EP2309175A1 - Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit - Google Patents
Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit Download PDFInfo
- Publication number
- EP2309175A1 EP2309175A1 EP09172574A EP09172574A EP2309175A1 EP 2309175 A1 EP2309175 A1 EP 2309175A1 EP 09172574 A EP09172574 A EP 09172574A EP 09172574 A EP09172574 A EP 09172574A EP 2309175 A1 EP2309175 A1 EP 2309175A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- area
- reflector element
- reflector
- light
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/0008—Reflectors for light sources providing for indirect lighting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V7/00—Reflectors for light sources
- F21V7/04—Optical design
- F21V7/09—Optical design with a combination of different curvatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2105/00—Planar light sources
- F21Y2105/10—Planar light sources comprising a two-dimensional array of point-like light-generating elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21Y—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
- F21Y2115/00—Light-generating elements of semiconductor light sources
- F21Y2115/10—Light-emitting diodes [LED]
- F21Y2115/15—Organic light-emitting diodes [OLED]
Definitions
- the present invention relates to an asymmetrical reflector element for reflecting light emitted by one LED unit, a reflector comprising at least one asymmetrical reflector element and a lighting unit.
- LEDs Light Emitting Diodes
- One aspect thereof is to create an isotropic illumination from the anisotropic emission of the LED, because a spot like illumination is not satisfying for a number of purposes, such as illumination of a larger area, avoiding of dazzling persons e.g. in traffic situation etc.
- Most types of LED exhibit a dominant emission direction at a radiation angle of zero degrees and subordinate emission directions at radiation angles unequal to zero, see also Fig. 1 .
- lenses are used in order to bundle the light of one LED.
- a uniform angle of radiation of the several LEDs may be created.
- lenses absorb part of the light, such that the light yield decreases. Further, their material subject to degradation, so that the light yield might be further reduced.
- Preferred embodiments are an asymmetrical reflector element comprising a first opening at one end of the reflector element, which defines a light inlet area for the light to be reflected into the reflector element.
- the asymmetrical reflector element comprises a second opening at its opposite end. Further it comprises a lateral area, at which the light emitted by the emitter having an anisotropic radiation behavior or an anisotropic light source, is reflected.
- the lateral area extends from the first opening to the second opening and is formed such that a line extending from at least one position of the inlet area in a right angle towards the second opening, i.e. a surface normal, crosses the lateral area.
- the anisotropic light source may be in particular a unit with one or more LEDs, OLEDs (organic light emitting diodes).
- the anisotropic light source e.g. a LED unit in a radiation angle of zero degrees can be reflected and thus directed into a desired direction in order to illuminate a predetermined illumination area.
- Most of the LEDs show an emission characteristic with a dominant emission direction at a radiation angle of 0 degrees, see also Fig. 1 , thus that the dominant beam is reflected.
- the LED unit may comprise one or more LEDs.
- the tailored reflection element the light of an individual LED unit or anisotropic light source may be directed individually.
- the effectivity of the reflection is increased in comparison to setups, where a number of different LED units or anisotropic light sources are reflected by the same common reflector element, because then the reflector element either cannot be optimized in regard to every single LED unit or anisotropic light source , or its production is very elaborate and therefore costly. Due to this lower efficiency of the common reflector element, then the LED units or anisotropic light sources have to be operated thus that their luminous intensity is higher in order that a predetermined luminous intensity at an area to be illuminated can be achieved. This has the drawback of higher energy consumption.
- an LED unit as an example of an anisotropic light source.
- any other anisotropic light source or emitter having an anisotropic emission behavior might be used.
- the LED unit might also use one or more OLEDs.
- the asymmetrical reflector element is adapted for reflecting light emitted by an emitter with an anisotropic radiation behavior, thus that a dominant emission direction and at least a first subordinate emission direction and at least a second subordinate emission direction is established.
- a lateral area extending from the first opening to the second opening is formed such that a beam of light emitted by the LED unit in its dominant emission direction can be reflected towards a point of the illumination area.
- a point particularly a certain predefined part of the illumination area e.g. a spot, is considered.
- the illumination area may be for example a part of a floor, a street or a wall.
- a beam of light emitted by the LED unit in the at least first subordinate emission direction and the second subordinate emission direction can be reflected towards a common point of the illumination area.
- a high intensity can be achieved also in subordinate emission direction.
- These two embodiments allow predefining an illumination area, which is illuminated with an illumination profile determined by the reflector element. Particularly, by illumination profile, the spatial dependency of the luminous intensity on an area to be illuminated is considered.
