EP2304003A2 - Dispositif industriel fabriquant son propre combustible - Google Patents

Dispositif industriel fabriquant son propre combustible

Info

Publication number
EP2304003A2
EP2304003A2 EP09737073A EP09737073A EP2304003A2 EP 2304003 A2 EP2304003 A2 EP 2304003A2 EP 09737073 A EP09737073 A EP 09737073A EP 09737073 A EP09737073 A EP 09737073A EP 2304003 A2 EP2304003 A2 EP 2304003A2
Authority
EP
European Patent Office
Prior art keywords
unit
fluid
fumes
organic material
combustible fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09737073A
Other languages
German (de)
English (en)
Inventor
Pierre Jeanvoine
David Galley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2304003A2 publication Critical patent/EP2304003A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1681Integration of gasification processes with another plant or parts within the plant with biological plants, e.g. involving bacteria, algae, fungi
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping

Definitions

  • the invention relates to an industrial device using organic matter such as biomass as a source of energy.
  • organic matter such as biomass as a source of energy.
  • the invention there is proposed a technology that aims to replace the use of fossil fuels in industrial processes, to reduce CO2 emissions into the atmosphere and the cost of energy. Indeed, in order to reduce the concentration of greenhouse gases in the atmosphere, industry is encouraged by an appropriate fiscal policy to use not fossil fuels (oil, natural gas) because it brings more and more carbon and CO2 on the surface of the Earth, but renewable fuel as biomass that absorbs CO 2 for its growth.
  • the industrial device comprises on the one hand a manufacturing unit comprising a combustion system (including at least one burner) using a combustible fluid, in particular of the gaseous fuel type, said production unit generating combustion gases and on the other hand a fuel fluid production unit (which may in particular comprise a gasifier) generated after decomposition of an organic material.
  • the combustible fluid is fed to the manufacturing unit for burning in a burner.
  • the fluid production unit comprises a gasifier creating the combustible fluid in the form of gas, the manufacturing unit and the gasifier being advantageously close to one another so that the combustible gas generated in the production unit fuel is not stored and is brought directly to the manufacturing unit. This avoids the transport of matter and the loss of heat.
  • the distance between the manufacturing unit and the fuel production unit is preferably less than 10 km and even less than 5 km.
  • the invention relates first of all to a device comprising an industrial manufacturing unit comprising a burner burning a combustible fluid, said unit generating combustion fumes containing CO 2 , and a production unit of said fuel fluid supplied with organic matter, said organic material being decomposed in said production unit into said fluid.
  • the heat of the flue gases can be used to heat an element of the fuel fluid production line, such as an organic matter dryer, or a bioreactor generating the organic material or a boiler.
  • a heat flux from the industrial manufacturing unit is used to supply the energy necessary for the completion of the (possibly endothermic) gasification or liquefaction reactions of the organic material.
  • the manufacturing unit may in particular be a glassmaking furnace (all glass applications: flat glass, hollow glass, fibers, etc.), an electricity generator, a metallurgical plant, etc.
  • This manufacturing unit uses at least one burner burning a combustible fluid (gas or liquid), said burner may in particular be of the submerged burner type or burner in the air space combustion.
  • the gasifier operates in a thermochemical mode.
  • organic matter is decomposed at high temperature by a thermochemical process in a "thermogasifier".
  • the chemical reactions take place by reaction of the organic material with an oxidizing gas comprising water vapor or oxygen or CO 2 , usually between 800 0 C and 1700 0 C.
  • the fuel gas thus produced also called “Synthesis gas” or “syngaz” contains high proportions of carbon monoxide and hydrogen. It usually also contains methane.
  • the sum of the molar percentages of hydrogen and carbon monoxide is generally at least 10% and even generally at least 30% or even at least 35%.
  • This combustible gas generally has a heating value lower by at least 1 MJ / Nm 3 and even generally by at least 5 MJ / Nm 3 and can even reach at least 10 MJ / Nm 3 . It is generally less than 30 MJ / Nm 3 .
  • the organic matter can be a solid or liquid fuel such as biomass and / or waste such as used tires, plastics, automotive grinding residues, sludge, substitute fuel materials (so-called "MCS”), or even household waste .
  • the organic matter may be of a biological nature or come from the agri-food industry. It can be animal meal.
  • It can be terrestrial or aqueous biomass, especially of the type: straws, miscanthus stalks, algae, wood biomass, energetic plants, vines, coppice with short rotation of culture, etc. It can also be coal, lignite, peat, etc. It may be wood waste, paper from the stationery industry. It can be organic polymer, for example polyethylene, polypropylene, polystyrene, tire residues, or grinding automotive components.
  • the biomass may advantageously be an algae. This one needs only sun (except exceptions), water, CO2 and trace elements to feed. Its growth can be extremely rapid (several harvests in the year) and its cultivation can be carried out in a suitable bioreactor without competing with food crops.
  • the growth rate of algae in a bioreactor can be greater than 50 times the rate of growth in nature.
  • the growth of algae can be accelerated by increasing the level of CO 2 in its immediate environment, and it is this property that is exploited in a bioreactor.
  • the biomass is generally gasified after drying and set to the right particle size. If necessary, it can then be liquefied.
  • a biomass is decomposed in a "biogasifier" at a temperature generally between 10 0 C and 80 0 C and preferably between 40 and 70 0 C, more generally between 40 and 65 ° C under the influence of bacteria.
  • the decomposition into a biogasener usually takes place in the absence of air.
  • the combustible gas formed (which can be called biogas) contains methane. It also usually contains carbon dioxide.
  • a biochemical gasification device requires much more space than a thermochemical gasification device. On the other hand, gas production is also much slower.
  • the combustible fluid formed feeds the burner of the industrial manufacturing unit.
