 (en) Turbine rotor fabrication using cold spraying
DE102008023755A1 (en) Process for producing a blisk
EP3081669B1 (en) Method for the preparation of capped impellers
EP2203271A2 (en) Joining and material application method for a workpiece having a workpiece region comprising a titanium aluminide alloy
EP3468740B1 (en) Method of joining materials using a grid structure achieved by additive manufacturing
WO2015090680A1 (en) Turbine rotor and method for producing said turbine rotor
DE102005030848A1 (en) Method for producing a blade tip armor
EP2344298B1 (en) Method for replacing an inner disk element of an integrally bladed disk
DE102007056454A1 (en) Process for coating components
EP2346639B1 (en) Bonding method
EP3297780B1 (en) Method for producing a rotor of a flow engine
EP1711302B1 (en) Method for connecting components
US8322595B2 (en) Joining method and resultant article
DE102010051534A1 (en) Forming an adapter for connecting blade to rotor base body of turbomachine, comprises applying material layer on connecting surface of blade to form first adapter portion and applying second material on first adapter portion
DE102006061448B4 (en) Method for producing a blisk or bling of a gas turbine and component produced thereafter
DE102010006907B4 (en) Method for producing a hollow component for a gas turbine
EP2782703B1 (en) Repair method for turbine parts
EP2485863A1 (en) Method for fusion welding a monocrystalline workpiece to a polycrystalline workpiece and rotor
WO2015090681A1 (en) Turbine rotor for an exhaust gas turbine, and a method for producing the turbine rotor
WO2020025324A1 (en) Method for connecting superalloys and composite component
WO2010057475A1 (en) Method for producing and/or repairing a rotor of a turbo-engine and rotor for the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120913