EP2313657A1 - Refroidissement d'une pompe à vis - Google Patents

Refroidissement d'une pompe à vis

Info

Publication number
EP2313657A1
EP2313657A1 EP08875569A EP08875569A EP2313657A1 EP 2313657 A1 EP2313657 A1 EP 2313657A1 EP 08875569 A EP08875569 A EP 08875569A EP 08875569 A EP08875569 A EP 08875569A EP 2313657 A1 EP2313657 A1 EP 2313657A1
Authority
EP
European Patent Office
Prior art keywords
coolant
screw pump
pump
heat exchanger
screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08875569A
Other languages
German (de)
English (en)
Inventor
Ralf Steffens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2313657A1 publication Critical patent/EP2313657A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • F04C29/066Noise dampening volumes, e.g. muffler chambers with means to enclose the source of noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/78Warnings
    • F04C2270/782Sound
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/78Warnings
    • F04C2270/784Light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions

Definitions

  • Dry compressing pumps gain in particular in vacuum technology increasingly important, because by increasing commitments to environmental regulations and rising operating and disposal costs as well as increased Anfor ⁇ demands on the purity of the pumped liquid, the known wet-running vacuum systems, such as liquid ring machines and rotary vane pumps, and more often replaced by dry compressing pumps , These dry compacting machines include screw pumps, claw pumps, diaphragm pumps, piston pumps, scroll mills and Roots pumps. However, these machines have in common that they still do not meet today's demands in terms of reliability and robustness and size and weight with low price level.
  • Drying screw pumps are increasingly being used in vacuum technology because, as typical 2-wave displacement machines, they achieve the vacuum-specific high compressive capacity simply by achieving the necessary multiple steps as a series connection of several closed working chambers via the number of wraps per screw spindle rotor in an extremely uncomplicated manner. Furthermore, an increased rotor speed is made possible by the non-contact circulation of the screw spindle rotors, so that at the same time nominal suction capacity and delivery rate increase relative to the size.
  • the drive is preferably carried out in accordance with the protective documents WO 01/57401 A1 and PCT / EP 2007/056 585.
  • the object of the present invention is, in a dry-compressing screw pump with a cooling for the screw spindle rotor pair via a coolant which has absorbed the heat of compression from the screw screw rotors, this refrigerant such heat to withdraw that the clearance between the rotor pair and the surrounding Pump housing for all operating conditions and their changes remain almost unverän ⁇ unchanged, both the noise of the entire screw pump is simple and thorough to minimize and mitigate the critical effects of contamination in the cooling system or the elimination of such disturbances in the cooling efficiency is facilitated and
  • the entire temperature level of the screw pump as simple as possible and useful for the particular application not only specifically targeted, but also in the direction each user desires can be removed easily and conveniently.
  • the coolant preferably oil
  • the coolant pump constantly flows around the pump housing and dissipates the heat, the cooling air flow through the screw pump omitted, the entire
  • the machine is surrounded with noise-insulating material, and the heat dissipation for the coolant, which has absorbed both heat from the spindle rotor pair and the pump housing, via a separate heat exchanger, preferably as a separate standard industrial oil cooler, either water-cooled or designed as a well-known oil / air cooler, to further reduce the noise of the necessary cooling fan for this oil / air heat exchanger runs at a reduced speed by the belt drive between the drive motor and pump drive shaft with the crown or bevel gear Gear
  • the temperature level of the screw pump is selectively adjustable and
  • the already existing pump oil is preferably taken directly, which is anyway required for the lubrication of the rotor bearing and the synchronization teeth in the side spaces of the screw pump.
  • an oil should be chosen that has both adequate lubrication properties for bearings and gear wheels as well as satisfactory heat transfer characteristics. Such oils are well known and available.
  • the design of the oil cooling for the pump housing takes place according to well-known embodiments, such as cast in the casting of the pump housing (steel) pipe coil or a surrounding casting cavity for coolant / oil flow, these embodiments are preferably provided in the emergence of the greatest compression heat , So in the area of narrowing spindle rotor slopes to the gas outlet of the screw pump out.
  • the heat output for the gearbox takes place just as efficiently on the oil in this gearbox.
  • the required for heat dissipation own heat exchanger for the coolant which has now absorbed the heat from spindle rotor pair and pump housing, is designed so that the dimensions of the heat exchange surfaces and the amount of cooling air flow (or the cooling fluid in water cooling) the desired Temperature level of the entire screw pump is met selectively.
  • the direction of heat dissipation can still be determined specifically according to customer requirements.
