EP2332652A1 - Fluidisches Magnetpartikeltransportsystem - Google Patents

Fluidisches Magnetpartikeltransportsystem Download PDF

Info

Publication number
EP2332652A1
EP2332652A1 EP10015405A EP10015405A EP2332652A1 EP 2332652 A1 EP2332652 A1 EP 2332652A1 EP 10015405 A EP10015405 A EP 10015405A EP 10015405 A EP10015405 A EP 10015405A EP 2332652 A1 EP2332652 A1 EP 2332652A1
Authority
EP
European Patent Office
Prior art keywords
magnetic
sources
fluid channel
transport system
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10015405A
Other languages
English (en)
French (fr)
Other versions
EP2332652B1 (de
Inventor
Matthias Franzreb
Andreas Guber
Nils Zacharias Danckwardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2332652A1 publication Critical patent/EP2332652A1/de
Application granted granted Critical
Publication of EP2332652B1 publication Critical patent/EP2332652B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • B03C1/0335Component parts; Auxiliary operations characterised by the magnetic circuit using coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/28Magnetic plugs and dipsticks
    • B03C1/288Magnetic plugs and dipsticks disposed at the outer circumference of a recipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid

Definitions

  • the invention relates to a fluidic magnetic particle transport system for suspended in a fluid magnetic particles in a fluid channel according to the first claim.
  • Fluidic magnetic particle transport systems of the type mentioned initially serve to transport magnetic particles in a fluid, preferably suspended in a liquid suspension.
  • the particles are not transported together with the fluid or the remaining constituents of the suspension, but selectively.
  • the non-magnetic constituents of the fluid or suspension are thus not directly, i.e., through the fluidic magnetic particle transport system. possibly influenced by the magnetic particles.
  • Selective transport of certain suspension components is particularly useful in bioanalytics or biosynthesis, e.g. in the isolation of certain active substances of particular importance.
  • certain molecules of a target substance are bound to the magnetic particles and forwarded via a fluidic channel or reaction system for subsequent synthesis or analysis.
  • a selective transport system for magnetic particles in a fluid is described by way of example.
  • the suspension is oscillated back and forth in channels with fluid and particles in channels, wherein only in the partial movements in one direction, a magnetic field is turned on.
  • the magnetic particles are fixed to the channel walls, while they are driven in the opposite partial movement together with the fluid.
  • [2] discloses a magnetic particle selective transport system in suspension through a channel.
  • switchable electromagnetic sources which act on the suspension in the channel, are arranged on both sides of the channel wall in an axially alternating side arrangement.
  • the sources are driven one after the other in the axial direction, with only a maximum of one magnetic source being active, similar to a running light circuit.
  • the magnetic particles collect in each case on the channel wall at the respectively activated source in order to be attracted to the opposite channel wall during the next switching operation by the source which is now activated in the axial conveying direction.
  • the transport process is carried out discontinuously.
  • the transport system is characterized by a complex structure with a large number of electromagnets, which are not only individually controlled, but in total constitute a heat source.
  • a disadvantage of the aforementioned transport systems is also that the magnetic particles during transport systematically repeatedly the channel walls are fixed, which in particular the substances adhering to the magnetic particles are unintentionally transferred to the channel wall.
  • the object of the invention is to propose a magnetic magnetic transport system for magnetic particles in a suspension in a channel with improved selectivity of the transport process and increased efficiency.
  • a contact of the channel wall by the particles in the suspension during the transport process should be basically reducible.
  • the invention relates to a fluidic magnetic particle transport system for suspended in a fluid magnetic particles in a fluid channel.
  • a multiplicity of magnetic sources which can be switched on and off in the fluid channel and which are arranged in the axial fluid channel direction on at least two opposite sides outside the fluid channel in alternating sequence.
  • the magnetic particles are each from one of the active, i. energized magnetic source in the fluid attracted.
  • the active sources are deactivated again upon reaching the magnetic particles, i. switched off and at the same time activated by switching in each case the next following magnetic sources on a preferably different channel side.
  • the magnetic particles are thus deflected by this switching before reaching a magnetic source by a magnetic field switching to the respective following source to this.
  • the switching already takes place before reaching the magnetic particle of the wall, when the first magnetic particles cross the main direction of action of the following source, come to less than 10%, preferably 5% of the fluid channel diameter or the first magnetic particles or a maximum concentration of magnetic particles is in the region of the main direction of action of the following source.
  • the concentrations can be detected optically, for example, by extinciton measurements by means of a laser beam through the crossing point between the main directions of action of two successive magnetic sources and, if empirical values can not be used, for the determination and / or controlling the switching or the switching frequency.
  • magnetic particles in the fluid channel can pass on to each subsequent switching of one to each subsequent, arranged on an opposite fluid channel side magnetic source and thus selectively transported through the fluid channel, without resulting in a contact of the channel walls.
  • For the switching of the magnetic sources means are provided for switching at least from one to another magnetic source.
  • An essential feature combination of the invention is the grouping of sources per page around the fluid channel, combined with synchronous group-wise driving of the magnetic sources and the feature that the magnetic sources have a main magnetic direction of action oriented obliquely to the fluid channel, not only the main directions of action of all sources a pointing in the fluid channel radial magnetic field component, but preferably also have an axially directed to the fluid channel magnetic field component.
  • the axially oriented field component allows for better axial transport efficiency of the particles in the fluid channel.
  • the means for switching preferably comprise means for a switching circuit for the magnetic sources, wherein the magnetic sources of a group in each case together and against the sources of at least one other group were-switched.
  • the axially aligned field components of all sources in one and the same direction are preferably aligned field components of all sources in one and the same direction.
  • the main directions of action of all magnetic sources per group, more preferably also all sources in total each have a uniform, ie equal angle to the fluid channel, which in turn benefits the preferred uniform delivery in the axial direction.
  • the target molecules to be transported with the magnetic, preferably magnetic particles in the suspension are preferably reversibly immobilized on the particle surfaces.
  • a magnetic field of the aforementioned magnetic sources takes place a selective movement and thus a transport of the particles in the fluid.
  • the transport directions of the particles in otherwise flow-free suspension of the vectorially determinable sum of the respective attacking individual magnetic forces follow.