- a uniform illumination on an area to be illuminated e.g. a part of a street or floor, can be achieved even if using an anisotropic light source.
- the LED unit is for this description considered as a point source of light if its dimensions can be considered as small, compared to the reflector element dimensions.
- a convolution with the geometry of the LED unit is done in order to optimize the reflector element's shape.
- At least a part of the lateral area is formed as having a continuous curvature along the vertical direction from the first opening to the second opening. This allows to direct a light emitted in dominant or subordinate emission direction to a desired illumination area and to establish the desired illumination profile.
- the illumination profile is particularly the distribution of intensity in the illumination area. Further, discontinuities can be avoided, if there is no edge in a non vertical direction. By having a continuous curvature further the manufacturing of the reflector element may be facilitated.
- the curvature of a part of a lateral area is negative. This means that the first derivate is decreasing.
- This allows directing the light emitted by the LED unit in its dominant and subordinate emission direction to an illumination area situated far off the axis of the reflector element.
- a lighting unit with a reflector element needs not to be positioned directly above the area to be illuminated.
- a dazzling of persons in reduced, because the light can be directed only to the points, where illumination is required.
- the LED unit has not to be tilted such, that its main emission direction is towards the illumination area far which also would increase a dazzling which is to be avoided particularly where traffic is involved.
- the lateral area is particularly formed as an at least partially tubular element.
- a tubular element in particular a geometric element is considered, which extends from a base area to a corresponding top area, which need not to be parallel or plain.
- This tubular element may be formed such that at least one edge along the direction from the first opening to the second opening is formed.
- distinct side walls can be formed. This allows an easy manufacturing and compact arranging of individual reflector elements in order to form a reflector.
- the shape of the illuminated area and its illumination profile can be defined.
- the side walls may be formed such that a surface normal, i.e. a line protruding perpendicularly from the surface, extending from at least one position of the inlet area crosses a first side wall of the lateral areal.
- the second side wall is formed such that a surface normal from any position of the inlet area does not cross the second side wall. This allows a strong asymmetric reflection of the light in order to illuminate illumination areas situated far off the axis of the reflector element.
- the first opening is positioned at least partially in a base area, from which the lateral area extends.
- a base area the manufacturing may be simplified, as the side walls can be extended from this base area.
- the reflector elements may be positioned more safely and accurate on a PCB (printed circuit board), on which the LED unit is arranged.
- At least a part of the first opening is confined by a light inlet area border from which the lateral area extends directly. This allows a compact setup of the reflector element, as no additional space for a base area is required. Thus compact reflectors with a plurality of reflection elements can be made, thus that also the corresponding lamps can be made relatively small or compact with a large number of reflection elements for a corresponding number of LED units
- At least parts of the lateral area of the reflector element are made of transparent material.
- a reflection layer is deposited on the back side of the lateral area.
- the outer side of the reflector element is meant.
- the thickness of the coating may vary due to the shape of the surface on which the coating is to be deposited.
- the asymmetrical reflector element it is very difficult to establish a uniform coating along the overhang of the at least first side wall. By depositing the reflective coating on the back side of the reflector element, material can be deposited uniformly on the region of the overhang. Further, an evenly reflection surface is established, because this surface is defined by the outer side of the reflector element.
- the lateral area is made of material with low absorption in the frequency regime of light emitted by the LED unit.
- the lateral area is designed very thin. Thin is understood in this context as to be seen in relation to dimensions necessary for the manufacture and/or in regard to the absorption length of the light emitted by the LED unit.
- acrylic is used, which is durable and cheap.
- a reflector which comprises at least a first asymmetrical reflector element, which is to be used with a first anisotropic light source, e.g. an LED unit.
- the lateral area of the at least first reflector element is formed such that light emitted by the first anisotropic light source or LED unit is reflected in order to illuminate a predetermined illumination area.
- the reflector comprises at least a second reflector element for use with a second light source.
- This light source might be an anisotropic light source, such as an LED unit or an isotropic light source, such as e.g. a halogen lamp.
- the lateral area of the second reflector element is formed such that light emitted by the second light source is reflected to illuminate a second predetermined illumination area.
- the first predetermined illumination area is different from the second predetermined illumination area.
- the region of illumination can be increased.
- the first predetermined illumination area is essentially identical to the second predetermined illumination area. This allows increasing the luminous intensity on this illumination area.
- the reflector comprises a plurality of reflector elements of which all illuminate the same predetermined illumination area.