  • the combustible fluid in the manufacturing unit By burning the combustible fluid in the manufacturing unit (via the burner), the latter releases fumes representing a significant source of calories and a source of CO 2 .
  • the smoke coming out of glass furnaces is usually between 300 and 600 ° C.
  • the heat of the fumes to participate in the process.
  • operation of the thermochemical gasifier In particular, as the gasifier operates on the principle of a reaction between water vapor and organic matter (syngas case), it is possible to use the heat of the fumes to heat and vaporize water in a boiler before sending this water to the gasifier. Some of this fume heat can also be used to dry a biomass for a gasifier. Because of its speed of operation, its high temperature operation, its high caloric requirement (thermochemical reactions are endothermic) the thermochemical gasifier lends itself well to the use of the important calories immediately available in combustion fumes from the industrial manufacturing unit.
  • the invention relates firstly to a device comprising an industrial manufacturing unit comprising a burner burning a combustible fluid, the unit generating combustion fumes containing CO2, characterized in that the device comprises a fluid production unit.
  • fuel fueled with organic material, which is decomposed into said fluid in the production unit, the production unit of the fuel fluid comprising a thermochemical gasifier decomposing the organic material by reaction thereof with an oxidizing gas comprising water or oxygen or CO2 to form the combustible fluid in gaseous form.
  • the fumes coming from the manufacturing unit can be sent to a bioreactor inside which is the organic matter, which is of the plant type such as an algae, said plant assimilating the CO2 of the fumes for its growth, said plant being then sent to the fuel fluid production unit to be decomposed into fuel fluid.
  • a bioreactor inside which is the organic matter, which is of the plant type such as an algae said plant assimilating the CO2 of the fumes for its growth, said plant being then sent to the fuel fluid production unit to be decomposed into fuel fluid.
  • the organic material can be converted at least partially into oil by a pyrolysis operation, before being sent to the gasifier.
  • Certain solid organic materials, in particular of the biomass type can in fact be converted into a viscous liquid (or oil) by pyrolysis at around 500 ° C. under pressure (in the manner of oil which has naturally formed from organic materials).
  • algae are very suitable for this transformation since one can even transform into oil of the order of 40% of the mass of certain algae.
  • This conversion into liquid has the advantage of considerably reducing the volume of material to be introduced into the gasifier.
  • this condensed matter in the form of oil becomes easily transportable insofar as its transport costs then become reasonable, which is not the case for the initial biomass, which is generally too large with respect to the energy that it provides.
  • the unit for producing the combustible fluid may comprise a pyrolysis reactor for liquefying the organic material before feeding the thermochemical gasifier.
  • the fuel fluid is a combustible liquid and the production unit of said fuel fluid comprises this pyrolysis reactor to transform this organic material into more or less oily liquid.
  • the production unit of said fuel fluid comprises this pyrolysis reactor to transform this organic material into more or less oily liquid.
  • the fumes leaving the manufacturing unit are also an important source of carbon dioxide.
  • This carbon dioxide can be used to directly feed growing biomass into a bioreactor.
  • the CO 2 leaving the industrial unit is used to grow biomass by biological transformation of CO2 into organic matter.
  • Such an operation is carried out in a bioreactor.
  • the bioreactor contains water in which the alga is found.
  • the CO2 from the industrial unit is sent to splash in this growth water.
  • CO2 dissolves in water and comes into direct contact with the seaweed, which can assimilate it.
  • the bioreactor is thus connected to the flow of heat and CO2 from the industrial manufacturing unit.
  • the bioreactor is preferably located in the immediate vicinity of the industrial manufacturing unit to prevent material transport and heat loss.
  • the mineral part of the biomass obtained after the operation of gasification and / or liquefaction, for example in the form of ash, can be recycled in the bioreactors as a nutrient for the growth of the biomass.
  • the invention also relates to an industrial manufacturing process operating by the device according to the invention.
  • the industrial manufacturing unit can manufacture glass.
  • This glass is melted in an oven comprising a burner burning the combustible fluid.
  • FIG. 1 represents a manufacturing unit 1 whose manufacture (for example glass) leaves at 2. Fumes are generated by at least one burner in said unit and discharged at 3. These fumes are fed to a heat exchanger 7 for to communicate the heat of the fumes to a bioreactor 8 within which algae grow. These algae are decomposed in a thermogasifier 9 to produce a fuel gas, which is fed by 6 to the industrial manufacturing unit 1.
  • FIG. 2 represents a manufacturing unit 1 whose manufacture (for example glass) leaves at 2. Fumes are generated by at least one burner in said unit and discharged at 3. The fumes pass through a heat exchanger 10 to yield part of their calories, then go directly into a bioreactor 11 within which algae grow. The algae produced at 11 are then dried at 12. In the exchanger 10 part of the heat of the fumes has been communicated to an air circuit which enters the exchanger at 15, and the hot air is fed via 14 to the dryer 12 to dry the algae. The dried algae are then decomposed in a thermogazenerator 13 to produce a combustible gas, which is fed by 6 to the industrial manufacturing unit 1.
  • FIG. 3 represents a manufacturing unit 1 whose manufacture (for example glass) comes out in 2.
  • Fumes are generated by at least one burner in said unit and evacuated 3.
  • the fumes pass through a boiler 16 to give calories to the water that is to be vaporized, then are fed to a bioreactor 17 inside which algae grow. Algae consume the CO2 of the fumes to grow.
  • These algae are then fed via 20 to a thermogasener 18 which produces a combustible gas, which is fed via 6 to the burner of the industrial production unit 1.
  • the water vapor created by the boiler 16 is fed via 19 to the gasifier for react with biomass and produce synthesis gas ("syngas").
  • biomass represents about 150 000 t / y of CO2, possibly available to fuel the growth of biomass in bioreactors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Treatment Of Sludge (AREA)