  • the magnetic particles pass from the magnetic field of one source to that of the next source of another group on another side of the channel, forming a zig-zag-like transport path.
  • the channel is rectilinear and has a constant flow area.
  • all magnetic sources per group are identical or identical and arranged to the fluid channel. Further, they are arranged in a row with a preferably constant distance from each other. More preferably, said distances and training are identical in all, especially in opposite groups.
  • Both figures show exemplary embodiments with a fluid channel 1 having a multiplicity of magnetic sources 3 acting in the fluid channel and arranged directly on the fluid channel walls 2 , which in turn are divided into two groups 4 and 5 on both sides of the fluid channel.
  • the main directions of action 6 of the sources 3 point through the fluid channel walls into the interior of the fluid channel filled with the suspension 1.
  • the main directions of action 6 of the sources 3 preferably per group 4 or 5 preferably span with the channel walls 2 a respective uniform angle ⁇ or ⁇ . They penetrate the channel wall 2 at respective penetration areas 7 , wherein the magnetic sources 3 are preferably arranged directly on the outer surfaces of the channel wall 2 .
  • angles ⁇ and ⁇ equal, wherein the main directions of action on the respective opposite Naturaldringungs Schemeen 7 adjacent upstream source is preferably directed at the Fluidkanalwandung 2. 3 Furthermore, in the figures, the axial transport direction 9 of the magnetic particles is reproduced.
  • Fig.1 shows a first embodiment with a straight fluid channel 1
  • Fig.2 The main direction of action 6 of the magnetic sources 3.
  • the channel walls are made to avoid remanent magnetization effects such as permanent magnetic attachment of individual particles of a non-magnetizable material, preferably plastic or glass.
  • the channel wall has a minimum wall thickness of 10%, preferably 15% of the channel width. They are like in for example Fig.1 represented over the axial extent of the magnetic sources 3 constant or wise, as Fig.2 exemplified, a varying wall thickness.
  • Uniform magnetic sources 3 with a uniform angle ⁇ and ⁇ at a uniform wall thickness in the projection regions 7 are prerequisites for uniform magnetic field development in the suspension in the fluid channel around the main directions of action 6.
  • the penetration areas lie in the axial direction at a uniform distance D from each other (FIG. Fig.1 ).
  • a uniform magnetic field development is very advantageous for a uniform transport dynamics of the magnetic particles in the suspension (fluid) and thus for a particle flow that is as constant as possible and also to avoid congestion and other local concentration peaks.
  • the magnetic sources each comprise a passive soft magnetic structure, preferably the illustrated fluid channel directed plates 8 (preferred) or other slender structures such as needles of the rods in the influence of one or more magnetic fields of one or more magnetic sources, not shown.
  • plates 8 magnetize their own magnetic field and concentrate it in particular in front of and behind the plate ends.
  • the main directions of action 6 of this magnetic field form a straight line with the plates or the slender structures.
  • Lean structures can be significantly magnetized only in the longitudinal direction, i. only with the vectorial portions, oriented parallel to the length, of the magnetic field lines of the magnetic fields used for the magnetization. At the tips of the structures around the main direction of action magenta field lines are concentrated.
  • the magnetic sources used to magnetize the plates comprise two, ie for each group, 4 or 5 separately controllable electromagnets of different orientation.
  • the electromagnets use one and the same soft-magnetic core per magnetization direction in one possible embodiment.
  • the orientation of the individual electromagnets is based on the respective orientation of one of the groups.
  • they are oriented parallel to the slender structures to produce advantageous parallel to the length oriented vectorial portions of the magnetic field lines.
  • this also includes equipping each of the slender structures with their own magnetic field coil, the structure assuming the function of the soft magnetic core.
  • the means for discontinuous or gradual switching preferably comprise an electrical switching between the two electromagnets.
  • This embodiment advantageously has no moving parts.
  • the magnetic sources used to magnetize the plates comprise one or more oscillating permanent magnets or electromagnets, preferably rotating parallel to their orientation.
  • One possible embodiment comprises one oriented parallel to the extent of the sources and around them Orthogonal rotating magnetic source, wherein the respective vectorially resulting portions of the magnetic field lines parallel to the slender structures in their amount sinusoidal, ie oscillating behave.
  • this embodiment has moving parts, it is easy for the switching means to do. controllable via the speed in their AC switching frequency.
  • both aforementioned embodiments are in a in Fig.1 and 2 illustrated planar arrangement of two groups 4 and 5 to a fluid channel 1, preferably one of two of the aforementioned magnetic sources above or below the planar arrangement provided.
  • the plates of a group are arranged in a staircase, wherein the structures per group are aligned parallel to each other and are perpendicular to the structures of the other group.
  • the magnetization of the sources of one group is maximum only if it is minimal in the structures of the other group.
  • the magnetization of the sources follows a sinusoidal course, wherein in groups arranged at right angles the magnetization curves of the two groups are opposite to each other.
  • the angles ⁇ and ⁇ are each 45 °.
  • the said plates, needles or rods or other slender structures have a ratio of length to width less than 5, preferably less than 10 and more preferably less than 20 .
  • the plates, needles or rods or other slender structures are limited in their length. Preferably takes place orthogonal view of in Fig.1 or 2 As a result, the slender structures shown do not overlap with the adjacent structures of the same group, so that the magnetic field lines emanating from the magnetic sources ideally only impinge upon a thin structure and only magnetize it; a split into two structures does not take place.
  • the fluid channel is formed by a hose (preferably of plastic or an elastomer) which is inserted and exchangeable separately in the depression or cavity.
  • a microstructured passive component is created, which can be used as a disposable part after, for example, an analysis or synthesis inexpensively disposable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soft Magnetic Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Fluidisches Magnetpartikeltransportsystem für in einem Fluid suspendierte Magnetpartikel in einem Fluidkanal (1) , umfassend eine Vielzahl von in den Fluidkanal einwirkenden ein- und ausschaltbaren magnetischen Quellen (3) , die in axialer Fluidkanalrichtung an mindestens zwei gegenüberliegenden Seiten au-²erhalb des Fluidkanals in abwechselnder Reihenfolge angeordnet sind. Die Aufgabe liegt darin, ein fluidisches Magnettransportsystem für magnetische Partikel in einer Suspension in einem Kanal mit verbesserter Selektivität des Transportvorgangs sowie erhöhter Effizienz vorzuschlagen. Die Aufgabe wird dadurch gelöst, dass die Quellen jeder Seite je eine Gruppe (4, 5) bilden, Mittel zum gruppenweise individuellen Ein- und Ausschalten der Quellen vorgesehen sind sowie die magnetischen Quellen eine schräg zum Fluidkanal ausgerichtete magnetische Hauptwirkungsrichtung (6) aufweisen, wobei die Hauptwirkungsrichtungen aller Quellen in ein und die gleiche axiale Richtung zum Fluidkanal weist.

