EP2307699A1 - Solenoid valve for a fuel injector and fuel injector - Google Patents

Solenoid valve for a fuel injector and fuel injector

Info

Publication number
EP2307699A1
EP2307699A1 EP09772227A EP09772227A EP2307699A1 EP 2307699 A1 EP2307699 A1 EP 2307699A1 EP 09772227 A EP09772227 A EP 09772227A EP 09772227 A EP09772227 A EP 09772227A EP 2307699 A1 EP2307699 A1 EP 2307699A1
Authority
EP
European Patent Office
Prior art keywords
solenoid valve
magnetic core
fuel
coil
valve according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09772227A
Other languages
German (de)
French (fr)
Other versions
EP2307699B1 (en
Inventor
Friedrich Howey
Dietrich Klauk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2307699A1 publication Critical patent/EP2307699A1/en
Application granted granted Critical
Publication of EP2307699B1 publication Critical patent/EP2307699B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/002Arrangement of leakage or drain conduits in or from injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059

Definitions

  • the invention relates to a solenoid valve, in particular a servo valve, for a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine according to the preamble of claim 1 and a fuel injector according to claim 11.
  • the fuel injector known from DE 10 2004 013 239 A1 comprises a solenoid valve designed as a servo valve for controlling the fuel pressure in a control chamber of the fuel injector. Via the fuel pressure in the control chamber, a stroke movement of an injection valve element is controlled, with which an injection opening of the fuel injector is opened or closed.
  • the solenoid valve comprises a magnetic assembly having an electrical coil and a magnet armature which, when the magnet assembly is energized, is adjusted in the direction of the magnet assembly and is spring-loaded in the closing direction when the magnet assembly is not energized by means of a valve closing spring.
  • the Abêtmenge is receiving a valve closing spring receiving Center bore guided centrally through the magnetic core to injector return port.
  • the invention is therefore based on the object to propose an alternative Native solenoid valve, which is provided in a simple manner at least one fuel return passage with uncritical cross-sectional area. Furthermore, the object is to propose a fuel injector with a correspondingly optimized solenoid valve.
  • the invention is based on the idea to form at least one of the axial, in the prior art cross-section of each a coil dome filled through holes in the magnetic core for the coil contact pins as fuel return passage through which fuel can flow in the direction of an injector return port with the solenoid valve open.
  • An embodiment is preferred in which both passage openings for the coil contact pins (connecting pins) are designed as fuel return channels, that is to say with a cross-section widened in comparison with the prior art, in order to thus achieve a symmetrical flow pattern.
  • fuel return ducts formed on and in addition to the passage openings are formed by axial grooves formed on the outer circumference of the magnetic core and receive no spin contact pins, so that when the solenoid valve is open the fuel is essentially exclusively supplied by at least one of the in each case one coil contact pin receiving through holes in the magnetic core in the direction injector return port can flow.
  • at least one passage opening receiving a bobbin contact pin as a fuel return passage, fuel return passage cross sections which are sufficiently large and selectable over a wide range can be realized in a surprisingly simple manner which may have a positive effect on the characteristic map and the counterpressure sensitivity of the solenoid valve, in particular because the pressure difference between the pressure above and below the magnetic core can be better controlled.
  • the diameter-enlarged, fuel return passages forming through holes for the coil contact pins can be introduced into the magnet core at no extra cost, in particular can be pressed into a green compact for a subsequent sintering process.
  • This also has a positive effect on a possibly used for use pressing tool for the magnetic core, since this is more stable due to the larger compared to the prior art, to be produced fürgangsö Maschinensquerroughe.
  • the solenoid valve greater freedom to distribute the fuel return channel cross-section against a support body provided for the magnetic core bearing surface, with the result that the inner circumference of the support body can be narrower, ie designed with a smaller diameter.
  • each a coil contact pin receiving through holes preferably all through holes, either completely disposed in a region radially outside the axial projection surface of the magnet armature, or from a region radially inward to radially outward in extends an area outside the axial projection surface of the armature.
  • a coil contact pin having a fuel return passage and forming a passage opening in a region radially outward of the axial projection surface of the stop disc is arranged or extends at least in a region radially outside this.
  • a maximum flow cross-section of the at least one fuel return channel can be achieved by the at least one through-hole penetrated by a Spulentrustpin is guided radially outward to the outer periphery of the magnetic core, so that of the passage opening partially restricted fuel return passage radially outward of the, in particular sleeve-shaped, carrier body is limited.
  • the at least one passage opening forming the fuel return passage does not extend radially to the outer circumference of the magnetic return passage. kerns, so that the passage opening or the fuel return passage is bounded radially outwardly of the magnetic core.
  • the latter embodiment has the advantage that a peripherally closed axial bearing surface for the magnetic core can be provided on the carrier body.
  • a spool lendom is arranged in the penetrated by a SpulenAuthpin through holes, in which the associated Spulentitlepin is also included in sections.
  • the coil dome preferably extends from the annular coil receiving in the axial direction and encapsulates the Spulen candypin sections in itself.
  • the maximum circumferential extent of the at least one passage opening forming the fuel return passage corresponds at least approximately to the maximum circumferential extent of a through-hole which passes through the passage opening.
  • a fuel return passage can be achieved with much smaller circumferential extent, whereby a total of a larger contact surface of the magnetic core can be provided on the carrier body.
  • the cross-sectional area of the passageway can be adjusted by the choice of the radial extent of the passageway.
  • the minimum cross-sectional area of the at least one fuel return channel ie the cross-sectional area
  • the cross-sectional area is closest Range of the fuel return channel at least 8 mm 2 , in particular at least 9 mm 2 , preferably at least 10 mm 2 , more preferably at least 11 mm 2 , more preferably at least 12 mm 2 , so as to realize a generous outflow volume flow.
  • an embodiment of the solenoid valve is preferred in which the armature does not abut directly against the magnet core, but against a stop disk (residual air disk) resting against the magnet core.
  • it makes sense to further divert the Ab Kunststoffmenge by at least one Spulentitlepin passage opening in the axial direction to the injector return, since the stopper plate hydraulically obstructs a central through hole in the magnetic core usually open solenoid valve.
  • the axial contact surface of the magnetic core on the carrier body is greater than 30 mm 2 .
