EP2318569B1 - Method for anodic dehydrodimerisation of substituted phenols - Google Patents

Method for anodic dehydrodimerisation of substituted phenols Download PDF

Info

Publication number
EP2318569B1
EP2318569B1 EP09782303A EP09782303A EP2318569B1 EP 2318569 B1 EP2318569 B1 EP 2318569B1 EP 09782303 A EP09782303 A EP 09782303A EP 09782303 A EP09782303 A EP 09782303A EP 2318569 B1 EP2318569 B1 EP 2318569B1
Authority
EP
European Patent Office
Prior art keywords
process according
alcohols
electrolysis
group
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09782303A
Other languages
German (de)
French (fr)
Other versions
EP2318569A1 (en
Inventor
Andreas Fischer
Itamar Michael Malkowsky
Florian Stecker
Siegfried Waldvogel
Axel Kirste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09782303A priority Critical patent/EP2318569B1/en
Publication of EP2318569A1 publication Critical patent/EP2318569A1/en
Application granted granted Critical
Publication of EP2318569B1 publication Critical patent/EP2318569B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/29Coupling reactions

Definitions

  • the invention relates to a process for the preparation of biaryl alcohols, which is carried out by anodic dehydrodimerization of substituted phenols in the presence of partially and / or perfluorinated mediators and a conductive salt on a graphite electrode.
  • the method according to the invention makes it possible to use very inexpensive electrode materials, undivided cell structures and solvent-free methods.
  • mediators e.g. 1,1,1,3,3,3-hexafluoroisopropanol or the much cheaper trifluoroacetic acid are used.
  • Biaryls are known as such and are industrially produced and used. Compounds of this class of compounds are i.a. as backbones for ligands of great interest for stereoselective transformations.
  • One possible approach to this class of substances is the electrochemical oxidative dimerization of phenols, which, however, is nonselective in electrolytes known to those skilled in the art.
  • iron (III) salts or other strong oxidizing agents are used as an alternative to the electrochemical dimerization of phenols.
  • BDD boron-doped diamond electrodes
  • the object of the present invention is to provide a method with which the selective and efficient oxidative coupling of substituted phenols takes place without having to work in the presence of expensive electrode material.
  • the coupling of substituted phenols should take place in the ortho position.
  • the process according to the invention is advantageous if the substituted aryl alcohols used are identical.
  • the process according to the invention is advantageous if the substituted aryl alcohols used can be mononuclear or polynuclear.
  • the process according to the invention is advantageous if the dimerization takes place ortho to the alcohol group of the substituted aryl alcohols.
  • the process according to the invention is advantageous if the mediators used are partially and / or perfluorinated alcohols and / or acids.
  • the process according to the invention is advantageous if 1,1,1,3,3,3-hexafluoroisopropanol or trifluoroacetic acid is used as mediators.
  • the process according to the invention is advantageous if the conductive salts used are those selected from the group consisting of alkali, alkaline earth metal, tetra (C 1 -C 6 -alkyl) ammonium salts.
  • the counterions of the conducting salts are selected from the group consisting of sulfate, hydrogensulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate and perchlorate.
  • the process according to the invention is advantageous if no further solvent is used for the electrolysis.
  • the process according to the invention is advantageous if a flow cell is used for the electrolysis.
  • the process according to the invention is advantageous when current densities of 1 to 1000 mA / cm 2 are used.
  • the process according to the invention is advantageous if the electrolysis is carried out at temperatures in the range from -20 to 60 ° C. and normal pressure.
  • the process according to the invention is advantageous if 2,4-dimethylphenol is used as aryl alcohol.
  • aryl alcohol is understood as meaning aromatic alcohols in which the hydroxyl group is bonded directly to the aromatic nucleus.
  • the aromatic which is based on the aryl alcohol, may be mononuclear or polynuclear.
  • the aromatic is preferably mononuclear (phenol derivatives) or binuclear (naphthol derivatives), in particular mononuclear.
  • the aryl alcohols may also carry further substituents.
  • substituents are independently selected from the group of C 1 -C 10 -alkyl groups, halogens, C 1 -C 10 -alkoxy groups, interrupted by oxygen or sulfur alkylene or arylene radicals, C 1 -C 10 -alkoxycarboxyl, nitrile, nitro and C 1 -C 10 -alkoxycarbamoyl, particularly preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, trifluoromethyl, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, methylene, ethylene, propylene, isopropylene, benzylidene, nitrile, Nitro, most preferably methyl, methoxy, methylene, ethylene, trifluoromethyl, fluorine and bromine.
  • aryl alcohols can be used.
  • electron-rich arenes such as mono- or polysubstituted phenols and naphthol ( ⁇ - and ⁇ -) and substituted derivatives thereof, very particularly preferred are 4-alkyl and 2,4-dialkyl-substituted phenols.
  • Suitable substrates for the electrodimerization according to the present invention are in principle all aryl alcohols, provided that they are capable of dimerization due to their spatial structure and steric requirements.
  • the aryl alcohols may be mononuclear, dinuclear, trinuclear or higher nuclear. Preferably, they are mononuclear or dinuclear, in particular mononuclear.
  • the aryl alcohols preferably have an OH function.
  • the electrolyte solution is worked up by general separation methods.
  • the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
  • the preparation of the biaryl alcohol is carried out electrolytically, wherein the corresponding aryl alcohol is anodized.
  • the process according to the invention is referred to below as electrodimerization. It has surprisingly been found that the biaryl alcohols are produced selectively and in high yield by the method according to the invention using mediators. Furthermore, it has been found that very inexpensive electrode materials, undivided cell structures and solvent-free methods can be used by the method according to the invention.
  • the electrolyte solution is worked up by general separation methods.
  • the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.
  • Partially and / or perfluorinated alcohols and / or acids preferably perfluorinated alcohols and carboxylic acids, very particularly preferably 1,1,1,3,3,3-hexafluoroisopropanol or trifluoroacetic acid, are used as mediators in the process according to the invention.
  • electrolysis is carried out in the usual, known in the art electrolysis cells. Suitable electrolysis cells are known to the person skilled in the art. Preferably, one works continuously in undivided flow cells or discontinuously in beaker cells.
  • bipolar switched capillary gap cells or plate stack cells in which the electrodes are designed as plates and are arranged plane-parallel as in Ullmann's Encyclopaedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne and in Electrochemistry, Chapter 3.5 , special cell designs as well Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design is described.
  • the current densities at which the process is carried out are generally 1 to 1000, preferably 5 to 100 mA / cm 2 .
  • the temperatures are usually -20 to 60 ° C, preferably 10 to 60 ° C. In general, working at atmospheric pressure. Higher pressures are preferably used when operating at higher temperatures to avoid boiling of the co-solvents or mediators.
  • Suitable anode materials are, for example, noble metals such as platinum or metal oxides such as ruthenium or chromium oxide or mixed oxides of the type RuO x TiO x and diamond electrodes. Preference is given to graphite or carbon electrodes. According to the invention, a graphite electrode is used as the anode.
  • the cathode material for example, iron, steel, stainless steel, nickel or precious metals such as platinum and graphite or carbon materials and diamond electrodes come into consideration.
  • the system is preferably graphite as the anode and cathode, graphite as the anode and nickel, stainless steel or steel as the cathode and platinum as the anode and cathode.
  • the aryl alcohol compound is dissolved in a suitable solvent.
  • a suitable solvent preferably solvents from the group of polar protic and polar aprotic solvents, are suitable.
  • the aryl alcohol compound itself serves as a solvent and reagent.
  • polar aprotic solvents examples include nitriles, amides, carbonates, ethers, ureas, chlorinated hydrocarbons.
  • polar aprotic solvents examples include Actonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate and dichloromethane.
  • polar protic solvents examples include alcohols, carboxylic acids and amides.
  • polar protic solvents examples include methanol, ethanol, propanol, butanol, pentanol and hexanol. These may also be partially or completely halogenated, e.g. 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA).
  • HFIP 1,1,1,3,3,3-hexafluoroisopropanol
  • TFA trifluoroacetic acid
  • the electrolysis solution is added to customary cosolvents.
  • these are the inert solvents customary in organic chemistry with a high oxidation potential. Examples include its dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile or dimethylformamide.
  • Conducting salts which are contained in the electrolysis solution are generally alkali metal, alkaline earth metal, tetra (C 1 - to C 6 -alkyl) ammonium, preferably tri (C 1 - to C 6 -alkyl) -methylammonium salts.
  • Suitable counterions are sulfate, bisulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate or perchlorate.
  • the acids derived from the abovementioned anions are suitable as conductive salts.
  • MTBS methyltributylammonium methylsulfates
  • MTES methyltriethylammonium methylsulfate
  • TABF tetrabutylammonium, tetrafluoroborate
  • Phenol [g] 20.02 g phenol / 1 g MTES / 9 mL HFIP 30 14 0.77 10 54 24 36 13.25 20.02 g phenol / 1 g MTES / 9 mL TFA 30 22 0.77 10 73 51 76 9.08 Phenol: 2-bromo-4-methylphenol; a: N, N-dimethylpyrrolidinium methylsulfate; b: yield considering the recovered phenol; c: isolation by crystallization from toluene and chromatographic; d: Isolation by crystallization from i PrOH: water and chromatographic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The invention relates to a process for preparing biaryl alcohols, in which anodic dehydrodimerization of substituted phenols is carried out in the presence of partially fluorinated and/or periluorinated mediators and a supporting electrolyte at a graphite electrode.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Biarylalkoholen, wobei durch anodischen Dehydrodimerisierung von substituierten Phenolen in Gegenwart von teil und/oder perfluorierten Mediatoren und einem Leitsalz an einer Graphitelektrode gearbeitet wird.The invention relates to a process for the preparation of biaryl alcohols, which is carried out by anodic dehydrodimerization of substituted phenols in the presence of partially and / or perfluorinated mediators and a conductive salt on a graphite electrode.