Description

  • Die Erfindung betrifft ein fluidisches Magnetpartikeltransportsystem für in einem Fluid suspendierte Magnetpartikel in einem Fluidkanal gemäß des ersten Patentanspruchs.
  • Fluidische Magnetpartikeltransportsysteme der eingangs genannten Art dienen dem Transport von Magnetpartikeln in einem Fluid, vorzugsweise suspendiert in einer flüssigen Suspension. Im Gegensatz zu Pumpen erfolgt der Transport der Partikel nicht gemeinsam mit dem Fluid oder den restlichen Bestandteilen der Suspension, sondern selektiv. Die unmagnetischen Bestandteile des Fluids oder der Suspension werden folglich durch das fluidische Magnetpartikeltransportsystem nicht direkt, d.h. allenfalls über die Magnetpartikel beeinflusst.
  • Ein selektiver Transport bestimmter Suspensionsbestandteile ist insbesondere in der Bioanalytik oder Biosynthese z.B. bei der Isolierung bestimmter Wirkstoffe von besonderer Bedeutung. Dabei werden bestimmte Moleküle einer Zielsubstanz an die Magnetpartikel gebunden und über ein fluidisches Kanal- oder Reaktionssystem zu einer nachfolgenden Synthese oder Analyse weitergeleitet. Alternativ lassen sich durch einen entsprechenden selektiven Transport auch allgemein eine Separation oder Vermischung von Partikeln in einem Fluid durchführen.
  • In [1] wird beispielhaft ein selektives Transportsystem für Magnetpartikel in einem Fluid beschrieben. Dabei wird die Suspension mit Fluid und Partikeln in Kanälen oszillierend hin- und herbewegt, wobei nur bei den Teilbewegungen in eine Richtung ein Magnetfeld angeschalt wird. Damit werden bei dieser Teilbewegung die Magnetpartikel an den Kanalwandungen fixiert, während sie bei der entgegengesetzten Teilbewegung gemeinsam mit dem Fluid vorangetrieben werden.
  • Der vorgenannte Transportvorgang erfordert somit eine oszillierende Bewegung der gesamten Suspension synchron zu der Magnetfeldumschaltung, was den Einsatzbereich erheblich eingrenzt.
  • Ferner offenbart [2] ein selektives Transportsystem für magnetische Partikel in einer Suspension durch einen Kanal. Hierzu sind an der Kanalwandung beidseitig zum Kanal in axial abwechselnder Seitenanordnung schaltbare elektromagnetische Quellen angeordnet, die in die Suspension im Kanal einwirken. Zur selektiven Förderung der magnetischen Partikel im Kanal werden die Quellen in axialer Richtung nacheinander angesteuert, wobei ähnlich einer Lauflichtschaltung jeweils nur maximal eine magnetische Quelle aktiv ist. Die magnetischen Partikel sammeln sich jeweils an der Kanalwandung an der jeweils aktivierten Quelle, um beim nächsten Schaltvorgang durch die in axialer Förderrichtung folgende nunmehr aktivierte Quelle an der gegenüberliegenden Kanalwandung angezogen zu werden. Der Transportvorgang erfolgt dabei diskontinuierlich. Das Transportsystem zeichnet sich jedoch durch einen aufwendigen Aufbau mit einer Vielzahl von Elektromagneten aus, die nicht nur einzeln angesteuert werden, sondern in Summe eine Wärmequelle darstellen.
  • Nachteilig bei den vorgenannten Transportsystemen ist auch, dass die Magnetpartikel beim Transport systembedingt wiederholt die Kanalwandungen fixiert werden, womit insbesondere die an den magnetischen Partikeln anheftende Substanzen ungewollt auch an die Kanalwandung übertragen werden.
  • Davon ausgehend liegt die Aufgabe der Erfindung darin, ein fluidisches Magnettransportsystem für magnetische Partikel in einer Suspension in einem Kanal mit verbesserter Selektivität des Transportvorgangs sowie erhöhter Effizienz vorzuschlagen. Insbesondere soll auch eine Berührung der Kanalwandung durch die Partikel in der Suspension während des Transportvorgangs grundsätzlich reduzierbar sein.
  • Die Aufgabe wird durch ein fluidisches Magnetpartikeltransportsystem mit den Merkmalen aus Anspruch 1 gelöst. Die auf diesen rückbezogene Unteransprüche geben vorteilhafte Ausgestaltungen der Verwendungen wieder.
  • Die Erfindung betrifft ein fluidisches Magnetpartikeltransportsystem für in einem Fluid suspendierte Magnetpartikel in einem Fluidkanal. An dem Kanal sind eine Vielzahl von in den Fluidkanal einwirkenden ein- und ausschaltbaren magnetischen Quellen vorgesehen, die in axialer Fluidkanalrichtung an mindestens zwei gegenüberliegenden Seiten außerhalb des Fluidkanals in abwechselnder Reihenfolge angeordnet sind.
  • Im laufenden Betrieb werden die magnetischen Partikel jeweils von einer der aktiven, d.h. eingeschalteten magnetischen Quelle im Fluid angezogen. Dabei werden die aktiven Quellen bei Erreichen der magnetischen Partikel wieder deaktiviert, d.h. ausgeschaltet und zugleich durch Umschaltung jeweils die nächst folgenden magnetischen Quellen auf einer vorzugsweise anderen Kanalseite aktiviert. Die magnetischen Partikel werden folglich durch diese Umschaltung vor einem Erreichen einer magnetischen Quelle durch eine magnetische Feldumschaltung auf die jeweils folgende Quelle auf diese umgelenkt.