  • the carrier surface on which the magnetic core can be supported on the carrier body is formed by an inner annular shoulder of the carrier body.
  • the support surface is preferably greater than 40 mm 2 , preferably greater than 50 mm 2 , particularly preferably greater than 60 mm 2 .
  • the invention also relates to a fuel injector for injecting fuel into a combustion chamber of a combustion engine. engine with a, in particular as a servo valve ⁇ nenden, designed according to the concept of the invention solenoid valve.
  • the solenoid valve is characterized in that at least one passage opening receiving a coil contact pin is designed as a fuel return passage.
  • each a coil contact pin on ⁇ receiving through openings are each formed as a fuel return passage.
  • 1 is a schematic representation of a trained as a servo valve solenoid valve for a fuel injector
  • Fig. 2 is a perspective view of the magnet assembly of the solenoid valve of FIG. 1 and
  • Fig. 3 shows a magnetic assembly of an alternative magnetic ⁇ valve in a view of the pole faces.
  • FIG. 1 shows an incomplete and schematic illustration of a magnetic valve 1 for a fuel injector not shown in any more detail, known per se, for example as described in DE 10 2004 013 239 A1, for injecting fuel into a combustion chamber of an internal combustion engine shown.
  • the solenoid valve 1 serves as a servo valve, with which the fuel pressure in a not shown, limited by an injection valve element control chamber is controllable. With the solenoid valve open, fuel can flow from the control chamber past a magnet armature 2 to an injector return port, not shown, arranged in the plane of the drawing above the solenoid valve 1.
  • the solenoid valve 1 comprises a magnet assembly 3, which is braced within the fuel injector, not shown.
  • the magnet assembly 3 comprises a sleeve-shaped carrier body 4 made of steel, which has a radially inner annular shoulder 5.
  • a magnetic core 6 is arranged, which is supported in the axial direction with an annular bearing surface formed by a participatpolabexcellent 7 on the one support surface for the magnetic core forming annular shoulder 5.
  • a participatpolabites 7 is an inner pole section 8.
  • Constantpolabites 7 and réellepolabites 8 are connected via a not visible in the sectional view of FIG. 1, annular yoke portion together.
  • the yoke section, the outer pole section 7 and the inner pole section 8 delimit an annular groove-shaped coil recess 9, which is open in the direction of the magnet armature 2.
  • an electric coil 10 magnetic coil
  • the electrical coil 10 comprises a winding support 11 which carries a wound winding wire 13 in an axially lower, groove-shaped section 12. Furthermore, two coil contact pins 14, 15 pointing in the axial direction are anchored in the winding support 11 and are electrically contacted with the winding wire 13 in a region axially above the winding support 11. For this purpose, the coil contact pins 14, 15 are partially wrapped by the winding wire 13, wherein the wrapped areas are each surrounded by a copper sleeve 16, 17 (welding sleeves).
  • Each copper sleeve 16, 17 is arranged in a coil mandrel 18, 19, wherein the coil mandrels 18, 19 extend in the axial direction beyond the annular groove-shaped Spulenaus principleung 9 in the direction of the drawing plane up through later to be explained through holes 21, 22 therethrough , As is apparent from Fig. 1, the copper sleeves 16, 17 and the winding wires 13 are received in a Kunststoffvergussmasse 20 which closes the winding wires 13 fuel-tight and forms a main component of the coil mandrels 18, 19.
  • each coil contact pin 14, 15 is associated with an aforementioned axial through opening 21, 22 in the cup-shaped magnet core 6, through which the coil contact pin 14, respectively, passes, in each case through a coil mandrel 18, 19. 15 is led out in the axial direction of the magnetic core 6.
  • Each axial passage opening 21, 22, which extends from an axially lower end side to an axially upper end side of the magnetic core 6, is formed in a radially outer region as a fuel return passage 23, 24, through the fuel with open solenoid valve 1 in the plane of the drawing in the axial direction can flow upward to an injector return not shown.
  • the magnet armature 2 with its upper armature plate section 25 in the plane of the drawing can not abut directly on the magnet core 6, more precisely on an inner pole surface 26 or outer pole surface 27 of the magnet core 6, but only on one axially between the armature core 6 Magnetic core 6 and the armature plate portion 25 of the armature 2 arranged stop plate 28 made of an amagnetic material. This closes when the solenoid valve is open, a central passage 29 in the magnetic core 6, which is bounded radially outward by the êtpolab songs 8 of the magnetic core 6.
  • a valve closing spring 30 is accommodated, which is supported in the axial direction, for example, on a Injektordeckel (housing part), not shown, and in the axial direction down the stop plate 28 by itself on the magnet assembly 3 facing end side of the armature 2 is supported.
  • the fuel return passages 23, 24 extend from a radially inner region, which lies radially within an axial, not shown projection surface of the armature plate section 25 of the armature 2, into a radially outer region which is radial lies outside the mentioned, axial projection surface of the armature plate portion 25 of the armature.
  • the magnet assembly 3 is shown in FIG. 1 in a perspective view obliquely from below.
  • the central passage 29 which does not serve here as a fuel return passage.
  • the fuel return passages 23, 24 can be seen, which are bounded radially inward by the electric coil 10 and in the circumferential direction by the outer pole section 7.
  • the fuel return ducts 23, 24 are formed in each case by a passage opening 21, 22 in the magnet core 6 open at the edge.
  • the circumferential extent of the fuel return ducts 23, 24 substantially corresponds to the circumferential extent of the respective coil dome 18, 19. Only in the radial outward direction do the passage openings 21, 22 extend beyond the coil domes 18, 19.
  • the cross-sectional contour of the fuel return ducts 23, 24 is formed substantially rectangular.
  • a pie-shaped (niksegmentför-mige) formation can be realized.
  • FIG. 3 shows an alternative embodiment of a magnetic assembly 3 for a solenoid valve 1 of a fuel injector in a view from below.
  • the central passage 29 of the radially outward of is limited to the réellepolabites 8, wherein radially between the inner pole portion 8 and a situatedpolabites 7, an annular Spulenaus Principleung 9 is formed.
  • FIG. 3 shows that the electrical coil 10 is designed to be thickened at two points offset from one another by 180 °.
  • the coil contact pins 14, 15, not shown in FIG. 3, and the associated coil domes 18, 19 are arranged.
  • the thickened regions are accommodated in axial passage openings 21, 22 which form a fuel return passage 23, 24 radially outside the electrical coil 10 in each case.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to a solenoid valve, especially a servo valve, for a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, comprising a magnet armature (2) which can be adjusted relative to a magnet assembly (3) comprising a magnetic core (6) mounted in a support body (4), said magnetic core comprising in a coil cavity (9) an electric coil (10) having at least two coil contact pins (14, 15), wherein a through-opening (21, 22) axially penetrating the magnetic core (6) is associated with each coil contact pin (14, 15). According to the invention, at least one of the through-openings (21, 22) is designed as a fuel return channel (23, 24). The invention also relates to a fuel injector.

