EP2332215A1 - Antenna apparatus for radio-frequency electromagnetic waves - Google Patents

Antenna apparatus for radio-frequency electromagnetic waves

Info

Publication number
EP2332215A1
EP2332215A1 EP09740255A EP09740255A EP2332215A1 EP 2332215 A1 EP2332215 A1 EP 2332215A1 EP 09740255 A EP09740255 A EP 09740255A EP 09740255 A EP09740255 A EP 09740255A EP 2332215 A1 EP2332215 A1 EP 2332215A1
Authority
EP
European Patent Office
Prior art keywords
antenna device
phase shift
layer
antenna
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09740255A
Other languages
German (de)
French (fr)
Other versions
EP2332215B1 (en
Inventor
Volker Ziegler
Bernhardt SCHÖNLINNER
Ulrich Prechtel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MBDA Deutschland GmbH
Original Assignee
LFK Lenkflugkoerpersysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LFK Lenkflugkoerpersysteme GmbH filed Critical LFK Lenkflugkoerpersysteme GmbH
Publication of EP2332215A1 publication Critical patent/EP2332215A1/en
Application granted granted Critical
Publication of EP2332215B1 publication Critical patent/EP2332215B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays

Definitions

  • the invention relates to an antenna device for high-frequency electromagnetic see waves with a plurality of individual antenna devices.
  • the antenna device is constructed as a transmission type, wherein the antenna device has at least one introduction layer, a first phase shift layer with phase shift devices, a radiation layer and a distribution network.
  • the layers are aperture coupled.
  • the resulting antenna device is inexpensive to manufacture and provides a very flat antenna architecture. Furthermore, it is possible to realize an electric beam control with this antenna device.
  • phase shifters may be formed by RF MEMS elements.
  • Such elements are available as microswitches with short switching times and low losses. They allow a fast control of the shaping of the electromagnetic waves.
  • At least a portion of the phase shifter may be formed by integrated circuits. These also have short switching times and low losses.
  • the distribution network can run along the layers. This simplifies the manufacture of the antenna device, since the electrical leads of the Distribution network only between the layers of the antenna device must be embedded.
  • the phase shifters may be arranged in a grid, wherein the respective phase shifters of one row or one column of the grid are connected by means of the common drive distribution network. This makes it easy to keep the distribution network simple and thus ensure cost-effective production.
  • phase shifters of the first phase shift layer to the line by line and the phase shifter means of the second phase shift layer are designed for column-wise control.
  • the distribution network can run transversely to the layers. This allows greater freedom in the design of the distribution network.
  • phase shifting devices are designed to be individually controllable. This allows a very individual beam shaping, for example a beam splitting (split beam).
  • a spacer layer is arranged on at least one side of the phase shift layer.
  • This spacer layer has the effect that, in particular when using RF-MEMS elements, there is sufficient space for the movement of these elements. Furthermore, the spacers ensure a sufficient spacing between the layers with each other for aperture coupling.
  • the antenna device can be designed for the quasi-optical feeding of the electromagnetic waves or for the integrated feeding of the electromagnetic waves.
  • phase shift devices on switching units which allow switching between different polarizations of the electromagnetic waves.
  • Use of the antenna device can thus also take place in areas in which electromagnetic waves of different polarization are needed.
  • the antenna elements provided in the radiation layer can be advantageously designed for use with different polarizations.
  • FIG. 1 is an exploded view of an antenna device according to a first embodiment of the invention
  • FIG. 2 shows a beam path through the antenna device of FIG. 1;
  • Fig. 3 is a section through the composite antenna device of Fig. 1;
  • FIG. 4 is an exploded view of an antenna device according to a second embodiment of the invention.
  • FIG. 5 shows a beam path through the antenna device of FIG. 4;
  • FIG. FIG. 6 shows a section through the composite antenna device according to FIG. 4;
  • FIG. 5 shows a beam path through the antenna device of FIG. 4;
  • FIG. 6 shows a section through the composite antenna device according to FIG. 4;
  • FIG. 5 shows a beam path through the antenna device of FIG. 4;
  • FIG. 6 shows a section through the composite antenna device according to FIG. 4;
  • Fig. 7 is an exploded view of a third embodiment of the antenna device
  • FIG. 8 shows a beam path through the antenna device of FIG. 7;
  • Fig. 9 is a section through the antenna device of Fig. 7 and
  • FIG. 10 is an exploded view of a variant of the embodiments one to three with double polarized antenna patches.
  • a first embodiment of an antenna device 10 comprises an initiation layer 20, a first phase shift layer 30, a coupling layer 40, a second phase shift layer 50, and a radiating layer 60.
  • the introduction layer 20 is made of an RF material, for example, LTCC.
  • Antenna patches 22 made of metal are applied to this RF material.
  • the antenna patches 22 are arranged on the underside of the introduction layer 20.
  • the antenna patches are coupled to the first phase shift layer 30.
  • the first phase shift layer 30 is also made of an RF or semiconductor material and has phase shifters 32 on its upper surface.
  • the phase shifters 32 are formed of RF MEMS elements.
  • Spacers 34 are provided to form a gap 38 between the coupling layer 40 from the phase shifters 32. the. This gap 38 is provided for sufficient freedom of movement of the RF-MEMS elements.
  • the coupling layer 40 has two spacer layers 42a, 42b. Coupling elements 44 are provided between these layers, which couple the first phase shift layer 30 to the second phase shift layer 50 by means of apertures 46.
  • the second phase shift layer 50 is spaced from the coupling layer 40 by means of spacers 52 and has phase shifters 56 in the resulting gap 54.
  • the radiation layer 60 is constructed analogously to the introduction layer 20 and has antenna patches 62 and apertures 64.
  • the introduction layer 20 is irradiated with radar waves.
  • the antenna patches 22 pick up the radar radiation and transmit it through the aperture 24 to the phase shifters 32.
  • the phases of the radar waves which are distributed through different apertures 24 to different phase shifters 32, are shifted.
  • the radar waves are directed to the phase shifters 56 of the second phase shift layer 50. Again, the radar waves, which are passed through the individual apertures 46, delayed depending on the control of the phase shifters 56.
  • Apertures 64 decouple the radar waves onto the emission layer 60 with the antenna patches 62.
  • Figure 2 shows how a signal passes through the antenna device 10 when radar waves are received. The incident radar waves are first directed with the antenna patches 62 through apertures 64 to the phase shifter 56 of the second phase shift layer 50.
  • the radar waves After passing the phase shifter 56, the radar waves are directed through the aperture 46 to the phase shifter 32 and phase shifted therefrom in accordance with the drive.
  • the radar waves are coupled through the aperture 24 in the antenna patch 22, from where they are forwarded to a receiving circuit, which is not shown here.
  • antenna patches 22 are provided in the introduction layer 20 and are fed by means of an RF connector 70 directly as antennas through a distribution network.
  • the radiation of the radio waves thus takes place for each of the paths through the phase shifters 32, 56 and the apertures 24, 46, 64 by means of a separate radar antenna.
  • This also applies to the reception of radar waves, in which the radar waves are received directly by the antenna patches 22.
  • the structure of the second embodiment corresponds to the structure of the first embodiment.
  • FIGS. 1 and 4 show distribution networks 36, 58 arranged on the phase shift layers 30, 50.
  • distribution network 36 supplies phase shift devices 32 with drive information in columns.
  • the radar beam leaving the antenna device 10 can be deflected by interference in a certain direction.
  • the second phase shift layer 50 is provided whose distribution network 58 drives the phase shifter 56 line by line.
  • FIG. 5 The wave traveling upon receiving radar waves is shown in FIG. 5 and a cross section through an antenna device 10 according to the second embodiment in FIG.
  • openings for receiving the distribution network 26, 36 are provided in the introduction layer 20 and the first phase shift layer 30. Due to the profile of the distribution network 36 shown in FIG. 9, it is possible to individually control the phase-shifting devices 32 by means of control connections 72. As a result, only a single phase shift layer 30 is required; the second phase shift layer 50 can be saved.
  • FIG. 10 shows a construction variant of the three embodiments.
  • the two illustrated layers represent the second phase shift layer 50 and the radiation layer 60.
  • the phase shift devices 56 additionally have a switch with which the polarization of the phase-shifted radar waves can be converted.
  • the antenna patches 62 are configured to radiate radar waves in two different polarizations.
  • different RF-compatible materials can be used. In particular LTCC and Teflon-based materials such as Duoid 5880 should be mentioned in this context.
  • the layers 30 and 50 may also be made of high-resistance silicon.
  • the antenna device 10 is operated at frequencies between about 10 GHz and 100 GHz.
  • the structure sizes of the antenna patches 22, 62 and the phase shifter means 32, 56 and also the apertures 24, 46, 64 are in the range of half a wavelength ⁇ of the electromagnetic waves used. At a frequency of 30 GHz, the structure sizes thus move in the range of 5 mm.
  • the presented approach combines a low-cost and very flat antenna architecture to realize an electric beam control.
  • an ultra-flat antenna structure can be used with electrical Beam control can be realized.
  • ultra-flat electronically steerable antenna system By using an ultra-flat electronically steerable antenna system, a variety of new applications in the aeronautical field are allowed, as this is the first antenna that due to its flat geometry can be easily integrated into the outer shell of an aircraft.
  • This antenna enables applications such as helicopter brownout radar, inter-vehicle communication for manned and unmanned aerial vehicles, and wake detection on board civil aircraft. Further applications include armor detection radar and ground platform protection (eg convoy protection).
  • ultra-flat antenna structures for example, with a thickness in the range between about 0.1 mm to about 10 mm, in particular 1 to 7 mm, accessible.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A very flat antenna apparatus (10) for radio-frequency electromagnetic waves has a plurality of individual antenna apparatuses. The antenna apparatus (10) is designed as a transmission type comprising a plurality of planar layers, wherein the antenna apparatus (10) has at least an introduction layer (20), a first phase shift layer (30) with phase shifter devices (32), a radiation layer (60) and a distribution network (36, 58), and wherein the layers (20, 30, 40, 60) are aperture-coupled.