  • Vorzugsweise findet im Rahmen einer möglichen Ausführung die Umschaltung bereits vor Erreichen der magnetischen Partikel der Wandung dann statt, wenn die ersten magnetischen Partikel die Hauptwirkungsrichtung der folgenden Quelle kreuzen, bis auf unter 10%, bevorzugt 5% des Fluidkanalsdurchmessers nahe kommen oder die ersten magnetischen Partikel oder eine maximale Konzentration an magnetischen Partikeln sich im Bereich der Hauptwirkungsrichtung der folgenden Quelle befindet. Die Konzentrationen lassen sich bei ansonsten transparenter Suspension z.B. optisch durch Extinkitonsmessungen mittels eines Laserstrahls durch den Kreuzungspunkt zwischen den Hauptwirkungsrichtungen zweier aufeinander folgender magnetischer Quellen erfassen und, sofern nicht Erfahrungswerte nutzbar sind, für die Festlegung und/oder Steuerung der Umschaltungen oder die Umschaltfrequenz heranziehen.
  • Basierend auf der vorgenannten Vorgehensweise lassen sich magnetische Partikel im Fluidkanal bei jeder Umschaltung von jeweils einer zur jeweils folgenden, auf einer gegenüberliegender Fluidkanalseite angeordneten magnetischen Quelle weiterreichen und damit selektiv durch den Fluidkanal transportieren, ohne dass es zu einer Berührung der Kanalwandungen kommt. Für die Umschaltung der magnetischen Quellen sind Mittel für die Umschaltung zumindest von einer zu einer anderen magnetischen Quelle vorgesehen.
  • Eine wesentliche Merkmalskombination der Erfindung liegt in der Gruppenbildung der Quellen pro Seite um den Fluidkanal, kombiniert mit einer synchronen gruppenweise Ansteuerung der magnetischen Quellen sowie des Merkmals, dass die magnetischen Quellen eine schräg zum Fluidkanal ausgerichtete magnetische Hauptwirkungsrichtung aufweisen, wobei die Hauptwirkungsrichtungen aller Quellen nicht nur eine in den Fluidkanal weisende radiale magnetische Feldkomponente, sondern vorzugsweise auch eine axial zum Fluidkanal gerichtete magnetische Feldkomponente aufweisen. Die axiale ausgerichtete Feldkomponente ermöglicht eine bessere axiale Transporteffizienz der Partikel im Fluidkanal.
  • Die Mittel zur Umschaltung umfassen vorzugsweise Mittel für eine Wechselschaltung für die magnetischen Quellen, wobei die magnetischen Quellen einer Gruppe jeweils gemeinsam und gegen die Quellen mindestens einer anderen Gruppe wechselgeschaltet wer-den.
  • Vorzugsweise weisen die axial ausgerichteten Feldkomponenten aller Quelle in ein und die gleiche Richtung. Weiter bevorzugt weisen die Hauptwirkungsrichtungen aller magnetischen Quellen je Gruppe, weiter bevorzugt auch alle Quellen insgesamt jeweils einen einheitlichen, d.h. gleichen Winkel zum Fluidkanal auf, was wiederum die bevorzugte gleichmäßige Förderung in axialer Richtung zugute kommt.
  • Die mit den magnetischen, vorzugsweise magnetischen Partikeln zu transportierenden Zielmoleküle in der Suspension werden vorzugsweise reversibel auf den Partikeloberflächen immobilisiert. Im Einfluss eines Magnetfelds der vorgenannten magnetischen Quellen erfolgt eine selektive Bewegung und damit ein Transport der Partikel im Fluid. Dabei folgen die Transportrichtungen der Partikel bei ansonsten strömungsfreier Suspension der vektoriell ermittelbaren Summe der jeweilig angreifenden magnetischen Einzelkräfte.
  • Im Rahmen der Erfindung erfolgt eine Weitergabe der magnetischen Partikel vom magnetischen Feld einer Quelle zu dem der nächsten Quelle einer anderen Gruppe auf einer anderen Seite des Kanals, wobei sich ein Zick-Zack-ähnlicher Transportweg ausbildet. Vorzugsweise weisen die magnetischen Quellen zueinander eine gruppenweise versetzt und gegenüberliegende Anordnung auf, wobei die Quellen in axialer Richtung weiter bevorzugt im gleichen Abstand zueinander positioniert sind.
  • Vorzugsweise ist der Kanal geradlinig und weist einen konstanten Durchströmungsquerschnitt auf.
  • Vorzugsweise sind alle magnetischen Quellen je Gruppe gleichartig oder identisch gestaltet und zum Fluidkanal angeordnet. Ferner sind sie in einer Reihe mit einem vorzugsweise konstanten Abstand zueinander angeordnet. Weiter bevorzugt sind die genannten Abstände und Ausbildung bei allen, insbesondere bei gegenüberliegenden Gruppen identisch.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen mit den folgenden Figuren näher erläutert. Es zeigen
    • Fig.1 eine prinzipielle Aufsicht des fluidischen Magnetpartikeltransportsystems mit geradlinig verlaufenden Fluidkanal sowie
    • Fig.2 eine prinzipielle Aufsicht des fluidischen Magnetpartikeltransportsystems mit schlangenförmig verlaufenden Fluidkanal.