Abstract

L'invention concerne un dispositif comprenant une unité de fabrication industrielle comprenant un brûleur brûlant un fluide combustible, l'unité générant des fumées de combustion contenant du CO2, caractérisé en ce que le dispositif comprend une unité de production du fluide combustible alimentée en matière organique, laquelle est décomposée en ledit fluide dans l'unité de production, l'unité de production du fluide combustible comprenant un gazéificateur thermochimique décomposant la matière organique par réaction de celle-ci avec un gaz oxydant comprenant de la vapeur d'eau ou de l'oxygène ou du CO2 pour former le fluide combustible sous forme gazeuse.

Description

DISPOSITIF INDUSTRIEL FABRIQUANT SON PROPRE COMBUSTIBLE
L'invention concerne un dispositif industriel utilisant de la matière organique comme de la biomasse comme source d'énergie. Selon l'invention, on propose une technologie qui vise à suppléer à l'emploi des énergies fossiles dans les procédés industriels, à baisser les émissions de CO2 dans l'atmosphère et le coût de l'énergie. En effet, dans le but de réduire la concentration des gaz à effet de serre dans l'atmosphère, on encourage les industriels par une politique fiscale appropriée à utiliser non pas des énergies fossiles (pétrole, gaz naturel) car cela ramène toujours plus de carbone et de CO2 à la surface de la Terre, mais du combustible renouvelable comme de la biomasse qui absorbe du CO2 pour sa croissance.
Le dispositif industriel selon l'invention comprend d'une part une unité de fabrication comprenant un système de combustion (incluant au moins un brûleur) utilisant un fluide combustible, notamment du type carburant gazeux, ladite unité de fabrication générant des gaz de combustion et d'autre part une unité de production de fluide combustible (pouvant notamment comprendre un gazéificateur) généré après décomposition d'une matière organique. Le fluide combustible est amené à l'unité de fabrication pour y être brûlé dans un brûleur. L'unité de production du fluide comprend un gazéificateur créant le fluide combustible sous forme de gaz, l'unité de fabrication et le gazéificateur étant avantageusement proches l'un de l'autre de sorte que le gaz combustible généré dans l'unité de production de combustible n'est pas stocké et est amené directement à l'unité de fabrication. Ceci évite les transports de matière et les déperditions de chaleur. La distance entre l'unité de fabrication et l'unité de production de combustible est de préférence inférieure à 10 km et même inférieure à 5 km. Ainsi, l'invention concerne en premier lieu un dispositif comprenant une unité de fabrication industrielle comprenant un brûleur brûlant un fluide combustible, ladite unité générant des fumées de combustion contenant du CO2, et une unité de production dudit fluide combustible alimentée en matière organique, ladite matière organique étant décomposé dans ladite unité de production en ledit fluide. La chaleur des fumées peut être utilisée pour chauffer un élément de la chaîne de production du fluide combustible, comme un sécheur de la matière organique, ou un bioréacteur générant la matière organique ou une chaudière. Avantageusement, on utilise un flux de chaleur en provenance de l'unité de fabrication industrielle pour fournir l'énergie nécessaire à l'accomplissement des réactions (pouvant être endothermiques) de gazéification ou de liquéfaction de la matière organique.
L'unité de fabrication peut notamment être un four de verrerie (toutes applications verrières : verre plat, verre creux, fibres, etc.), un générateur d'électricité, une usine métallurgique, etc. Cette unité de fabrication utilise au moins un brûleur brûlant un fluide combustible (gaz ou liquide), ledit brûleur pouvant notamment être du type brûleur immergé ou brûleur dans l'espace aérien de combustion.