- the reflector comprises a plurality of reflector elements of which all illuminate different illumination areas.
- the reflector comprises a plurality of reflector elements of which some illuminate the same illumination area and some illuminate a different illumination area.
- the at least one asymmetrical reflector element and at least one symmetrical reflector element are assembled symmetrically. This has the advantage that the detector can be used with a lighting unit, the light of which seems to be the same regardless if looked at from the left or right side. Thus a uniform illumination can be provided.
- a lighting unit is provided with at least one reflector having at least one reflector element. Further, the lighting unit comprises at least one anisotropic light source, in particular an LED unit, the light of which is reflected by the at least one reflector element and a control unit for controlling the light intensity of the at least one anisotropic light source in order to achieve a predetermined illumination.
- the illumination is particularly predetermined in regard to the overall area which is illuminated, the intensity of the illumination, the spatial dependency, the time behavior of the illumination and in the case of more LED units as anisotropic light sources, individual light intensity of each or a group of LED units.
- the illuminated area can be assembled by one or more illumination areas of an individual reflector element.
- the reflector comprises at least a second reflector element. Further, at least a second light source is used, the light of which is reflected by this at least second reflector element.
- the second light source might be an essentially isotropic light source or an anisotropic light source such as an LED unit.
- the control unit is adapted such that the light intensity of the at least one anisotropic light source and the at least second light source can be controlled separately, in order to achieve a predetermined illumination.
- first and second light sources an embodiment is provided, where the light intensity for each individual is controlled separately.
- all of first and second light sources are LED units.
- the intensity of each first and second light source is controlled jointly.
- the light intensity for a group of LED units, each made of at least one LED is controlled jointly.
- At least one of the first anisotropic light source, e.g. an LED unit, and/or the second light source is at least partially put through, i.e. emerged through, the first opening of at least one reflector element. This allows an easy positioning of the light source, e.g. the LED unit, in regard to the reflector element.
- the light source e.g. the LED unit is positioned behind the opening, i.e. it does not reach through the opening. Then the light of the LED radiates through the opening.
- This allows a definition of the emissive area of the LED unit by adapting the light inlet area. Further, incorrectness in manufacturing can be accounted for in the case of a number of LED units and a reflector having a plurality of reflector elements, because the position of the LED unit in regard to the light inlet opening can be shifted slightly.
- the light sources of a lighting unit are arranged symmetrically in regard to their position and/or type as well as the arrangement of at least an asymmetrical reflector element and a further reflector element.
- type is meant e.g. that the same blue colored LED units are used on the left side of a lamp unit as on the mirrored position on the right side.
- FIG. 1 a reflector 10 for an isotropically emitting light source 11 is depicted. Due to the essentially isotropic emission, the construction of the reflector 10 is fully determined by the position and characteristic of the desired light cone.
- an LED is described as an example of a light source with anisotropic emission characteristics.
- the reflector element, a reflector with at least one reflector element and a lighting unit using such a reflector can be used with any other anisotropic light source, such as e.g. OLEDs (organic light emitting diodes).
- OLEDs organic light emitting diodes
- a light emitting diode has an anisotropic emission characteristic. As shown in Figure 2 , the relative luminous intensity decreases with an increasing radiation angle.
- the radiation angle ⁇ (see Figure 2b ) is determined as the angle between a perpendicular line starting from the LED 25 and the direction of emission of light. Most of the light yield stems from a cone determined by a radiation angle of about 30° for most of the types of LEDs 25.
- the light emission is in a zero radiation angle is dominant. Therefore this emission direction is denoted as dominant emission direction.
- the light intensity in radiation angles different from zero is smaller that that in the dominant emission direction. These directions are therefore denoted as subordinate emission directions.
- an LED unit 26 is depicted.
- the LED unit 26 comprises several LEDs 25 and a filter 27 for providing the desired light temperature of the LEDs.
- an LED unit 26 is considered as an electrical component comprising one or more LEDs 25 which are controlled jointly and provided in one component.
- the LEDs 25 of Fig. 2c are a layer structure of approximately rectangular or squared form.
- the individual LEDs 25 are connected electrically such, that the LED unit 26 can be controlled as a whole.
- the LED unit 26 comprises either one LED 25 or at least two individual LEDs 25. What type LED unit 26 is chosen depends on the purpose of the illumination and also the commercial availability.
- the LED 25 or LED unit 26 is considered as a point source, i.e. that all radiation is emitted from one point. This simplification is justified for embodiments, where the dimensions of the LED 25 or the LED unit 26 are small in comparison to the dimensions of the reflector element 1.
- a reflector element 1 is depicted which allows to reflect the light emitted by an anisotropic light source, e.g. an LED unit 26 to a predetermined illumination area 8. This is shown schematically in Figure 3b .
- the asymmetric reflector element 1 of Figure 3a has a first opening 2 at a first end of the reflector element 1. In the vicinity of the first opening 2 the LED unit 26 is accommodated.
- the LED unit 26 may comprise one or more LEDs 25.
- the LED unit 26 can be either positioned behind the opening, thus, that at least a part of its light is radiated through the first opening 2. Alternatively, the LED unit 26 may be put through the first opening 2. From the first opening 2 a lateral area 3 is extending towards a second end of the reflector element 1 which has a second opening 7. The lateral area 3 may extend directly from the border of the first opening 2 or from a base area, in which the first opening 2 is situated.
- the shape of the second opening 7 determines essentially the shape of the illumination area 8 which is to be illuminated from light reflected in the reflector element 1.
- the second opening 7 is confined by a rim 4.
- the reflector element 1 is asymmetric in regard to an axis 27 extending from the first opening 2 towards the second opening 7.
- the second opening 7, which constitutes a light outlet opening of the reflector is basically of rectangular form.
- the lateral area 3 comprises four side walls 3a, 3b, 3c, 3d.
- the corners between at least some of the sidewalls may be sharp, that means that a fold or rebate is established, or rounded, that means that the first derivative of a curve describing the transition between one sidewall and the other is continuous.
- Fig. 3 a there is a rounded corner between side wall 3a and side wall 3b. Further there are sharp corners between the other side walls 3a and side wall 3d, side wall 3d and side wall 3c and side wall 3c and side wall 3 b.
- the reflector element 1 may comprise only rounded corners or only sharp corners or a first number of rounded corners and a second number of sharp corners.
- the reflector element has no corners but takes particularly the form of a circular or elliptical cylinder.
- the side wall 3a is formed such that a perpendicular line 5 extending from the light inlet area defined by the opening 2 crosses the side wall 3a.
- a perpendicular line 5 extending from the light inlet area defined by the opening 2 crosses the side wall 3a.
- the form of the side wall 3a is that of a continuous curve, that means it is not formed of distinct facets.
- the first derivative of a function describing the shape of the side wall 3a in a direction from the first opening 2 to the second opening 7 is continuous.
- the shape of the side wall 3a has a continuously decreasing curvature, thus that the first derivative is monotonically decreasing.
- the side wall 3 c is formed such, that a perpendicular line from any point of the light inlet area defined by the first opening 2 does not cross the side wall 3 c.
- This asymmetrical reflector element 1 enables the illumination of an illumination area situated far off an optical axis of the reflector element 1.
- the reflector element 1 does not need to be positioned above the area to be illuminated, the illumination area 8, which provides a larger degree of freedom in where to put illumination devices or lighting units using the asymmetrical reflector element 1.
- the reflector element 1 does not have to be inclined in order to illuminate the illumination area far off its optical axis. Inclining a reflector element 1 with a light source would lead to a dazzling of persons entering the cone of light defined by a lighting unit comprising a reflector with at least one reflector element 1 through which the light of at least one LED unit 26 is reflected.
- a reflector 20 comprising a plurality of reflector elements is depicted in order to achieve a desired illumination of an illumination area 8.
- On the left side 21 there is a plurality of asymmetric reflector elements 1, which reflect the light essentially in a same direction leftwards.
- In the middle there is a group of symmetrical reflector elements 22, which do not deflect the light in a direction off the axis of the symmetrical reflector element 22.
- On the right side 23 there is a further group of asymmetric reflector elements 1, which reflect the light essentially in a same direction rightwards.
- This reflector element used for a lighting unit the light of which can be seen only from the side to which the light is reflected.
- a dazzling is reduced, which is especially important for illumination of traffic zones. This is depicted in Figure 8 .
- a reflector 20 may comprise at least one group with at least one asymmetric reflector element 1.
- the number of groups with different reflection behavior depends on the illumination purpose. Further the asymmetric reflector elements 1 or symmetric reflector elements 22 of one group may be positioned in coherent or incoherent areas.
- the groups of reflector elements 1 which show the same asymmetric form illuminate an illumination area essentially not below the lighting unit.
- the reflector elements 22 of symmetric shape provide an illumination below the lighting unit.
- a reflector element 20 is depicted, which has only one asymmetric reflector element 1 directing the light to the left, one asymmetric reflector element 1 directing the light to the right and one symmetrical reflector element 22 which does not change the direction of light emission.
- a reflector 20 is provided having only one asymmetrical reflector element1.
- a further embodiment comprises more different types of asymmetrical reflector elements 1, thus that illumination is not provided only towards the left side or the right side or directly down from the lighting unit, but also in a plurality of other directions.
- FIG 6a a lighting unit according to the prior art is depicted.
- the areas on which the light sources are positioned are inclined in regard to the perpendicular of the optical axis 37.
- persons might be dazzled by the parallel beams of light emitted from light sources on these inclined areas.
- the illumination scenario is shown in Figure 6b taking the example of one asymmetric reflector element 1 reflecting the light of one LED unit 26. Due to the special asymmetric shape, the light can be directed far off the optical axis 37 without dazzling a person in this area.
- FIG. 7 an asymmetrical reflector element 1 is depicted in a cross sectional view.
- Parts of the first side wall 3a and a second side wall 3c are made of transparent material so that the light emitted by the LED unit 26, which is positioned on a PCB board 70, can go through side walls 3a, 3c until it is reflected at a reflection layer 71, which is deposited on the back side of at least parts of the lateral area 3.
- FIG 8 a plurality of lighting units 80 are depicted. From the view from the left side, which is taken for Figure 8 , only light reflected through the asymmetrical reflector elements 1 reflecting light towards the left can be seen. This further reduces a dazzling or unnecessary illumination of further areas.
- the reflector 20 used for the lighting unit 80 in Figure 8 is that of Figure 4 .
- the arrangement of the type of LED units 26 is symmetrical.
- the temperature color of the LED units 26 emitting through the symmetrical reflector elements 22 is yellow and their power is twice that of the LEDs in the middle.
- the asymmetrical reflector elements on the right hand and/ or left hand side LED units 26 with a blue temperature color are used. This provides a suitable illumination for railway stations or other traffic scenarios.
- FIG. 9 a cross sectional view of a lighting unit 80 is depicted.
- the reflector 20 with asymmetrical reflector elements 1 and symmetrical reflector element is positioned above LED units 26, which are arranged on a PCB 70.
- a control unit 90 is positioned on a opposite side of the PCB 70 for controlling the light of the individual LED units 26.
- the LED units 26 are controlled alone or jointly in a group of at least two LED units 26.
- all LED units deflecting light in essentially the same direction are controlled jointly.
- the asymmetrical reflector element by the asymmetrical reflector element the possibility is provided to create an illumination by an anisotropic light source also on areas to be illuminated which are situated far off an axis of the reflector element. This is done by deflecting the light beams in various radiation angles towards the illumination area by a lateral area forming at least partly an overhang.
- the beam in the dominant emission direction is deflected towards a first point of the illumination area 8 and at least two beams in subordinate emission directions are superimposed on the illumination area 8 in order to yield a high light intensity also at this points or positions of the illumination area 8.
- the illumination profile of this illumination area can be determined by a superposition of light beams. Further, the problem of dazzling can be strongly reduced in contrast to lighting systems where the light sources are positioned on an inclined area.
- a reflector 20 can be made comprising one or more of these asymmetrical reflector elements1.
- a lighting unit 80 comprises at least one reflector 20, at least one LED unit 26 and a control unit.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09172574A EP2309175A1 (de) | 2009-10-08 | 2009-10-08 | Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit |
EP10768684A EP2486323A1 (de) | 2009-10-08 | 2010-10-05 | Asymmetrisches reflektorelement zur reflexion von emittiertem licht aus einer led-einheit, reflektor mit mindestens einem reflektorelement und beleuchtungseinheit |
PCT/EP2010/006074 WO2011042157A1 (en) | 2009-10-08 | 2010-10-05 | Asymmetrical reflector element for reflecting light emitted by one led unit, reflector comprising at least one reflector element, and lighting unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09172574A EP2309175A1 (de) | 2009-10-08 | 2009-10-08 | Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2309175A1 true EP2309175A1 (de) | 2011-04-13 |
Family
ID=41682578
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09172574A Withdrawn EP2309175A1 (de) | 2009-10-08 | 2009-10-08 | Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit |
EP10768684A Withdrawn EP2486323A1 (de) | 2009-10-08 | 2010-10-05 | Asymmetrisches reflektorelement zur reflexion von emittiertem licht aus einer led-einheit, reflektor mit mindestens einem reflektorelement und beleuchtungseinheit |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10768684A Withdrawn EP2486323A1 (de) | 2009-10-08 | 2010-10-05 | Asymmetrisches reflektorelement zur reflexion von emittiertem licht aus einer led-einheit, reflektor mit mindestens einem reflektorelement und beleuchtungseinheit |
Country Status (2)
Country | Link |
---|---|
EP (2) | EP2309175A1 (de) |
WO (1) | WO2011042157A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150048353A (ko) * | 2013-10-28 | 2015-05-07 | 엘지이노텍 주식회사 | 차량용 조명장치 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011117156A1 (de) * | 2011-10-28 | 2013-05-02 | Tobias Grau | Leuchte |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20116022U1 (de) * | 2001-04-09 | 2002-01-24 | Bartenbach, Christian, Aldrans, Tirol | Leuchtenfeld zur Beleuchtung von Räumen mit einer Vielzahl von LEDs |
EP1746338A1 (de) * | 2005-07-22 | 2007-01-24 | ERCO Leuchten GmbH | Leuchte |
WO2009094819A1 (fr) * | 2008-01-22 | 2009-08-06 | Jie She | Unité d'éclairage à del anti-éblouissement |
-
2009
- 2009-10-08 EP EP09172574A patent/EP2309175A1/de not_active Withdrawn
-
2010
- 2010-10-05 EP EP10768684A patent/EP2486323A1/de not_active Withdrawn
- 2010-10-05 WO PCT/EP2010/006074 patent/WO2011042157A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20116022U1 (de) * | 2001-04-09 | 2002-01-24 | Bartenbach, Christian, Aldrans, Tirol | Leuchtenfeld zur Beleuchtung von Räumen mit einer Vielzahl von LEDs |
EP1746338A1 (de) * | 2005-07-22 | 2007-01-24 | ERCO Leuchten GmbH | Leuchte |
WO2009094819A1 (fr) * | 2008-01-22 | 2009-08-06 | Jie She | Unité d'éclairage à del anti-éblouissement |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150048353A (ko) * | 2013-10-28 | 2015-05-07 | 엘지이노텍 주식회사 | 차량용 조명장치 |
Also Published As
Publication number | Publication date |
---|---|
WO2011042157A1 (en) | 2011-04-14 |
EP2486323A1 (de) | 2012-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10222030B2 (en) | LED devices for offset wide beam generation | |
AU2016200773B2 (en) | Led roadway luminaire | |
EP2856014B1 (de) | Beleuchtungsvorrichtung mit einem optischen reflektor, leuchte mit einer solchen beleuchtungsvorrichtung und verfahren zur herstellung eines kompakten optischen reflektors | |
KR100765995B1 (ko) | 발광다이오드 광원 헤드 램프 | |
JP2009087596A (ja) | リフレクタ及び照明器具並びに照明モジュール | |
JP6222445B2 (ja) | 照明装置 | |
CN106813180A (zh) | 灯具的导光结构、行车灯及车辆 | |
JP2014089868A (ja) | 灯具 | |
JP2013175391A (ja) | 車両用前照灯 | |
US10139067B2 (en) | Laser car lamp | |
JP6292509B2 (ja) | 照明装置 | |
KR101487383B1 (ko) | 조합형 리플렉터 | |
US9862306B2 (en) | Vehicle decorative lighting device and vehicle lamp | |
KR20120090674A (ko) | 다중 반사갓을 구비한 조명장치 | |
EP2309175A1 (de) | Asymmetrisches Reflektorelement zum Reflektieren von durch eine LED-Einheit emittiertes Licht, Reflektor mit mindestens einem Reflektorelement und Beleuchtungseinheit | |
US8360605B2 (en) | LED luminaire | |
JP2019532470A (ja) | 非対称光分布を有する照明器具 | |
TWI670448B (zh) | 光源模組 | |
US8029156B2 (en) | Optical module for LED array | |
US11480314B2 (en) | Light collimation assembly and light emitting devices | |
JP5676822B2 (ja) | 街路灯用照明装置 | |
CN110402349B (zh) | 高视觉舒适道路和城市led照明 | |
KR102166854B1 (ko) | 차량용 헤드 램프 | |
JP6179766B2 (ja) | 照明器具 | |
KR200474585Y1 (ko) | 차량용 램프 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
17P | Request for examination filed |
Effective date: 20110608 |
|
17Q | First examination report despatched |
Effective date: 20110719 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120131 |