Durch das erfindungsgemäße Verfahren können sehr preiswerte Elektrodenmaterialien, ungeteilte Zellaufbauten sowie lösungsmittelfreie Verfahren angewendet werden. Als Mediatoren können z.B. 1,1,1,3,3,3-Hexafluorisopropanol oder die wesentlich günstigere Trifluoressigsäure eingesetzt werden.The method according to the invention makes it possible to use very inexpensive electrode materials, undivided cell structures and solvent-free methods. As mediators, e.g. 1,1,1,3,3,3-hexafluoroisopropanol or the much cheaper trifluoroacetic acid are used.

Die Aufarbeitung und Gewinnung der gewünschten Biphenole gestaltet sich sehr einfach.The workup and recovery of the desired biphenols is very simple.

Biaryle sind als solche bekannt und werden industriell hergestellt und eingesetzt. Verbindungen dieser Verbindungsklasse sind u.a. als Rückgrate für Liganden von sehr großem Interesse für stereoselektive Transformationen. Ein möglicher Zugang zu dieser Substanzklasse ist die elektrochemische oxidative Dimerisierung von Phenolen, die in dem Fachmann bekannten Elektrolyten jedoch unselektiv verläuft. Alternativ zur elektrochemischen Dimerisierung von Phenolen werden Eisen(III)-Salze oder auch andere starke Oxidationsmittel verwendet.Biaryls are known as such and are industrially produced and used. Compounds of this class of compounds are i.a. as backbones for ligands of great interest for stereoselective transformations. One possible approach to this class of substances is the electrochemical oxidative dimerization of phenols, which, however, is nonselective in electrolytes known to those skilled in the art. As an alternative to the electrochemical dimerization of phenols, iron (III) salts or other strong oxidizing agents are used.

G. Lessene und K. S. Feldman beschreiben in Modern Arene Chemistry, Ed: D. Astruc, VCH-Wiley, Weinheim 2002, Seite 479-538 , dass sich diese Transformation in einigen Fällen mittel Übergangsmetell-Katalyse auch unter aeroben Bedingungen realisieren lässt. Nachteilige an dieser Synthese ist der Einsatz von Eisenschlorid, da dies zu zahlreichen Nebenprodukten führt. Des Weiteren lässt sich nach diesen aeroben Bedingungen nur stark aktivierte Verbindungen umsetzen. G. Lesse and KS Feldman describe in Modern Arene Chemistry, Ed: D. Astruc, VCH-Wiley, Weinheim 2002, pages 479-538 in that, in some cases, this transformation can also be achieved under aerobic conditions by means of transition-metal catalysis. The disadvantage of this synthesis is the use of iron chloride, as this leads to numerous by-products. Furthermore, only strongly activated compounds can be reacted after these aerobic conditions.

Besonders begünstigte und deshalb häufig eingesetzte Substrate weisen annellierte Benzolringe oder sterisch anspruchsvolle Alkylgruppen auf. Als Beispiel kann hier das aus 2-Naphthol hergestellte 2,2'-Dihydroxy-1,1'-binaphthyl (BINOL) gelten.Particularly favored and therefore frequently used substrates have annellated benzene rings or sterically demanding alkyl groups. As an example, the 2,2'-dihydroxy-1,1'-binaphthyl (BINOL) prepared from 2-naphthol can be considered here.

Versucht man 2,4-Dimethylphenol (1) analog den Lehrbuchvorschriften von C. E. Rommel, Staatsexamensarbeit, Münster 2002 und allgemein von H. Lund, M. M. Baizer, Organic Electrochemistry: An Introduction and a Guide, 3rd edition, Marcel Dekker, New York 1991, Chapter 22.III, 885-908 einer oxidativen Kupplung zu unterwerfen, so erhält man meist als Hauptprodukt nicht das gewünschte ortho,ortho-verknüpfte Produkt 2, sondern ein Derivat des Pummerer Ketons (3). Die Bildung des tricyclischen Gerüstes 3 ist bei para-alkyl-substituierten Phenolen bekannt und findet sich ebenfalls in der Synthese vieler Naturstoffe.

Figure imgb0001
Attempts to 2,4-dimethylphenol (1) analogous to the textbook regulations of CE Rommel, Staatsexamensarbeit, Münster 2002 and generally by H. Lund, MM Baizer, Organic Electrochemistry: An Introduction and a Guide, 3rd Edition, Marcel Dekker, New York 1991, Chapter 22.III, 885-908 to subject an oxidative coupling, it is usually obtained as the main product not the desired ortho, ortho-linked product 2, but a derivative of Pummerer ketone (3). The formation of the tricyclic skeleton 3 is known for para-alkyl-substituted phenols and is also found in the synthesis of many natural products.
Figure imgb0001

Seit einigen Jahren wird die anodische Synthese von Biphenolen, im Speziellen von 3,3',5,5'-Tetramethyl-2,2'-biphenol (2), mit verschiedenen elektrochemischen Methoden intensiv untersucht. In den unterschiedlichsten Elektrolytsystemen zeigte sich bei der direkten Umsetzung ebenfalls eine starke Präferenz zur Bildung des Derivats des Pummerer Ketons (3). Das gewünschte Dehydrodimer 2 wurde lediglich in 3-7 % Ausbeute isoliert. I. M. Malkowsky, C. E. Rommel, K. Wedeking, R. Fröhlich, K. Bergander, M. Nieger, C. Quaiser, U. Griesbach, H. Pütter und S. R. Waldvogel beschrieben in Eur. J. Org. Chem. 2006, 241-245 die Bildung weiterer, zuvor nicht beschriebener pentacyclischer Gerüste. Weitergehende Untersuchungen ergaben, dass freie Phenoxylradikale für die Bildung des Pummerer Ketons verantwortlich sind. Um eine gezielte Verknüpfung in den ortho-Positionen zu erreichen, wurde, wie von I. M. Malkowsky, R. Fröhlich, U. Griesbach, H. Pütter und S. R. Waldvogel in Eur. J. Inorg. Chem. 2006, 1690-1697 und von I. M. Malkowsky, U. Griesbach, H. Pütter und S. R. Waldvogel in Chem. Eur. J. 2006, 12, 7482-7488 beschrieben, ein Bor-Templat entwickelt. Wie von C. Rommel, I. M. Malkowsky, S. R. Waldvogel, H. Pütter und U. Griesbach in WO-A 2005/075709 beschrieben, gelingt die elektrochemische Umsetzung dieser mehrstufigen Sequenz für eine größere Substratbreite und auch in größeren Maßstäben. Ein zusätzlicher Nachteil neben dem hohen präparativen Aufwand ergab sich aus der Verwendung von Acetonitril im Elektrolyten.For several years, the anodic synthesis of biphenols, in particular of 3,3 ', 5,5'-tetramethyl-2,2'-biphenol (2), has been intensively studied by various electrochemical methods. In the most diverse electrolyte systems, direct conversion also showed a strong preference for the formation of the Pummerer ketone derivative (3). The desired dehydrodimer 2 was isolated only in 3-7% yield. IM Malkowsky, CE Rommel, K. Wedeking, R. Fröhlich, K. Bergander, M. Nieger, C. Quaiser, U. Griesbach, H. Pütter and SR Waldvogel described in Eur. J. Org. Chem. 2006, 241- 245 the formation of further unprecedented pentacyclic scaffolds. Further investigations revealed that free phenoxyl radicals are responsible for the formation of the Pummerer ketone. In order to achieve a specific linkage in the ortho positions, as of IM Malkowsky, R. Fröhlich, U. Griesbach, H. Pütter and SR Waldvogel in Eur. J. Inorg. Chem. 2006, 1690-1697 and from IM Malkowsky, U. Griesbach, H. Pütter and SR Waldvogel in Chem. Eur. J. 2006, 12, 7482-7488 described, a boron template developed. Like C. Rommel, IM Malkowsky, SR Waldvogel, H. Pütter and U. Griesbach in WO-A 2005/075709 described, the electrochemical implementation of this multi-stage sequence succeeds for a larger substrate width and also at larger scales. An additional disadvantage in addition to the high preparative effort resulted from the use of acetonitrile in the electrolyte.