Le gazéificateur fonctionne selon un mode thermochimique. Selon le mode thermochimique, la matière organique est décomposée à haute température par un processus thermochimique dans un « thermogazéificateur ». Les réactions chimiques ont lieu par réaction de la matière organique avec un gaz oxydant comprenant de la vapeur d'eau ou de l'oxygène ou du CO2, habituellement entre 8000C et 17000C. Le gaz combustible ainsi produit, également appelé « gaz de synthèse » ou « syngaz » contient de fortes proportions de monoxyde de carbone et d'hydrogène. Il contient généralement aussi du méthane. La somme des pourcentages molaires d'hydrogène et de monoxyde de carbone est généralement d'au moins 10% et même généralement d'au moins 30%, voire même d'au moins 35%. Ce gaz combustible a généralement un pouvoir calorifique inférieur d'au moins 1 MJ/Nm3 et même généralement d'au moins 5 MJ/Nm3 et pouvant même atteindre au moins 10 MJ/Nm3. Il est généralement inférieur à 30 MJ/Nm3. La matière organique peut être un solide ou liquide combustible comme de la biomasse et/ou des déchets comme les pneus usagés, les plastiques, résidus de broyage automobile, boues, matières combustibles de substitutions (dites « MCS »), voire même des déchets ménagers. La matière organique peut être de nature biologique ou être issus de l'industrie agro-alimentaire. Il peut s'agir de farines animales. Il peut s'agir de biomasse terrestre ou aqueuse, notamment du type : pailles, tiges de miscanthus, algues, biomasse de bois, plantes énergétiques, vignes, taillis à courte rotation de culture, etc. Il peut aussi s'agir de charbon, lignite, tourbe, etc. Il peut s'agir de déchet de bois, de papier de l'industrie de la papeterie. Il peut s'agir de polymère organique, par exemple du polyéthylène, du polypropylène, du polystyrène, de résidus de pneumatique, ou de broyage de composants automobile. La biomasse peut avantageusement être une algue. Celle-ci en effet a besoin uniquement de soleil (sauf exceptions), d'eau, de CO2 et d'oligo-éléments pour se nourrir. Sa croissance peut être extrêmement rapide (plusieurs récoltes dans l'année) et sa culture peut être réalisée dans un bioréacteur adapté sans concurrencer les cultures alimentaires. La vitesse de croissance d'algues en bioréacteur peut être supérieure à 50 fois la vitesse de croissance dans la nature. La croissance d'algues peut être accélérée par l'augmentation du taux de CO2 dans son environnement immédiat, et c'est cette propriété que l'on exploite dans un bioréacteur. La biomasse est généralement gazéifiée après séchage et mise à la bonne granulométrie. Le cas échéant, elle peut ensuite être liquéfiée.
Rappelons que selon le mode de gazéification biochimique (non utilisé dans le cadre de la présente invention), une biomasse est décomposée dans un « biogazéificateur » à une température généralement comprise entre 100C et 8O0C et de préférence entre 40 et 700C, plus généralement entre 40 et 65°C sous l'influence de bactéries. La décomposition en biogazéificateur a généralement lieu en l'absence d'air. Selon ce mode, le gaz combustible formé (pouvant être appelé biogaz) contient du méthane. Il contient également généralement du gaz carbonique. Un dispositif de gazéification biochimique demande beaucoup plus de place qu'un dispositif de gazéification thermochimique. Par ailleurs, la production de gaz y est aussi beaucoup plus lente.
Le fluide combustible formé alimente le brûleur de l'unité industrielle de fabrication. De par la combustion du fluide combustible dans l'unité de fabrication (via le brûleur), cette dernière rejette des fumées représentant une source importante de calories et une source de CO2. A titre d'exemple, la fumée sortant de fours de verreries est habituellement comprise entre 300 et 6000C. On peut notamment utiliser la chaleur des fumées pour participer au fonctionnement du gazéificateur thermochimique. En particulier, comme le gazéificateur fonctionne sur le principe d'une réaction entre de la vapeur d'eau et de la matière organique (cas de syngaz), on peut utiliser la chaleur des fumées pour chauffer et vaporiser de l'eau dans une chaudière avant d'envoyer cette eau au gazéificateur. On peut aussi utiliser une partie de cette chaleur des fumées pour sécher une biomasse destinée à un gazéificateur. En raison de sa vitesse de fonctionnement, de son fonctionnement à haute température, de son important besoin en calories (les réactions thermochimiques sont endothermiques) le gazéificateur thermochimique se prête bien à l'utilisation des importantes calories immédiatement disponibles dans les fumées de combustion provenant de l'unité de fabrication industrielle.