Description

Antennenvorrichtung für hochfrequente elektromagnetische Wellen Antenna device for high-frequency electromagnetic waves
Die Erfindung betrifft eine Antennenvorrichtung für hochfrequente elektromagneti- sehe Wellen mit einer Mehrzahl von Einzelantennenvorrichtungen.The invention relates to an antenna device for high-frequency electromagnetic see waves with a plurality of individual antenna devices.
Kommerziell verfügbare Antennensysteme im Mikrowellenbereich basieren größtenteils auf sperrigen Parabolspiegel- oder Hornantennen, die nur sehr schlecht in die Hülle eines Luftfahrzeugs oder kleine Fahrzeuge integriert werden können. Weniger sperrige Antennen werden zur Zeit als Schlitzfelder ausgeführt. All diese Ausführungsformen bieten jedoch keine fortgeschrittenen Merkmale wie elektrische Strahlsteuerung, adaptives Nullen oder Strahlspaltung (split beam).Commercially available antenna systems in the microwave range are based largely on bulky parabolic or horn antennas that are very poorly integrated into the shell of an aircraft or small vehicles. Less bulky antennas are currently being implemented as slot fields. However, all of these embodiments do not provide advanced features such as electrical beam steering, adaptive zero or split beam.
Elektrisch phasenverschobene Antennenfelder bieten diese Vorteile, können je- doch zur Zeit nur als sehr komplexe und teure Aufbauten hergestellt werden. Des weiteren sind sie wegen geometrischer Größenbeschränkungen nicht für höhere Frequenzen geeignet.Electrically phase-shifted antenna fields offer these advantages, but at the moment they can only be produced as very complex and expensive structures. Furthermore, they are not suitable for higher frequencies due to geometric size limitations.
Zur Zeit basieren sämtliche kommerziellen Antennen auf Antennen mit festem Strahl (Schüssel, Hörn oder Schlitzfeldantennen), die mehr oder weniger sperrig sind und mechanisch bewegt werden müssen. Wegen ihrer Größe und ihres Gewichts ist es schwer, sie in fliegende Plattformen oder kleine Fahrzeugen zu integrieren. Zusätzlich fehlen ihnen fortgeschrittene Strahlsteuerungsmerkmale wie die oben erwähnten. In der Literatur sind Ansätze gezeigt, sehr flache Spiegelungsan- tennenfelder mit elektrischer Strahlsteuerung basierend auf RF-MEMS herzustellen. Diese benötigen jedoch einen Mast um sie zu beleuchten, was andererseits eine flache Geometrie verhindert. Eine weitere Herangehensweise unter Verwendung von digitaler Strahlformung resultiert ebenfalls in einem sperrigen Aufbau der Antennen. Die Erfindung geht auf die Aufgabe zurück, den Raumbedarf einer Antennenvorrichtung der eingangs genannten Art bei einfacher Herstellung und Handhabung zu verkleinern.Currently, all commercial antennas are based on fixed beam antennas (dish, horn or slot field antennas), which are more or less bulky and must be moved mechanically. Because of their size and weight, it is difficult to integrate into flying platforms or small vehicles. In addition, they lack advanced beam control features such as those mentioned above. The literature has shown approaches to produce very flat mirror antenna fields with electrical beam control based on RF-MEMS. However, these require a mast to illuminate them, which on the other hand prevents a flat geometry. Another approach using digital beamforming also results in a bulky antenna design. The invention is based on the task to reduce the space requirement of an antenna device of the type mentioned in the simple production and handling.
Diese Aufgabe wird durch eine Antennenvorrichtung mit den Merkmalen des Anspruches 1 gelöst.This object is achieved by an antenna device having the features of claim 1.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Antennenvorrichtung sind Gegenstand der Unteransprüche.Advantageous embodiments of the antenna device according to the invention are the subject of the dependent claims.
Zur Lösung dieser Aufgabe wird bei einer Antennenvorrichtung der eingangs genannten Art vorgeschlagen, dass die Antennenvorrichtung als Transmissionstyp aufgebaut ist, wobei die Antennenvorrichtung wenigstens eine Einleitungsschicht, eine erste Phasenverschiebungsschicht mit Phasenschiebereinrichtungen, eine Abstrahlschicht und ein Verteilnetzwerk aufweist. Vorzugsweise sind die Schichten aperturgekoppelt. Die sich ergebende Antennenvorrichtung ist kostengünstig herstellbar und bewirkt eine sehr flache Antennenarchitektur. Des weiteren ist es möglich, mit dieser Antennenvorrichtung eine elektrische Strahlsteuerung zu realisieren.To achieve this object, it is proposed in an antenna device of the type mentioned above that the antenna device is constructed as a transmission type, wherein the antenna device has at least one introduction layer, a first phase shift layer with phase shift devices, a radiation layer and a distribution network. Preferably, the layers are aperture coupled. The resulting antenna device is inexpensive to manufacture and provides a very flat antenna architecture. Furthermore, it is possible to realize an electric beam control with this antenna device.
Wenigstens ein Teil der Phasenschiebereinrichtungen kann durch RF-MEMS- Elemente gebildet sein. Derartige Elemente sind als Mikroschalter mit kurzen Schaltzeiten und geringen Verlusten verfügbar. Sie erlauben eine schnelle Steuerung der Formung der elektromagnetischen Wellen.At least a portion of the phase shifters may be formed by RF MEMS elements. Such elements are available as microswitches with short switching times and low losses. They allow a fast control of the shaping of the electromagnetic waves.
Wenigstens ein Teil der Phasenschiebereinrichtung kann durch integrierte Schaltkreise gebildet sein. Diese weisen ebenfalls kurze Schaltzeiten und geringe Verluste auf.At least a portion of the phase shifter may be formed by integrated circuits. These also have short switching times and low losses.