Mithilfe von Bor-dotierten Diamantelektroden (BDD) konnte für 2,4-Dimethylphenol als alleiniges Substrat eine direkte anodische Umsetzung gefunden werden, wie es I. M. Malkowsky, U. Griesbach, H. Pütter und S. R. Waldvogel in Eur. J. Org. Chem. 2006, 4569-4572 ; und M. Malkowsky, S. R. Waldvogel, H. Pütter und U. Griesbach in WO-A 2006/077204 beschreiben. Das Verhältnis von Biphenol zu Pummerer Keton liegt meist besser als 18:1. Um einen elektrochemischen Abbrand an der BDD-Anode zu vermeiden, wird die Phenolkupplung nur bis zum einem Umsatz von ca. 30% gebracht. Zusätzliche Nachteile dieses Verfahrens bestehen in der geringen Stabilität der BDD-Elektroden, deren Preis sowie der fehlenden Substratbreite.Using boron-doped diamond electrodes (BDD), a direct anodic conversion could be found for 2,4-dimethylphenol as the sole substrate IM Malkowsky, U. Griesbach, H. Pütter and SR Waldvogel in Eur. J. Org. Chem. 2006, 4569-4572 ; and M. Malkowsky, SR Waldvogel, H. Pütter and U. Griesbach in WO-A 2006/077204 describe. The ratio of biphenol to Pummerer ketone is usually better than 18: 1. In order to avoid electrochemical burnup at the BDD anode, the phenolic coupling is only brought to a conversion of about 30%. Additional disadvantages of this method are the low stability of the BDD electrodes, their price and the lack of substrate width.

Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren bereitzustellen, mit dem die selektive und effiziente oxidative Kupplung von substituierten Phenolen erfolgt ohne in Gegenwart von teuerem Elektrodenmaterial arbeiten zu müssen. Vorzugsweise soll die Kupplung von substituierten Phenolen in ortho-Stellung erfolgen.The object of the present invention is to provide a method with which the selective and efficient oxidative coupling of substituted phenols takes place without having to work in the presence of expensive electrode material. Preferably, the coupling of substituted phenols should take place in the ortho position.

Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Biarylalkoholen, wobei substituierte Arylalkohole in Gegenwart von teil- und/oder perfluorierten Mediatoren und wenigstens einem Leitsalz mit Hilfe einer Graphitelektrode anodisch dehydrodimerisiert werden, wobei die OH-Gruppe der eingesetzten, substituierten Arylalkohole direkt am Aromaten sitzt.This object is achieved by a process for the preparation of biaryl alcohols, wherein substituted aryl alcohols are anodically dehydrodimerisiert in the presence of partially and / or perfluorinated mediators and at least one conducting salt by means of a graphite electrode, wherein the OH group of the substituted aryl alcohols used directly on the aromatic sitting.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten Arylalkohole identisch sind.The process according to the invention is advantageous if the substituted aryl alcohols used are identical.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten substituierten Arylalkohole ein- oder mehrkernig sein können.The process according to the invention is advantageous if the substituted aryl alcohols used can be mononuclear or polynuclear.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Dimerisierung in ortho-Stellung zur Alkoholgruppe der substituierten Arylalkohole stattfindet.The process according to the invention is advantageous if the dimerization takes place ortho to the alcohol group of the substituted aryl alcohols.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die eingesetzten Mediatoren teil- und/oder perfluorierte Alkohole und/oder Säuren sind.The process according to the invention is advantageous if the mediators used are partially and / or perfluorinated alcohols and / or acids.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Mediatoren 1,1,1,3,3,3-Hexafluorisopropanol oder Trifluoressigsäure eingesetzt wird.The process according to the invention is advantageous if 1,1,1,3,3,3-hexafluoroisopropanol or trifluoroacetic acid is used as mediators.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Leitsalze solche eingesetzt werden, die ausgewählt sind aus der Gruppe von Alkali, Erdalkali, Tetra(C1- bis C6-alkyl)ammoniumsalzen.The process according to the invention is advantageous if the conductive salts used are those selected from the group consisting of alkali, alkaline earth metal, tetra (C 1 -C 6 -alkyl) ammonium salts.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Gegenionen der Leitsalze ausgewählt sind aus der Gruppe von Sulfat, Hydrogensulfat, Alkylsulfate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat und Perchlorat.The process according to the invention is advantageous if the counterions of the conducting salts are selected from the group consisting of sulfate, hydrogensulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate and perchlorate.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse kein weiteres Lösungsmittel eingesetzt wird.The process according to the invention is advantageous if no further solvent is used for the electrolysis.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn für die Elektrolyse eine Durchflusszelle eingesetzt wird.The process according to the invention is advantageous if a flow cell is used for the electrolysis.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn Stromdichten von 1 bis 1000 mA/cm2 eingesetzt werden.The process according to the invention is advantageous when current densities of 1 to 1000 mA / cm 2 are used.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn die Elektrolyse bei Temperaturen im Bereich von -20 bis 60°C und Normaldruck durchgeführt wird.The process according to the invention is advantageous if the electrolysis is carried out at temperatures in the range from -20 to 60 ° C. and normal pressure.

Vorteilhaft ist das erfindungsgemäße Verfahren, wenn als Arylalkohol 2,4-Dimethylphenol eingesetzt wird.The process according to the invention is advantageous if 2,4-dimethylphenol is used as aryl alcohol.

Unter Arylalkohol werden im Rahmen der vorliegenden Erfindung aromatische Alkohole verstanden, bei denen die Hydroxylgruppe direkt an den aromatischen Kern gebunden ist.For the purposes of the present invention, aryl alcohol is understood as meaning aromatic alcohols in which the hydroxyl group is bonded directly to the aromatic nucleus.

Der Aromat, der dem Arylalkohol zugrunde liegt, kann ein- oder mehrkernig sein. Vorzugsweise ist der Aromat einkernig (Phenolderivate) oder zweikernig (Naphtholderivate), insbesondere einkernig. Die Arylalkohole können auch noch weitere Substituenten tragen. Diese Substituenten sind unabhängig voneinander ausgewählt aus der Gruppe von C1-C10-Alkylgruppen, Halogenen, C1-C10-Alkoxygruppen, durch Sauerstoff oder Schwefel unterbrochene Alkylen- oder Arylenreste, C1-C10-Alkoxycarboxyl, Nitril, Nitro sowie C1-C10-Alkoxycarbamoyl, besonders bevorzugt Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Trifluormethyl, Fluor, Chlor, Brom, Iod, Methoxy, Ethoxy, Methylen, Ethylen, Propylen, Isopropylen, Benzyliden, Nitril, Nitro, ganz besonders bevorzugt Methyl, Methoxy, Methylen, Ethylen, Trifluormethyl, Fluor und Brom. Mit dem neuen Verfahren kann eine breite Palette an Arylalkoholen eingesetzt werden. Besonders bevorzugt sind elektronenreiche Arene wie einfach oder mehrfach substituierte Phenole sowie Naphthol (α- und β-) und substituierte Derivate davon, ganz besonders bevorzugt sind 4-Alkyl- sowie 2,4-dialkylsubstituierte Phenole.The aromatic, which is based on the aryl alcohol, may be mononuclear or polynuclear. The aromatic is preferably mononuclear (phenol derivatives) or binuclear (naphthol derivatives), in particular mononuclear. The aryl alcohols may also carry further substituents. These substituents are independently selected from the group of C 1 -C 10 -alkyl groups, halogens, C 1 -C 10 -alkoxy groups, interrupted by oxygen or sulfur alkylene or arylene radicals, C 1 -C 10 -alkoxycarboxyl, nitrile, nitro and C 1 -C 10 -alkoxycarbamoyl, particularly preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, trifluoromethyl, fluorine, chlorine, bromine, iodine, methoxy, ethoxy, methylene, ethylene, propylene, isopropylene, benzylidene, nitrile, Nitro, most preferably methyl, methoxy, methylene, ethylene, trifluoromethyl, fluorine and bromine. With the new process, a wide range of aryl alcohols can be used. Particularly preferred are electron-rich arenes such as mono- or polysubstituted phenols and naphthol (α- and β-) and substituted derivatives thereof, very particularly preferred are 4-alkyl and 2,4-dialkyl-substituted phenols.