Description

Beschreibungdescription
Titeltitle
Magnetventil für einen Kraftstoff-Injektor sowie Kraft- stoff-InjektorSolenoid valve for a fuel injector and fuel injector
Stand der TechnikState of the art
Die Erfindung betrifft ein Magnetventil, insbesondere ein Servoventil, für einen Kraftstoff-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1 sowie einen Kraftstoff-Injektor gemäß Anspruch 11.The invention relates to a solenoid valve, in particular a servo valve, for a fuel injector for injecting fuel into a combustion chamber of an internal combustion engine according to the preamble of claim 1 and a fuel injector according to claim 11.
Der aus der DE 10 2004 013 239 Al bekannte Kraftstoff- Injektor umfasst ein als Servoventil ausgebildetes Magnetventil zur Steuerung des Kraftstoffdrucks in einem Steuerraum des Kraftstoff-Injektors. Über den Kraftstoffdruck im Steuerraum wird eine Hubbewegung eines Einspritzventilele- mentes gesteuert, mit dem eine Einspritzöffnung des Kraftstoff-Injektors geöffnet oder geschlossen wird. Das Magnetventil umfasst eine, eine elektrische Spule aufweisende Magnetbaugruppe und einen Magnetanker, der bei Bestromung der Magnetbaugruppe in Richtung der Magnetbaugruppe ver- stellt und bei Nicht-Bestromung der Magnetbaugruppe mit Hilfe einer Ventilschließfeder in Schließrichtung feder- kraftbeaufschlagt wird.The fuel injector known from DE 10 2004 013 239 A1 comprises a solenoid valve designed as a servo valve for controlling the fuel pressure in a control chamber of the fuel injector. Via the fuel pressure in the control chamber, a stroke movement of an injection valve element is controlled, with which an injection opening of the fuel injector is opened or closed. The solenoid valve comprises a magnetic assembly having an electrical coil and a magnet armature which, when the magnet assembly is energized, is adjusted in the direction of the magnet assembly and is spring-loaded in the closing direction when the magnet assembly is not energized by means of a valve closing spring.
Beim Öffnen des Magnetventils wird ein Flüssigkeitsvolumen entspannt und als sogenannte Absteuermenge über einenWhen opening the solenoid valve, a liquid volume is expanded and as so-called Absteuermenge over a
Kraftstoff-Rücklaufanschluss abgelassen. Die Absteuermenge wird dabei über eine die Ventilschließfeder aufnehmende Mittelbohrung zentral durch den Magnetkern zum Injektor- Rücklaufanschluss geführt.Fuel return port drained. The Absteuermenge is receiving a valve closing spring receiving Center bore guided centrally through the magnetic core to injector return port.
Zur Minimierung von magnetischen Klebeffekten ist es be- kannt geworden, axial zwischen der Magnetbaugruppe und dem relativ zur Magnetbaugruppe verstellbaren Magnetanker eine Anschlagscheibe (Restluftscheibe) aufzunehmen, die einen bei dem aus der DE 10 2004 013 239 Al noch vorgesehenen Spalt axial zwischen der Magnetbaugruppe und dem Magnetan- ker hydraulisch verschließt, sodass bei geöffnetem Magnetventil die Mittelbohrung hydraulisch abgekoppelt ist. Zum Zuführen der Absteuermenge zum Injektorrücklaufanschluss ist es bei der Anmelderin als hausinterner Stand der Technik für den Fall des Vorsehens einer Anschlagscheibe be- kannt geworden, am Außenumfang des Magnetkerns eine oder mehrere, in axialer Richtung verlaufende Nut (en) vorzusehen, durch die die Absteuermenge in axialer Richtung zwischen Magnetkern und hülsenförmigen Trägerkörper zum Injektor-Rücklauf strömen kann. Bedingt durch eine gegebene Min- dest-Wandstärke des Magnetkerns sowie eine geforderte minimale Auflagefläche des Magnetkerns auf einer Ringschulter eines Trägerkörpers bei nach oben begrenztem Außendurchmesser des Magnetkerns ist nur ein sehr begrenzter Durchfluss möglich, sodass sich Durchmessertoleranzen am Trägerkörper und am Magnetkern stark auf den Durchflussquerschnitt der gebildeten Nuten auswirken. Ebenso ist die Auflagefläche des Magnetkerns am Trägerkörper stark limitiert, sodass die Gefahr des Einsinkens des Magnetkerns gegeben ist, was wiederum eine unerwünschte Positionsänderung des Magnetkerns im Trägerkörper zur Folge haben kann, die sich auf die Funktion des Magnetventils auswirken würde. Offenbarung der Erfindung Technische AufgabeIn order to minimize magnetic adhesion effects, it has become known to receive a stop disc (residual air disc) axially between the magnet assembly and the magnet armature which can be adjusted relative to the magnet assembly, the axial gap between the magnet assembly and the gap provided in DE 10 2004 013 239 A1 the hydraulic armature closes hydraulically, so that when the solenoid valve is open, the central bore is hydraulically decoupled. For supplying the Absteuermenge to Injektorrücklaufanschluss it is in the applicant as in-house state of the art for the case of providing a stop disc has become known to provide on the outer circumference of the magnetic core one or more, extending in the axial direction groove (s) through which the Absteuermenge can flow to the injector return in the axial direction between the magnetic core and sleeve-shaped carrier body. Due to a given minimum wall thickness of the magnetic core and a required minimum contact surface of the magnetic core on an annular shoulder of a carrier body with limited outer diameter of the magnetic core only a very limited flow is possible, so that diameter tolerances on the carrier body and the magnetic core strongly on the flow cross-section impact the grooves formed. Likewise, the bearing surface of the magnetic core on the carrier body is strongly limited, so that the risk of sinking of the magnetic core is given, which in turn may result in an undesirable change in position of the magnetic core in the carrier body, which would affect the function of the solenoid valve. DISCLOSURE OF THE INVENTION Technical Problem
Der Erfindung liegt daher die Aufgabe zugrunde, ein alter- natives Magnetventil vorzuschlagen, bei dem auf einfache Weise mindestens ein Kraftstoffrücklaufkanal mit unkritischer Querschnittsfläche vorgesehen ist. Ferner besteht die Aufgabe darin, einen Kraftstoff-Injektor mit einem entsprechend optimierten Magnetventil vorzuschlagen.The invention is therefore based on the object to propose an alternative Native solenoid valve, which is provided in a simple manner at least one fuel return passage with uncritical cross-sectional area. Furthermore, the object is to propose a fuel injector with a correspondingly optimized solenoid valve.
Technische LösungTechnical solution
Diese Aufgabe wird hinsichtlich des Magnetventils mit den Merkmalen des Anspruchs 1 und hinsichtlich des Kraftstoff- Injektors mit den Merkmalen des Anspruchs 11 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen.This object is achieved with regard to the solenoid valve having the features of claim 1 and with regard to the fuel injector having the features of claim 11. Advantageous developments of the invention are specified in the subclaims. All combinations of at least two features disclosed in the description, the claims and / or the figures fall within the scope of the invention.