Vorteilhaft kann das Verteilnetzwerk entlang der Schichten verlaufen. Dies vereinfacht die Herstellung der Antennenvorrichtung, da die elektrischen Leitungen des Verteilnetzwerks nur zwischen die Schichten der Antennenvorrichtung eingebettet werden müssen.Advantageously, the distribution network can run along the layers. This simplifies the manufacture of the antenna device, since the electrical leads of the Distribution network only between the layers of the antenna device must be embedded.
Die Phasenschiebereinrichtungen können in einem Raster angeordnet sein, wobei jeweils die Phasenschiebereinrichtungen einer Zeile oder einer Spalte des Rasters mittels des Verteilnetzwerks zur gemeinsamen Ansteuerung verbunden sind. Dies erlaubt es, das Verteilnetzwerk einfach zu halten und somit eine kostengünstige Produktion zu gewährleisten.The phase shifters may be arranged in a grid, wherein the respective phase shifters of one row or one column of the grid are connected by means of the common drive distribution network. This makes it easy to keep the distribution network simple and thus ensure cost-effective production.
Weiter ist vorteilhaft vorgesehen, dass eine zweite Phasenschiebungsschicht vorgesehen ist, wobei die Phasenschiebereinrichtungen der ersten Phasenschiebungsschicht zur zeilenweisen und die Phasenschiebereinrichtungen der zweiten Phasenschiebungsschicht zur spaltenweisen Ansteuerung ausgebildet sind. Bei weiterhin geringen Produktionskosten ist es dadurch möglich, die abgestrahlten elektromagnetischen Wellen in mehr als einer Raumrichtung abzulenken.Further, it is advantageously provided that a second phase shift layer is provided, wherein the phase shifters of the first phase shift layer to the line by line and the phase shifter means of the second phase shift layer are designed for column-wise control. With still low production costs, it is possible to deflect the radiated electromagnetic waves in more than one spatial direction.
In vorteilhafter Ausgestaltung kann das Verteilnetzwerk quer zu den Schichten verlaufen. Dies ermöglicht größere Freiheiten bei der Ausgestaltung des Verteilnetzwerks.In an advantageous embodiment, the distribution network can run transversely to the layers. This allows greater freedom in the design of the distribution network.
Vorteilhaft sind die Phasenschiebereinrichtungen individuell ansteuerbar ausgebildet. Dies erlaubt eine sehr individuelle Strahlformung, beispielsweise eine Strahlspaltung (Split beam).Advantageously, the phase shifting devices are designed to be individually controllable. This allows a very individual beam shaping, for example a beam splitting (split beam).
Auf wenigstens einer Seite der Phasenschiebungsschicht ist eine Abstandsschicht angeordnet. Diese Abstandsschicht bewirkt, dass insbesondere bei Verwendung RF-MEMS-Elementen ausreichend Raum für die Bewegung dieser Elemente vorhanden ist. Des weiteren stellen die Abstandshalter einen ausreichenden Abstand der Schichten untereinander zur Aperturkopplung sicher. Die Antennenvorrichtung kann zur quasioptischen Einspeisung der elektromagnetischen Wellen oder zur integrierten Einspeisung der elektromagnetischen Wellen ausgebildet sein.On at least one side of the phase shift layer, a spacer layer is arranged. This spacer layer has the effect that, in particular when using RF-MEMS elements, there is sufficient space for the movement of these elements. Furthermore, the spacers ensure a sufficient spacing between the layers with each other for aperture coupling. The antenna device can be designed for the quasi-optical feeding of the electromagnetic waves or for the integrated feeding of the electromagnetic waves.
Vorteilhaft weisen die Phasenschiebereinrichtungen Schalteinheiten auf, die eine Umschaltung zwischen unterschiedlichen Polarisationen der elektromagnetischen Wellen ermöglichen. Eine Nutzung der Antennenvorrichtung kann somit auch in Bereichen erfolgen, in denen elektromagnetische Wellen unterschiedlicher Polarisation benötigt werden.Advantageously, the phase shift devices on switching units, which allow switching between different polarizations of the electromagnetic waves. Use of the antenna device can thus also take place in areas in which electromagnetic waves of different polarization are needed.
Die in der Abstrahlschicht vorgesehenen Antennenelemente können vorteilhaft zur Verwendung mit verschiedenen Polarisationen ausgebildet sein.The antenna elements provided in the radiation layer can be advantageously designed for use with different polarizations.
Einzelheiten und weitere Vorteile der erfindungsgemäßen Antennenvorrichtung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele. In den die Ausführungsbeispiele lediglich schematisch darstellenden Zeichnungen veranschaulichen im Einzelnen:Details and further advantages of the antenna device according to the invention will become apparent from the following description of preferred embodiments. In the drawings, which only schematically illustrate the exemplary embodiments, illustrate in detail:
Fig. 1 eine Explosionszeichnung einer Antennenvorrichtung gemäß einer ers- ten Ausführungsform der Erfindung;1 is an exploded view of an antenna device according to a first embodiment of the invention;
Fig. 2 einen Strahlweg durch die Antennenvorrichtung aus Fig. 1 ;FIG. 2 shows a beam path through the antenna device of FIG. 1; FIG.
Fig. 3 einen Schnitt durch die zusammengesetzte Antennen Vorrichtung aus Fig. 1 ;Fig. 3 is a section through the composite antenna device of Fig. 1;
Fig. 4 eine Explosionszeichnung einer Antennenvorrichtung gemäß einer zweiten Ausführungsform der Erfindung;4 is an exploded view of an antenna device according to a second embodiment of the invention;
Fig. 5 einen Strahlweg durch die Antennenvorrichtung aus Fig. 4; Fig. 6 einen Schnitt durch die zusammengesetzte Antennenvorrichtung gemäß Fig. 4;FIG. 5 shows a beam path through the antenna device of FIG. 4; FIG. FIG. 6 shows a section through the composite antenna device according to FIG. 4; FIG.
Fig. 7 eine Explosionszeichnung einer dritten Ausführungsform der Antennen- Vorrichtung;Fig. 7 is an exploded view of a third embodiment of the antenna device;
Fig. 8 einen Strahlweg durch Antennenvorrichtung aus Fig. 7;FIG. 8 shows a beam path through the antenna device of FIG. 7; FIG.
Fig. 9 einen Schnitt durch die Antennenvorrichtung aus Fig. 7 undFig. 9 is a section through the antenna device of Fig. 7 and
Fig. 10 eine Explosionszeichnung einer Variante der Ausführungsformen eins bis drei mit doppelt polarisierten Antennenpatches.10 is an exploded view of a variant of the embodiments one to three with double polarized antenna patches.
Eine erste Ausführungsform einer Antennenvorrichtung 10, wie sie in den Fig. 1 bis 3 gezeigt ist, weist eine Einleitungsschicht 20, eine erste Phasenschiebungsschicht 30, eine Kopplungsschicht 40, eine zweite Phasenschiebungsschicht 50 und eine Abstrahlschicht 60 auf.A first embodiment of an antenna device 10, as shown in FIGS. 1 to 3, comprises an initiation layer 20, a first phase shift layer 30, a coupling layer 40, a second phase shift layer 50, and a radiating layer 60.
Die Einleitungsschicht 20 besteht aus einem RF-Material, beispielsweise LTCC. Auf dieses RF-Material sind Antennenpatches 22 aus Metall aufgebracht. Wie aus Figur 3 ersichtlich, sind die Antennenpatches 22 an der Unterseite der Einleitungsschicht 20 angeordnet. Mittels Aperturen 24 sind die Antennenpatches an die erste Phasenschiebungsschicht 30 gekoppelt.The introduction layer 20 is made of an RF material, for example, LTCC. Antenna patches 22 made of metal are applied to this RF material. As can be seen from FIG. 3, the antenna patches 22 are arranged on the underside of the introduction layer 20. By means of apertures 24, the antenna patches are coupled to the first phase shift layer 30.
Die erste Phasenschiebungsschicht 30 besteht ebenfalls aus einem RF- oder Halbleitermaterial und weist an ihrer Oberseite Phasenschiebereinrichtungen 32 auf. Die Phasenschiebereinrichtungen 32 sind aus RF-MEMS-Elementen gebildet.The first phase shift layer 30 is also made of an RF or semiconductor material and has phase shifters 32 on its upper surface. The phase shifters 32 are formed of RF MEMS elements.
Abstandhalter 34 (siehe Fig. 3) sind vorgesehen, um einen Zwischenraum 38 zwi- sehen der Kopplungsschicht 40 von den Phasenschiebereinrichtungen 32 zu bil- den. Dieser Zwischenraum 38 ist für eine ausreichende Bewegungsfreiheit der RF-MEMS-Elemente vorgesehen.Spacers 34 (see FIG. 3) are provided to form a gap 38 between the coupling layer 40 from the phase shifters 32. the. This gap 38 is provided for sufficient freedom of movement of the RF-MEMS elements.
Die Kopplungsschicht 40 weist zwei Abstandsschichten 42a, 42b auf. Zwischen diesen Schichten sind Kopplungselemente 44 vorgesehen, welche die erste Phasenschiebungsschicht 30 mittels Aperturen 46 an die zweite Phasenschiebungsschicht 50 koppeln.The coupling layer 40 has two spacer layers 42a, 42b. Coupling elements 44 are provided between these layers, which couple the first phase shift layer 30 to the second phase shift layer 50 by means of apertures 46.
Die zweite Phasenschiebungsschicht 50 ist mittels Abstandhaltern 52 von der Kopplungsschicht 40 beabstandet und weist in dem sich dadurch ergebenen Zwischenraum 54 Phasenschiebereinrichtungen 56 auf.The second phase shift layer 50 is spaced from the coupling layer 40 by means of spacers 52 and has phase shifters 56 in the resulting gap 54.
Die Abstrahlschicht 60 ist analog zu der Einleitungsschicht 20 aufgebaut und weist Antennenpatches 62 und Aperturen 64 auf.The radiation layer 60 is constructed analogously to the introduction layer 20 and has antenna patches 62 and apertures 64.
Um Radarstrahlung auszusenden, wird die Einleitungsschicht 20 mit Radarwellen bestrahlt. Die Antennenpatches 22 nehmen die Radarstrahlung auf und übermitteln sie durch die Apertur 24 an die Phasenschiebereinrichtungen 32. Je nach Ansteuerung der Phasenschiebereinrichtungen 32 werden die Phasen der Radarwel- len, die durch unterschiedliche Aperturen 24 auf unterschiedliche Phasenschiebereinrichtungen 32 verteilt werden, verschoben.In order to emit radar radiation, the introduction layer 20 is irradiated with radar waves. The antenna patches 22 pick up the radar radiation and transmit it through the aperture 24 to the phase shifters 32. Depending on the control of the phase shifters 32, the phases of the radar waves, which are distributed through different apertures 24 to different phase shifters 32, are shifted.
Durch die Aperturen 46 der Kopplungsschicht 40 werden die Radarwellen auf die Phasenschiebereinrichtungen 56 der zweiten Phasenschiebungsschicht 50 gelei- tet. Auch hier werden die Radarwellen, die durch die einzelnen Aperturen 46 hindurchgeleitet werden, je nach Ansteuerung der Phasenschiebereinrichtungen 56 verzögert.Through the apertures 46 of the coupling layer 40, the radar waves are directed to the phase shifters 56 of the second phase shift layer 50. Again, the radar waves, which are passed through the individual apertures 46, delayed depending on the control of the phase shifters 56.
Durch die Aperturen 64 werden die Radarwellen auf die Abstrahlschicht 60 mit den Antennenpatches 62 ausgekoppelt. Figur 2 zeigt, wie ein Signal durch die Antennenvorrichtung 10 läuft, wenn Radarwellen empfangen werden. Die einfallenden Radarwellen werden zunächst mit den Antennenpatches 62 durch Aperturen 64 auf die Phasenschiebereinrichtung 56 der zweiten Phasenschiebungsschicht 50 gelenkt.Apertures 64 decouple the radar waves onto the emission layer 60 with the antenna patches 62. Figure 2 shows how a signal passes through the antenna device 10 when radar waves are received. The incident radar waves are first directed with the antenna patches 62 through apertures 64 to the phase shifter 56 of the second phase shift layer 50.
Nach Passieren der Phasenschiebereinrichtung 56 werden die Radarwellen durch die Apertur 46 auf die Phasenschiebereinrichtung 32 gelenkt und von dieser entsprechend der Ansteuerung phasenverschoben.After passing the phase shifter 56, the radar waves are directed through the aperture 46 to the phase shifter 32 and phase shifted therefrom in accordance with the drive.
Schließlich werden die Radarwellen durch die Apertur 24 in das Antennenpatch 22 eingekoppelt, von wo aus sie in einen Empfangsschaltkreis, der hier nicht dargestellt ist, weitergeleitet werden.Finally, the radar waves are coupled through the aperture 24 in the antenna patch 22, from where they are forwarded to a receiving circuit, which is not shown here.
Bei der in Figur 4 bis 6 gezeigten zweiten Ausführungsform sind in der Einlei- tungsschicht 20 Antennenpatches 22 vorgesehen, die mittels eines RF-Verbinders 70 unmittelbar durch ein Verteilnetzwerk als Antennen gespeist werden. Die Abstrahlung der Radiowellen erfolgt somit für jeden der Wege durch die Phasenschiebereinrichtungen 32, 56 und die Aperturen 24, 46, 64 mittels einer eigenen Radarantenne. Dies gilt ebenso für den Empfang von Radarwellen, bei dem die Radarwellen unmittelbar von den Antennenpatches 22 aufgenommen werden. Im Weiteren entspricht der Aufbau der zweiten Ausführungsform dem Aufbau der ersten Ausführungsform.In the second embodiment shown in FIGS. 4 to 6, antenna patches 22 are provided in the introduction layer 20 and are fed by means of an RF connector 70 directly as antennas through a distribution network. The radiation of the radio waves thus takes place for each of the paths through the phase shifters 32, 56 and the apertures 24, 46, 64 by means of a separate radar antenna. This also applies to the reception of radar waves, in which the radar waves are received directly by the antenna patches 22. Furthermore, the structure of the second embodiment corresponds to the structure of the first embodiment.
In den Figuren 1 und 4 sind auf den Phasenschiebungsschichten 30, 50 angeord- nete Verteilnetzwerke 36, 58 gezeigt. Das Verteilnetzwerk 36 versorgt in dieser Darstellung die Phasenschiebereinrichtungen 32 spaltenweise mit Ansteuerungs- informationen. Mittels dieser Ansteuerungsinformationen kann der Radarstrahl, der die Antennenvorrichtung 10 verlässt, mittels Interferenz in eine bestimmte Richtung abgelenkt werden. Allerdings bleibt bei einer solchen spaltenweisen An- Steuerung nur die Möglichkeit, den Strahl in einer Ebene zu bewegen. Eine voll- ständige räumliche Ablenkung wäre allein mit Hilfe der ersten Phasenschiebungsschicht 30 nicht möglich.FIGS. 1 and 4 show distribution networks 36, 58 arranged on the phase shift layers 30, 50. In this illustration, distribution network 36 supplies phase shift devices 32 with drive information in columns. By means of this driving information, the radar beam leaving the antenna device 10 can be deflected by interference in a certain direction. However, with such a column-wise control, it is only possible to move the beam in one plane. A complete permanent spatial distraction alone would not be possible with the aid of the first phase shift layer 30.
Daher ist die zweite Phasenschiebungsschicht 50 vorgesehen, deren Verteilnetz- werk 58 die Phasenschiebereinrichtung 56 zeilenweise ansteuert.Therefore, the second phase shift layer 50 is provided whose distribution network 58 drives the phase shifter 56 line by line.
Somit ist durch koordinierte Steuerung der Phasenschiebereinrichtungen 32, 56 mittels der Verteilnetzwerke 36, 58 eine Steuerung des Radarstrahls möglich.Thus, by coordinately controlling the phase shifters 32, 56 by means of the distribution networks 36, 58, control of the radar beam is possible.
Der Wellenlauf bei Empfang von Radarwellen ist in Figur 5 und ein Querschnitt durch eine Antennenvorrichtung 10 gemäß der zweiten Ausführungsform in Figur 6 dargestellt.The wave traveling upon receiving radar waves is shown in FIG. 5 and a cross section through an antenna device 10 according to the second embodiment in FIG.
Bei der in den Figuren 7 bis 9 dargestellten Ausführungsform sind in der Einlei- tungsschicht 20 und der ersten Phasenschiebungsschicht 30 Öffnungen zur Aufnahme des Verteilnetzwerks 26, 36 vorgesehen. Durch den in Figur 9 gezeigten Verlauf des Verteilnetzwerks 36 ist es möglich, die Phasenschiebereinrichtungen 32 mittels Steueranschlüssen 72 einzeln anzusteuern. Dadurch ist nurmehr eine einzige Phasenschiebungsschicht 30 erforderlich; die zweite Phasenschiebungs- schicht 50 kann eingespart werden.In the embodiment illustrated in FIGS. 7 to 9, openings for receiving the distribution network 26, 36 are provided in the introduction layer 20 and the first phase shift layer 30. Due to the profile of the distribution network 36 shown in FIG. 9, it is possible to individually control the phase-shifting devices 32 by means of control connections 72. As a result, only a single phase shift layer 30 is required; the second phase shift layer 50 can be saved.
Wie in Figur 9 erkennbar, wird der Aufbau dadurch wesentlich flacher. Insbesondere ist auch keine Kopplungsschicht 40 mehr nötig, sondern nur eine einzelne Abstandsschicht 48.As can be seen in Figure 9, the structure is thereby significantly flatter. In particular, no coupling layer 40 is necessary any more, but only a single spacer layer 48.
Figur 10 zeigt eine Aufbauvariante der drei Ausführungsformen. Die beiden dargestellten Schichten stellen die zweite Phasenschiebungsschicht 50 und die Abstrahlschicht 60 dar. Die Phasenschiebereinrichtungen 56 weisen zusätzlich einen Schalter auf, mit dem die Polarisation der phasenverschobenen Radarwellen um- gestellt werden kann. Des weiteren sind die Antennenpatches 62 so ausgestaltet, dass sie Radarwellen in zwei unterschiedlichen Polarisationen abstrahlen können. Für die Schichten 20, 30, 40, 50, 60 können verschiedene RF-taugliche Materialien verwendet werden. Insbesondere sind in diesem Zusammenhang LTCC und teflonbasierte Werkstoffe wie beispielsweise Duoid 5880 zu nennen. Die Schich- ten 30 und 50 können auch aus hochohmigen Silizium bestehen.FIG. 10 shows a construction variant of the three embodiments. The two illustrated layers represent the second phase shift layer 50 and the radiation layer 60. The phase shift devices 56 additionally have a switch with which the polarization of the phase-shifted radar waves can be converted. Further, the antenna patches 62 are configured to radiate radar waves in two different polarizations. For the layers 20, 30, 40, 50, 60 different RF-compatible materials can be used. In particular LTCC and Teflon-based materials such as Duoid 5880 should be mentioned in this context. The layers 30 and 50 may also be made of high-resistance silicon.
Die Antennenvorrichtung 10 wird mit Frequenzen zwischen ungefähr 10 GHz und 100 GHz betrieben. Die Strukturgrößen der Antennenpatches 22, 62 sowie der Phasenschiebereinrichtung 32, 56 und auch die Aperturen 24, 46, 64 bewegen sich im Bereich der Hälfte einer Wellenlänge λ der verwendeten elektromagnetischen Wellen. Bei einer Frequenz von 30 GHz bewegen sich die Strukturgrößen also im Bereich um 5mm.The antenna device 10 is operated at frequencies between about 10 GHz and 100 GHz. The structure sizes of the antenna patches 22, 62 and the phase shifter means 32, 56 and also the apertures 24, 46, 64 are in the range of half a wavelength λ of the electromagnetic waves used. At a frequency of 30 GHz, the structure sizes thus move in the range of 5 mm.
Die vorgestellte Herangehensweise kombiniert eine kostengünstige und sehr fla- che Antennenarchitektur, um eine elektrische Strahlsteuerung zu realisieren.The presented approach combines a low-cost and very flat antenna architecture to realize an electric beam control.
Durch die Kombination verschiedener innovativer Herangehensweisen wie Aperturkopplung von Antennenelementen und Verteilnetzwerk 36, 58 Verwendung von fortgeschrittenen Phasenschiebereinrichtungen 32, 56 (RF-MEMS oder Halbleiterschaltkreise) und einer Konstruktion der Antenne zum Betrieb in einer Trans- missionskonfiguration anstatt einer Reflexionskonfiguration kann eine ultraflache Antennenstruktur mit elektrischer Strahlsteuerung realisiert werden.By combining various innovative approaches, such as aperture coupling of antenna elements and distribution network 36, 58 using advanced phase shifters 32, 56 (RF-MEMS or semiconductor circuits) and a construction of the antenna for operation in a transmission configuration rather than a reflective configuration, an ultra-flat antenna structure can be used with electrical Beam control can be realized.
Durch Verwendung eines ultraflachen elektronisch steuerbaren Antennensystems wird eine Vielzahl von neuen Anwendungen im Aeronautikbereich erlaubt, da dies die erste Antenne ist, die aufgrund ihrer flachen Geometrie leicht in die Außenhülle eines Luftfahrzeugs integriert werden kann. Durch diese Antenne werden Anwendungen wie Brownout radar für Helikopter, Zwischenfahrzeugkommunikation für bemannte und unbemannte Luftfahrzeuge sowie Wirbelschleppendetektion an Bord von zivilen Luftfahrzeugen ermöglicht. Weitere Anwendungen sind Scharf- schützendetektionsradare und Bodenplattformschutz (z.B. Konvoischutz). Es sind ultraflache Antennenstrukturen z.B. mit einer Dicke im Bereich zwischen etwa 0,1 mm bis etwa 10 mm, insbesondere 1 bis 7 mm, erreichbar. By using an ultra-flat electronically steerable antenna system, a variety of new applications in the aeronautical field are allowed, as this is the first antenna that due to its flat geometry can be easily integrated into the outer shell of an aircraft. This antenna enables applications such as helicopter brownout radar, inter-vehicle communication for manned and unmanned aerial vehicles, and wake detection on board civil aircraft. Further applications include armor detection radar and ground platform protection (eg convoy protection). There are ultra-flat antenna structures, for example, with a thickness in the range between about 0.1 mm to about 10 mm, in particular 1 to 7 mm, accessible.
Bezugszeichenliste:LIST OF REFERENCE NUMBERS
10 Antennenvorrichtung10 antenna device
20 Einleitungsschicht 22 Antennenpatch20 introduction layer 22 antenna patch
24 Apertur24 aperture
26 Verteilnetzwerk26 distribution network
30 erste Phasenschiebungsschicht30 first phase shift layer
32 Phasenschiebereinrichtung 34 Abstandshalter32 phase shifter 34 spacers
36 Verteilnetzwerk36 distribution network
38 Zwischenraum38 gap
40 Kopplungsschicht40 coupling layer
42a Abstandsschicht 42b Abstandsschicht42a spacer layer 42b spacer layer
44 Kopplungselement44 coupling element
46 Apertur46 aperture
48 Abstandsschicht48 spacer layer
50 zweite Phasenschiebungsschicht 52 Abstandsschicht50 second phase shift layer 52 spacer layer
54 Zwischenraum54 gap
56 Phasenschiebereinrichtung56 phase shifter
58 Verteilnetzwerk58 distribution network
60 Abstrahlschicht 62 Antennenpatch60 radiation layer 62 antenna patch
64 Apertur64 aperture
70 RF-Verbinder70 RF connectors
72 Steueranschluss 72 control connection