Als Substrate für die Elektrodimerisierung nach der vorliegenden Erfindung eignen sich prinzipiell sämtliche Arylalkohole, sofern diese aufgrund ihrer räumlichen Struktur und sterischen Anforderungen zu einer Dimerisierung in der Lage sind. Die Arylalkohole können einkernig, zweikernig, dreikernig oder höherkernig sein. Vorzugsweise sind sie einkernig oder zweikernig, insbesondere einkernig. Weiterhin weisen die Arylalkohole vorzugsweise eine OH-Funktion auf.Suitable substrates for the electrodimerization according to the present invention are in principle all aryl alcohols, provided that they are capable of dimerization due to their spatial structure and steric requirements. The aryl alcohols may be mononuclear, dinuclear, trinuclear or higher nuclear. Preferably, they are mononuclear or dinuclear, in particular mononuclear. Furthermore, the aryl alcohols preferably have an OH function.

Nach Beendigung der Reaktion wird die Elektrolytlösung nach allgemeinen Trennmethoden aufgearbeitet. Hierzu wird die Elektrolytlösung im Allgemeinen zuerst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen. Eine weitere Reinigung kann beispielsweise durch Kristallisation, Destillation, Sublimation oder chromatographisch erfolgen.After completion of the reaction, the electrolyte solution is worked up by general separation methods. For this purpose, the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.

Die Herstellung des Biarylalkohols erfolgt elektrolytisch, wobei der entsprechende Arylalkohol anodisch oxidiert wird. Das erfindungsgemäße Verfahren wird nachfolgend Elektrodimerisierung genannt. Es wurde überraschender Weise gefunden, dass durch das erfindungsgemäße Verfahren unter Verwendung von Mediatoren die Biarylalkohole selektiv und in hoher Ausbeute entstehen. Des Weiteren wurde gefunden, dass durch das erfindungsgemäße Verfahren sehr preiswerte Elektrodenmaterialien, ungeteilte Zellaufbauten sowie lösungsmittelfreie Verfahren angewendet werden können.The preparation of the biaryl alcohol is carried out electrolytically, wherein the corresponding aryl alcohol is anodized. The process according to the invention is referred to below as electrodimerization. It has surprisingly been found that the biaryl alcohols are produced selectively and in high yield by the method according to the invention using mediators. Furthermore, it has been found that very inexpensive electrode materials, undivided cell structures and solvent-free methods can be used by the method according to the invention.

Die Aufarbeitung und Gewinnung der gewünschten Biphenole gestaltet sich sehr einfach. Nach Beendigung der Reaktion wird die Elektrolytlösung nach allgemeinen Trennmethoden aufgearbeitet. Hierzu wird die Elektrolytlösung im Allgemeinen zuerst destilliert und die einzelnen Verbindungen in Form von unterschiedlichen Fraktionen getrennt gewonnen. Eine weitere Reinigung kann beispielsweise durch Kristallisation, Destillation, Sublimation oder chromatographisch erfolgen.The workup and recovery of the desired biphenols is very simple. After completion of the reaction, the electrolyte solution is worked up by general separation methods. For this purpose, the electrolyte solution is generally first distilled and recovered the individual compounds in the form of different fractions separately. Further purification can be carried out, for example, by crystallization, distillation, sublimation or chromatographic.

Als Mediatoren werden im erfindungsgemäßen Verfahren teil- und/oder perfluorierte Alkohole und/oder Säuren, bevorzugt perfluorierte Alkohole sowie Carbonsäuren, ganz besonders bevorzugt 1,1,1,3,3,3-Hexafluorisopropanol oder Trifluoressigsäure verwendet.Partially and / or perfluorinated alcohols and / or acids, preferably perfluorinated alcohols and carboxylic acids, very particularly preferably 1,1,1,3,3,3-hexafluoroisopropanol or trifluoroacetic acid, are used as mediators in the process according to the invention.

Im Elektrolyten sind keine weiteren Lösungsmittel erforderlich.No additional solvents are required in the electrolyte.

Die entsprechenden Produkte können durch Kurzwegdestillation und Fällung NMR-rein erhalten werden.The corresponding products can be obtained by short path distillation and precipitation NMR pure.

Die Elektrolyse wird in den üblichen, dem Fachmann bekannten Elektrolysezellen durchgeführt. Geeignete Elektrolysezellen sind dem Fachmann bekannt. Vorzugsweise arbeitet man kontinuierlich in ungeteilten Durchflusszellen oder diskontinuierlich in Becherglaszellen.The electrolysis is carried out in the usual, known in the art electrolysis cells. Suitable electrolysis cells are known to the person skilled in the art. Preferably, one works continuously in undivided flow cells or discontinuously in beaker cells.

Ganz besonders geeignet sind bipolar geschaltete Kapillarspaltzellen oder Plattenstapelzellen, bei denn die Elektroden als Platten ausgestaltet sind und planparallel angeordnet sind wie es in Ullmann's Encyclopedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne und in Electrochemistry, Chapter 3.5 . special cell designs sowie Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design beschrieben ist.Particularly suitable are bipolar switched capillary gap cells or plate stack cells, in which the electrodes are designed as plates and are arranged plane-parallel as in Ullmann's Encyclopaedia of Industrial Chemistry, 1999 electronic release, Sixth Edition, VCH-Weinheim, Volumne and in Electrochemistry, Chapter 3.5 , special cell designs as well Chapter 5, Organic Electrochemistry, Subchapter 5.4.3.2 Cell Design is described.

Die Stromdichten, bei denen das Verfahren durchgeführt wird, betragen im allgemeinen 1 - 1000, bevorzugt 5 - 100 mA/cm2. Die Temperaturen betragen üblicherweise -20 bis 60°C, bevorzugt 10 bis 60°C. Im Allgemeinen wird bei Normaldruck gearbeitet. Höhere Drücke werden bevorzugt dann angewandt, wenn bei höheren Temperaturen gearbeitet werden soll, um ein Sieden der Ausgangsverbindungen bzw. Cosolventien bzw. Mediatoren zu vermeiden.The current densities at which the process is carried out are generally 1 to 1000, preferably 5 to 100 mA / cm 2 . The temperatures are usually -20 to 60 ° C, preferably 10 to 60 ° C. In general, working at atmospheric pressure. Higher pressures are preferably used when operating at higher temperatures to avoid boiling of the co-solvents or mediators.

Als Anodenmaterialien eignen sich beispielsweise Edelmetalle wie Platin oder Metalloxide wie Ruthenium oder Chromoxid oder Mischoxide des Typs RuOxTiOx sowie Diamantelektroden. Bevorzugt sind Graphit oder Kohleelektroden. Erfindungsgemäß wird als Anode eine Graphit elektrode verwendet.Suitable anode materials are, for example, noble metals such as platinum or metal oxides such as ruthenium or chromium oxide or mixed oxides of the type RuO x TiO x and diamond electrodes. Preference is given to graphite or carbon electrodes. According to the invention, a graphite electrode is used as the anode.

Als Kathodenmaterial kommen beispielsweise Eisen, Stahl, Edelstahl, Nickel oder Edelmetalle wie Platin sowie Graphit oder Kohlematerialien sowie Diamantelektroden in Betracht. Bevorzugt ist das System Graphit als Anode und Kathode, Graphit als Anode und Nickel, Edelstahl oder Stahl als Kathode sowie Platin als Anode und Kathode.As the cathode material, for example, iron, steel, stainless steel, nickel or precious metals such as platinum and graphite or carbon materials and diamond electrodes come into consideration. The system is preferably graphite as the anode and cathode, graphite as the anode and nickel, stainless steel or steel as the cathode and platinum as the anode and cathode.

Zur Durchführung der Elektrolyse wird die Arylalkoholverbindung in einem geeigneten Lösungsmittel gelöst. Es eignen sich die üblichen, dem Fachmann bekannten Lösungsmittel, vorzugsweise Lösungsmittel aus der Gruppe der polaren protischen und polaren aprotischen Lösungsmittel. Besonders bevorzugt dient die Arylalkoholverbindung selbst als Lösungsmittel und Reagenz.To carry out the electrolysis, the aryl alcohol compound is dissolved in a suitable solvent. The usual solvents known to the person skilled in the art, preferably solvents from the group of polar protic and polar aprotic solvents, are suitable. Particularly preferably, the aryl alcohol compound itself serves as a solvent and reagent.

Beispiele für polare aprotische Lösungsmittel umfassen Nitrile, Amide, Carbonate, Ether, Harnstoffe, Chlorkohlenwasserstoffe.Examples of polar aprotic solvents include nitriles, amides, carbonates, ethers, ureas, chlorinated hydrocarbons.

Beispiele für besonders bevorzugte polare aprotische Lösungsmittel umfassen Actonitril, Dimethylformamid, Dimethylsulfoxid, Propylencarbonat und Dichlormethan. Beispiele für polare protische Lösungsmittel umfassen Alkohole, Carbonsäuren und Amide.Examples of particularly preferred polar aprotic solvents include Actonitrile, dimethylformamide, dimethyl sulfoxide, propylene carbonate and dichloromethane. Examples of polar protic solvents include alcohols, carboxylic acids and amides.

Beispiele für besonders bevorzugte polare protische Lösungsmittel umfassen Methanol, Ethanol, Propanol, Butanol, Pentanol und Hexanol. Diese können auch teilweise oder vollständig halogeniert sein, wie z.B. 1,1,1,3,3,3-Hexafluorisopropanol (HFIP) oder Trifluoressigsäure (TFA).Examples of particularly preferred polar protic solvents include methanol, ethanol, propanol, butanol, pentanol and hexanol. These may also be partially or completely halogenated, e.g. 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA).

Gegebenenfalls setzt man der Elektrolyselösung übliche Cosolvenzien zu. Dabei handelt es sich um die in der organischen Chemie üblichen inerten Lösungsmittel mit einem hohen Oxidationspotential. Beispielhaft genannt seinen Dimethylcarbonat, Propylencarbonat, Tetrahydrofuran, Dimethoxyethan, Acetonitril oder Dimethylformamid. Als Leitsalze, die in der Elektrolyselösung enthalten sind, handelt es sich im Allgemeinen um Alkali, Erdalkali, Tetra(C1- bis C6-alkyl)ammonium-, bevorzugt Tri(C1- bis C6-alkyl)-methylammoniumsalze. Als Gegenion kommen Sulfat, Hydrogensulfat, Alkylsulfate, Arylsulfate, Halogenide, Phosphate, Carbonate, Alkylphosphate, Alkylcarbonate, Nitrat, Alkoholate, Tetrafluorborat, Hexafluorophosphat oder Perchlorat in Betracht. Weiterhin kommen die von den vorstehend genannten Anionen abgeleiteten Säuren als Leitsalze in Betracht.Optionally, the electrolysis solution is added to customary cosolvents. These are the inert solvents customary in organic chemistry with a high oxidation potential. Examples include its dimethyl carbonate, propylene carbonate, tetrahydrofuran, dimethoxyethane, acetonitrile or dimethylformamide. Conducting salts which are contained in the electrolysis solution are generally alkali metal, alkaline earth metal, tetra (C 1 - to C 6 -alkyl) ammonium, preferably tri (C 1 - to C 6 -alkyl) -methylammonium salts. Suitable counterions are sulfate, bisulfate, alkyl sulfates, aryl sulfates, halides, phosphates, carbonates, alkyl phosphates, alkyl carbonates, nitrate, alcoholates, tetrafluoroborate, hexafluorophosphate or perchlorate. Furthermore, the acids derived from the abovementioned anions are suitable as conductive salts.

Bevorzugt sind Methyltributylammoniummethylsulfate (MTBS), Methyltriethylammoniummethylsulfat (MTES), Methyltripropylmethylammoniummethylsulfate, oder Tetrabutylammonium, Tetrafluoroborat (TBABF).Preference is given to methyltributylammonium methylsulfates (MTBS), methyltriethylammonium methylsulfate (MTES), methyltripropylmethylammonium methylsulfates, or tetrabutylammonium, tetrafluoroborate (TBABF).

Beispiele: (Tabellen mit Umsetzungen)Examples: (tables with conversions)

Tabelle 1:Table 1: Umsetzung von 2,4-Dimethylphenol an Graphit unter Verwendung von HFIP[a] Reaction of 2,4-dimethylphenol on graphite using HFIP [a] Elektrolytelectrolyte T [°C]T [° C] Umax [V]U max [V] F [1/mol]F [1 / mol] j [mA/cm2]j [mA / cm 2 ] AISTD [%]b A ISTD [%] b SA [%]b SA [%] b Aisoliert [%]b A isolated [%] b rückgew. Phenol [g]rückgew. Phenol [g] 15,9 g Phenol / 1 g MTES / 9 mL HFIP15.9 g phenol / 1 g MTES / 9 mL HFIP 3030 2727 1,001.00 2020 6666 5353 3,093.09 15,9 g Phenol / 1 g MTES / 9 mL HFIP15.9 g phenol / 1 g MTES / 9 mL HFIP 3030 2222 0,770.77 2020 5151 4949 4,034.03 15,9 g Phenol / 1 g MTES / 9 mL HFIP15.9 g phenol / 1 g MTES / 9 mL HFIP 3030 1717 0,770.77 1010 6666 5050 55d 55 d 6,606.60 15,9 g Phenol / 3 g MTES / 9 mL HFIP15.9 g phenol / 3 g MTES / 9 mL HFIP 3030 88th 0,770.77 1010 4747 3535 6,916.91 15,9 g Phenol / 5 g MTES / 9 mL HFIP15.9 g phenol / 5 g MTES / 9 mL HFIP 3030 1010 0,770.77 1010 5353 3838 6,406.40 15,9 g Phenol / 1 g a / 9 mL HFIP15.9 g phenol / 1 g a / 9 mL HFIP 3030 1717 0,770.77 1010 5454 5454 6,086.08 15,9 g Phenol / 1 g15.9 g of phenol / 1 g 3030 1313 0,770.77 55 4949 3535 49c 49 c 6,936.93 MTES / 9 mL HFIPMTES / 9 mL HFIP 15,9 g Phenol / 1 g MTES / 4 mL HFIP15.9 g phenol / 1 g MTES / 4 mL HFIP 3030 2121 0,770.77 1010 4949 3636 6,956.95 HFIP: 1,1,1,3,3,3-Hexafluorisopropa nolHFIP: 1,1,1,3,3,3-hexafluoroisopropanol Tabelle 2:Table 2: Umsetzung von 2,4-Dimethylphenol an Graphit unter Verwendung von CarbonsäurenReaction of 2,4-dimethylphenol on graphite using carboxylic acids Elektrolytelectrolyte T [°C]T [° C] Umax [V]Umax [V] F [1/mol]F [1 / mol] j [mA/cm2]j [mA / cm 2 ] AISTD [%]b A ISTD [%] b SA [%]b SA [%] b Aisoliert [%]b,d A isolated [%] b, d rückgew. Phenol [g]rückgew. Phenol [g] 15,9 g Phenol / 1 g MTES / 9 mL TFA15.9 g phenol / 1 g MTES / 9 mL TFA 3030 2828 0,770.77 1010 4141 3333 4141 6,196.19 15,9 g Phenol / 1 g MTES / 9 mL TFA15.9 g phenol / 1 g MTES / 9 mL TFA 3030 1616 0,770.77 1010 5353 5050 5050 4,384.38 15,9 g Phenol / 1 g MTES / 9 mL TFA15.9 g phenol / 1 g MTES / 9 mL TFA 3030 1515 0,770.77 1010 5858 5151 5353 5,125.12 15,9 g Phenol / 1 g MTES / 9 mL TFA15.9 g phenol / 1 g MTES / 9 mL TFA 3030 1818 0,770.77 1010 6767 5555 6464 5,895.89 15,9 g Phenol / 1 g MTES / 9 mL AcOH15.9 g phenol / 1 g MTES / 9 mL AcOH 3030 3535 0,770.77 1010 2525 1717 7,627.62 15,9 g Phenol / 1 g MTES / 9 mL Heptafluorbuttersäure15.9 g phenol / 1 g MTES / 9 mL heptafluorobutyric acid 5050 3535 0,770.77 1010 TFA: Trifluoressigsäure; AcOH: Essigsäure; Phenol: 2,4-Dimethylphenol;
MTES: Methyltriethylammoniummethylsulfat
TFA: trifluoroacetic acid; AcOH: acetic acid; Phenol: 2,4-dimethylphenol;
MTES: methyltriethylammonium methyl sulfate
Tabelle 3:Table 3: Umsetzung von 2-Brom-4-methylphenol an GraphitReaction of 2-bromo-4-methylphenol on graphite Elektrolytelectrolyte T [°C]T [° C] Umax [V]Umax [V] F pro molF per mole j [mA/cm2]j [mA / cm 2 ] AISTD [%]b A ISTD [%] b SA [%]b SA [%] b Aisoliert [%]b,d A isolated [%] b, d rückgew. Phenol [g]rückgew. Phenol [g] 20,02 g Phenol / 1 g MTES / 9 mL HFIP20.02 g phenol / 1 g MTES / 9 mL HFIP 3030 1414 0,770.77 1010 5454 2424 3636 13,2513.25 20,02 g Phenol / 1 g MTES / 9 mL TFA20.02 g phenol / 1 g MTES / 9 mL TFA 3030 2222 0,770.77 1010 7373 5151 7676 9,089.08 Phenol: 2-Brom-4-methylphenol; a: N,N-Dimethylpyrrolidiniummethylsulfat; b: Ausbeute unter Berücksichtigung des rückgewonnenen Phenols; c: Isolierung durch Kristallisation aus Toluol und chromatographisch; d: Isolierung durch Kristallisation aus iPrOH:Wasser und chromatographisch.Phenol: 2-bromo-4-methylphenol; a: N, N-dimethylpyrrolidinium methylsulfate; b: yield considering the recovered phenol; c: isolation by crystallization from toluene and chromatographic; d: Isolation by crystallization from i PrOH: water and chromatographic.