  • the coolant oil is preferably guided in such a way that the coolant delivery pump (for example as an internal gear pump, also called a "gerotor" pump) first conveys the oil drawn in from the gear housing through the cooling region of the pump housing. From there it passes through a connecting line to its own heat exchanger, where it is cooled and then passes from this heat exchanger directly to the two injection holes for introducing the coolant in both spindle rotors, where it again via the inner tube and the conical bore after receiving the spindle rotor heat Transmission chamber exits, to be sucked in again by the coolant pump, so that this cycle is repeated permanently.
  • the coolant delivery pump for example as an internal gear pump, also called a "gerotor” pump
  • the heat exchange surfaces for the coolant in the area of the fluid cooling for the pump housing are now dimensioned such that the games between the two spindle rotors and the surrounding pump housing remain virtually unchanged for all operating states.
  • This important goal is now because ⁇ low accessible because the coolant according to the invention both heat the spindle rotors and the pump housing dissipates and thus there is always a congruent level in the reference level.
  • the practical dimensioning is now simply carried out in such a way that the temperatures of spindle rotor pair and pump housing are set to almost the same level via measurements and simple model calculations. There can not be a general formula because the heat dissipation depends essentially on the individual conditions of the respective heat transfer: Material and surface properties as well as oil type etc.
  • the cooling air flow is preferably performed congruent to the cooling fan of the drive motor, even the usually smaller cooling fan for the drive motor can be completely replaced by the larger cooling fan for the heat exchanger, so that the cooling for the drive motor thanks to the more intense Cooling air flow significantly improved.
  • FIG. 1 shows an exemplary embodiment of the present invention with a section through the entire screw pump:
  • the counter-rotating screw spindle rotor pair (1) rotates in a pump housing (2) with a gas inlet (3) and a gas outlet (4) ,
  • the rotor pair is driven by a crown / bevel gear (5) on the pump drive shaft (6).
  • the commercial air-cooled drive motor (17) drives with a belt drive (18) via the larger motor-side pulley (18. a), the smaller pulley (18. b) and thus the pump drive shaft (6) with the non-rotatable crown / bevel gear (5 ) at.
  • the internal rotor cooling (7) is shown broken open by way of example, wherein the coolant oil is led from the coolant supply (21) to the bottom of the bore via a feed inner tube (8), where it is bored out of this inner tube (FIG. 8), then centrifugally assisted by the tapered spindle rotor bore to continuously flow back to the gear rotor side and exit again in the crown / bevel gear room where it mixes with the oil in the gear housing (9) as a conventional oil reservoir.
  • the oil is now sucked by a feed pump (10).
  • a coolant delivery pump (10) an internal gear oil pump is exemplified, of course, however, all other common oil pumps are suitable and possible.
  • this oil pump (10) sucks the oil now from the gear housing and conveys it via the coolant outlet (20) and the leading connecting line (12) in the coolant flow space (11) of the pump housing (2).
  • This coolant fürströmungsraum (11) can be designed, for example, as cast in the casting of the pump housing (steel) pipe coil (11 a), as shown in the upper section, or as the working space encircling casting cavity (11 b) in the pump housing (2 ) to the coolant / oil flow, these embodiments are to be provided especially in the emergence of the largest compression heat, ie in the area of the spindle rotor slopes becoming closer to the gas outlet (4) of the screw pump.
  • the coolant is conveyed from the pump housing throughflow spaces (11) to the own coolant heat exchanger (16) via the outgoing connecting line (13), which is shown here as an air-cooled example.
  • the coolant flows through this heat exchanger (16) from the inlet E to the outlet A and is thereby cooled by the cooling-Lütter (14) generated cooling stream and then leaves the outlet A, the heat exchanger (16), and then still by oil pump (10) conveyed via the returning connecting line (19) to reach the two coolant supply lines (21). From there it passes per spindle rotor via feed inner tube (8) into the spindles for local heat dissipation, as described above.
  • the usual engine's own standard cooling fan can be replaced by the air flow more intensive cooling fan (18), in which case the heat exchanger (16) would also be positioned correspondingly cheaper on the other side of the engine.
  • the temperature level of the screw pump is determined decisively and carried out according to customer requirements, which was practically not possible because the invention secure coupling of the heat balances for the working space elements of spindle rotor pair (1) and pump housing (2) so far was not reliable.
  • the reliability of the entire screw pump is significantly improved by monitoring the condition of the entire screw pump accurately by simply monitoring the oil temperature, which is well known and proven in the prior art.
  • the cleaning is also facilitated because no longer the most time-consuming access to the cooling surfaces of the previously air-cooled screw pump has to be accomplished, but simply and only the heat exchanger has to be cleaned.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