Der Erfindung liegt der Gedanke zugrunde, mindestens eine der axialen, im Stand der Technik querschnittlich von jeweils einem Spulendom ausgefüllten Durchgangsöffnungen im Magnetkern für die Spulenkontaktpins als Kraftstoffrück- laufkanal auszubilden, durch den bei geöffnetem Magnetventil Kraftstoff in Richtung eines Injektor- Rücklaufanschlusses abströmen kann. Bevorzugt ist eine Ausführungsform, bei der beide Durchgangsöffnungen für die Spulenkontaktpins (Anschlusspins) als Kraftstoff- Rücklaufkanäle, also mit einem im Vergleich zum Stand der Technik erweiterten Querschnitt ausgebildet sind, um somit ein symmetrisches Strömungsbild zu erreichen. Besonders be- vorzugt ist eine Ausführungsform, bei der auf zusätzlich zu den Durchgangsöffnungen vorgesehene, von am Außenumfang des Magnetkerns angeordneten Axialnuten gebildete, keine Spu- lenkontaktpins aufnehmende, Kraftstoff-Rücklaufkanäle ver- ziehtet wird, sodass bei geöffnetem Magnetventil der Kraftstoff im Wesentlichen ausschließlich durch mindestens eine der jeweils einen Spulenkontaktpin aufnehmenden Durchgangsöffnungen im Magnetkern in Richtung Injektor- Rücklaufanschluss strömen kann. Durch die Ausbildung min- destens einer einen Spulenkontaktpin aufnehmenden Durchgangsöffnung als Kraftstoffrücklaufkanal können auf überraschend einfache Weise ausreichend große, in weiten Grenzen wählbare, Kraftstoffrücklaufkanalquerschnitte realisiert werden, die sich ggf. im Kennfeld und der Gegendruckemp- findlichkeit des Magnetventils positiv auswirken, insbesondere deshalb, weil die Druckdifferenz zwischen dem Druck oberhalb und unterhalb des Magnetkerns besser gesteuert werden kann. Von besonderem Vorteil ist es, dass die durchmesservergrößerten, Kraftstoffrücklaufkanäle bildenden Durchgangsöffnungen für die Spulenkontaktpins ohne Mehrkosten in den Magnetkern einbringbar, insbesondere in einen Grünling für einen nachfolgenden Sinterprozess einpressbar sind. Dies wirkt sich auch positiv auf ein ggf. zum Einsatz kommendes Presswerkzeug für den Magnetkern aus, da dieses aufgrund der im Vergleich zum Stand der Technik größeren, herzustellenden Durchgangsöffnungsquerschnitte stabiler wird. Darüber hinaus werden bei der Auslegung des Magnetventils größere Freiheiten zur Verteilung des Kraftstoffrücklaufkanalquerschnittes gegenüber einer vom Trägerkörper für den Magnetkern bereitgestellten Auflagefläche erhalten, mit der Folge, dass der Innenumfang des Trägerkörpers enger, d.h. mit einem geringeren Durchmesser ausgelegt werden kann . In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass zumindest eine der jeweils einen Spulenkontaktpin aufnehmenden Durchgangsöffnungen, vorzugsweise sämtliche Durchgangsöffnungen, entweder vollständig in einem Bereich radial außerhalb der axialen Projektionsfläche des Magnetankers angeordnet ist, oder sich von einem Bereich radial innen bis nach radial außen in einen Bereich außerhalb der axialen Projektionsfläche des Magnetankers erstreckt. Auf diese Weise wird bei geöffnetem Magnetventil ein optimaler Zuströmungspfad für Kraftstoff zu der entsprechenden Durchgangsöffnung bereitgestellt. Im Falle des Vorsehens einer, insbesondere amagnetischen, Anschlagsscheibe (Restluftscheibe) in einem Bereich axial zwischen dem Magnetkern und dem Magnetanker ist es bevorzugt, wenn die mindestens eine, einen Spulenkontaktpin aufweisende und einen Kraftstoffrücklaufkanal bildende Durchgangsöffnung in einem Bereich radial außerhalb der axialen Projektionsfläche der Anschlagscheibe angeordnet ist bzw. sich zumindest in einen Bereich radial außerhalb dieser erstreckt.The invention is based on the idea to form at least one of the axial, in the prior art cross-section of each a coil dome filled through holes in the magnetic core for the coil contact pins as fuel return passage through which fuel can flow in the direction of an injector return port with the solenoid valve open. An embodiment is preferred in which both passage openings for the coil contact pins (connecting pins) are designed as fuel return channels, that is to say with a cross-section widened in comparison with the prior art, in order to thus achieve a symmetrical flow pattern. Particularly An embodiment is preferred in which fuel return ducts formed on and in addition to the passage openings are formed by axial grooves formed on the outer circumference of the magnetic core and receive no spin contact pins, so that when the solenoid valve is open the fuel is essentially exclusively supplied by at least one of the in each case one coil contact pin receiving through holes in the magnetic core in the direction injector return port can flow. By forming at least one passage opening receiving a bobbin contact pin as a fuel return passage, fuel return passage cross sections which are sufficiently large and selectable over a wide range can be realized in a surprisingly simple manner which may have a positive effect on the characteristic map and the counterpressure sensitivity of the solenoid valve, in particular because the pressure difference between the pressure above and below the magnetic core can be better controlled. It is particularly advantageous that the diameter-enlarged, fuel return passages forming through holes for the coil contact pins can be introduced into the magnet core at no extra cost, in particular can be pressed into a green compact for a subsequent sintering process. This also has a positive effect on a possibly used for use pressing tool for the magnetic core, since this is more stable due to the larger compared to the prior art, to be produced Durchgangsöffnungsquerschnitte. In addition, in the design of the solenoid valve greater freedom to distribute the fuel return channel cross-section against a support body provided for the magnetic core bearing surface, with the result that the inner circumference of the support body can be narrower, ie designed with a smaller diameter. In a further development of the invention is advantageously provided that at least one of each a coil contact pin receiving through holes, preferably all through holes, either completely disposed in a region radially outside the axial projection surface of the magnet armature, or from a region radially inward to radially outward in extends an area outside the axial projection surface of the armature. In this way, with the solenoid valve open, an optimum fuel inflow path is provided to the corresponding port. In the case of providing a, in particular non-magnetic, stop disc (residual air disc) in a region axially between the magnetic core and the armature, it is preferred if the at least one, a coil contact pin having a fuel return passage and forming a passage opening in a region radially outward of the axial projection surface of the stop disc is arranged or extends at least in a region radially outside this.
Ein maximaler Durchflussquerschnitt des mindestens einen Kraftstoffrücklaufkanals kann erzielt werden, indem die mindestens eine, von einem Spulenkontaktpin durchsetzte Durchgangsöffnung bis nach radial außen an den Außenumfang des Magnetkerns geführt ist, sodass der von der Durchgangsöffnung abschnittsweise begrenzte Kraftstoffrücklaufkanal radial außen von dem, insbesondere hülsenförmigen, Trägerkörper begrenzt ist.A maximum flow cross-section of the at least one fuel return channel can be achieved by the at least one through-hole penetrated by a Spulenkontaktpin is guided radially outward to the outer periphery of the magnetic core, so that of the passage opening partially restricted fuel return passage radially outward of the, in particular sleeve-shaped, carrier body is limited.
Bei einer alternativen Ausführungsform erstreckt sich die mindestens eine den Kraftstoffrücklaufkanal bildende Durchgangsöffnung nicht radial bis zum Außenumfang des Magnet- kerns, sodass die Durchgangsöffnung bzw. der Kraftstoffrücklaufkanal radial außen von dem Magnetkern begrenzt ist. Letztere Ausführungsform hat den Vorteil, dass eine um- fangsgeschlossene axiale Auflagefläche für den Magnetkern am Trägerkörper bereitgestellt werden kann.In an alternative embodiment, the at least one passage opening forming the fuel return passage does not extend radially to the outer circumference of the magnetic return passage. kerns, so that the passage opening or the fuel return passage is bounded radially outwardly of the magnetic core. The latter embodiment has the advantage that a peripherally closed axial bearing surface for the magnetic core can be provided on the carrier body.