Beispiel 1:Example 1: Anodische Oxidation von 2,4-Dimethylphenol an Graphitelektroden mit TrifluoressigsäureAnodic oxidation of 2,4-dimethylphenol on graphite electrodes with trifluoroacetic acid

Figure imgb0002
Figure imgb0002

In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 15.90 g (0,1301 mol, 53 Gew.-%) 2,4-Dimethylphenol, 1.00 g (4.4 mmol, 3 Gew.-%) Methyltriethylammoniummethylsulfat und 9 mL (44 Gew.-%) Trifluoressigsäure vorgelegt. Unter galvanostatischen Bedingungen wird bei 30°C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchgeführt. Dabei werden 9669 C (0.77 F/mol) bei einer maximalen Klemmspannung von 18 V aufgebracht. Nach Beenden der Reaktion wird der Elektrolyt mit Toluol in einen Kolben überführt und nachfolgend Trifluoressigsäure sowie Toluol bei Raumdruck destillativ entfernt. Anschließend werden 5.89 g überschüssiges Phenol mittels Kurzwegdestillation bei 4.5×10-3 mbar zurückgewonnen. Der Reaktionsrückstand wird in 30 mL wässrigem Isopropanol (iPrOH:H2O = 4:1) aufgenommen. Durch Lagerung über Nacht bei 4°C gelingt die Kristallisation des Produkts, welches mittels Filtration und Waschen mit wenig kaltem n-Heptan erhalten wird (4.24 g). Weiteres Produkt kann aus dem Filtrat durch kurze säulenchromatographische Aufreinigung an Kieselgel (CH:EE=98:2) isoliert werden (2.15 g). Insgesamt werden 6.39 g (0,026 mol, 64%), wobei überschüssiges Phenol bei der Ausbeute berücksichtigt wird, leicht rötliches, kristallines Produkt erhalten.In an undivided standard electrolysis cell with graphite anode and cathode (A = 9 cm 2 ), the electrolyte consisting of 15.90 g (0.1301 mol, 53 wt .-%) of 2,4-dimethylphenol, 1.00 g (4.4 mmol, 3 wt. -%) Methyltriethylammoniummethylsulfat and 9 mL (44 wt .-%) submitted trifluoroacetic acid. Under galvanostatic conditions, an electrolysis is carried out at 30 ° C and a current density of 10 mA / cm 2 . 9669 C (0.77 F / mol) are applied at a maximum clamping voltage of 18 V. After completion of the reaction, the electrolyte is transferred with toluene in a flask and subsequently removed by distillation trifluoroacetic acid and toluene at room pressure. Subsequently, 5.89 g of excess phenol are recovered by short path distillation at 4.5 × 10 -3 mbar. The reaction residue is taken up in 30 ml aqueous isopropanol ( i PrOH: H 2 O = 4: 1). By overnight storage at 4 ° C crystallization of the product is achieved, which is obtained by filtration and washing with a little cold n-heptane (4.24 g). Additional product can be isolated from the filtrate by short column chromatographic purification on silica gel (CH: EE = 98: 2) (2.15 g). Overall, 6.39 g (0.026 mol, 64%), taking into account excess phenol in the yield, gives a slightly reddish, crystalline product.

Schmelzpunkt: 133°C; RF-Wert (CH:EE=95:5): 0.33; 1H-NMR (400 MHz, CDCl3): δ = 2.29 (s, 12H, CH3), 4.84 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01(s, 2H, 6-H); 13C-NMR (100 MHz, CDCl3): δ = 16.15 (3-CH3), 20.41 (5-CH3), 122.23 (C-1), 125.17 (C-3), 128.51 (C-6), 129.98 (C-5), 131.97 (C-4), 149.13 (C-2); HRMS: m/z für [C16H19O2]+ berechnet 243.1380, gefunden 243.1389; MS (ESI+): m/z (%): 243.1 (100) [C16H19O2]+.Melting point: 133 ° C; R F value (CH: EE = 95: 5): 0.33; 1 H-NMR (400 MHz, CDCl 3 ): δ = 2.29 (s, 12H, CH 3 ), 4.84 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01 (s, 2H, 6-H); 13 C-NMR (100 MHz, CDCl 3): δ = 16:15 (3-CH 3), 20:41 (5-CH 3), 122.23 (C-1), 125.17 (C-3), 128.51 (C-6) , 129.98 (C-5), 131.97 (C-4), 149.13 (C-2); HRMS: m / z calculated for [C 16 H 19 O 2 ] + 243.1380, found 243.1389; MS (ESI +): m / z (%): 243.1 (100) [C 16 H 19 O 2] +.