Ainsi, l'invention concerne en premier lieu un dispositif comprenant une unité de fabrication industrielle comprenant un brûleur brûlant un fluide combustible, l'unité générant des fumées de combustion contenant du CO2, caractérisé en ce que le dispositif comprend une unité de production du fluide combustible alimentée en matière organique, laquelle est décomposée en ledit fluide dans l'unité de production, l'unité de production du fluide combustible comprenant un gazéificateur thermochimique décomposant la matière organique par réaction de celle-ci avec un gaz oxydant comprenant de la vapeur d'eau ou de l'oxygène ou du CO2 pour former le fluide combustible sous forme gazeuse.
Les fumées en provenance de l'unité de fabrication peuvent être envoyées dans un bioréacteur à l'intérieur duquel se trouve la matière organique, laquelle est du type végétal comme une algue, ledit végétal assimilant le CO2 des fumées pour sa croissance, ledit végétal étant ensuite envoyé à l'unité de production du fluide combustible pour être décomposé en fluide combustible.
La matière organique peut être transformée au moins partiellement en huile par une opération de pyrolyse, avant d'être envoyée au gazéificateur. Certaines matières organiques solides notamment du type biomasse peuvent en effet être transformées en un liquide visqueux (ou huile) par pyrolyse vers 5000C sous pression (à la manière du pétrole qui s'est constitué naturellement à partir de matières organiques). Notamment, les algues se prêtent très bien à cette transformation puisque que l'on peut même transformer en huile de l'ordre de 40% de la masse de certaines algues. Cette transformation en liquide procure l'avantage de réduire considérablement le volume de matière à introduire dans le gazéificateur. De plus, cette matière condensée sous forme d'huile devient facilement transportable dans la mesure où ses coûts de transport deviennent alors raisonnables, ce qui n'est pas le cas de la biomasse de départ, généralement trop volumineuse eu égard à l'énergie qu'elle procure. Ainsi, selon l'invention, l'unité de production du fluide combustible peut comprendre un réacteur de pyrolyse pour liquéfier la matière organique avant d'alimenter le gazéificateur thermochimique.
Selon l'unité industrielle, on pourrait aussi envoyer directement au brûleur (sans gazéification) ce liquide combustible issu de la transformation thermique de la matière organique, notamment du type biomasse. Dans ce cas, le fluide combustible est un liquide combustible et l'unité de production dudit fluide combustible comprend ce réacteur de pyrolyse pour transformer cette matière organique en liquide plus ou moins huileux. Notamment, il serait possible d'alimenter directement par ce liquide un brûleur immergé ou non- immergé de four verrier.
Les fumées sortant de l'unité de fabrication sont aussi une source importante de gaz carbonique. On peut utiliser ce gaz carbonique pour alimenter directement une biomasse en croissance dans un bioréacteur. En effet, selon un mode de réalisation de l'invention, le CO2 sortant de l'unité industrielle sert à faire pousser de la biomasse par transformation biologique du CO2 en matière organique. Une telle opération est réalisée dans un bioréacteur. Dans le cas d'une algue, le bioréacteur contient de l'eau dans laquelle se trouve l'algue. Le CO2 provenant de l'unité industrielle est envoyée pour barboter dans cette eau de croissance. Ainsi, le CO2 se dissout dans l'eau et vient en contact direct avec l'algue qui peut ainsi l'assimiler. Le bioréacteur est ainsi connecté au flux de chaleur et de CO2 en provenance de l'unité de fabrication industrielle. On peut donc utiliser de façon combinée le flux de chaleur et celui de CO2 par une injection des fumées ou d'une partie de celles-ci directement dans le bioréacteur, ou, le cas échéant, après purification et/ou échange thermique pour faire baisser la température des fumées. Le soufre éventuellement contenu dans les fumées sous forme de sulfates peut de plus avoir un rôle favorable dans le métabolisme de certains types de biomasse. La quantité de CO2 récupérable des fumées est égale à la quantité nécessaire à la croissance de la biomasse. Le bioréacteur est localisé de préférence dans le voisinage immédiat de l'unité de fabrication industrielle pour éviter les transports de matière et les déperditions de chaleur.