  • Beide Figuren zeigen Ausführungsbeispiele mit einem Fluidkanal 1 mit einer Vielzahl von in den Fluidkanal einwirkenden und direkt an der Fluidkanalwandungen 2 angeordneten magnetischen Quellen 3, die wiederum in zwei Gruppen 4 und 5 beidseitig am Fluidkanal aufgeteilt sind. Die Hauptwirkungsrichtungen 6 der Quellen 3 weisen durch die Fluidkanalwandungen in das Innere des mit der Suspension gefüllten Fluidkanals 1. Die Hauptwirkungsrichtungen 6 der Quellen 3 vorzugsweise je Gruppe 4 oder 5 spannen mit den Kanalwandungen 2 vorzugsweise einen jeweils einheitlichen Winkel α bzw. β auf. Sie durchdringen die Kanalwandung 2 an jeweiligen Durchdringungsbereichen 7, wobei die magnetischen Quellen 3 vorzugsweise direkt an den Außenflächen der Kanalwandung 2 angeordnet sind. In den Ausführungsbeispielen sind die Winkel α und β gleich, wobei die Hauptwirkungsrichtungen vorzugsweise auf die gegenüber liegenden Durchdringungsbereichen 7 jeweiligen benachbart vorgeschalteten Quelle 3 an der Fluidkanalwandung 2 gerichtet ist. Ferner ist in den Figuren die axiale Transportrichtung 9 der magnetischen Partikel wiedergegeben.
  • Während Fig.1 eine erste Ausführungsform mit einem geraden Fluidkanal 1 zeigt, folgt der Verlauf des Fluidkanals der zweiten Ausführungsform gem. Fig.2 den Hauptwirkungsrichtungen 6 der magnetischen Quellen 3. Durch letztgenannte Gestaltung vermeidet man in vorteilhafter Weise größere Magnetfeldinhomogenitäten und damit auch Bereiche mit geringer magnetischer Feldstärke (Totvolumina) im Fluidkanal. Damit wird nicht nur der Reagenzienverbrauch reduziert, sondern auch ein effizienterer und schnellerer Transport von magnetischen Partikeln in der Suspension unterstützt.
  • Die Kanalwandungen sind zur Vermeidung von remanenten Magnetisierungseffekten wie z.B. von dauermagnetischer Anheftung einzelner Partikel aus einem nicht magnetisierbaren Material, vorzugsweise Kunststoff oder Glas hergestellt. Zur Vermeidung einer Einwirkung von Restmagnetismen auf die Kanalinnenwandung weist die Kanalwandung eine Mindestwandstärke von 10%, bevorzugt 15% der Kanalbreite auf. Sie sind wie in beispielsweise Fig.1 dargestellt über die axiale Erstreckung der magnetischen Quellen 3 konstant oder weisen, wie Fig.2 beispielhaft dargestellt, eine variierende Wandstärke auf. Vorzugsweise ist die Wandstärke - wie auch in Fig.2 dargestellt - in den Projektionsbereichen 7 vorzugsweise aller magnetischen Quellen 3 gleich.
  • Einheitliche magnetische Quellen 3 mit einheitlichem Winkel α und β an einer einheitliche Wandstärke in den Projektionsbereichen 7 sind Voraussetzungen für eine einheitliche Magnetfeldentwicklung in der Suspension im Fluidkanal um die Hauptwirkungsrichtungen 6. Vorzugsweise liegen die Durchdringungsbereiche in axialer Richtung in einem einheitlichen Abstand D zueinander ( Fig.1 ). Eine einheitliche Magnetfeldentwicklung ist für eine einheitliche Transportdynamik der magnetischen Partikel in der Suspension (Fluid) und damit für einen möglichst konstanten Partikelstrom sowie zur Vermeidung von Staus und anderen lokalen Konzentrationsspitzen sehr vorteilhaft.
  • Die magnetischen Quellen umfassen in beiden Ausführungsbeispielen jeweils eine passive weichmagnetische Struktur, vorzugsweise die dargestellten zur Fluidkanal gerichteten Platten 8 (bevorzugt) oder andere schlanke Strukturen wie Nadeln der Stangen im Einfluss eines oder mehrerer Magnetfelder einer oder mehrerer nicht weiter dargestellten Magnetquellen. Die dargestellten Platten 8 bilden magnetisiert jeweils ein eigenes Magnetfeld aus und konzentrieren dieses insbesondere vor und hinter den Plattenenden. Die Hauptwirkungsrichtungen 6 dieses Magnetfeldes bilden eine Gerade mit den Platten oder den schlanken Strukturen bilden.
  • Schlanke Strukturen lassen sich nur in Längsrichtung signifikant aufmagnetisieren, d.h. nur mit den parallel zu der Länge orientierten vektoriellen Anteilen der Magnetfeldlinien der zur Magnetisierung herangezogenen Magnetfelder. Dabei bilden sich konzentriert an den Spitzen der Strukturen um die Hauptwirkungsrichtung Magentfeldlinien aus.
  • Die zur Magnetisierung der Platten herangezogenen Magnetquellen umfassen in einer Ausführungsform zwei, d.h. für jede Gruppe 4 oder 5 eigene getrennt ansteuerbare Elektromagnete unterschiedlicher Ausrichtung. Aus wirtschaftlichen und/oder platzlichen Gründen nutzen die Elektromagnete dabei in einer möglichen Ausführung ein und denselben weichmagnetischen Kern pro Magnetisierungsrichtung. Die Ausrichtung der einzelnen Elektromagneten orientiert sich an der jeweiligen Ausrichtung einer der Gruppen. Vorzugsweise sind sie zur Erzeugung von vorteilhaften parallel zu der Länge orientierten vektoriellen Anteilen der Magnetfeldlinien jeweils parallel zu den schlanken Strukturen orientiert. Dies umfasst grundsätzlich auch eine Bestückung jeder der schlanken Strukturen mit einer eigenen Magnetfeldspule, wobei die Struktur die Funktion des weichmagnetischen Kerns übernimmt. Die Mittel zur diskontinuierlichen oder zur allmählichen Umschaltung umfassen vorzugsweise eine elektrische Wechselschaltung zwischen den beiden Elektromagneten. Diese Ausführungsform weist vorteilhaft keine bewegten Teile auf.