Beispiel 2:Example 2: Anodische Oxidation von 2-Brom-4-methylphenol an Graphit-elektrodenAnodic oxidation of 2-bromo-4-methylphenol on graphite electrodes

Figure imgb0003
Figure imgb0003

In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 20.02 g (0,107 mol, 53 Gew.-%) 2-Brom-4-methylphenol, 1.00 g (4.4 mmol, 3 Gew.-%) Methyltriethylammoniummethylsulfat und 11 mL (44 Gew.-%) Trifluoressigsäure vorgelegt. Unter galvanostatischen Bedingungen wird bei 30 °C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchgeführt. Dabei werden 7950 C (0.77 F/mol) bei einer maximalen Klemmspannung von 22 V aufgebracht. Nach Beenden der Reaktion wird der Elektrolyt mit Toluol in einen Kolben überführt und nachfolgend Trifluoressigsäure sowie Toluol bei Raumdruck destillativ entfernt. Anschließend werden 9.08 g überschüssiges Phenol mittels Kurzwegdestillation bei 5.0×10-3 mbar zurückgewonnen. Der Reaktionsrückstand wird in 30 mL wässrigem Isopropanol (iPrOH:H2O = 4:1) aufgenommen. Durch Lagerung über Nacht bei 4 °C gelingt die Kristallisation des Produkts. Dieses wird in wenig MTBE aufgenommen und über Cellite filtriert. Durch entfernen des Lösungsmittels wird reines Produkt erhalten (1.35 g). Weiteres Produkt kann aus dem Filtrat durch säulenchromatographische Aufreinigung an Kieselgel (CH:EE=95:5) isoliert werden (6.90 g). Insgesamt werden 8.25 g (0,022 mol, 76%), wobei überschüssiges Phenol bei der Ausbeute berücksichtigt wird. farbloses, kristallines Produkt erhalten.
Schmelzpunkt: 144-145 °C; RF-Wert (CH:EE=95:5): 0.06; 1H-NMR (300 MHz, CDCl3): δ = 2.31 (s, 6H, CH3), 5.80 (s, 2H, OH), 6.88 (d, 4JH,H = 2.1 Hz, 2H, 6-H), 7.01 (d, 4JH,H = 2.1 Hz, 2H, 4-H); 13C-NMR (75 MHz, CDCl3): δ = 20.24 (5-CH3), 110.94 (C-3), 125.33 (C-1), 131.44 (C-5), 131.60 (C-6), 132.58 (C-4), 147.11 (C-2).
In an undivided standard electrolysis cell with graphite anode and cathode (A = 9 cm 2 ), the electrolyte consisting of 20.02 g (0.107 mol, 53 wt .-%) of 2-bromo-4-methylphenol, 1.00 g (4.4 mmol, 3 wt. -%) Methyltriethylammoniummethylsulfat and 11 mL (44 wt .-%) submitted trifluoroacetic acid. Under galvanostatic conditions, an electrolysis is carried out at 30 ° C and a current density of 10 mA / cm 2 . 7950 C (0.77 F / mol) are applied at a maximum clamping voltage of 22 V. After completion of the reaction, the electrolyte is transferred with toluene in a flask and subsequently removed by distillation trifluoroacetic acid and toluene at room pressure. Subsequently, 9.08 g of excess phenol are recovered by short path distillation at 5.0 × 10 -3 mbar. The reaction residue is taken up in 30 ml aqueous isopropanol ( i PrOH: H 2 O = 4: 1). By overnight storage at 4 ° C, the crystallization of the product succeeds. This is taken up in a little MTBE and filtered through Cellite. Removal of the solvent gives pure product (1.35 g). Further product can be isolated from the filtrate by column chromatography on silica gel (CH: EE = 95: 5) (6.90 g). A total of 8.25 g (0.022 mol, 76%), taking into account excess phenol in the yield. obtained colorless, crystalline product.
Melting point: 144-145 ° C; R F value (CH: EE = 95: 5): 0.06; 1 H-NMR (300 MHz, CDCl 3 ): δ = 2.31 (s, 6H, CH 3 ), 5.80 (s, 2H, OH), 6.88 (d, 4 J H, H = 2.1 Hz, 2H, 6- H), 7.01 (d, 4 H, H = 2.1 Hz, 2H, 4-H); 13 C-NMR (75 MHz, CDCl 3): δ = 20:24 (5-CH 3), 110.94 (C-3), 125.33 (C-1), 131.44 (C-5), 131.60 (C-6), 132.58 (C-4), 147.11 (C-2).

Beispiel 3:Example 3: Anodische Oxidation von 2,4-Dimethylphenol an Graphitelektroden mit HFIPAnodic oxidation of 2,4-dimethylphenol on graphite electrodes with HFIP

Figure imgb0004
Figure imgb0004

In einer ungeteilten Standardelektrolysezelle mit Graphitanode und -kathode (A = 9 cm2) wird der Elektrolyt bestehend aus 15.98 g (0,1308 mol, 52 Gew.-%) 2,4-Dimethylphenol, 1.00 g (4.4 mmol, 1 Gew.-%) Methyltriethylammoniummethylsulfat und 9 mL (47 Gew.-%) Hexafluorisopropanol vorgelegt. Unter galvanostatischen Bedingungen wird bei 30 °C und einer Stromdichte von 10 mA/cm2 eine Elektrolyse durchgeführt. Dabei werden 9721 C (0.77 F/mol) bei einer maximalen Klemmspannung von 12.8 V aufgebracht. Nach Beenden der Reaktion wird zunächst das Lösungsmittel entfernt und anschließend überschüssiges Phenol mittels Kurzwegdestillation zurückgewonnen. Der Reaktionsrückstand wird in 50 mL Wasser und 30 mL TBME aufgenommen, die Phasen getrennt und die wässrige Phase nochmals mit 3×30 mL TBME extrahiert. Die vereinigten organischen Phasen werden mit jeweils 50 mL Wasser und gesättigter Natriumchlorid-Lösung gewaschen, über Magnesiumsulfat getrocknet und das Lösungsmittel unter vermindertem Druck entfernt. Das Rohprodukt wird in 10 mL Toluol bei 50°C gelöst. Durch langsame Zugabe von n-Heptan gelingt die Kristallisation des Produkts, welches mittels Filtration und Waschen mit wenig kaltem n-Heptan erhalten wird. Weiteres Produkt kann aus dem Filtrat durch säulenchromatographische Aufreinigung an Kieselgel (CH:EE=98:2, dann 95:5) isoliert werden. Insgesamt werden 4,43 g (0,018 mol, 28%) farbloses, kristallines Produkt erhalten.In an undivided standard electrolysis cell with graphite anode and cathode (A = 9 cm 2 ), the electrolyte consisting of 15.98 g (0.1308 mol, 52 wt .-%) of 2,4-dimethylphenol, 1.00 g (4.4 mmol, 1 wt. -%) Methyltriethylammoniummethylsulfat and 9 mL (47 wt .-%) hexafluoroisopropanol presented. Under galvanostatic conditions, an electrolysis is carried out at 30 ° C and a current density of 10 mA / cm 2 . 9721 C (0.77 F / mol) are applied at a maximum clamping voltage of 12.8 V. After completion of the reaction, the solvent is first removed and then recovered excess phenol by short path distillation. The reaction residue is taken up in 50 ml of water and 30 ml TBME, the phases are separated and the aqueous phase is extracted again with 3 × 30 ml TBME. The combined organic phases are washed with 50 ml of water and saturated sodium chloride solution, dried over magnesium sulfate and the solvent removed under reduced pressure. The crude product is dissolved in 10 mL of toluene at 50 ° C. The slow addition of n-heptane succeeds in crystallizing the product, which is obtained by filtration and washing with a little cold n-heptane. Further product can be isolated from the filtrate by column chromatography on silica gel (CH: EE = 98: 2, then 95: 5). A total of 4.43 g (0.018 mol, 28%) of colorless, crystalline product are obtained.

Schmelzpunkt: 135-136 °C; RF-Wert (CH:EE=95:5): 0.33; 1H-NMR (300 MHz, CDCl3): δ = 2.29 (s, 12H, CH3), 5.01 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01 (s, 2H, 6-H); 13C-NMR (75 MHz, CDCl3): δ = 16.14 (3-CH3), 20.41 (5-CH3), 122.17 (C-1), 125.16 (C-3),128.49 (C-6), 130.00 (C-5), 132.00 (C-4), 149.13 (C-2).Melting point: 135-136 ° C; R F value (CH: EE = 95: 5): 0.33; 1 H-NMR (300 MHz, CDCl 3 ): δ = 2.29 (s, 12H, CH 3 ), 5.01 (s, 2H, OH), 6.88 (s, 2H, 4-H), 7.01 (s, 2H, 6-H); 13 C-NMR (75 MHz, CDCl 3): δ = 16:14 (3-CH 3), 20:41 (5-CH 3), 122.17 (C-1), 125.16 (C-3), 128.49 (C-6) , 130.00 (C-5), 132.00 (C-4), 149.13 (C-2).