In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass in den von einem Spulenkontaktpin durchsetzten Durchgangsöffnungen zusätzlich zu dem Spulenkontaktpin ein Spu- lendom angeordnet ist, in dem der zugehörige Spulenkontaktpin auch abschnittsweise aufgenommen ist. Dabei erstreckt sich der Spulendom vorzugsweise ausgehend von der ringförmigen Spulenaufnahme in axialer Richtung und kapselt den Spulenkontaktpin abschnittsweise in sich ein.In a further development of the invention is advantageously provided that in addition to the coil contact pin a spool lendom is arranged in the penetrated by a Spulenkontaktpin through holes, in which the associated Spulenkontaktpin is also included in sections. In this case, the coil dome preferably extends from the annular coil receiving in the axial direction and encapsulates the Spulenkontaktpin sections in itself.
Bevorzugt ist eine Ausführungsform, bei der die maximale Umfangserstreckung der mindestens einen, den Kraftstoffrücklaufkanal bildenden, Durchgangsöffnung zumindest näherungsweise der maximalen Umfangserstreckung eines ihr zuge- ordneten, die Durchgangsöffnung durchsetzenden Spulendoms entspricht. Im Gegensatz zu einer Lösung mit am Außenumfang des Magnetkerns vorgesehenen, sich in Umfangsrichtung erstreckenden Axialnuten kann hierdurch ein Kraftstoffrück- laufkanal mit wesentlich geringerer Umfangserstreckung er- zielt werden, wodurch insgesamt eine größere Anlagefläche des Magnetkerns am Trägerkörper bereitgestellt werden kann. Die Querschnittsfläche des Durchgangskanals kann durch die Wahl der Radialerstreckung der Durchgangsöffnung eingestellt werden.An embodiment is preferred in which the maximum circumferential extent of the at least one passage opening forming the fuel return passage corresponds at least approximately to the maximum circumferential extent of a through-hole which passes through the passage opening. In contrast to a solution with provided on the outer circumference of the magnetic core, extending in the circumferential direction Axialnuten hereby a fuel return passage can be achieved with much smaller circumferential extent, whereby a total of a larger contact surface of the magnetic core can be provided on the carrier body. The cross-sectional area of the passageway can be adjusted by the choice of the radial extent of the passageway.
Besonders bevorzugt ist eine Ausführungsform, bei der die minimale Querschnittsfläche des mindestens einen Kraftstoffrücklaufkanals, also die Querschnittsfläche am engsten Bereich des Kraftstoffrücklaufkanals mindestens 8 mm2, insbesondere mindestens 9 mm2, vorzugsweise mindestens 10 mm2, besonders bevorzugt mindestens 11 mm2, besonders bevorzugt mindestens 12 mm2 beträgt, um somit einen großzügigen Abflussvolumenstrom zu realisieren.Particularly preferred is an embodiment in which the minimum cross-sectional area of the at least one fuel return channel, ie the cross-sectional area, is closest Range of the fuel return channel at least 8 mm 2 , in particular at least 9 mm 2 , preferably at least 10 mm 2 , more preferably at least 11 mm 2 , more preferably at least 12 mm 2 , so as to realize a generous outflow volume flow.
Wie bereits erwähnt ist eine Ausführungsform des Magnetventils bevorzugt, bei der der Magnetanker nicht unmittelbar am Magnetkern, sondern an einer am Magnetkern anliegenden Anschlagscheibe (Restluftscheibe) anschlägt. Insbesondere bei einer derartigen Ausführungsform ist es sinnvoll, die Absteuermenge durch mindestens eine einen Spulenkontaktpin aufnehmende Durchgangsöffnung in axialer Richtung weiter hin zum Injektorrücklauf zu leiten, da die Anschlagscheibe in der Regel bei geöffnetem Magnetventil eine zentrische Durchgangsöffnung im Magnetkern hydraulisch versperrt.As already mentioned, an embodiment of the solenoid valve is preferred in which the armature does not abut directly against the magnet core, but against a stop disk (residual air disk) resting against the magnet core. In particular, in such an embodiment, it makes sense to further divert the Absteuermenge by at least one Spulenkontaktpin passage opening in the axial direction to the injector return, since the stopper plate hydraulically obstructs a central through hole in the magnetic core usually open solenoid valve.
Besonders bevorzugt ist eine Ausführungsform, bei der die axiale Anlagefläche des Magnetkerns am Trägerkörper größer als 30 mm2 ist. Bevorzugt wird die Trägerfläche, an der sich der Magnetkern am Trägerkörper abstützen kann von einer inneren Ringschulter des Trägerkörpers gebildet. Bevorzugt ist die Trägerfläche größer als 40 mm2, bevorzugt größer als 50 mm2, besonders bevorzugt größer als 60 mm2.Particularly preferred is an embodiment in which the axial contact surface of the magnetic core on the carrier body is greater than 30 mm 2 . Preferably, the carrier surface on which the magnetic core can be supported on the carrier body is formed by an inner annular shoulder of the carrier body. The support surface is preferably greater than 40 mm 2 , preferably greater than 50 mm 2 , particularly preferably greater than 60 mm 2 .
Insbesondere dann, wenn die Umfangskontur des Kraftstoffrücklaufkanals zumindest näherungsweise rechteckig gewählt wird, wird eine vergleichsweise geringe Toleranzabhängigkeit der Querschnittsfläche des Kraftstoffrücklaufkanals erhalten.In particular, when the circumferential contour of the fuel return passage is at least approximately rectangular, a comparatively small tolerance dependence of the cross-sectional area of the fuel return passage is obtained.
Die Erfindung führt auch auf einen Kraftstoff-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brenn- kraftmaschine mit einem, insbesondere als Servoventil die¬ nenden, nach dem Konzept der Erfindung ausgebildeten Magnetventil. Das Magnetventil zeichnet sich dadurch aus, dass zumindest eine einen Spulenkontaktpin aufnehmende Durch- gangsöffnung als Kraftstoffrücklaufkanal ausgebildet ist. Bevorzugt sind beide, jeweils einen Spulenkontaktpin auf¬ nehmende Durchgangsöffnungen jeweils als Kraftstoffrücklaufkanal ausgebildet. Ganz besonders bevorzugt sind zu¬ sätzlich zu der einen Durchgangsöffnung oder zu den beiden Durchgangsöffnungen keine weiteren axialen Kraftstoff- Rücklaufkanäle vorgesehen, durch die Kraftstoff bei geöff¬ netem Magnetventil von der dem Magnetanker zugewandten Seite des Magnetkerns her in Richtung Injektor- Rücklaufanschluss strömen kann.The invention also relates to a fuel injector for injecting fuel into a combustion chamber of a combustion engine. engine with a, in particular as a servo valve ¬ nenden, designed according to the concept of the invention solenoid valve. The solenoid valve is characterized in that at least one passage opening receiving a coil contact pin is designed as a fuel return passage. Preferably, both, each a coil contact pin on ¬ receiving through openings are each formed as a fuel return passage. Very particular preference is given to no further axial fuel return ducts provided for ¬ additionally to the one through-hole or the two through holes, is allowed to flow in the direction of injector return port through which fuel at geöff ¬ NetEm solenoid valve from the side facing the magnet armature of the magnet core forth.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen. Diese zeigen in:Further advantages, features and details of the invention will become apparent from the following description of preferred embodiments and from the drawings. These show in:
Fig. 1 eine schematische Darstellung eines als Servoventil ausgebildeten Magnetventils für einen Kraft- stoff-Injektor,1 is a schematic representation of a trained as a servo valve solenoid valve for a fuel injector,