L'invention concerne le refroidissement d'une pompe à vis destinée à transporter et comprimer des gaz, les rotors (1) disposant d'un refroidissement intérieur (7) déjà connu. Afin d'augmenter la sécurité de fonctionnement et d'améliorer l'aptitude spécifique aux applications ainsi que de réduire le bruit, il est proposé, selon l'invention, que le fluide de refroidissement, de préférence de l'huile, ne soit pas seulement envoyé en continu par la pompe de refroidissement (10) vers les deux conduites de fluide de refroidissement (21) pour le refroidissement intérieur (7) des rotors, mais que le fluide de refroidissement soit également envoyé en continu par la pompe de refroidissement (10) dans les chambres de passage (11) du carter de pompe (2) pour en évacuer la chaleur, ce qui supprime le flux d'air de refroidissement balayant la pompe à vis et permet d'envelopper l'ensemble de la machine de préférence dans un matériau absorbant les sons (15). L'évacuation de la chaleur du fluide de refroidissement s'opère à l'aide d'un échangeur thermique (16) propre, de préférence un radiateur industriel à huile normalisé indépendant, configuré soit avec refroidissement par eau, soit en radiateur huile/air bien connu. Afin de réduire encore le bruit, le ventilateur de refroidissement (14) nécessaire pour cet échangeur thermique huile/air (16) tourne à vitesse réduite. L'entraînement à courroie (18) entre le moteur d'entraînement (17) et l'arbre de la pompe (6) est configuré avec une transmission en couronne ou à pistons coniques (5) de manière que le moteur d'entraînement (17) tourne à une vitesse inférieure à l'arbre de la pompe (6). Grâce à un dimensionnement simple de l'échangeur thermique (16) propre, il est possible de régler à volonté le niveau de température de la pompe à vis. De plus, la libre implantation de l'échangeur thermique (16) et des conduites de raccordement (13 et 19) correspondantes pour le fluide de refroidissement entre cet échangeur thermique propre et la pompe à vis donne à l'utilisateur la possibilité de définir à volonté la direction de l'évacuation de la chaleur.
EP08875569A 2008-07-18 2008-12-30 Refroidissement d'une pompe à vis Withdrawn EP2313657A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008040546 2008-07-18
PCT/EP2008/068364 WO2010006663A1 (fr) 2008-07-18 2008-12-30 Refroidissement d'une pompe à vis

Publications (1)

Publication Number Publication Date
EP2313657A1 true EP2313657A1 (fr) 2011-04-27

Family

ID=40934887

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08875569A Withdrawn EP2313657A1 (fr) 2008-07-18 2008-12-30 Refroidissement d'une pompe à vis

Country Status (3)