On peut donc utiliser au moins une partie des flux sortant du four de verrerie pour assurer la croissance de la biomasse nécessaire à l'énergie de l'unité de fabrication (cas de l'intégration totale de la chaine énergétique dans la ligne de fabrication industrielle) ou seulement faciliter le traitement (séchage, gazéification...) d'une biomasse d'origine externe à la ligne de production.
La partie minérale de la biomasse (phosphates, potasse, etc) obtenue après l'opération de gazéification et/ou liquéfaction, par exemple sous forme de cendres, peut être recyclée dans les bioréacteurs comme élément nutritif pour la croissance de la biomasse.
L'invention concerne également un procédé de fabrication industriel fonctionnant par le dispositif selon l'invention. Notamment, l'unité de fabrication industrielle peut fabriqur du verre. Ce verre est fondu dans un four comprenant un brûleur brûlant le fluide combustible. La figure 1 représente une unité de fabrication 1 dont la fabrication (par exemple du verre) sort en 2. Des fumées sont générées par au moins un brûleur dans ladite unité et évacuées en 3. Ces fumées sont amenées à un échangeur de chaleur 7 pour communiquer de la chaleur des fumées à un bioréacteur 8 à l'intérieur duquel poussent des algues. Ces algues sont décomposées dans un thermogazéificateur 9 pour produire un gaz combustible, lequel est amené par 6 à l'unité de fabrication industrielle 1.
La figure 2 représente une unité de fabrication 1 dont la fabrication (par exemple du verre) sort en 2. Des fumées sont générées par au moins un brûleur dans ladite unité et évacuées en 3. Les fumées passent par un échangeur de chaleur 10 pour céder une partie de leurs calories, puis vont directement dans un bioréacteur 11 à l'intérieur duquel poussent des algues. Les algues produites en 11 sont ensuite séchées en 12. Dans l'échangeur 10 une partie de la chaleur des fumées a été communiqué à un circuit d'air qui rentre dans l'échangeur en 15, et l'air chaud est amené via 14 au sécheur 12 pour sécher les algues. Les algues séchées sont ensuite décomposées dans un thermogazéificateur 13 pour produire un gaz combustible, lequel est amené par 6 à l'unité de fabrication industrielle 1. La figure 3 représente une unité de fabrication 1 dont la fabrication (par exemple du verre) sort en 2. Des fumées sont générées par au moins un brûleur dans ladite unité et évacuées en 3. Les fumées traversent une chaudière 16 pour donner des calories à de l'eau que l'on souhaite vaporiser, puis sont amenées à un bioréacteur 17 à l'intérieur duquel poussent des algues. Les algues consomment le CO2 des fumées pour pousser. Ces algues sont ensuite amenées via 20 à un thermogazéificateur 18 qui produit un gaz combustible, lequel est amené via 6 au brûleur de l'unité de fabrication industrielle 1. La vapeur d'eau créée par la chaudière 16 est amenée via 19 au gazéificateur pour réagir avec la biomasse et produire le gaz de synthèse (« syngaz »).
EXEMPLE
On prend le cas d'un four à verre de 30 mégawatts de puissance. Si le gazéificateur ne bénéficie pas d'un retour d'énergie en provenance du four, la quantité de biomasse totale nécessaire au fonctionnement complet de la ligne est de 80 000 t/an (à 4 MWh/t) : cette biomasse fournit 240 000 m3/jour de syngaz au pouvoir calorifique inférieur (PCI) de 3 kWh/m3 pour alimenter le four verrier et 60 000 m3/jour pour faire fonctionner le gazéificateur. La biomasse représente environ 150 000 t/an de CO2, éventuellement disponible pour alimenter la croissance de la biomasse dans les bioréacteurs. Si on bénéficie d'un retour d'énergie en provenance des fumées sous forme de chaleur sensible (4 MW disponible), on peut l'utiliser (liste non limitative): au séchage de la biomasse pour amener celle-ci en dessous de 10% d'humidité, et/ou - au préchauffage du médium caloporteur d'un gazéificateur en lit fluidisé ou circulant, ce qui permet d'économiser de l'énergie en provenance de la biomasse et d'augmenter le volume de gaz disponible, et/ou au chauffage des bioréacteurs dans lesquels se produit la croissance de la biomasse, et/ou au préchauffage du syngaz pour alimenter le four principal ou le thermogazéificateur.

Claims

REVENDICATIONS
1. Dispositif comprenant une unité de fabrication industrielle comprenant un brûleur brûlant un fluide combustible, l'unité générant des fumées de combustion contenant du CO2, caractérisé en ce que le dispositif comprend une unité de production du fluide combustible alimentée en matière organique, laquelle est décomposée en ledit fluide dans l'unité de production, l'unité de production du fluide combustible comprenant un gazéificateur thermochimique décomposant la matière organique par réaction de celle-ci avec un gaz oxydant comprenant de la vapeur d'eau ou de l'oxygène ou du CO2 pour former le fluide combustible sous forme gazeuse.
2. Dispositif selon la revendication précédente, caractérisé en ce que l'unité de production du fluide comprend un élément chauffé par la chaleur des fumées.
3. Dispositif selon la revendication précédente, caractérisé en ce que l'élément est un sécheur de la matière organique.
4. Dispositif selon la revendication 2, caractérisé en ce que l'élément est un bioréacteur.
5. Dispositif selon la revendication 2, caractérisé en ce que l'élément est une chaudière.
6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les fumées sont envoyées dans un bioréacteur à l'intérieur duquel se trouve la matière organique, laquelle est du type végétal, ledit végétal assimilant le CO2 des fumées pour sa croissance, ledit végétal étant ensuite envoyé à l'unité de production du fluide combustible pour être décomposé en fluide combustible.
7. Dispositif selon l'une des revendications précédentes caractérisé en ce que la matière organique est une algue ou du miscanthus.
8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce que l'unité de production dudit fluide combustible comprend un réacteur de pyrolyse pour liquéfier la matière organique avant d'alimenter le gazéificateur thermochimique.
9. Procédé de fabrication industriel fonctionnant par le dispositif de l'une des revendications précédentes.
10. Procédé selon la revendication précédente, caractérisé en ce que l'unité de fabrication industrielle fabrique du verre.
EP09737073A 2008-07-18 2009-07-16 Dispositif industriel fabriquant son propre combustible Withdrawn EP2304003A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854880A FR2933988B1 (fr) 2008-07-18 2008-07-18 Dispositif industriel fabriquant son propre combustible
PCT/FR2009/051422 WO2010007325A2 (fr) 2008-07-18 2009-07-16 Dispositif industriel fabriquant son propre combustible