Fig. 2 eine perspektivische Ansicht der Magnetbaugruppe des Magnetventils gemäß Fig. 1 undFig. 2 is a perspective view of the magnet assembly of the solenoid valve of FIG. 1 and
Fig. 3 eine Magnetbaugruppe eines alternativen Magnet¬ ventils in einer Ansicht auf die Polflächen. Ausführungsformen der ErfindungFig. 3 shows a magnetic assembly of an alternative magnetic ¬ valve in a view of the pole faces. Embodiments of the invention
In Fig. 1 ist in einer unvollständigen und schematischen Darstellung ein Magnetventil 1 für einen nicht weiter dar- gestellten, an sich bekannten, beispielsweise wie in der DE 10 2004 013 239 Al ausgebildeten, Kraftstoff-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine gezeigt. Das Magnetventil 1 dient als Servoventil, mit dem der Kraftstoffdruck in einem nicht ge- zeigten, von einem Einspritzventilelement begrenzten Steuerraum steuerbar ist. Bei geöffnetem Magnetventil kann Kraftstoff aus dem Steuerraum an einem Magnetanker 2 vorbei zu einem nicht gezeigten, in der Zeichnungsebene oberhalb des Magnetventils 1 angeordneten Injektor-Rücklaufanschluss strömen.1 shows an incomplete and schematic illustration of a magnetic valve 1 for a fuel injector not shown in any more detail, known per se, for example as described in DE 10 2004 013 239 A1, for injecting fuel into a combustion chamber of an internal combustion engine shown. The solenoid valve 1 serves as a servo valve, with which the fuel pressure in a not shown, limited by an injection valve element control chamber is controllable. With the solenoid valve open, fuel can flow from the control chamber past a magnet armature 2 to an injector return port, not shown, arranged in the plane of the drawing above the solenoid valve 1.
Das Magnetventil 1 umfasst eine Magnetbaugruppe 3, die innerhalb des nicht gezeigten Kraftstoff-Injektors verspannt ist. Die Magnetbaugruppe 3 umfasst einen hülsenförmigen Trägerkörper 4 aus Stahl, der eine radial innere Ringschulter 5 aufweist. Innerhalb des Trägerkörpers 4 ist ein Magnetkern 6 angeordnet, der sich in axialer Richtung mit einer von einem Außenpolabschnitt 7 gebildeten ringförmigen Auflagefläche auf der eine Trägerfläche für den Magnetkern bildenden Ringschulter 5 abstützt. Mit Radialabstand zu dem Außenpolabschnitt 7 befindet sich ein Innenpolabschnitt 8. Außenpolabschnitt 7 und Innenpolabschnitt 8 sind über einen in der Schnittdarstellung gemäß Fig. 1 nicht sichtbaren, ringförmigen Jochabschnitt miteinander verbunden. Der Joch- abschnitt, der Außenpolabschnitt 7 sowie der Innenpolabschnitt 8 begrenzen eine ringnutförmige Spulenausnehmung 9, die in Richtung des Magnetankers 2 offen ist. Innerhalb der Spulenausnehmung 9 ist eine elektrische Spule 10 (Magnet- spule) angeordnet, die bei Bestromung ein magnetisches Feld erzeugt, das eine Verstellbewegung des Magnetankers 2 in Richtung der Magnetbaugruppe 3 verursacht.The solenoid valve 1 comprises a magnet assembly 3, which is braced within the fuel injector, not shown. The magnet assembly 3 comprises a sleeve-shaped carrier body 4 made of steel, which has a radially inner annular shoulder 5. Within the carrier body 4, a magnetic core 6 is arranged, which is supported in the axial direction with an annular bearing surface formed by a Außenpolabschnitt 7 on the one support surface for the magnetic core forming annular shoulder 5. With radial distance to the Außenpolabschnitt 7 is an inner pole section 8. Außenpolabschnitt 7 and Innenpolabschnitt 8 are connected via a not visible in the sectional view of FIG. 1, annular yoke portion together. The yoke section, the outer pole section 7 and the inner pole section 8 delimit an annular groove-shaped coil recess 9, which is open in the direction of the magnet armature 2. Within the Spulenausnehmung 9 is an electric coil 10 (magnetic coil), which generates a magnetic field when energized, which causes an adjustment movement of the armature 2 in the direction of the magnet assembly 3.
Die elektrische Spule 10 umfasst einen Wicklungsträger 11, der in einem axial unteren, nutförmigen Abschnitt 12 einen gewickelten Wicklungsdraht 13 trägt. Ferner sind in dem Wicklungsträger 11 zwei in axiale Richtung weisende Spulen- kontaktpins 14, 15 verankert, die in einem Bereich axial oberhalb des Wicklungsträgers 11 mit dem Wicklungsdraht 13 elektrisch kontaktiert sind. Hierzu sind die Spulenkontakt- pins 14, 15 bereichsweise von dem Wicklungsdraht 13 umwickelt, wobei die umwickelten Bereiche von jeweils einer Kupferhülse 16, 17 (Schweißhülsen) umgeben sind. Jede Kup- ferhülse 16, 17 ist in einem Spulendom 18, 19 angeordnet, wobei sich die Spulendome 18, 19 in axialer Richtung über die ringnutförmige Spulenausnehmung 9 hinaus in Richtung in der Zeichnungsebene nach oben durch später noch zu erläuternde Durchgangsöffnungen 21, 22 hindurch erstrecken. Wie sich aus Fig. 1 ergibt, sind die Kupferhülsen 16, 17 sowie die Wicklungsdrähte 13 in einer Kunststoffvergussmasse 20 aufgenommen, die die Wicklungsdrähte 13 kraftstoffdicht verschließt und einen Hauptbestandteil der Spulendome 18, 19 bildet.The electrical coil 10 comprises a winding support 11 which carries a wound winding wire 13 in an axially lower, groove-shaped section 12. Furthermore, two coil contact pins 14, 15 pointing in the axial direction are anchored in the winding support 11 and are electrically contacted with the winding wire 13 in a region axially above the winding support 11. For this purpose, the coil contact pins 14, 15 are partially wrapped by the winding wire 13, wherein the wrapped areas are each surrounded by a copper sleeve 16, 17 (welding sleeves). Each copper sleeve 16, 17 is arranged in a coil mandrel 18, 19, wherein the coil mandrels 18, 19 extend in the axial direction beyond the annular groove-shaped Spulenausnehmung 9 in the direction of the drawing plane up through later to be explained through holes 21, 22 therethrough , As is apparent from Fig. 1, the copper sleeves 16, 17 and the winding wires 13 are received in a Kunststoffvergussmasse 20 which closes the winding wires 13 fuel-tight and forms a main component of the coil mandrels 18, 19.
Wie sich weiter aus Fig. 1 ergibt, ist jedem Spulenkontakt- pin 14, 15 eine zuvor erwähnte, von jeweils einem Spulendom 18, 19 durchsetzte, axiale Durchgangsöffnung 21, 22 im topfförmigen Magnetkern 6 zugeordnet, durch die der jewei- lige Spulenkontaktpin 14, 15 in axialer Richtung aus dem Magnetkern 6 herausgeführt ist. Jede axiale Durchgangsöffnung 21, 22, die von einer axial unteren Stirnseite bis zu einer axial oberen Stirnseite des Magnetkerns 6 reicht, ist in einem radial äußeren Bereich als Kraftstoffrücklaufkanal 23, 24 ausgebildet, durch den Kraftstoff bei geöffnetem Magnetventil 1 in der Zeichnungsebene in axialer Richtung nach oben zu einem nicht gezeigten Injektor-Rücklauf strö- men kann.As is further apparent from FIG. 1, each coil contact pin 14, 15 is associated with an aforementioned axial through opening 21, 22 in the cup-shaped magnet core 6, through which the coil contact pin 14, respectively, passes, in each case through a coil mandrel 18, 19. 15 is led out in the axial direction of the magnetic core 6. Each axial passage opening 21, 22, which extends from an axially lower end side to an axially upper end side of the magnetic core 6, is formed in a radially outer region as a fuel return passage 23, 24, through the fuel with open solenoid valve 1 in the plane of the drawing in the axial direction can flow upward to an injector return not shown.