Country Link
EP (1) EP2313657A1 (fr)
CN (1) CN102099583A (fr)
WO (1) WO2010006663A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010064388A1 (de) 2010-02-18 2011-08-18 Steffens, Ralf, Dr. Ing., 73728 Spindel-Kompressor
WO2011101064A2 (fr) 2010-02-18 2011-08-25 Ralf Steffens Entraînement pour un compresseur à broches
DE102012009103A1 (de) * 2012-05-08 2013-11-14 Ralf Steffens Spindelverdichter
DE102012011820A1 (de) 2012-06-15 2013-12-19 Ralf Steffens Spindelverdichter-Abdichtung
DE102012011822A1 (de) 2012-06-15 2013-12-19 Ralf Steffens Spindelverdichter-Antrieb
DE102013211185A1 (de) 2012-06-15 2013-12-19 Ralf Steffens Spindelverdichter-Gehäuse
DE102013009040B4 (de) 2013-05-28 2024-04-11 Ralf Steffens Spindelkompressor mit hoher innerer Verdichtung
DE102014008288A1 (de) * 2014-06-03 2015-12-03 Ralf Steffens Spindelverdichter für Kompressionskältemaschinen
US11359632B2 (en) 2014-10-31 2022-06-14 Ingersoll-Rand Industrial U.S., Inc. Rotary screw compressor rotor having work extraction mechanism
CN106837800A (zh) * 2017-02-21 2017-06-13 东北大学 一种带有内循环冷却系统的螺杆真空泵
CN109209871B (zh) * 2018-10-20 2020-05-12 广东艾高装备科技有限公司 一种离心空压机
DE102019103470A1 (de) * 2019-02-12 2020-08-13 Nidec Gpm Gmbh Elektrische Schraubenspindel-Kühlmittelpumpe
CN110829692B (zh) * 2019-12-13 2020-07-21 江苏希来尔机电科技有限公司 一种可自动降温的电机
CN111677663B (zh) * 2020-06-23 2022-01-11 江苏亚太工业泵科技发展有限公司 一种高压高效真空节能泵
CN112594189A (zh) * 2020-12-14 2021-04-02 珠海格力节能环保制冷技术研究中心有限公司 散热装置、压缩机及换热系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637655B1 (fr) * 1988-10-07 1994-01-28 Alcatel Cit Machine rotative du type pompe a vis
US5713724A (en) * 1994-11-23 1998-02-03 Coltec Industries Inc. System and methods for controlling rotary screw compressors
DE19745616A1 (de) * 1997-10-10 1999-04-15 Leybold Vakuum Gmbh Gekühlte Schraubenvakuumpumpe
DE19817351A1 (de) * 1998-04-18 1999-10-21 Peter Frieden Schraubenspindel-Vakuumpumpe mit Gaskühlung
DE19839501A1 (de) 1998-08-29 2000-03-02 Leybold Vakuum Gmbh Trockenverdichtende Schraubenspindelpumpe
DE10004373B4 (de) 2000-02-02 2007-12-20 Steffens, Ralf, Dr. Ing. Trockenverdichtende Schraubenpumpe
DE10156179A1 (de) * 2001-11-15 2003-05-28 Leybold Vakuum Gmbh Kühlung einer Schraubenvakuumpumpe
JP2005069163A (ja) * 2003-08-27 2005-03-17 Taiko Kikai Industries Co Ltd 空冷式ドライ真空ポンプ
JP4265577B2 (ja) * 2005-06-30 2009-05-20 日立アプライアンス株式会社 二段スクリュー圧縮機
DE102007030475A1 (de) * 2006-07-03 2008-01-10 Steffens, Ralf, Dr. Ing. Kühlung für eine Schraubenspindelpumpe
WO2008003657A1 (fr) * 2006-07-03 2008-01-10 Ralf Steffens Entraînement pour une pompe à broche hélicoïdale

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010006663A1 *

Also Published As

Publication number Publication date
WO2010006663A1 (fr) 2010-01-21
CN102099583A (zh) 2011-06-15

Similar Documents

Publication Publication Date Title
WO2010006663A1 (fr) Refroidissement d'une pompe à vis
EP2975742B1 (fr) Machine électrique doté d'un dispositif de refroidissement amélioré
EP1248349A2 (fr) Moteur électrique asynchrone
WO1999019630A1 (fr) Pompe a vide a vis refroidie
DE102017107602B3 (de) Kompressoranlage mit interner Luft-Wasser-Kühlung
DE19509417A1 (de) Antriebseinheit
EP1444440B1 (fr) Pompe a vide a vis refroidie
DE10331216B3 (de) Fluidkühlvorrichtung
DE202019105969U1 (de) Motorbetriebene Kompressorvorrichtung
DE19749572A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
EP3676484B1 (fr) Pompe de refroidissement optimisé selon l'utilisation
DE102011004960A1 (de) Kompressor, Druckluftanlage und Verfahren zur Druckluftversorgung
EP0716966B1 (fr) Unité d'entraínement
DE102014008288A1 (de) Spindelverdichter für Kompressionskältemaschinen
WO2023057148A1 (fr) Dispositifs de refroidissement pour une unité d'entraînement électromotrice et composants associés
DE112015002176B4 (de) Kühlvorrichtung eines Hybridfahrzeugs
DE19748385A1 (de) Trockenlaufender Schraubenverdichter oder Vakuumpumpe
DE112015002890T5 (de) Kompressor
DE694856C (fr)
DE112015000767T5 (de) Schneckenexpander
WO2008003657A1 (fr) Entraînement pour une pompe à broche hélicoïdale
WO2008019815A1 (fr) Refroidissement de rotor pour pompes à vide ou compresseurs à deux arbres fonctionnant à sec
DE102007030475A1 (de) Kühlung für eine Schraubenspindelpumpe
EP2473739B1 (fr) Pompe à vis sèche à compression interne
DE19849098A1 (de) Exzenterschneckenpumpe bzw. Innenspindelpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110218

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160822

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN