EP2321538B1 - Mikrofluidvorrichtung - Google Patents

Mikrofluidvorrichtung Download PDF

Info

Publication number
EP2321538B1
EP2321538B1 EP09775618A EP09775618A EP2321538B1 EP 2321538 B1 EP2321538 B1 EP 2321538B1 EP 09775618 A EP09775618 A EP 09775618A EP 09775618 A EP09775618 A EP 09775618A EP 2321538 B1 EP2321538 B1 EP 2321538B1
Authority
EP
European Patent Office
Prior art keywords
channel
inlet
channels
fluid
microfluidic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09775618A
Other languages
English (en)
French (fr)
Other versions
EP2321538A1 (de
Inventor
Andreas Rigler
Michael Vellekoop
Bernhard Lendl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Wien
Original Assignee
Technische Universitaet Wien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Wien filed Critical Technische Universitaet Wien
Publication of EP2321538A1 publication Critical patent/EP2321538A1/de
Application granted granted Critical
Publication of EP2321538B1 publication Critical patent/EP2321538B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31422Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial direction only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers

Definitions

  • the present invention relates to microfluidic devices for dispensing fluids or fluid mixtures.
  • Well-mixed fluid mixtures are useful in laminar flow systems, e.g. in microfluidic systems, difficult to produce, since - especially due to lack of turbulence, but also due to short path lengths - to a sufficient mixing of the supplied fluids, especially in the case of liquids can come.
  • the mixing between different fluid streams flowing in a channel is thus almost exclusively limited to diffusion processes.
  • cable routing is problematic because of the difficult-to-use third dimension.
  • a microfluidic device for dispensing a fluid or fluid mixture comprising: an output channel, at least one main fluid supply channel, each into at least one secondary supply channel substantially in the plane of the dispensing channel and laterally thereof passes, which in turn merges into an above or below the output channel lying inlet channel, the at least over an inlet opening opens from above or below into the dispensing channel, with the characteristic that the at least one inlet channel has a cross section with a cross-sectional shape that changes linearly or exponentially in its longitudinal direction.
  • a further embodiment of the microfluidic device according to the invention may be distinguished by the fact that the at least one inlet opening has an opening width which changes in the transverse direction of the outlet channel.
  • the inlet channel Because of this longitudinally varying cross-sectional shape of the inlet channel and / or varying width of the inlet opening (s) in the transverse direction of the dispensing channel, varying amounts of fluid can be introduced from the latter into the dispensing channel at different locations of the inlet channel. Depending on the shape, locally variable pressure conditions are created, and thus the flow rate and consequently the amount of fluid across the width of the discharge channel are determined. For example, the unequal amount of fluid delivered into the dispensing channel due to the pressure difference between the two ends of the inlet channel (s) may be compensated for by widening the inlet channel to the farther end so that there is a larger interface between Inlet and outlet channel for fluid transfer is available.
  • a uniformly thick fluid layer over the width of the discharge channel can be introduced into the latter.
  • smaller or larger amounts of fluid e.g. a fluid gradient may be introduced into it, which may be useful not only for mixing but also, for example, for chemical reactions in that channel.
  • the fluid (s) is / are not specifically limited. It may be any flowable materials or mixtures thereof.
  • the invention is used in connection with liquids or liquid / gas mixtures, since the advantages of the invention are particularly effective here.
  • one or more inlet openings may be provided in the discharge channel for each inlet channel.
  • the single inlet opening can be formed from the upper edges of the inlet channel, which is completely open towards the outlet channel, and thus occupies the entire interface between the inlet channel and the outlet channel. This simplifies the manufacture of such microfluidic devices, as will be described later.
  • the shapes of the inlet channels and the respective inlet openings may be the same or different from each other in all embodiments of the invention, which enables a targeted adjustment of the amount of fluid entering the zone across the width of the outlet channel.
  • the inlet channel in the region of the junction for example, wedge-shaped, taper or widen
  • the inlet opening for example, has a regular rectangular shape.
  • a plurality of openings for example slot-shaped or circular or even oval, can be provided per single-channel (which sometimes has a changing cross-section), etc.
  • the cross-sectional shape of the at least one inlet channel or the shape of the at least one inlet opening changes is not particularly limited and can be adapted to the respective applications of the device.
  • the cross-sectional shape changes linearly, since the pressure loss over the length of the channel can thus be well compensated and a uniform distribution of the fluids or fluid mixtures in the transverse direction of the discharge channel is ensured.
  • the resulting fluid flow behavior can be well simulated and optimized by means of computer programs. Because the pressure drop in the channels is exponential, for purely physical considerations, a corresponding exponential change in cross-section would be an even better solution to this problem.
  • Such courses are in practice - at least in the current production techniques - but only at much higher cost feasible and therefore currently not preferred.
  • the width of the at least one inlet channel increases in the transverse direction of the discharge channel, ie at the end there is a larger area for the fluid transfer from the respective inlet channel to the outlet channel, so as to compensate for the pressure drop.
  • the width of the inlet channel can increase both at its upper and lower edges and at only one of them. That is, the inlet duct does not necessarily have to have side walls normal to the plane of the discharge duct, as will be explained later.
  • a variable depth of the channels affects the feed into the dispensing channel, but a depression of the inlet channels towards their end tends to increase the pressure drop due to the larger cross-sectional area, while the decreasing depth (and concomitant smaller cross-sectional area) again compensates for the pressure drop can be.
  • the flow rate of the fluid to the inlet ports can be determined.
  • These means according to the invention can be used both instead of and in combination with other, for example, mechanical control means, e.g. Micropumps, valves, etc. are used.
  • all inlet openings are arranged on the same side of the discharge channel, ie above or below it, as in the later discussed in more detail Fig. 3 and 5 is shown schematically, where all inlet channels are shown from below the discharge channel in this merging. This arrangement is easier to manufacture in the manufacture of microfluidic devices.
  • the main supply channels merge into a plurality of sub-supply and associated intake ports, and also preferably, a plurality of main supply ports are provided.
  • These preferably comprise one or more first main feed channels for introducing a first fluid and one or more a plurality of second main supply channels for introducing a second fluid. This makes it possible to introduce several layers of fluids, also in each case several layers of several fluids, one above the other into the discharge channel, which improves and accelerates the mixing of two or more fluids, since more than one interface between the fluids is available for the diffusion.
  • the sub-feed and associated multiple-fluid inlet channels preferably lead from opposite sides to the dispensing channel because, due to the difficult-to-use third dimension, superposition of the channels in microfluidic devices is hardly possible.
  • a plurality of first secondary supply and inlet channels and a plurality of second secondary supply and inlet channels are "comb-shaped" from opposite sides (as will be explained in more detail below), interlocking with and discharging into the dispensing channel.
  • the device according to the invention also makes it possible to combine immiscible liquids, so that a solute can diffuse from one phase into the immiscible other phase.
  • the device does not serve as a mixer, but as a micro-extractor.
  • the device according to the invention a well controllable mixing by diffusion of two or more layers of miscible fluids is possible. This achieves a reproducible diffusion mixing time behavior whose behavior depends on the properties of the fluids used (inter alia the diffusion coefficient), the flow rate and the layer thicknesses. In this way, a higher mixing quality is achieved compared to the prior art.
  • the invention relates to the use of a just described device for dispensing a plurality of fluids, which are preferably dispensed in the form of layers.
  • the layers can be the same or different Have layer thicknesses, as this is determinable over the cross section of the inlet channels and / or the inlet openings.
  • the fluids are at least partially mixed during delivery due to diffusion at the interfaces between the layers.
  • Fig. 1 As mentioned, a known embodiment of a microfluidic device according to the prior art.
  • this apparatus three separate feed channels 2, 2 ', 2 "for liquids in a row in a, here horizontally extending mixing channel 5.
  • a stream of a liquid sample is passed between each buffer stream in the channel, in order to mix them in.
  • the feed of the three streams takes place from the same side of the mixing channel 5 - in Fig.
  • microfluidics While the field of microfluidics is defined differently in the literature, for purposes of the present invention, it is meant to include devices having such dimensions that the cross-sectional area of the channels is on the order of square millimeters or less.
  • One of the problems of such and similar devices solved by the invention is that the amount of fluid entering the mixing channel at both ends of the respective inlet channel is different due to the pressure drop from one end to the other.
  • a simple embodiment of a microfluidic device according to the invention is shown, which serves mainly to illustrate the principle of the invention.
  • a device could not serve as a micromixer but, for example, as a connector between two (micro) lines extending in different spatial directions or as a simple channel for fluid (especially liquid) delivery, eg in inkjet printers.
  • a fluid are directed into an output channel 5, as indicated by the arrows.
  • the fluid is branched via a main supply channel 1, which branches off into two secondary supply channels 2, 2 ', which in turn pass into two inlet channels 3, 3' to the output channel 5 and through inlet ports 4, 4 ', which are shown in dotted lines in the figures ,
  • the present invention makes it possible to compensate for the pressure losses occurring in the case of elongated line junctions and the different quantities of fluid delivered in connection therewith, wherein the cross-sectional shapes of the inlet channels or inlet openings can be adapted precisely to the respective conditions.
  • the cross-section of the respective inlet channel that of the associated inlet opening (s) or even both may change.
  • a "wedge-shaped” i. linear variation of the cross sections shown, the course of which is also the same at the inlet channel and opening, as indicated by the parallelism of the lines.
  • any combination of different cross-sectional shapes can be used, as long as characterized the flow behavior of the fluid or in the device according to the invention is influenced in an advantageous manner.
  • any other shapes, with curves, waves, corners, edges, teeth and the like are possible, all of which are intended to be within the scope of the present invention.
  • inlet ports per inlet channel may well be provided, which in turn may have any desired shapes.
  • an inlet channel with linear, e.g. wedge-shaped or conical, or curved tapered cross-section and extending in the longitudinal direction of the inlet channel, slot-shaped inlet opening with a regular rectangular cross-section.
  • the tapering cross-section of the channel then equalizes the pressure drop toward the farther end of the opening so that in turn equal amounts of fluid can enter the discharge channel at both ends of the opening.
  • the cross-section of the inlet or inlet channel upstream of the junction can also change in order to influence pressure differences in the supply lines. This can be done in a known manner, ie as in the aforementioned EP 118,767 B1 , Made by tapering design of the channels 1 and / or 2 or 2 'to the output channel 5 out. In this way, it can be ensured that the same amount of fluid is delivered to all inlet channels in the case of a main feed channel branching into a plurality of secondary feed and corresponding inlet channels, which results in equal layer thicknesses of the fluid in the output channel.
  • Fig. 3 shows a schematic longitudinal sectional view of the embodiment Fig. 2 along the line AA, from which it can be seen that both inlet channels 3 and 3 'open into the outlet channel 5 from the same side, namely from below. This is contrary to the manufacturing technology of microfluidic devices. In addition, the side walls of the inlet channels 3 and 3 'are formed in parallel. Alternatives will be discussed later Fig. 9 described.
  • Fig. 4 schematically shows three possible cross-sectional views of the embodiment Fig. 2 along the line BB. It can be seen that the cross-section of the inlet channel 3 'not only - as in Fig. 2 shown - may increase in the plane of the output channel 5, so that it widened in the flow direction of the fluid, but can also increase or decrease perpendicular thereto. In Fig. 4a the inlet channel 3 'deepens over the width of the output channel 5, and in Fig. 4b its depth decreases.
  • Fig. 4c shows an embodiment with a constant depth of the inlet channel 3 ', which represents a presently preferred embodiment due to the simpler manufacturing.
  • Fig. 5 shows an embodiment of the device according to the invention, in which two fluids are supplied from opposite sides of the discharge channel 5 to this.
  • a first fluid is analogous to the embodiment Fig. 2 via a main supply channel 1, which branches into two secondary supply channels 2 and 2 'and in the sequence in two inlet channels 3 and 3', introduced; a second fluid via the analog components 10, 20/20 'and 30/30'.
  • the changing in the mouth region cross-sectional shapes can be combined again as desired. For clarity, wedge-shaped cross sections are again shown.
  • the wedge-shaped extensions of the inlet channel pairs would be 3/30 and 3 '/ 30' facing each other, ie the channels 30 and 30 'in the drawing would not be right up but extend to the top left.
  • the total of four secondary supply channels 2, 2 ', 20, 20' with their inlet channels 3, 3 ', 30', 30 engage "comb-like" in one another, meaning that they alternately open into the output channel 5 from opposite sides.
  • two layers of the two fluids are alternately introduced into the output channel, whereby a total of three interfaces for the diffusion between the two fluids are available.
  • this effect can be further enhanced. This significantly speeds up mass transfer between the fluids such that such devices are excellent micromixers or, for immiscible liquids, microextractors.
  • a profile of the device according to the invention with an aspect ratio of 1:10 for the inlet channels and / or the inlet opening is used for many-in particular aqueous-fluids.
  • an aspect ratio (width difference: length) of 1:10 an expansion of the (eg wedge-shaped) Channel of, for example, 10.0 microns at the beginning of the inlet channel to 20.0 microns at its end over a length of the inlet channel of 100.0 microns understood.
  • Fig. 6 shows a longitudinal sectional view of the embodiment Fig. 5 along the line AA Fig. 5 . From this it follows that all inlet channels 3, 3 ', 30 and 30' from the same side - again from below - open into the outlet channel 5. This again counteracts the fabrication technique of microfluidic devices where the channels are etched into an existing substrate, cut, etc. Because the line AA in Fig. 5 is not halfway across the discharge channel 5, the thickness of the inlet channel pairs 3/3 'and 30/30' is also different due to the different degree of broadening at that location. Again, the walls of the inlet ducts need not necessarily be perpendicular, that is, they should be normal to the plane of the discharge duct, as in FIG Fig. 6 is shown.
  • the inlet channels becoming wider or narrower towards the bottom, the amount of fluid passing from the respective inlet channel into the outlet channel and thus the layer thickness of the fluid at that point of the outlet channel can also be controlled.
  • Such a change in cross section of the inlet channels is also within the scope of the present invention.
  • Fig. 7 shows by way of example schematically different embodiments of the cross-sectional changes of the inlet channels in the plane of the discharge channel.
  • widening as well as narrowing shapes over the width of the dispensing channel 5 as well as arbitrary combinations thereof, as well as combinations of a straight and an oblique or curved longitudinal wall of the inlet channel 3, are possible. Widening shapes are preferred in order to compensate for the smaller amount of fluid due to the pressure drop over the length of the inlet channel 3, which at its end passes into the discharge channel 5.
  • Such and similar, but also any other cross-sectional changes are also possible for the depth of the inlet channels, as already stated above. This means that even the depth of an inlet channel need not necessarily increase or decrease linearly in order to ensure optimum, desired flow conditions for the fluid (s) in the device according to the invention.
  • Fig. 8 shows various embodiments of the shapes of the inlet openings, for the sake of clarity, the inlet channels are plotted without changing cross-section. In fact, however, any combinations of the in the Fig. 7 and 8th shown embodiments and any other embodiments possible, since the invention is not limited to the embodiments shown or discussed herein.
  • Fig. 9 shows, as already mentioned, alternative embodiments of the inlet channels 3 and 3 'from Fig. 3 with non-parallel sidewalls, which can also be combined with any of the previously described channel cross-section changes and aperture shapes.
  • Channel 3 is shown here by way of example with an oval cross-section, ie with bulged side walls; Channel 3 ', however, with a downwardly tapered cross-section.
  • additional measures can also be taken on the channel sidewalls, such as grooves, grooves, grooves, corrugations and the like, to influence and optimize the flow behavior of the fluids in the channels.
  • the present invention is a valuable extension In the field of microfluidics, the prior art solves existing problems in a relatively simple manner by providing devices which are inexpensive and can be produced by known methods. Accordingly, there is no doubt about the industrial applicability of the invention.