Wie sich aus Fig. 1 ergibt, kann der Magnetanker 2 mit seinem in der Zeichnungsebene oberen Ankerplattenabschnitt 25 nicht unmittelbar am Magnetkern 6, genauer an einer Innen- polfläche 26 oder einer Außenpolflache 27 des Magnetkerns 6, anschlagen, sondern lediglich an einer axial zwischen dem Magnetkern 6 und dem Ankerplattenabschnitt 25 des Magnetankers 2 angeordneten Anschlagscheibe 28 aus einem amagnetischen Material. Diese verschließt bei geöffnetem Magnetventil einen zentrischen Durchgangskanal 29 im Magnetkern 6, der radial außen von dem Innenpolabschnitt 8 des Magnetkerns 6 begrenzt wird. Der Kraftstoff strömt also bei geöffnetem Magnetventil 1 am Magnetanker 2 in axialer Richtung vorbei zu den von den Durchgangsöffnungen 21, 22 ge- bildeten Kraftstoff-Rücklaufkanälen 23, 24, die in dem gezeigten Ausführungsbeispiel radial innen von der elektrischen Spule 10, in den Umfangsrichtungen von dem Magnetkern 6, genauer von dem Außenpolabschnitt 7 und radial außen von dem Trägerkörper 4, begrenzt werden.As can be seen from FIG. 1, the magnet armature 2 with its upper armature plate section 25 in the plane of the drawing can not abut directly on the magnet core 6, more precisely on an inner pole surface 26 or outer pole surface 27 of the magnet core 6, but only on one axially between the armature core 6 Magnetic core 6 and the armature plate portion 25 of the armature 2 arranged stop plate 28 made of an amagnetic material. This closes when the solenoid valve is open, a central passage 29 in the magnetic core 6, which is bounded radially outward by the Innenpolabschnitt 8 of the magnetic core 6. When the solenoid valve 2 is open, the fuel thus flows in the axial direction past the fuel return ducts 23, 24 formed by the passage openings 21, 22, which in the exemplary embodiment shown are radially inward of the electric coil 10 in the circumferential directions of the magnetic core 6, more precisely from the Außenpolabschnitt 7 and radially outside of the carrier body 4, are limited.
In den Durchgangskanal 29 ist eine Ventilschließfeder 30 aufgenommen, die sich in axialer Richtung beispielsweise an einem nicht gezeigten Injektordeckel (Gehäuseteil) abstützt und in axialer Richtung nach unten die Anschlagscheibe 28 durch sich an der der Magnetbaugruppe 3 zugewandten Stirnseite des Magnetankers 2 abstützt. Wie sich weiter aus Fig. 1 ergibt, erstrecken sich die Kraftstoff-Rücklaufkanäle 23, 24 von einem radial inneren Bereich, der radial innerhalb einer axialen, nicht eingezeichneten Projektionsfläche des Ankerplattenabschnittes 25 des Magnetankers 2 liegt, bis in einen radial äußeren Bereich, der radial außerhalb der erwähnten, axialen Projektionsfläche des Ankerplattenabschnitts 25 des Magnetankers liegt .In the passage 29, a valve closing spring 30 is accommodated, which is supported in the axial direction, for example, on a Injektordeckel (housing part), not shown, and in the axial direction down the stop plate 28 by itself on the magnet assembly 3 facing end side of the armature 2 is supported. As is further apparent from FIG. 1, the fuel return passages 23, 24 extend from a radially inner region, which lies radially within an axial, not shown projection surface of the armature plate section 25 of the armature 2, into a radially outer region which is radial lies outside the mentioned, axial projection surface of the armature plate portion 25 of the armature.
In Fig. 2 ist die Magnetbaugruppe 3 gemäß Fig. 1 in einer perspektivischen Ansicht von schräg unten gezeigt. Zu erkennen ist der zentrische Durchgangskanal 29, der hier nicht als Kraftstoffrücklaufkanal dient. Ferner sind die Kraftstoff-Rücklaufkanäle 23, 24 zu erkennen, die radial innen von der elektrischen Spule 10 und in Umfangsrichtung von dem Außenpolabschnitt 7 begrenzt werden. Die Kraftstoff-Rücklaufkanäle 23, 24 werden gebildet von jeweils einer randseitig offenen Durchgangsöffnung 21, 22 im Magnetkern 6. Zu erkennen ist, dass die Umfangserstreckung der Kraftstoff-Rücklaufkanäle 23, 24 im Wesentlichen der Umfangserstreckung des jeweiligen Spulendoms 18, 19 entspricht. Lediglich in radialer Richtung nach außen erstrecken sich die Durchgangsöffnungen 21, 22 über die Spulendome 18, 19 hinaus. Ferner ergibt sich aus Fig. 2 dass die Querschnittskontur der Kraftstoff-Rücklaufkanäle 23, 24 im Wesentlichen rechteckig ausgeformt ist. Alternativ ist beispielsweise auch eine tortenstückförmige (kreissegmentför- mige) Ausformung realisierbar.In Fig. 2, the magnet assembly 3 is shown in FIG. 1 in a perspective view obliquely from below. Evident is the central passage 29, which does not serve here as a fuel return passage. Furthermore, the fuel return passages 23, 24 can be seen, which are bounded radially inward by the electric coil 10 and in the circumferential direction by the outer pole section 7. The fuel return ducts 23, 24 are formed in each case by a passage opening 21, 22 in the magnet core 6 open at the edge. It can be seen that the circumferential extent of the fuel return ducts 23, 24 substantially corresponds to the circumferential extent of the respective coil dome 18, 19. Only in the radial outward direction do the passage openings 21, 22 extend beyond the coil domes 18, 19. Furthermore, it follows from FIG. 2 that the cross-sectional contour of the fuel return ducts 23, 24 is formed substantially rectangular. Alternatively, for example, a pie-shaped (kreissegmentför-mige) formation can be realized.
In Fig. 3 ist ein alternatives Ausführungsbeispiel einer Magnetbaugruppe 3 für ein Magnetventil 1 eines Kraftstoff- Injektors in einer Ansicht von unten gezeigt. Zu erkennen ist der zentrische Durchgangskanal 29 der radial außen von dem Innenpolabschnitt 8 begrenzt ist, wobei radial zwischen dem Innenpolabschnitt 8 und einem Außenpolabschnitt 7 eine ringförmige Spulenausnehmung 9 gebildet ist. Fig. 3 ist zu entnehmen, dass die elektrische Spule 10 an zwei in 180° zueinander versetzten Stellen verdickt ausgebildet ist. Hier sind die aus Fig. 3 nicht ersichtlichen Spulenkontakt- pins 14, 15 sowie die zugehörigen Spulendome 18, 19 angeordnet. Zu erkennen ist weiter, dass die verdickten Bereiche in axialen Durchgangsöffnungen 21, 22 aufgenommen sind, die radial außerhalb der elektrischen Spule 10 jeweils einen Kraftstoffrücklaufkanal 23, 24 bilden. Zu erkennen ist ferner aus Fig. 3, dass die Durchgangsöffnungen 21, 22 nicht bis zum Außenrand des Magnetkerns 6, genauer des Au- ßenpolabschnitts 7, geführt sind, sondern dass die Durch- gangsöffnungen 21, 22 und damit die Kraftstoff- Rücklaufkanäle 23, 24 radial außen von dem Außenpolabschnitt 7 des Magnetkerns 6 begrenzt sind. Hieraus resultiert der Vorteil einer größeren, randseitigen, ringförmigen Auflagefläche des Magnetkerns 6 auf einer beispielhaft in Fig. 1 gezeigten inneren Ringschulter (Trägerfläche) eines Trägerkörpers. FIG. 3 shows an alternative embodiment of a magnetic assembly 3 for a solenoid valve 1 of a fuel injector in a view from below. Evident is the central passage 29 of the radially outward of is limited to the Innenpolabschnitt 8, wherein radially between the inner pole portion 8 and a Außenpolabschnitt 7, an annular Spulenausnehmung 9 is formed. FIG. 3 shows that the electrical coil 10 is designed to be thickened at two points offset from one another by 180 °. Here, the coil contact pins 14, 15, not shown in FIG. 3, and the associated coil domes 18, 19 are arranged. It can also be seen that the thickened regions are accommodated in axial passage openings 21, 22 which form a fuel return passage 23, 24 radially outside the electrical coil 10 in each case. It can also be seen from FIG. 3 that the passage openings 21, 22 are not guided to the outer edge of the magnetic core 6, more precisely the outer pole section 7, but that the passage openings 21, 22 and thus the fuel return passages 23, 24 are bounded radially outward of the Außenpolabschnitt 7 of the magnetic core 6. This results in the advantage of a larger, peripheral, annular support surface of the magnetic core 6 on an inner annular shoulder (support surface) of a carrier body shown by way of example in FIG. 1.