  • Alternativ umfassen die zur Magnetisierung der Platten herangezogenen Magnetquellen einen oder mehrere oszillierenden, vorzugsweise parallel zu ihrer Ausrichtung rotierende Permanent-oder Elektromagneten. Eine mögliche Ausführung umfasst eine parallel zu der Erstreckung der Quellen orientierten und um deren Orthogonalen drehenden Magnetquelle, wobei sich die jeweils vektoriell ergebenden Anteile der Magnetfeldlinien parallel zu den schlanken Strukturen in ihrem Betrag sinusförmig, d.h. oszillierend verhalten. Diese Ausführung weist zwar bewegliche Teile auf, ist aber seitens der Mittel zum Umschalten einfach. über die Drehzahl in ihrer Wechselschaltfrequenz steuer- und regelbar.
  • Bei beiden vorgenannten Ausführungen sind bei einer in Fig.1 und 2 dargestellten planen Anordnung von zwei Gruppen 4 und 5 um einen Fluidkanal 1 vorzugsweise jeweils eine von zwei der vorgenannten Magnetquellen oberhalb bzw. unterhalb der planen Anordnung vorgesehen.
  • In Fig.1 und 2 sind die Platten einer Gruppe treppenförmig angeordnet, wobei die Strukturen je Gruppe parallel zueinander ausgerichtet sind und zu den Strukturen der jeweils anderen Gruppe im rechten Winkel stehen. Auf diese Weise ist in vorteilhafter Weise sichergestellt, dass die Magnetisierung der Strukturen der Quellen einer Gruppe genau dann maximal ist, wenn sie bei den Strukturen der jeweils anderen Gruppe minimal ist. In einem Magnetfeld einer sich drehenden vorgenannten Magnetquelle folgt die Magnetisierung der Quellen einem Sinusverlauf, wobei bei rechtwinklig zueinander angeordneten Gruppen die Magnetisierungskurven der beiden Gruppen zueinander gegenläufig ist. Zur Sicherstellung von vorteilhaften untereinander identischen oder ähnlichen geometrischen Verhältnissen bei der Einwirkung der magnetischen Quellen in den Fluidkanal betragen die Winkel α und β jeweils 45°.
  • Die genannten Platten, Nadeln oder Stangen oder sonstigen schlanken Strukturen weisen ein Verhältnis von Länge zu Breite kleiner 5, bevorzugt kleiner 10 und weiter bevorzugt kleiner 20 auf.
  • Ferner die Platten, Nadeln oder Stangen oder sonstigen schlanken Strukturen in ihrer Länge begrenzt. Vorzugsweise findet bei orthogonaler Ansicht der in Fig.1 oder 2 dargestellten schlanken Strukturen keine Überlappung zu den benachbarten Strukturen der gleichen Gruppe statt, sodass die von den Magnetquellen ausgehenden Magnetfeldlinien idealerweise nur auf eine schlanke Struktur auftreffen und nur diese magnetisieren; eine Aufteilung auf zwei Strukturen findet damit nicht statt.
  • Eine Fertigung eines bevorzugt mikrofluidischen Magnetpartikeltransportsystems gem. Fig.1 oder 2 z.B. für Analysen oder Synthesen bevorzug im Labormaßstab (Forschung und Entwicklung) aus einem Vollmaterial ist wie folgt durchführbar:
    • Herstellung mit Röntgentiefenlithographische Strukturierungsverfahren (z.B. LIGA-Verfahren): Der Fluidkanal und die weichmagnetischen schlanken Strukturen werden in einem Bauteil aus einem Resist (z.B. POM, PMMA etc.) strukturiert. In einem ersten Belichtungsschritt werden an der Position der weichmagnetischen Strukturen lithographisch Kavitäten geschaffen und galvanisch mit einem weichmagnetischen Material, vorzugsweise auf Eisen-Nickel-Basis wieder aufgefüllt. Alternativ lassen sich auch fertige Strukturen in die Kavitäten einsetzen. Erst anschließend erfolgt die lithographische Herauslösung und Abdeckung des Fluidkanals sowie die Bestückung mit den genannten Magnetquellen.
    • Spangebende Einarbeitung von Vertiefungen für Kanal und magnetischen Quellen in ein Bauteil und bevorzugt Einsetzen der magnetischen Quellen in die dafür vorgesehenen Vertiefungen. Der Fluidkanal selbst wird durch eine rillenförmige und abgedeckte Vertiefung geschaffen.
  • Alternativ wird der Fluidkanal durch einen separat in der Vertiefung oder Kavität eingesetzten und auswechselbaren Schlauch (bevorzugt aus Kunststoff oder einem Elastomer) gebildet. Durch beide genannten Fertigungsverfahren wird ein mikrostrukturiertes passives Bauteil geschaffen, das auch als Einwegteil einsetzbar nach z.B. einer Analyse oder Synthese preisgünstig entsorgbar ist.
  • Literatur:
    1. [1] DE 10 2004 062 535 A1
    2. [2] Joung J., Shen J., Grodzinski P.: Micropump Based on Alternation High- Gradient Magnetic Fields; IEEE Trans. Magn., Vol.36 (2000) No.4, 2012-2014
    Bezugszeichenliste:
  • 1
    Fluidkanal
    2
    Fluidkanalwandung
    3
    magnetische Quelle
    4
    erste Gruppe
    5
    zweite Gruppe
    6
    Hauptwirkungsrichtung
    7
    Durchdringungsbereich
    8
    weichmagnetische Platte
    9
    Transportrichtung