Description

  • Die vorliegende Erfindung betrifft Mikrofluidikvorrichtungen zur Abgabe von Fluids oder Fluidgemischen.
  • Gut durchmischte Fluidgemische sind bei mit laminaren Strömungen arbeitenden Systemen, wie z.B. in Mikrofluidiksystemen, schwer herzustellen, da es - vor allem aufgrund fehlender Turbulenzen, aber auch aufgrund kurzer Weglängen - zu keiner ausreichenden Vermischung der zugeführten Fluids, insbesondere im Falle von Flüssigkeiten, kommen kann. Die Durchmischung zwischen verschiedenen in einem Kanal fließenden Fluidströmen ist somit nahezu ausschließlich auf Diffusionsvorgänge beschränkt. Darüber hinaus ist in Mikrofluidik-Anwendungen aufgrund der schwer nutzbaren dritten Dimension die Leitungsführung problematisch.
  • Ein Ansatz zur Lösung dieser Probleme wird beispielsweise in DE 19604289 C2 offenbart, wo in einem so genannten Mikromischer zwei Fluidströme beiderseits einer Trennwand in eine Mischkammer eingeleitet und erst danach zusammengeführt werden, um dazwischen eine Grenzfläche auszubilden, an der Diffusion erfolgen kann.
  • Die Problematik der Leitungsführung sowie des Druckverlusts in den Zuleitungen und an der Einmündungsstelle derselben in den Mischkanal werden in diesem Dokument nicht angesprochen.
  • In Bezug auf den Ausgleich von Druckverlusten offenbart EP 1.187.671 B1 das Einleiten mehrerer Fluids über Einlasskanäle mit sich entsprechend unterschiedlich verjüngenden Querschnitten in eine Mischkammer eines "Mikrovermischers". Die Verjüngung der Kanäle verläuft in Längsrichtung, d.h. zur Mischkammer hin, und die Fläche der Einlassöffnungen steht normal auf die Längsachse derselben. Die Kanäle kreuzen einander berührungslos und bilden an der Mischkammer einen gemeinsamen Austrittsquerschnitt. Dabei werden Druckverluste in den Zuleitungen ausgeglichen. Das Problem, dass bei seitlicher Zuleitung von Fluids aufgrund von Druckverlusten in Querrichtung eines Mischkanals unterschiedliche Fluidmengen in diesen eingeleitet werden, tritt bei dieser Ausführungsform einer Mikrofluidikvorrichtung gar nicht auf und bleibt daher unerwähnt.
  • Dokument US - A1 - 2005/133457 offenbart eine Mikrofluidikvorrichtung gemäß dem Oberbegriff des Anspruchs 1.
  • OFFENBARUNG DER ERFINDUNG
  • Erfindungsgemäß wird diese Aufgabe gelöst, indem eine Mikrofluidikvorrichtung zur Abgabe eines Fluids oder Fluidgemischs bereitgestellt wird, die Folgendes umfasst: einen Ausgabekanal, zumindest einen Fluid-Hauptzufuhrkanal, der jeweils in zumindest einen im Wesentlichen in der Ebene des Ausgabekanals liegenden und seitlich zu diesem hinführenden Nebenzufuhrkanal übergeht, der seinerseits in einen ober- oder unterhalb des Ausgabekanals liegenden Einlasskanal übergeht, der über zumindest eine Einlassöffnung von oben oder unten in den Ausgabekanal mündet, mit dem Kennzeichen, dass der zumindest eine Einlasskanal einen Querschnitt mit einer sich in seiner Längsrichtung linear oder exponentiell verändernde Querschnittsform aufweist. Eine weiterführende Ausführungsform der erfindungsgemäße Mikrofluidikvorrichtung kann sich dadurch auszeichnen, dass die zumindest eine Einlassöffnung eine sich in Querrichtung des Ausgabekanals ändernde Öffnungsweite aufweist.
  • Aufgrund dieser sich in seiner Längsrichtung ändernden Querschnittsform des Einlasskanals und/oder sich ändernden Breite der Einlassöffnung(en) in Querrichtung des Ausgabekanals können an unterschiedlichen Stellen des Einlasskanals variierende Fluidmengen von diesem in den Ausgabekanal eingeleitet werden. Es werden in Abhängigkeit von der Form lokal veränderliche Druckverhältnisse geschaffen und somit die Durchflussrate und folglich die Menge an Fluid über die Breite des Ausgabekanals festgelegt. So kann beispielsweise die aufgrund des Druckunterschieds zwischen den beiden Enden des Einlasskanals bzw. der Einlassöffnung(en) ungleiche Menge an in den Ausgabekanal zugeführtem Fluid ausgeglichen werden, indem der Einlasskanal sich zum weiter entfernten Ende hin verbreiternd ausgeführt wird, so dass eine größere Grenzfläche zwischen Einlass- und Ausgabekanal für den Fluidübertritt zur Verfügung steht. Dadurch kann eine über die Breite des Ausgabekanals einheitlich dicke Fluidschicht in diesen eingeleitet werden. Je nach Anwendung der Vorrichtung in Leitungssystemen können an unterschiedlichen Stellen der Breite des Ausgabekanals aber auch gezielt kleinere oder größere Fluidmengen, z.B. ein Fluidgradient, in diesen eingeleitet werden, was nicht nur zu Mischzwecken, sondern beispielsweise auch für chemische Reaktionen in diesem Kanal von Nutzen sein kann.
  • Was die obigen Bezeichnungen "oben" und "unten" sowie "oberhalb" bzw. "unterhalb der Ebene des Ausgabekanals" anbelangt, so sei festgestellt, dass diese aufgrund der - selbst nach Inbetriebnahme der Mikrofluidikvorrichtung - variablen räumlichen Lage des Ausgabekanals austauschbar sind und vor allem zur näheren Erläuterung der in den beiliegenden Zeichnungen dargestellten Ausführungsformen dienen.
  • Das oder die Fluid(s) ist/sind nicht speziell eingeschränkt. Es kann sich dabei um beliebige fließfähige Materialien bzw. Gemische davon handeln. Vorzugsweise wird die Erfindung im Zusammenhang mit Flüssigkeiten oder Flüssigkeit/Gas-Gemischen eingesetzt, da hier die Vorteile der Erfindung besonders gut zur Geltung kommen. Gemäß vorliegender Erfindung können für jeden Einlasskanal eine oder mehrere Einlassöffnungen in den Ausgabekanal vorgesehen sein. In ersterem Fall kann die einzige Einlassöffnung von den Oberkanten des nach oben zum Ausgabekanal hin zur Gänze offenen Einlasskanals gebildet werden und somit die gesamte Grenzfläche zwischen Einlasskanal und Ausgabekanal einnehmen. Dies vereinfacht die Fertigung solcher Mikrofluidikvorrichtungen, wie dies später noch näher beschrieben wird. Die Formen der Einlasskanäle und der jeweiligen Einlassöffnungen können in allen Ausführungsformen der Erfindung dieselbe sein oder sich voneinander unterscheiden, was eine gezielte Einstellung der über die Breite des Ausgabekanals in diesen eintretenden Menge an Fluid an jeder Stelle ermöglicht. Beispielsweise kann sich der Einlasskanal im Bereich der Einmündung, beispielsweise keilförmig, verjüngen oder aber verbreitern, während die Einlassöffnung z.B. regelmäßige Rechteckform aufweist. Alternativ oder ergänzend dazu können auch mehrere, beispielsweise schlitz- oder kreisförmige oder auch ovale, Öffnungen pro Einklasskanal (der mitunter einen sich ändernden Querschnitt aufweist) vorgesehen sein, etc.
  • Die Art und Weise, wie sich die Querschnittsform des zumindest einen Einlasskanals bzw. die Form der zumindest einen Einlassöffnung ändert, ist nicht speziell eingeschränkt und kann an die jeweiligen Anwendungen der Vorrichtung angepasst werden. Erfindungsgemäß ändert sich die Querschnittsform linear, da so der Druckverlust über die Länge des Kanals gut ausgeglichen werden kann und eine gleichmäßige Verteilung der Fluids oder Fluidgemische in Querrichtung des Ausgabekanals gewährleistet ist. Das daraus resultierende Fluidströmungsverhalten kann mittels Computerprogrammen gut simuliert und optimiert werden. Da der Druckabfall in den Kanälen exponentiell erfolgt, wäre aus rein physikalischen Erwägungen eine entsprechende exponentielle Querschnittsänderung eine möglicherweise noch bessere Lösung dieses Problems. Derartige Verläufe sind in der Praxis - zumindest bei den derzeitigen Fertigungstechniken - jedoch nur unter deutlich höherem Aufwand realisierbar und daher zurzeit nicht bevorzugt. Bei den zu erwartenden Fortschritten der Fertigungsverfahren in den kommenden Jahren können derartige Querschnittsformen jedoch möglicherweise schon bald mit vertretbarem Aufwand herstellbar sein. Vorzugsweise nimmt die Breite des zumindest einen Einlasskanals in Querrichtung des Ausgabekanals zu, d.h. am Ende steht eine größere Fläche für den Fluidübergang vom jeweiligen Einlass- in den Ausgabekanal zur Verfügung, um so den Druckabfall auszugleichen. Die Breite des Einlasskanals kann dabei sowohl an dessen Ober- und Unterkante als auch nur an einer davon zunehmen. Das heißt, dass der Einlasskanal nicht notwendigerweise auf die Ebene des Ausgabekanals normal stehende Seitenwände aufzuweisen braucht, wie dies später noch näher ausgeführt wird. Auch eine veränderliche Tiefe der Kanäle beeinflusst die Einspeisung in den Ausgabekanal, wobei jedoch eine Vertiefung der Einlasskanäle zu deren Ende hin aufgrund der größeren Querschnittsfläche tendenziell eher eine Verstärkung des Druckabfalls bewirkt, während mittels abnehmender Tiefe (und damit einhergehender geringerer Querschnittsfläche) erneut der Druckabfall ausgeglichen werden kann.