Claims (13)

  1. A process for preparing biaryl alcohols, wherein substituted aryl alcohols are anodically dehydrodimerized in the presence of partially fluorinated and/or perfluorinated mediators and at least one supporting electrolyte by means of a graphite electrode and the OH group of the aryl alcohols used is bound directly to the aromatic.
  2. The process according to claim 1, wherein the substituted aryl alcohols used are identical.
  3. The process according to either claim 1 or 2, wherein the substituted aryl alcohols used can be monocyclic or polycyclic.
  4. The process according to any of claims 1 to 3, wherein the dimerization takes place in the ortho position relative to the alcohol group of the aryl alcohols.
  5. The process according to any of claims 1 to 4, wherein the mediators used are partially fluorinated and/or perfluorinated alcohols and/or acids.
  6. The process according to any of claims 1 to 5, wherein 1,1,1,3,3,3-hexafluoro-isopropanol or trifluoroacetic acid is used as mediator.
  7. The process according to any of claims 1 to 6, wherein supporting electrolytes selected from the group consisting of alkali metal, alkaline earth metal, tetra(C1-C6-alkyl)ammonium salts are used as supporting electrolytes.
  8. The process according to any of claims 1 to 7, wherein the counterions of the supporting electrolytes are selected from the group consisting of sulfate, hydrogensulfate, alkylsulfates, arylsulfates, halides, phosphates, carbonates, alkylphosphates, alkylcarbonates, nitrate, alkoxides, tetrafluoroborate, hexafluorophosphate and perchlorate.
  9. The process according to any of claims 1 to 8, wherein no further solvent is used for the electrolysis.
  10. The process according to any of claims 1 to 9, wherein a flow cell is used for the electrolysis.
  11. The process according to any of claims 1 to 10, wherein current densities of from 1 to 1000 mA/cm2 are used.
  12. The process according to any of claims 1 to 11, wherein the electrolysis is carried out at temperatures in the range from -20 to 60°C and atmospheric pressure.
  13. The process according to any of claims 1 to 12, wherein 2,4-dimethylphenol is used as aryl alcohol.
EP09782303A 2008-09-01 2009-08-28 Method for anodic dehydrodimerisation of substituted phenols Not-in-force EP2318569B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09782303A EP2318569B1 (en) 2008-09-01 2009-08-28 Method for anodic dehydrodimerisation of substituted phenols

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08163356 2008-09-01
EP09782303A EP2318569B1 (en) 2008-09-01 2009-08-28 Method for anodic dehydrodimerisation of substituted phenols
PCT/EP2009/061101 WO2010023258A1 (en) 2008-09-01 2009-08-28 Method for anodic dehydrodimerisation of substituted arylalcohols

Publications (2)

Publication Number Publication Date
EP2318569A1 EP2318569A1 (en) 2011-05-11
EP2318569B1 true EP2318569B1 (en) 2012-03-28

Family

ID=41413363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782303A Not-in-force EP2318569B1 (en) 2008-09-01 2009-08-28 Method for anodic dehydrodimerisation of substituted phenols

Country Status (5)

Country Link
US (1) US8449755B2 (en)
EP (1) EP2318569B1 (en)
JP (1) JP5535215B2 (en)
AT (1) ATE551445T1 (en)
WO (1) WO2010023258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111048A (en) * 2014-05-26 2015-12-02 赢创德固赛有限公司 Process for preparing 2, 2'-biphenols using selenium dioxide
CN105272826A (en) * 2014-05-26 2016-01-27 赢创德固赛有限公司 Process for preparing 2,2'-biphenols using selenium dioxide and halogenated solvent

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747645B2 (en) 2009-06-05 2014-06-10 Basf Se Process for preparing unsymmetrical biaryl alcohols
EP2438214B1 (en) 2009-06-05 2013-05-29 Basf Se Method for anodic cross-dehydrodimerization of arenes
DE102013203866A1 (en) * 2013-03-07 2014-09-11 Evonik Industries Ag Electrochemical coupling of a phenol with a naphthol
DE102013211744A1 (en) 2013-06-21 2014-12-24 Evonik Industries Ag Electrochemical process for the preparation of symmetrical biphenols using a glassy carbon anode
DE102013211745A1 (en) 2013-06-21 2014-12-24 Evonik Industries Ag Electrochemical process for the preparation of symmetrical biphenols using acetic acid as electrolyte
SG10201601501QA (en) 2015-03-05 2016-10-28 Evonik Degussa Gmbh Preparation of 2,2`-biaryls in the presence of molybdenum(v) chloride
EP3095776A1 (en) 2015-05-20 2016-11-23 Evonik Degussa GmbH Coupling of a phenol and an arene using selenium dioxide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101391A (en) * 1976-01-05 1978-07-18 Monsanto Company Electrolytic oxidative methyl-methyl coupling of cresol salts
JPH0243388A (en) * 1988-08-03 1990-02-13 Mitsubishi Kasei Corp Production of 4,4'-dihydroxybiphenyls
DE102004005508A1 (en) * 2004-02-04 2005-08-25 Basf Ag Anodic dimerization of substituted benzenes
DE102005003012A1 (en) * 2005-01-21 2006-07-27 Basf Ag Anodic dimerization of hydroxy-substituted aromatics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111048A (en) * 2014-05-26 2015-12-02 赢创德固赛有限公司 Process for preparing 2, 2'-biphenols using selenium dioxide
CN105272826A (en) * 2014-05-26 2016-01-27 赢创德固赛有限公司 Process for preparing 2,2'-biphenols using selenium dioxide and halogenated solvent

Also Published As

Publication number Publication date
WO2010023258A8 (en) 2010-04-22
JP2012501383A (en) 2012-01-19
EP2318569A1 (en) 2011-05-11
US20110147228A1 (en) 2011-06-23
US8449755B2 (en) 2013-05-28
WO2010023258A1 (en) 2010-03-04
ATE551445T1 (en) 2012-04-15
JP5535215B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
EP2318569B1 (en) Method for anodic dehydrodimerisation of substituted phenols
EP2438214B1 (en) Method for anodic cross-dehydrodimerization of arenes
WO2010139687A1 (en) Method for preparing unsymmetrical biaryl alcohols
EP1348043B1 (en) Method for producing alcoxylated carbonyl compounds by an anodic oxidation method using a cathodic coupled reaction for organic synthesis
WO2006077204A2 (en) Anodic dimerisation of hydroxy-substituted aromatics
EP1619273B1 (en) Process for the synthesis of 2-alkyne-1-acetals
EP1339664B1 (en) Production of butane tetracarboxylic acid derivatives by means of coupled electrosynthesis
EP0902846B1 (en) Process for preparing phthalides
EP2411564B1 (en) Electrochemical process for producing 3-tert-butylbenzaldehyde-dimethylacetal
WO2005075709A2 (en) Anodic dimerisation of substituted benzols
EP1863781A1 (en) Method for producing alkoxylated 2,5-dihydrofuran but-2-ene derivatives or tetra-1,1,4,4-alkoxylated but-2-ene derivatives
EP2041336A2 (en) Electrochemical production of sterically hindered amines
EP3133189A1 (en) Method for the preparation of asymmetric oco pincer ligands from the group of m terphenyl compounds
EP2534281B1 (en) Method for producing 4-isopropylcyclohexylmethanol
DE2331712A1 (en) PROCESS FOR THE PREPARATION OF 2METHOXY-3,6-DICHLOROBENZOIC ACID
WO2020053353A1 (en) Electrochemical synthesis of s-arylthiocarbamates
EP1913178A1 (en) Process for preparing 1,1,4,4-tetraalkoxybut-2-ene derivatives
EP0085158B1 (en) Process for the preparation of cycloalkenon derivatives
DE102018128228A1 (en) Process for the oxidation of carbon-containing organic compounds with electrochemically produced oxidizing agents and arrangement for carrying out the process
EP1853549A1 (en) Selective splitting of substituted bisbenzylamides and bisbenzylamines
DE2618276A1 (en) Electrolytic redn. of naphthyl ethers in alcohol soln. - uses solid electrodes, giving enol ethers useful as pharmaceutical intermediates
DE102013211744A1 (en) Electrochemical process for the preparation of symmetrical biphenols using a glassy carbon anode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17Q First examination report despatched

Effective date: 20110805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR ANODIC DEHYDRODIMERISATION OF SUBSTITUTED PHENOLS

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 551445

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003166

Country of ref document: DE

Effective date: 20120524

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120628

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120629

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120728

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

26N No opposition filed

Effective date: 20130103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003166

Country of ref document: DE

Effective date: 20130103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120709

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120828

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120828

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120328

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 551445

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140828

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170828

Year of fee payment: 9

Ref country code: GB

Payment date: 20170830

Year of fee payment: 9

Ref country code: FR

Payment date: 20170828

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20170828

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180828

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009003166

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C25B0003100000

Ipc: C25B0003290000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201029

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003166

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301