Claims (10)

  1. Fluidisches Magnetpartikeltransportsystem für in einem Fluid suspendierte Magnetpartikel in einem Fluidkanal (1), umfassend
    a) eine Vielzahl von in den Fluidkanal einwirkenden ein- und ausschaltbaren magnetischen Quellen (3), die in axialer Fluidkanalrichtung an mindestens zwei gegenüberliegenden Seiten außerhalb des Fluidkanals in abwechselnder Reihenfolge angeordnet sind,
    dadurch gekennzeichnet, dass
    b) die Quellen jeder Seite je eine Gruppe (4, 5) bilden,
    c) Mittel zum gruppenweise individuellen Ein- und Ausschalten der Quellen vorgesehen sind sowie
    d) die magnetischen Quellen eine schräg zum Fluidkanal ausgerichtete magnetische Hauptwirkungsrichtung (6) aufweisen, wobei die Hauptwirkungsrichtungen aller Quellen in ein und die gleiche axiale Richtung zum Fluidkanal weist.
  2. Fluidisches Magnetpartikeltransportsystem nach Anspruch 1, wobei die Mittel eine Wechselschaltung für die magnetischen Quellen (3) umfassen, wobei die magnetischen Quellen einer Gruppe (4) jeweils gemeinsam und gegen die Quellen mindestens einer anderen Gruppe (5) wechselgeschaltet werden.
  3. Fluidisches Magnetpartikeltransportsystem nach Anspruch 1 oder 2, wobei die magnetischen Quellen (3) durch weichmagnetische Strukturen im Einflussbereich einer Magnetquelle gebildet sind.
  4. Fluidisches Magnetpartikeltransportsystem nach Anspruch 3, wobei die weichmagnetischen Strukturen durch in einem Winkel α und/oder β zum Fluidkanal zulaufende stab- oder plattenförmige Elemente gebildet werden.
  5. Fluidisches Magnetpartikeltransportsystem nach Anspruch 4, wobei die Strukturen je Gruppe parallel zueinander ausgerichtet und im Winkel α = β = 45° auf den Fluidkanal (1) auftreffen.
  6. Fluidisches Magnetpartikeltransportsystem nach Anspruch 5, wobei die Strukturen (3) jeweils überlappungsfrei zu den jeweils benachbarten Strukturen (3) der gleichen Gruppe (4, 5) gestaltet und dabei treppenstufenförmig angeordnet sind.
  7. Fluidisches Magnetpartikeltransportsystem nach einem der Ansprüche 3 bis 6, wobei die Magnetquelle zwei getrennt ansteuerbare Elektromagnete unterschiedlicher Ausrichtung umfasst.
  8. Fluidisches Magnetpartikeltransportsystem nach einem der Ansprüche 3 bis 6, wobei die Magnetquelle einen oszillierenden Permanent- oder Elektromagneten umfasst.
  9. Fluidisches Magnetpartikeltransportsystem nach einem der vorgenannten Ansprüche, wobei nur zwei Gruppen (4, 5) von Magnetquellen (3) vorgesehen sind, die beidseitig des Fluidkanals (1) angeordnet sind.
  10. Fluidisches Magnetpartikeltransportsystem nach einem der vorgenannten Ansprüche, wobei Fluidkanal schlangenförmig die magnetischen Quellen an der Kanalwandung miteinander verbindet.
EP20100015405 2009-12-10 2010-12-08 Fluidisches Magnetpartikeltransportsystem Not-in-force EP2332652B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009057804A DE102009057804A1 (de) 2009-12-10 2009-12-10 Fluidisches Magnetpartikeltransportsystem

Publications (2)

Publication Number Publication Date
EP2332652A1 true EP2332652A1 (de) 2011-06-15
EP2332652B1 EP2332652B1 (de) 2013-08-14

Family

ID=43640224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100015405 Not-in-force EP2332652B1 (de) 2009-12-10 2010-12-08 Fluidisches Magnetpartikeltransportsystem

Country Status (2)

Country Link
EP (1) EP2332652B1 (de)
DE (1) DE102009057804A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106861901A (zh) * 2016-12-28 2017-06-20 神华集团有限责任公司 磁性杂质过滤装置、煤液化油品中磁性杂质的过滤系统
CN114345547A (zh) * 2020-10-12 2022-04-15 北京星油科技有限公司 磁性过滤器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062535A1 (de) 2004-12-24 2006-07-06 Forschungszentrum Karlsruhe Gmbh Semipermeables Membransystem für magnetische Partikelfraktionen
US20080160634A1 (en) * 2006-12-28 2008-07-03 Xing Su Method and device for biomolecule preparation and detection using magnetic array
WO2008147530A1 (en) * 2007-05-24 2008-12-04 The Regents Of The University Of California Integrated fluidics devices with magnetic sorting
WO2009026566A1 (en) * 2007-08-23 2009-02-26 Cynvenio Biosystems, Llc Trapping magnetic sorting system for target species

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB412511A (en) * 1933-08-21 1934-06-28 Borax Cons Ltd Process and apparatus for the treatment of boron minerals
US3402820A (en) * 1965-10-24 1968-09-24 Lohmann Edward Pratt Magnetic cleaner for coolant
FR2648058B1 (fr) * 1989-06-12 1991-10-04 N Proizv Ob Tulatschermet Procede de separation electrodynamique de particules non ferromagnetiques conductrices de courant et dispositif pour la mise en oeuvre de ce procede