  • Durch die Form und Beschaffenheit des Querschnitts der Kanäle, beispielsweise in runder oder eckiger Form, mit rauer oder glatter Oberfläche, durch die Länge der Kanäle sowie durch die Formgebung der Kanäle - z.B. unter Ausformung von runden oder eckigen Abzweigungen - kann die Fließgeschwindigkeit des Fluids zu den Einlassöffnungen bestimmt werden. Diese Mittel können erfindungsgemäß sowohl anstelle von als auch in Kombination mit anderen beispielsweise mechanischen Steuermitteln, wie z.B. Mikropumpen, -ventilen etc., eingesetzt werden.
  • In weiteren bevorzugten Ausführungsformen der Erfindung sind alle Einlassöffnungen an derselben Seite des Ausgabekanals, d.h. ober- oder unterhalb desselben, angeordnet, wie dies auch in den später näher besprochenen Fig. 3 und 5 schematisch dargestellt ist, wo alle Einlasskanäle von unterhalb des Ausgabekanals in diesen einmündend gezeigt sind. Diese Anordnung ist bei der Fertigung von Mikrofluidikvorrichtungen einfacher herstellbar.
  • In bevorzugten Ausführungsformen gehen die Hauptzufuhrkanäle in jeweils mehrere Nebenzufuhr- und zugehörige Einlasskanäle über, und ebenso bevorzugt sind auch mehrere Hauptzufuhrkanäle vorgesehen. Diese umfassen vorzugsweise einen oder mehrere erste Hauptzufuhrkänale zur Einleitung eines ersten Fluids und einen oder mehrere zweite Hauptzufuhrkanäle zur Einleitung eines zweiten Fluids. Dies ermöglicht, mehrere Schichten von Fluids, auch jeweils mehrere Schichten mehrerer Fluids, übereinander in den Ausgabekanal einzuleiten, was die Durchmischung zweier oder mehrerer Fluids verbessert und beschleunigt, da mehr als eine Grenzfläche zwischen den Fluids für die Diffusion zur Verfügung steht.
  • Wiederum speziell an die Fertigungsbedingungen von Mikrofluidikanwendungen angepasst, führen die Nebenzufuhr- und zugehörigen Einlasskanäle für mehrere Fluids vorzugsweise von gegenüberliegenden Seiten zum Ausgabekanal hin, da aufgrund der schwer nutzbaren dritten Dimension eine Überlagerung der Kanäle in Mikrofluidikvorrichtungen kaum möglich ist. Zur Einleitung mehrerer Schichten mehrerer Fluids führen vorzugsweise mehrere erste Nebenzufuhr- und Einlasskanäle und mehrere zweite Nebenzufuhr- und Einlasskanäle von gegenüberliegenden Seiten "kammförmig" (wie später näher erläutert wird) ineinander greifend zum Ausgabekanal hin bzw. münden in diesen ein.
  • Die erfindungsgemäße Vorrichtung ermöglicht auch das Zusammenführen von nicht mischbaren Flüssigkeiten, so dass ein gelöster Stoff aus einer Phase in die nicht mischbare andere Phase diffundieren kann. In diesem Anwendungsfall dient die Vorrichtung nicht als Mischer, sondern als Mikroextraktor.
  • Durch die erfindungsgemäße Vorrichtung ist eine gut kontrollierbare Vermischung durch Diffusion zweier oder mehrerer Schichten von mischbaren Fluids möglich. Dadurch wird ein reproduzierbares Zeitverhalten der Diffusionsvermischung erreicht, dessen Verhalten von den Eigenschaften der verwendeten Fluide (unter anderem dem Diffusionskoeffizienten), der Fließrate und der Schichtdicken abhängig ist. Auf diese Weise wird im Vergleich zum Stand der Technik eine höhere Mischqualität erreicht.
  • In einem zweiten Aspekt betrifft die Erfindung daher die Verwendung einer eben beschriebenen Vorrichtung zum Abgeben von mehreren Fluids, die vorzugsweise in Form von Schichten abgegeben werden. Die Schichten können die gleiche oder unterschiedliche Schichtdicken aufweisen, da dies über den Querschnitt der Einlasskanäle und/oder der Einlassöffnungen bestimmbar ist. Vorzugsweise werden die Fluids während der Abgabe aufgrund von Diffusion an den Grenzflächen zwischen den Schichten zumindest teilweise durchmischt.
  • KURZBESCHREIBUNG DER ZEICHNUNGEN
  • Die vorliegende Erfindung wird nun anhand der beiliegenden Zeichnungen näher beschrieben, die Folgendes zeigen:
    • Fig. 1 ist eine schematische Darstellung eines eingangs beschriebenen Mikromischers nach dem Stand der Technik.
    • Fig. 2 ist eine schematische Darstellung einer Ausführungsform der erfindungsgemäßen Vorrichtung zur Einleitung eines Fluids über einen sich in zwei Nebenzufuhr- und Einlasskanäle verzweigenden Hauptzufuhrkanal in einen Ausgabekanal.
    • Fig. 3 ist eine Längsschnittansicht der Ausführungsform aus Fig. 2 entlang der Linie A-A.
    • Fig. 4 ist eine Querschnittansicht dreier möglicher Ausführungsformen der Vorrichtung aus Fig. 2 entlang der Linie B-B.
    • Fig. 5 ist eine schematische Darstellung einer Ausführung der erfindungsgemäßen Vorrichtung zur Einleitung zweier Fluids über "kammförmig" ineinander greifende Einlasskanäle in einen Ausgabekanal.
    • Fig. 6 ist eine Querschnittsansicht der Ausführungsform aus Fig. 5.
    • Fig. 7 ist eine schematische Detailansicht verschiedener Ausführungsformen eines Einlasskanals mit sich änderndem Querschnitt.
    • Fig. 8 ist eine schematische Detailansicht verschiedener Ausführungsformen von Einlassöffnungen in den Einlasskanälen.
    • Fig. 9 ist eine Längsschnittansicht alternativer Ausführungsformen der Vorrichtung aus Fig. 2 entlang der Linie A-A.
    BESCHREIBUNG VON AUSFÜHRUNGSFORMEN DER ERFINDUNG
  • Fig. 1 zeigt wie erwähnt eine bekannte Ausführungsform einer Mikrofluidikvorrichtung nach dem Stand der Technik. Bei dieser Vorrichtung führen drei voneinander getrennte Zufuhrkanäle 2, 2', 2" für Flüssigkeiten hintereinander in einen, hier waagrecht verlaufend dargestellten Mischkanal 5. In der zugehörigen, eingangs zitierten Publikation wird ein Strom einer flüssigen Probe zwischen jeweils einem Pufferstrom in den Kanal geleitet, um diese darin zu vermischen. Die Einspeisung der drei Ströme erfolgt von derselben Seite des Mischkanals 5 - in Fig. 1, in Strömungsrichtung des Fluids im Mischkanal 5 gesehen: von links - über getrennte Zufuhrkanäle 2, 2', 2", die aufgrund der Unmöglichkeit, einander überschneidende Leitungen vorzusehen, jeweils getrennt gespeist werden müssen. Eine solche Bauweise ist bei der Herstellung von Mikrofluidikvorrichtungen üblich und gleichzeitig unabdingbar, da hier die Kanäle und andere Bauteile üblicherweise in einen Träger geätzt, gebrannt, geschmolzen bzw. geschnitten werden. Aufgrund dieser Herstellungsweise werden die Fluidleitungen derartiger Mikrofluidikvorrichtungen gemeinhin als Kanäle bezeichnet, obwohl sie durch das Aufsetzen einer Deckplatte nach Abschluss der Ätz- bzw. Schneidevorgänge geschlossenen Leitungen darstellen - im Unterschied zum Begriff des "Kanals", wie er in anderen Bereichen der Technik, z.B. in der Bautechnik verwendet wird.
  • Das Gebiet der Mikrofluidik ist zwar in Literatur unterschiedlich definiert, für die Zwecke der vorliegenden Erfindung sind darunter Vorrichtungen mit solchen Dimensionen zu verstehen, dass die Querschnittsfläche der Kanäle in der Größenordnung von Quadratmillimetern oder darunter liegt.