Claims

Patentansprüche claims
1. Planare Antennenvorrichtung (10) für hochfrequente elektromagnetische Wellen mit einer Mehrzahl von Einzelantennenvorrichtungen, dadurch gekenn- zeichnet, dass die Antennenvorrichtung (10) als Transmissionstyp aus mehreren planaren Schichten (20, 30, 40, 60) aufgebaut ist, wobei die Antennenvorrichtung (10) wenigstens eine Einleitungsschicht (20), eine erste Phasenschiebungsschicht (30) mit Phasenschiebereinrichtungen (32), eine Abstrahlschicht (60) und ein Verteilnetzwerk (36, 58) aufweist.1. Planar antenna device (10) for high-frequency electromagnetic waves with a plurality of individual antenna devices, characterized in that the antenna device (10) is constructed as a transmission type of a plurality of planar layers (20, 30, 40, 60), wherein the antenna device ( 10) comprises at least one initiation layer (20), a first phase shift layer (30) with phase shifters (32), a radiation layer (60) and a distribution network (36, 58).
2. Antennenvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass wenigstens ein Teil der Phasenschiebereinrichtungen (32, 56) durch RF-MEMS- Elemente gebildet sind.An antenna device according to claim 1, characterized in that at least part of the phase shift means (32, 56) are formed by RF MEMS elements.
3. Antennenvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass wenigstens ein Teil der Phasenschiebereinrichtungen (32, 56) durch integrierte Schaltkreise gebildet sind.3. Antenna device according to claim 1 or 2, characterized in that at least part of the phase shift means (32, 56) are formed by integrated circuits.
4. Antennenvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Verteilnetzwerk (36, 58) entlang der Schichten (20, 30,4. Antenna device according to one of the preceding claims, characterized in that the distribution network (36, 58) along the layers (20, 30,
40, 50, 60) verläuft.40, 50, 60).
5. Antennenvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Phasenschiebereinrichtungen (32, 58) in einem Raster angeordnet sind, wobei jeweils die Phasenschiebereinrichtungen (32, 58) einer Zeile oder einer Spalte des Rasters mittels des Verteilnetzwerks (36, 58) zur gemeinsamen Ansteuerung verbunden sind.5. Antenna device according to claim 4, characterized in that the phase shift means (32, 58) are arranged in a grid, wherein in each case the phase shift means (32, 58) of a row or a column of the grid by means of the distribution network (36, 58) to the common Control are connected.
6. Antennenvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass eine zweite Phasenschiebungsschicht (50) vorgesehen ist, wobei die Phasenschiebereinrichtungen (32) der ersten Phasenschiebungsschicht (30) zur zeilenweisen und die Phasenschiebereinrichtungen (56) der zweiten Phasenschiebungsschicht (50) zur spaltenweisen Ansteuerung ausgebildet sind.An antenna device according to claim 5, characterized in that a second phase shift layer (50) is provided, said phase shift means (32) of said first phase shift layer (30) being line by line and the phase shift means (56) of the second phase shift layer (50) are designed for column-by-column driving.
7. Antennenvorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekenn- zeichnet, dass das Verteilnetzwerk (36, 58) quer zu den Schichten (20, 30, 40,7. Antenna device according to one of claims 1 to 3, characterized in that the distribution network (36, 58) transversely to the layers (20, 30, 40,
50, 60) verläuft.50, 60).
8. Antennen Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Phasenschiebereinrichtungen (32, 56) individuell ansteuerbar ausgebildet sind.8. Antenna device according to claim 7, characterized in that the phase shift devices (32, 56) are designed to be individually controllable.
9. Antennenvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass auf wenigstens einer Seite der Phasenschiebungsschichten (30, 50) eine Abstandsschicht (42a, 42b, 48) angeordnet ist.9. Antenna device according to one of the preceding claims, characterized in that a spacer layer (42a, 42b, 48) is arranged on at least one side of the phase shift layers (30, 50).
10. Antennenvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Antennenvorrichtung (10) zur quasioptischen Einspei- sung der elektromagnetischen Wellen oder zur integrierten Einspeisung der elektromagnetischen Wellen ausgebildet ist.10. Antenna device according to one of the preceding claims, characterized in that the antenna device (10) is designed for the quasi-optical feeding of the electromagnetic waves or for the integrated supply of the electromagnetic waves.
11. Antennenvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Phasenschiebereinrichtungen (32, 56) Schalteinheiten aufweisen, die eine Umschaltung zwischen unterschiedlichen Polarisationen der elektromagnetischen Wellen ermöglichen.11. Antenna device according to one of the preceding claims, characterized in that the phase shift means (32, 56) comprise switching units which enable switching between different polarizations of the electromagnetic waves.
12. Antennenvorrichtung nach Anspruch 11 , dadurch gekennzeichnet, dass in der Abstrahlschicht (60) vorgesehene Antennenelemente zur Verwendung mit verschiedenen Polarisationen ausgebildet sind.12. Antenna device according to claim 11, characterized in that in the radiation layer (60) provided for antenna elements are designed for use with different polarizations.
13. Antennenvorrichtung nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass die Schichten (20, 30, 40, 60) aperturgekoppelt sind. 13. Antenna device according to one of the preceding claims, characterized in that the layers (20, 30, 40, 60) are aperture-coupled.
EP09740255.6A 2008-09-12 2009-09-03 Antenna apparatus for radio-frequency electromagnetic waves Not-in-force EP2332215B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810046975 DE102008046975B4 (en) 2008-09-12 2008-09-12 Antenna device for high-frequency electromagnetic waves
PCT/DE2009/001238 WO2010028625A1 (en) 2008-09-12 2009-09-03 Antenna apparatus for radio-frequency electromagnetic waves

Publications (2)

Publication Number Publication Date
EP2332215A1 true EP2332215A1 (en) 2011-06-15
EP2332215B1 EP2332215B1 (en) 2017-07-05

Family

ID=41404615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09740255.6A Not-in-force EP2332215B1 (en) 2008-09-12 2009-09-03 Antenna apparatus for radio-frequency electromagnetic waves

Country Status (3)

Country Link
EP (1) EP2332215B1 (en)
DE (1) DE102008046975B4 (en)
WO (1) WO2010028625A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201479B (en) * 2014-08-29 2016-08-24 南京中网卫星通信股份有限公司 A kind of Ku wave band low section plate aerial
CN113964492A (en) * 2021-09-24 2022-01-21 苏州博海创业微系统有限公司 Low-frequency mechanical antenna array based on MEMS and LTCC process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2405520A1 (en) * 1974-02-06 1975-08-14 Siemens Ag PHASE CONTROLLED ANTENNA ARRANGEMENT
JPH1174717A (en) 1997-06-23 1999-03-16 Nec Corp Phased array antenna system
JP2000223926A (en) * 1999-01-29 2000-08-11 Nec Corp Phased array antenna device
US20020167449A1 (en) * 2000-10-20 2002-11-14 Richard Frazita Low profile phased array antenna
FR2818017B1 (en) * 2000-12-13 2003-01-24 Sagem NETWORK OF PATCH ANTENNA ELEMENTS

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010028625A1 *

Also Published As

Publication number Publication date
DE102008046975A1 (en) 2010-03-25
EP2332215B1 (en) 2017-07-05
DE102008046975B4 (en) 2014-07-24
WO2010028625A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
EP1312135B1 (en) Arrangement and method for influencing and controlling electromagnetic alternating fields and/or antennae and antennae diagrams
DE69910847T2 (en) NESTED MULTI-BAND GROUP ANTENNAS
DE69216998T2 (en) Broadband compliant group antenna made of inclined slot lines
DE102008023030B4 (en) Radar antenna array
EP2458680B1 (en) Antenna for receiving circular polarised satellite radio signals
DE69912420T2 (en) PATCH ANTENNA
EP3440738B1 (en) Antenna device
DE60030013T2 (en) Antenna with a filter material arrangement
DE19881296B4 (en) Microwave antenna array
EP2424036B1 (en) Receiver antenna for circular polarised satellite radio signals
DE112019006801T5 (en) Antenna device and radar device
EP3465817B1 (en) Antenna device for a radar detector having at least two radiation directions, and motor vehicle having at least one radar detector
EP2622366B1 (en) Antenna system for radar sensors
WO2016173713A1 (en) Antenna
EP1503449A1 (en) Phased array antenna for data transmission between movable devices, in particular aircrafts
DE102008046975B4 (en) Antenna device for high-frequency electromagnetic waves
DE2041299A1 (en) Rotatable directional antenna
DE60112335T2 (en) PHASE-CONTROLLED GROUP ANTENNA WITH VOLTAGE-CONTROLLED PHASE SLIDER
DE102014106060A1 (en) antenna array
EP2485329B1 (en) Array antenna
DE69121970T2 (en) Aircraft antenna with correction of errors, caused by the conical shape of the antenna beam and by aircraft inclination
DE19845868A1 (en) Dual focus planar antenna
DE102015226026A1 (en) antenna field
DE102016202758B4 (en) Reconfigurable circuit for antennas
EP2211420A1 (en) Cavity resonator HF-power distributor network

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110407

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MBDA DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20160309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHOENLINNER, BERNHARDT

Inventor name: PRECHTEL, ULRICH

Inventor name: ZIEGLER, VOLKER

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 907184

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014126

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170705

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009014126

Country of ref document: DE

Representative=s name: ISARPATENT - PATENT- UND RECHTSANWAELTE BEHNIS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009014126

Country of ref document: DE

Representative=s name: ISARPATENT - PATENT- UND RECHTSANWAELTE BARTH , DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009014126

Country of ref document: DE

Representative=s name: ISARPATENT - PATENTANWAELTE- UND RECHTSANWAELT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171005

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014126

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

26N No opposition filed

Effective date: 20180406

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502009014126

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20180910

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 907184

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200921

Year of fee payment: 12

Ref country code: FR

Payment date: 20200914

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200922

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210903

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220930

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009014126

Country of ref document: DE