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004062535A1 (de) 2004-12-24 2006-07-06 Forschungszentrum Karlsruhe Gmbh Semipermeables Membransystem für magnetische Partikelfraktionen
US20080160634A1 (en) * 2006-12-28 2008-07-03 Xing Su Method and device for biomolecule preparation and detection using magnetic array
WO2008147530A1 (en) * 2007-05-24 2008-12-04 The Regents Of The University Of California Integrated fluidics devices with magnetic sorting
WO2009026566A1 (en) * 2007-08-23 2009-02-26 Cynvenio Biosystems, Llc Trapping magnetic sorting system for target species

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AHN C H ET AL: "A fully integrated micromachined magnetic particle manipulator and separator", MICRO ELECTRO MECHANICAL SYSTEMS, 1994, MEMS '94, PROCEEDINGS, IEEE WO RKSHOP ON OISO, JAPAN 25-28 JAN. 1994, NEW YORK, NY, USA,IEEE, 25 January 1994 (1994-01-25), pages 91 - 96, XP010207750, ISBN: 978-0-7803-1833-5, DOI: 10.1109/MEMSYS.1994.555604 *
JOUNG J.; SHEN J.; GRODZINSKI P.: "Micropump Based on Alternation High- Gradient Magnetic Fields", IEEE TRANS. MAGN., vol. 36, no. 4, 2000, pages 2012 - 2014
JUNHO JOUNG ET AL: "Micropumps Based on Alternating High-Gradient Magnetic Fields", IEEE TRANSACTIONS ON MAGNETICS, IEEE SERVICE CENTER, NEW YORK, NY, US, vol. 36, no. 4, 1 July 2000 (2000-07-01), XP011032473, ISSN: 0018-9464 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106861901A (zh) * 2016-12-28 2017-06-20 神华集团有限责任公司 磁性杂质过滤装置、煤液化油品中磁性杂质的过滤系统
CN106861901B (zh) * 2016-12-28 2019-01-08 神华集团有限责任公司 磁性杂质过滤装置、煤液化油品中磁性杂质的过滤系统
CN114345547A (zh) * 2020-10-12 2022-04-15 北京星油科技有限公司 磁性过滤器
CN114345547B (zh) * 2020-10-12 2024-02-27 北京星油科技有限公司 磁性过滤器

Also Published As

Publication number Publication date
DE102009057804A1 (de) 2011-06-16
EP2332652B1 (de) 2013-08-14

Similar Documents

Publication Publication Date Title
EP1446668B1 (de) Vorrichtung und verfahren zum behandeln von magnetpartikeln
DE102005004664B4 (de) Vorrichtung und Verfahren und Verwendung zum Abtrennen von magnetischen oder magnetisierbaren Partikeln aus einer Flüssigkeit sowie deren Verwendungen
EP1835983B1 (de) Verfahren zur abtrennung magnetischer partikelfraktionen durch eine semipermeable membran
EP1720978B1 (de) Magnetische manipulation von biologischen proben
DE69701418T2 (de) Verfahren und Vorrichtung zum Waschen, zur Resuspension, zum Wiedersammeln und zur Lokalisierung von magnetisierbaren Teilchen in der magnetischen Trennungstechnik von Proben
WO1999061881A2 (de) Verfahren und vorrichtung zum prozessieren von kleinstsubstanzmengen
DE10331254A1 (de) Vorrichtung und Verfahren zum Abtrennen von magnetischen oder magnetisierbaren Partikeln aus einer Flüssigkeit
EP2004317A1 (de) Vorrichtung zur steigerung der reaktions-, insbesondere der anbindungseffizienz zwischen molekülen bzw. molekülteilen
EP1974821A1 (de) Verfahren und Vorrichtung zum Transport magnetischer oder magnetisierbarer Mikrokugeln
EP1979738B1 (de) Anordnung zur erzeugung von flüssigkeitsströmungen und/oder teilchenströmen, verfahren zu ihrer herstellung und zu ihrem betrieb sowie ihre verwendung
DE2628640A1 (de) Vorrichtung zum pipettieren mit volumenkonstanten inkrementen
DE102009005925B4 (de) Vorrichtung und Verfahren zur Handhabung von Biomolekülen
DE19744714C1 (de) Elektromagnetischer Aktuator zur Betätigung eines Gaswechselventils
EP2332652B1 (de) Fluidisches Magnetpartikeltransportsystem
WO2010076337A1 (de) Elektromagnetisches mikrosystem zur manipulation magnetischer mikro- oder nanoperlen
EP3349909B1 (de) Magnetische trennvorrichtung mit magnetischer aktivierung und deaktivierung
WO1999001209A1 (de) Schaltbarer dynamischer mikromischer mit minimalem totvolumen
EP3528953B1 (de) Permanentmagnetische kolbenbaugruppe mit einem permanentmagnetanordnungen aufnehmenden aussenskelett für eine pipettiervorrichtung
WO2006069627A1 (de) Mikroreaktor
DE102013009773B4 (de) Vorrichtung sowie Verfahren zur Steigerung der Anbindungseffizienz von zur Bindung befähigten Zielstrukturen
WO2017046235A1 (de) Magnetische trennvorrichtung mit mechanischer aktivierung und deaktivierung
DE102005051012B3 (de) Vorrichtung zur Handhabung von biologischen Zellen bzw. Proben
WO2020094780A2 (de) Vorrichtung und verfahren zum transport magnetischer partikel
DE102020209001B4 (de) Lyse einer Probe mittels Magnetelementen und rotatorischer Relativbewegung
EP2925453B1 (de) Vorrichtung zum abscheiden magnetischer oder magnetisierbarer mikropartikel aus einer suspension mittels hochgradienten-magnetseparation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B03C 1/033 20060101ALI20121210BHEP

Ipc: B01L 3/00 20060101AFI20121210BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 626466

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010004321

Country of ref document: DE

Effective date: 20131010

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131216

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE

Effective date: 20131231

26N No opposition filed

Effective date: 20140515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010004321

Country of ref document: DE

Effective date: 20140515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131208

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131208

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101208

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161222

Year of fee payment: 7

Ref country code: CH

Payment date: 20161222

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 626466

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161221

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161220

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010004321

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171208