Claims

Ansprüche claims
1. Magnetventil, insbesondere Servoventil, für einen1. Solenoid valve, in particular servo valve, for a
Kraftstoff-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einemFuel injector for injecting fuel into a combustion chamber of an internal combustion engine, with a
Magnetanker (2), der relativ zu einer MagnetbaugruppeMagnetic armature (2), which is relative to a magnet assembly
(3) verstellbar ist, die einen in einem Trägerkörper(3) is adjustable, the one in a carrier body
(4) aufgenommenen Magnetkern (6) aufweist, der in einer Spulenausnehmung (9) eine mindestens zwei Spulen- kontaktpins (14, 15) aufweisende elektrische Spule (10) aufweist, wobei jedem Spulenkontaktpin (14, 15) eine den Magnetkern (6) axial durchsetzende Durchgangsöffnung (21, 22) zugeordnet ist,(4) comprises a magnetic core (6) which has in an inductor recess (9) an electrical coil (10) having at least two coil contact pins (14, 15), each coil contact pin (14, 15) having a magnetic core (6). axially passing through opening (21, 22) is assigned,
dadurch gekennzeichnet,characterized,
dass mindestens eine der Durchgangsöffnungen (21, 22) als Kraftstoffrücklaufkanal (23, 24) ausgebildet ist.in that at least one of the passage openings (21, 22) is designed as a fuel return passage (23, 24).
2. Magnetventil nach Anspruch 1, dadurch gekennzeichnet, dass zumindest eine der Durchgangsöffnungen (21, 22) in einem Bereich radial außerhalb der axialen Projektionsfläche des Magnetankers (2) angeordnet ist, oder sich zumindest eine der Durchgangsöffnungen (21, 22) bis in einen Bereich radial außerhalb der axialen Projektionsfläche des Magnetankers (2) erstreckt.2. Solenoid valve according to claim 1, characterized in that at least one of the passage openings (21, 22) is arranged in a region radially outside the axial projection surface of the magnet armature (2), or at least one of the passage openings (21, 22) into a Area extends radially outward of the axial projection surface of the armature (2).
3. Magnetventil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass sich zumindest eine der Durchgangsöffnungen (21, 22) nach radial außen bis zum Außenumfang des Magnetkerns (6) erstreckt, derart, dass der Kraftstoffrück- laufkanal (23, 24) radial außen von dem Trägerkörper (4) begrenzt ist.3. Solenoid valve according to one of claims 1 or 2, characterized in that at least one of the passage openings (21, 22) extends radially outward to the outer periphery of the magnetic core (6), such that the fuel back running channel (23, 24) radially outwardly of the carrier body (4) is limited.
4. Magnetventil nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass zumindest eine Durchgangsöffnung (21, 22) radial außen von dem Magnetkern (6) begrenzt ist.4. Solenoid valve according to one of claims 1 or 2, characterized in that at least one passage opening (21, 22) radially outwardly of the magnetic core (6) is limited.
5. Magnetventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedem Spulenkontaktpin (14, 15) ein in der entsprechenden Durchgangsöffnung (21, 22) aufgenommener Spulendom (18, 19) zugeordnet ist.5. Solenoid valve according to one of the preceding claims, characterized in that each coil contact pin (14, 15) in the corresponding passage opening (21, 22) recorded coil dome (18, 19) is assigned.
6. Magnetventil nach Anspruch 5, dadurch gekennzeichnet, dass die maximale Umfangserstreckung der Durchgangsöffnung (21, 22), zumindest näherungsweise, der maximalen Umfangserstreckung des ihr zugeordneten Spulen- doms (18, 19) entspricht.6. Solenoid valve according to claim 5, characterized in that the maximum circumferential extent of the passage opening (21, 22), at least approximately, corresponds to the maximum circumferential extent of the associated coil dome (18, 19).
7. Magnetventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die minimale Querschnittsfläche des mindestens einen von der mindestens einen Durchgangsöffnung (21, 22) gebildeten Kraftstoffrücklaufkanals (23, 24) mindestens 6 mm2, insbesondere mindestens 8 mm2, vorzugsweise mindestens 10 mm2, bevorzugt mindestens 11 mm2, besonders bevorzugt mindestens 12 mm2 beträgt.7. Solenoid valve according to one of the preceding claims, characterized in that the minimum cross-sectional area of the at least one of the at least one passage opening (21, 22) formed fuel return passage (23, 24) at least 6 mm 2 , in particular at least 8 mm 2 , preferably at least 10th mm 2 , preferably at least 11 mm 2 , more preferably at least 12 mm 2 .
8. Magnetventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass axial zwischen der Magnetbaugruppe (3) und dem Magnetanker (2) eine Anschlagscheibe (28), vorzugsweise aus einem amagnetischen Material, angeordnet ist.8. Solenoid valve according to one of the preceding claims, characterized in that in that axially between the magnet assembly (3) and the magnet armature (2) a stop disc (28), preferably of a non-magnetic material, is arranged.
9. Magnetventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die axiale Anlagefläche des Magnetkerns (6) am Trägerkörper (4) größer als 30 mm2, insbesondere größer als 40 mm2, vorzugsweise größer als 50 mm2, beson- ders bevorzugt größer als 60 mm2 ist.9. Solenoid valve according to one of the preceding claims, characterized in that the axial contact surface of the magnetic core (6) on the support body (4) is greater than 30 mm 2 , in particular greater than 40 mm 2 , preferably greater than 50 mm 2 , more preferably greater than 60 mm 2 .
10. Magnetventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Innenumfangskontur des Kraftstoffrücklaufka- nals (23, 24) zumindest näherungsweise rechteckig ist.10. Solenoid valve according to one of the preceding claims, characterized in that the inner peripheral contour of the fuel return passage (23, 24) is at least approximately rectangular.
11. Kraftstoff-Injektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem, insbesondere als Servoventil ausgebildeten, Magnetven- til (1) nach einem der vorhergehenden Ansprüche. 11. Fuel injector for injecting fuel into a combustion chamber of an internal combustion engine, with a, in particular designed as a servo valve, solenoid valve (1) according to one of the preceding claims.
EP09772227.6A 2008-07-04 2009-05-05 Solenoid valve for a fuel injector and fuel injector Not-in-force EP2307699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200810040168 DE102008040168A1 (en) 2008-07-04 2008-07-04 Solenoid valve for a fuel injector and fuel injector
PCT/EP2009/055375 WO2010000527A1 (en) 2008-07-04 2009-05-05 Solenoid valve for a fuel injector and fuel injector

Publications (2)

Publication Number Publication Date
EP2307699A1 true EP2307699A1 (en) 2011-04-13
EP2307699B1 EP2307699B1 (en) 2017-01-18

Family

ID=41051143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09772227.6A Not-in-force EP2307699B1 (en) 2008-07-04 2009-05-05 Solenoid valve for a fuel injector and fuel injector

Country Status (3)

Country Link
EP (1) EP2307699B1 (en)
DE (1) DE102008040168A1 (en)
WO (1) WO2010000527A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014018909A8 (en) 2012-02-03 2017-07-11 Basf Se COMPOUNDS, PROCESS FOR PREPARING COMPOUNDS, AGROCHEMICAL COMPOSITION, METHOD FOR COMBATING FUNGI, USE OF COMPOUNDS AND SEEDS
JP2015508752A (en) 2012-02-03 2015-03-23 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Bactericidal pyrimidine compounds
WO2013113773A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113719A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds ii
WO2013113782A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113716A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113781A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds i
WO2013113776A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds
WO2013113788A1 (en) 2012-02-03 2013-08-08 Basf Se Fungicidal pyrimidine compounds

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619523A1 (en) * 1996-05-15 1997-11-20 Bosch Gmbh Robert Fuel injector for high pressure injection
JP3669425B2 (en) * 2000-09-28 2005-07-06 株式会社デンソー Coil device
JP4062221B2 (en) * 2003-09-17 2008-03-19 株式会社デンソー Electromagnetic actuator, method for manufacturing electromagnetic actuator, and fuel injection valve
DE102004013239B4 (en) 2004-03-18 2015-10-01 Robert Bosch Gmbh Solenoid valve with adjustable armature stroke and method for setting the same
EP1612400B1 (en) * 2004-06-30 2008-03-19 C.R.F. Società Consortile per Azioni A method for obtaining a fuel injector for an internal-combustion engine, and an injector made according to said method
DE102006061946B4 (en) * 2006-12-29 2014-06-05 Robert Bosch Gmbh Fuel injector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010000527A1 *

Also Published As

Publication number Publication date
EP2307699B1 (en) 2017-01-18
WO2010000527A1 (en) 2010-01-07
DE102008040168A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
EP2307699B1 (en) Solenoid valve for a fuel injector and fuel injector
EP1004066B1 (en) Electromagnetic hydraulic valve
EP1910724B1 (en) Electromagnetic actuating unit
WO2006005639A1 (en) Fuel injection valve
EP2362125B1 (en) Actuating components of an electromagnetic positioning unit of a hydraulic valve
WO2009156213A1 (en) Magnetic core, magnetic assembly, and fuel injector solenoid valve
EP2016277B1 (en) Solenoid valve with material armature connection
DE102017201470A1 (en) Electromagnetic valve, in particular for slip-controlled motor vehicle brake systems
DE10311486A1 (en) Electromagnetic valve especially for a motor vehicle wheel slip control, has gap between magnetic core and armature permitting flow around switch element in any switch position
WO2014000961A1 (en) Fuel injector having a magnetic actuator
WO2007014827A1 (en) Hydraulic valve
EP2795633B1 (en) Coil carrier and electromagnetic actuator having a coil carrier
DE4037824A1 (en) HYDRAULIC ACTUATOR
WO2002031342A1 (en) Electromagnetic valve-actuated control module for controlling fluid in injection systems
DE2361591A1 (en) SLIDER VALVE FOR CONTROLLING THE WORKING PRESSURE OF A WORKING MEDIUM
WO2010066536A1 (en) Activation element of an electromagnetic actuator of a hydraulic valve
EP4010582A1 (en) Seat plate for an injector and method for producing a seat plate of this type
DE102013224863A1 (en) Magnetic actuator for a fuel injector and fuel injector
DE102006009362A1 (en) Electromagnetic valve has armature with cavity which is adapted to diameter of magnet coil whereby overlapping part of magnet coil is dipped in section of valve housing
WO2007082816A1 (en) Solenoid valve
WO2014117763A1 (en) Control valve comprising two magnet coils
DE10220717A1 (en) Solenoid valve, in particular quantity control valve for fuel systems of internal combustion engines
DE102006052816A1 (en) Fuel injection valve, particularly for direct injection of fuel into combustion chamber of internal combustion engine, has return spring provided in housing, where spring impinges on valve needle provided with valve body
WO1991019089A1 (en) Electromagnetically operated fuel-injection valve
EP3423717B1 (en) Electromagnetically actuatable inlet valve and high-pressure pump comprising an inlet valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151019

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161005

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 863057

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013585

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

26N No opposition filed

Effective date: 20171019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170505

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170505

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170505

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 863057

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170505

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190521

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190716

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013585

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505