  • Eines der durch die Erfindung gelösten Probleme solcher und ähnlicher Vorrichtungen besteht darin, dass die an den beiden Enden des jeweiligen Einlasskanals in den Mischkanal eintretende Menge an Fluid aufgrund des Druckabfalls von einem Ende zum anderen unterschiedlich ist.
  • In Fig. 2 wird eine einfache Ausführungsform einer erfindungsgemäßen Mikrofluidikvorrichtung gezeigt, die hauptsächlich zur Illustration des Prinzips der Erfindung dient. In der Praxis könnte eine solche Vorrichtung nicht als Mikromischer, sondern beispielsweise als Verbindungsstück zwischen zwei in unterschiedliche Raumrichtungen verlaufende (Mikro-) Leitungen oder als einfacher Kanal zur Fluid- (vor allem Flüssigkeits-) Abgabe, z.B. in Tintenstrahldruckern, dienen.
  • Jedenfalls kann in der in Fig. 2 dargestellten Vorrichtung ein Fluids in einen Ausgabekanal 5 geleitet werden, wie dies durch die Pfeile angedeutet ist. Das Fluid wird über einen Hauptzufuhrkanal 1, der sich in zwei Nebenzufuhrkanäle 2, 2' verzweigt, die ihrerseits in zwei Einlasskanäle 3, 3' übergehen zum Ausgabekanal 5 und durch - in den Figuren durchwegs punktiert dargestellte - Einlassöffnungen 4, 4' in diesen eingeleitet.
  • Die Querschnitte sowohl der Einlasskanäle 3, 3' als auch der Einlassöffnungen 4, 4' erweitern sich im Mündungsbereich linear, wodurch zwar der Druckverlust in Längsrichtung der Einlasskanäle zunimmt, dafür aber ein zunehmend größerer Querschnitt für den Fluidübergang in den Ausgabekanal 5 zur Verfügung steht, wodurch dieser Druckverlust - in Abhängigkeit vom Winkel der Erweiterung - ausgeglichen werden kann.
  • Somit ermöglicht es die vorliegende Erfindung, die bei längsgestreckten Leitungseinmündungen auftretenden Druckverluste und die damit in Verbindung stehenden unterschiedlichen abgegebenen Fluidmengen auszugleichen, wobei die Querschnittsformen der Einlasskanäle bzw. Einlassöffnungen exakt an die jeweiligen Gegebenheiten anpassbar sind.
  • Wesentlich sind neben der Querschnittsform der Kanäle in deren Längsrichtung auch jene in Querrichtung, wo z.B. runde, ovale oder polygonale Querschnitte zum Einsatz kommen können, so dass nicht notwendigerweise parallele senkechte Seitenwände der Kanäle vorliegen müssen. Dies beeinflusst ebenfalls die Druckverhältnisse in den jeweiligen Abschnitten der Kanäle. Zwei beispielhafte Ausführungsformen von Einlasskanälen mit nichtparallelen Seitenwänden sind in Fig. 9 dargestellt und werden später noch näher beschrieben. Allerdings können auch die Haupt- und Nebenzufuhrkanäle derartige nichtparallele Wände aufweisen.
  • Gemäß vorliegender Erfindung können sich der Querschnitt des jeweiligen Einlasskanals, jener der zugehörigen Einlassöffnung(en) oder auch beide ändern. In allen Figuren ist beispielhaft eine "keilförmige", d.h. lineare Änderung der Querschnitte dargestellt, deren Verlauf zudem bei Einlasskanal und -öffnung derselbe ist, wie durch die Parallelität der Linien angedeutet wird. In der Praxis können jedoch beliebige Kombinationen unterschiedlichster Querschnittsformen eingesetzt werden, solange dadurch das Strömungsverhalten des oder der Fluids in der erfindungsgemäßen Vorrichtung in vorteilhafter Weise beeinflusst wird. Außer linearen Änderungen sind auch beliebige sonstige Formen, mit Krümmungen, Wellen, Ecken, Kanten, Verzahnungen und dergleichen, möglich, die allesamt im Schutzumfang der vorliegenden Erfindung liegen sollen.
  • Wie bereits erwähnt existiert in der Praxis von Mikrofluidikvorrichtungen häufig gar keine explizite "Einlassöffnung" in den Kanal 5. Vielmehr sind die Einlasskanäle im Mündungsbereich einfach zum Kanal 5 hin offen, so dass gewissermaßen eine einzige, die gesamte Oberseite des Kanals 3 im Mündungsbereich einnehmende Öffnung 4 vorliegt.
  • Durch geeignete Bauweise, speziell bei etwas größeren Dimensionen nahe dem Millimeterbereich, können jedoch durchaus auch mehrere Einlassöffnungen pro Einlasskanal vorgesehen sein, die wiederum beliebige Formen aufweisen können. So ist beispielsweise eine Abfolge von schlitz- oder kreisförmigen Öffnungen - in Längs- und/oder Querrichtung - denk- und machbar, durch die das im Einlasskanal zugeführte Fluid an mehreren, diskreten Stellen in den Ausgabekanal eintritt.
  • Möglich ist auch eine Kombination aus einem Einlasskanal mit sich linear, z.B. keilförmig oder konisch, oder auch gekrümmt verjüngenden Querschnitt und einer in Längsrichtung des Einlasskanals verlaufenden, schlitzförmigen Einlassöffnung mit regelmäßig rechteckigem Querschnitt. Durch den sich verjüngenden Querschnitt des Kanals wird dann der Druckabfall zum entfernteren Ende der Öffnung hin ausgeglichen, so dass wiederum gleiche Mengen an Fluid an beiden Enden der Öffnung in den Ausgabekanal eintreten können.
  • Zusätzlich zur sich ändernden Querschnittsform im Mündungsbereich kann sich auch der Querschnitt des Zufuhr- oder Einlasskanals vor der Einmündung ändern, um Druckunterschiede in den Zuleitungen zu beeinflussen. Dies kann in bekannter Weise, d.h. wie in der eingangs erwähnten EP 118.767 B1 , durch sich verjüngende Ausgestaltung der Kanäle 1 und/oder 2 bzw. 2' zum Ausgabekanal 5 hin erfolgen. Dadurch kann sichergestellt werden, dass bei einem sich in mehrere Nebenzufuhr- und entsprechende Einlasskanäle verzweigenden Hauptzufuhrkanal dieselbe Fluidmenge an allen Einlasskanälen abgegeben wird, was gleiche Schichtdicken des Fluids im Ausgabekanal bewirkt. Andererseits können auch gezielt unterschiedliche Mengen abgegeben und so unterschiedliche Schichtdicken von mehreren Schichten desselben Fluids erzeugt werden, wenn dies für die jeweilige Anwendung vorteilhaft ist. Wie stark der Druckabfall innerhalb der Zufuhr- oder Einlasskanäle ist, hängt freilich von deren Länge und damit auch vom Abstand der Einmündungen der Einlasskanäle in den Ausgabekanal ab. Die Querschnittsänderungen sind im jeweiligen Einzelfall entsprechend anzupassen.
  • Fig. 3 zeigt eine schematische Längsschnittansicht der Ausführungsform aus Fig. 2 entlang der Linie A-A, aus der hervorgeht, dass beide Einlasskanäle 3 und 3' von derselben Seite, nämlich von unten, in den Auslasskanal 5 einmünden. Dies kommt der Fertigungstechnik von Mikrofluidikvorrichtungen entgegen. Zudem sind die Seitenwände der Einlasskanäle 3 und 3' parallel ausgebildet. Alternativen dazu werden späterim Zusammenhang mit Fig. 9 beschrieben.
  • Fig. 4 zeigt schematisch drei mögliche Querschnittansichten der Ausführungsform aus Fig. 2 entlang der Linie B-B. Es ist zu erkennen, dass der Querschnitt des Einlasskanals 3' nicht nur - wie in Fig. 2 dargestellt - in der Ebene des Ausgabekanals 5 zunehmen kann, so dass sich dieser in Strömungsrichtung des Fluids verbreitert, sondern auch senkrecht dazu zu- oder abnehmen kann. In Fig. 4a vertieft sich der Einlasskanal 3' über die Breite des Ausgabekanals 5, und in Fig. 4b verringert sich seine Tiefe. Letzterer Fall bewirkt eine Erhöhung des Drucks zum Ende des Einlasskanals 3' hin, wodurch der Druckabfall in Längsrichtung des Einlasskanals 3' ausgeglichen werden kann - oder sogar gezielt eine in dieser Richtung zunehmend größere Menge an Fluid in den Ausgabekanal 5 eingeleitet werden kann. Bei einer Vertiefung des Einlasskanals, wie in Fig. 4a gezeigt, wird hingegen der Druckabfall durch die Vergrößerung des Kanalquerschnitts verstärkt, so dass am Ende des Einlasskanals 3' gezielt geringere Fluidmengen in den Ausgabekanal 5 eingeleitet werden können. Fig. 4c zeigt eine Ausführungsform mit gleich bleibender Tiefe des Einlasskanals 3', was aufgrund der einfacheren Fertigung eine gegenwärtig bevorzugte Ausführungsform darstellt.
  • Fig. 5 zeigt eine Ausführungsform der erfindungsgemäßen Vorrichtung, bei der zwei Fluids von gegenüberliegenden Seiten des Ausgabekanals 5 zu diesem zugeleitet werden. Ein erstes Fluid wird analog zur Ausführungsform aus Fig. 2 über einen Hauptzufuhrkanal 1, der sich in zwei Nebenzufuhrkanäle 2 und 2' und in der Folge in zwei Einlasskanäle 3 und 3' verzweigt, eingeleitet; ein zweites Fluid über die analogen Bauteile 10, 20/20' und 30/30'. Die sich im Mündungsbereich ändernden Querschnittsformen können erneut beliebig kombiniert werden. Der Übersicht halber sind wiederum keilförmige Querschnitte eingezeichnet. Aus Gründen der Platzersparnis bei der Fertigung derartiger Mikrofluidikvorrichtungen würden in der Praxis die keilförmigen Erweiterungen der Einlasskanal-Paare 3/30 und 3'/30' zueinander weisend ausgeführt werden, d.h. die Kanäle 30 und 30' in der Zeichnung würden sich nicht nach rechts oben, sondern nach links oben erweitern.
  • Weiters ist zu erkennen, dass in dieser Ausführungsform keine expliziten Einlassöffnungen vorgesehen sind, da die Einlasskanäle 3/3' und 30/30' nach oben zum Ausgabekanal 5 hin offen sind, so dass jeweils die gesamte, von den Oberkanten der Einlasskanäle gebildete Grenzfläche mit dem Ausgabekanal 5 die jeweilige Einlassöffnung darstellt.
  • Die insgesamt vier Nebenzufuhrkanäle 2, 2', 20, 20' mit ihren Einlasskanälen 3, 3', 30', 30 greifen hier "kammförmig" ineinander, womit gemeint ist, dass sie abwechselnd von entgegengesetzten Seiten in den Ausgabekanal 5 einmünden. Auf diese Weise werden abwechselnd je zwei Schichten der beiden Fluids in den Ausgabekanal eingeleitet, wodurch insgesamt drei Grenzflächen für die Diffusion zwischen den beiden Fluids zur Verfügung stehen. Bei einer noch höheren Anzahl an Verzweigungen kann dieser Effekt noch weiter verstärkt werden. Dies beschleunigt einen Stoffaustausch zwischen den Fluids erheblich, so dass derartige Vorrichtungen ausgezeichnete Mikromischer oder - bei nicht mischbaren Flüssigkeiten - Mikroextraktoren darstellen.
  • Eine Anwendungsmöglichkeit ist etwa die Herstellung von Mikro-Fluidgemischen mit einer hohen Mischqualität. Für die Entwicklung von neuen Medikamenten erlangt das optischen Erfassen von chemischen Eigenschaften und Reaktionen immer größer werdende Bedeutung. Um zufrieden stellende Ergebnisse zu erhalten, ist das rasche und qualitativ hochwertige Vermischen von Fluids hier besonders wichtig.
  • Zur Herstellung von solchen Fluidmischungen ist es sinnvoll, mehr als zwei Schichten von Fluids einzusetzen, um auch die Diffusionswege zu minimieren. Gleichzeitig müssen etwaige, in einer anderen als in Strömungsrichtung auftretende Strömungen über den Querschnitt des Ausgabekanals möglichst homogen verteilt sein.
  • Um dies zu erreichen, wird für viele - insbesondere wässrige - Fluids ein Profil der erfindungsgemäßen Vorrichtung mit einem Aspektverhältnis von 1:10 für die Einlasskanäle und/oder die Einlassöffnung verwendet. Unter einem Aspektverhältnis (Breitendifferenz : Länge) von 1:10 wird hierbei eine Aufweitung des (z.B. keilförmigen) Kanals von beispielsweise 10,0 µm am Anfang des Einlasskanals auf 20,0 µm an dessen Ende über eine Länge des Einlasskanals von 100,0 µm verstanden. Dadurch wird ein gut reproduzierbares Zeitverhalten der Vermischung durch Diffusion zweier oder mehrerer Fluids erreicht, wobei die Qualität der Vermischung auch vom Mischverhalten (Diffusionskoeffizienten) der Fluids und den Strömungsgeschwindigkeiten maßgeblich beeinflusst wird.
  • Die in Fig. 5 gezeigte Ausführungsform behebt demnach wie auch die zuvor besprochene Ausführungsform der Fig. 2 bis 4 das Problem der Druckunterschiede im Einmündungsbereich in den Auslasskanal. Gleichzeitig ist aber auch die Zufuhr zweier unterschiedlicher Fluids von gegenüberliegenden Seiten eine neue und vorteilhafte Lösung für das Problem der Leitungsführung bei Mikrofluidikvorrichtungen. Aufgrund der schwer nutzbaren dritten Dimension sind einander überschneidende Leitungen nämlich kaum zu fertigen, so dass für das abwechselnde Zuführen mehrerer Ströme desselben Fluids mehrere Zufuhrkanäle - und nicht bloß Einlasskanäle - erforderlich waren, wie dies im Zusammenhang mit Fig. 1 erläutert wurde.
  • Fig. 6 zeigt eine Längsschnittansicht der Ausführungsform aus Fig. 5 entlang der Linie A-A aus Fig. 5. Aus dieser geht hervor, dass alle Einlasskanäle 3, 3', 30 und 30' von derselben Seite - wiederum von unten - in den Auslasskanal 5 einmünden. Dies kommt erneut der Fertigungstechnik von Mikrofluidikvorrichtungen entgegen, wo die Kanäle in einen bestehenden Träger geätzt, geschnitten etc. werden. Da die Linie A-A in Fig. 5 nicht bei halber Breite des Ausgabekanals 5 verläuft, ist die Dicke der Einlasskanal-Paare 3/3' und 30/30' aufgrund des unterschiedlichen Grades der Verbreiterung an dieser Stelle ebenfalls unterschiedlich. Erneut brauchen die Wände der Einlasskanäle nicht unbedingt senkrecht sein, d.h. normal auf die Ebene des Ausgabekanals stehen, wie dies in Fig. 6 dargestellt ist. Indem die Einlasskanäle nach unten hin breiter oder schmäler werden, kann ebenfalls die aus dem jeweiligen Einlasskanal in den Ausgabekanal übertretende Fluidmenge und damit die Schichtdicke des Fluids an dieser Stelle des Ausgabekanals gesteuert werden. Auch eine solche Querschnittsänderung der Einlasskanäle liegt im Schutzumfang der vorliegenden Erfindung.
  • Fig. 7 zeigt beispielhaft schematisch verschiedene Ausführungsformen der Querschnittsänderungen der Einlasskanäle in der Ebene des Ausgabekanals. Wie gut zu erkennen ist, sind sowohl sich über die Breite des Ausgabekanals 5 verbreiternde als auch verengende Formen sowie beliebige Kombinationen davon, so auch Kombinationen aus einer geraden und einer schrägen oder gekrümmten Längswand des Einlasskanals 3, möglich. Bevorzugt sind sich verbreiternde Formen, um die aufgrund des Druckabfalls über die Länge des Einlasskanals 3 geringere Fluidmenge, die an seinem Ende in den Ausgabekanal 5 übertritt, auszugleichen. Solche und ähnliche, aber auch beliebige andere Querschnittsänderungen sind auch für die Tiefe der Einlasskanäle möglich, wie dies zuvor bereits ausgeführt wurde. Das heißt, dass auch die Tiefe eines Einlasskanals nicht unbedingt linear zu- oder abzunehmen braucht, um für optimale, gewünschte Strömungsbedingungen für das oder die Fluids in der erfindungsgemäßen Vorrichtung zu sorgen.
  • Fig. 8 zeigt verschiedene Ausführungsformen der Formen der Einlassöffnungen, wobei der Übersicht wegen die Einlasskanäle ohne sich ändernden Querschnitt eingezeichnet sind. Tatsächlich sind jedoch auch beliebige Kombinationen der in den Fig. 7 und 8 gezeigten Ausführungsformen sowie beliebige andere Ausführungsformen möglich, da die Erfindung keineswegs auf die hierin gezeigten oder besprochenen Ausführungsformen beschränkt ist.
  • Fig. 9 zeigt, wie bereits erwähnt, alternative Ausführungsformen der Einlasskanäle 3 und 3' aus Fig. 3 mit nichtparallelen Seitenwänden, die ebenfalls mit beliebigen der zuvor beschriebenen Kanalquerschnittsänderungen und Öffnungsformverläufen kombinierbar sind. Kanal 3 ist hier exemplarisch mit ovalem Querschnitt, d.h. mit ausgebuchteten Seitenwänden, dargestellt; Kanal 3' hingegen mit einem sich nach unten hin verjüngenden Querschnitt. Wie ebenfalls bereits erwähnt wurde, können auch zusätzliche Maßnahmen an den Kanalseitenwänden getroffen werden, wie z.B. Nuten, Rillen, Rauungen, Wellungen und dergleichen, um das Strömungsverhalten der Fluids in den Kanälen zu beeinflussen und zu optimieren.
  • Zusammenfassend sei festgestellt, dass die vorliegende Erfindung eine wertvolle Erweiterung des Standes der Technik auf dem Gebiet der Mikrofluidik darstellt, da sie bestehende Probleme auf verhältnismäßig einfache Weise durch Bereitstellung von Vorrichtungen löst, die kostengünstig und mithilfe bekannter Verfahren herstellbar sind. An der gewerblichen Anwendbarkeit der Erfindung besteht demnach kein Zweifel.

Claims (12)

  1. Mikrofluidikvorrichtung zur Abgabe eines Fluids oder Fluidgemischs, umfassend einen Ausgabekanal (5), zumindest einen Fluid-Hauptzufuhrkanal (1, 10), der jeweils in zumindest einen im Wesentlichen in der Ebene des Ausgabekanals (5) liegenden und seitlich zu diesem hinführenden Nebenzufuhrkanal (2, 2', 20, 20') übergeht, der seinerseits in einen ober- oder unterhalb des Ausgabekanals (5) liegenden Einlasskanal (3, 3', 30, 30') übergeht, der über zumindest eine Einlassöffnung (4, 4') von oben oder unten in den Ausgabekanal (5) mündet,
    dadurch gekennzeichnet, dass der zumindest eine Einlasskanal (3, 3', 30, 30') einen Querschnitt mit einer sich in seiner Längsrichtung linear oder exponentiell verändernde Querschnittsform aufweist.
  2. Mikrofluidikvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die zumindest eine Einlassöffnung (4, 4') eine sich in Querrichtung des Ausgabekanals (5) ändernde Öffnungsweite aufweist.
  3. Vorrichtung nach Anspruch 1-2, dadurch gekennzeichnet, dass pro Einlasskanal (3, 3', 30, 30') eine Einlassöffnung (4, 4') vorgesehen ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Einlassöffnung (4, 4') von den Oberkanten des nach oben zum Ausgabekanal (5) hin zur Gänze offenen Einlasskanals (3, 3', 30, 30') gebildet wird.
  5. Vorrichtung nach Anspruch 1-2, dadurch gekennzeichnet, dass pro Einlasskanal (3, 3', 30, 30') mehrere Einlassöffnungen (4, 4') vorgesehen sind.
  6. Vorrichtung nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Breite des zumindest einen Einlasskanals (3, 3', 30, 30') zunimmt.
  7. Vorrichtung nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass die Tiefe des zumindest einen Einlasskanals (3, 3', 30, 30') zunimmt.
  8. Vorrichtung nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass alle Einlassöffnungen (4, 4') an derselben Seite, d.h. ober- oder unterhalb, des Ausgabekanals (5) angeordnet sind.
  9. Vorrichtung nach Anspruch 1 bis 8, dadurch gekennzeichnet, dass der zumindest eine Hauptzufuhrkanal (1, 10) über mehrere Nebenzufuhrkanäle (2, 2', 20, 20') in mehrere Einlasskanäle (3, 3', 30, 30') übergeht.
  10. Vorrichtung nach Anspruch 1 bis 9, dadurch gekennzeichnet, dass mehrere Hauptzufuhrkanäle (1, 10) vorgesehen sind, die zumindest einen ersten Hauptzufuhrkanal (1) zur Einleitung eines ersten Fluids und zumindest einen zweiten Hauptzufuhrkanal (10) zur Einleitung eines zweiten Fluids umfassen.
  11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der zumindest eine erste Hauptzufuhrkanal (1) über zumindest einen ersten Nebenzufuhrkanal (2, 2') in zumindest einen ersten Einlasskanal (3, 3') übergeht und der zumindest zweite Hauptzufuhrkanal (10) über zumindest einen ersten Nebenzufuhrkanal (20, 20') in zumindest einen zweiten Einlasskanal (30, 30') übergeht, wobei die ersten und zweiten Nebenzufuhrkanäle von gegenüberliegenden Seiten zum Ausgabekanal (5) hin führen.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass mehrere erste Nebenzufuhrkanäle (2, 2') und Einlasskanäle (3, 3') und mehrere zweite Nebenzufuhrkanäle (20, 20') und Einlasskanäle (30, 30') vorgesehen sind, die von gegenüberliegenden Seiten kammförmig ineinander greifend zum Ausgabekanal (5) führen bzw. in diesen einmünden.
EP09775618A 2008-08-28 2009-08-27 Mikrofluidvorrichtung Not-in-force EP2321538B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0133508A AT507226B1 (de) 2008-08-28 2008-08-28 Mikrofluidvorrichtung
PCT/AT2009/000336 WO2010022428A1 (de) 2008-08-28 2009-08-27 Mikrofluidvorrichtung

Publications (2)

Publication Number Publication Date
EP2321538A1 EP2321538A1 (de) 2011-05-18
EP2321538B1 true EP2321538B1 (de) 2012-12-19

Family

ID=41404223

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09775618A Not-in-force EP2321538B1 (de) 2008-08-28 2009-08-27 Mikrofluidvorrichtung

Country Status (4)

Country Link
US (1) US20110194995A1 (de)
EP (1) EP2321538B1 (de)
AT (1) AT507226B1 (de)
WO (1) WO2010022428A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395539B2 (ja) * 2014-09-24 2018-09-26 キヤノン株式会社 液体吐出ヘッド用基板の製造方法、及びシリコン基板の加工方法
CN106076135B (zh) 2016-08-01 2019-04-16 江苏揽山环境科技股份有限公司 微气泡发生装置
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
WO2021030245A1 (en) * 2019-08-12 2021-02-18 Waters Technologies Corporation Mixer for chromatography system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890093B2 (en) * 2000-08-07 2005-05-10 Nanostream, Inc. Multi-stream microfludic mixers
US7470408B2 (en) * 2003-12-18 2008-12-30 Velocys In situ mixing in microchannels
US8524173B2 (en) * 2006-09-01 2013-09-03 Tosoh Corporation Microchannel structure and fine-particle production method using the same

Also Published As

Publication number Publication date
WO2010022428A1 (de) 2010-03-04
EP2321538A1 (de) 2011-05-18
US20110194995A1 (en) 2011-08-11
AT507226A1 (de) 2010-03-15
AT507226B1 (de) 2010-09-15

Similar Documents

Publication Publication Date Title
DE19604289C2 (de) Mikromischer
EP2851118B1 (de) Vorrichtung zum Mischen und zum Wärmetausch und Verfahren zu seiner Herstellung
EP1866066B1 (de) Mischersystem, Reaktor und Reaktorsystem
DE10296876B4 (de) Mikro-Mischer
DE10041823C2 (de) Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide
EP0758917B1 (de) Statischer mikro-vermischer
EP1674152B1 (de) Statischer Mikrovermischer
WO2000078438A1 (de) Statischer mikrovermischer
DE19536856A1 (de) Mikromischer und Mischverfahren
DE3114195C2 (de) Mischvorrichtung
EP1441131A1 (de) Mikrofluidischer Schalter zum Anhalten eines Flüssigkeitsstroms während eines Zeitintervalls
DE202016008932U1 (de) Doppelkeil-Mischblech und zugehöriger statischer Mischer
EP2321538B1 (de) Mikrofluidvorrichtung
EP3331683A1 (de) Giessvorrichtung zum auftragen eines aufschäumenden reaktionsgemisches
EP2284315B1 (de) Vorhang-Auftragswerk
EP2090353B1 (de) Reaktionsmischersystem zur Vermischung und chemischer Reaktion von mindestens zwei Fluiden
WO2011003412A2 (de) Longitudinale mischvorrichtung, insbesondere für die hochleistungsflüssigkeitschromatographie
DE19536858C2 (de) Verfahren und Vorrichtung zum Transport eines Fluids durch einen Kanal
DE10250406A1 (de) Reaktionsvorrichtung und Mischsystem
DE10322922A1 (de) Statikmischer
EP3645149B1 (de) Verteiler für ein fluid
CH706732B1 (de) Mischereinsatz für einen statischen Mischer.
DE10158651B4 (de) Statisches Mischelement
EP3347692B1 (de) Anordnung und verfahren zur fluidrotation
EP1390116A2 (de) Verfahren und vorrichtung zur stofftrennung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111207

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009005747

Country of ref document: DE

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

26N No opposition filed

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009005747

Country of ref document: DE

Effective date: 20130920

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT WIEN

Effective date: 20130831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130902

REG Reference to a national code

Ref country code: DE

Ref document number: 502009005747

Ref legal event code: R082

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIPPERT, STACHOW & PARTNER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090827

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130827

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 589577

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140827

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150923

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009005747

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009005747

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301