Publications (1)

Publication Number Publication Date
EP2304003A2 true EP2304003A2 (fr) 2011-04-06

Family

ID=40383627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09737073A Withdrawn EP2304003A2 (fr) 2008-07-18 2009-07-16 Dispositif industriel fabriquant son propre combustible

Country Status (10)

Country Link
US (1) US20110179716A1 (fr)
EP (1) EP2304003A2 (fr)
JP (1) JP2011528390A (fr)
KR (1) KR20110043594A (fr)
CN (1) CN102099448A (fr)
BR (1) BRPI0916785A2 (fr)
EA (1) EA201170225A1 (fr)
FR (1) FR2933988B1 (fr)
MX (1) MX2011000530A (fr)
WO (1) WO2010007325A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102965274B (zh) * 2012-11-21 2014-11-26 清华大学 微藻养殖设备
WO2015080331A1 (fr) * 2013-11-28 2015-06-04 해표산업 주식회사 Poêle utilisant des granulés de miscanthus sinensis
CN109231960A (zh) * 2018-10-16 2019-01-18 萍乡市华星环保工程技术有限公司 废弃陶瓷填料再生制备废水处理用陶瓷球的方法
IT202000006325A1 (it) * 2020-03-25 2021-09-25 Biokw Srl Metodo per la valorizzazione energetica di biomasse ed impianto per realizzare tale metodo
CN115286208A (zh) * 2022-08-25 2022-11-04 华新水泥股份有限公司 水泥窑余热烘干及协同处置污泥的系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334026A (en) * 1980-01-18 1982-06-08 Institute Of Gas Technology Hybrid bio-thermal liquefaction
US5300226A (en) * 1990-10-23 1994-04-05 Stewart E. Erickson Construction, Inc. Waste handling method
AU656937B2 (en) * 1991-01-28 1995-02-23 Stewart E. Erickson Construction Inc. Waste handling method
US5798497A (en) * 1995-02-02 1998-08-25 Battelle Memorial Institute Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery
KR100445363B1 (ko) * 1995-11-28 2004-11-03 가부시키 가이샤 에바라 세이사꾸쇼 기화를통한폐기물처리장치및방법
FR2758100B1 (fr) * 1997-01-06 1999-02-12 Youssef Bouchalat Procede de traitement et valorisation energetique optimisee des boues de stations d'epuration urbaine et industrielle
JP2961247B2 (ja) * 1997-12-10 1999-10-12 工業技術院長 セルロース系バイオマスのガス化方法
DE10047264B4 (de) * 2000-09-23 2006-05-04 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung von methanhaltigem Biogas
DE10047262B4 (de) * 2000-09-23 2005-12-01 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung methanhaltiger Gase
JP2002327183A (ja) * 2001-02-27 2002-11-15 Mitsubishi Heavy Ind Ltd 廃棄物のガス化発電設備
JP4146287B2 (ja) * 2003-05-30 2008-09-10 三菱重工業株式会社 バイオマス利用方法およびバイオマス利用システム
DE102004044645B3 (de) * 2004-09-13 2006-06-08 RÜTGERS Carbo Tech Engineering GmbH Umweltschonendes Verfahren zur Gewinnung von Bioerdgas
JP2006191876A (ja) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd バイオマス利活用システム
WO2007108509A1 (fr) * 2006-03-22 2007-09-27 Tama-Tlo, Ltd. Procede et systeme de recuperation d'energie de la biomasse par circulation
CA2661493C (fr) * 2006-08-23 2012-04-24 Praxair Technology, Inc. Procede et systeme de co-generation integres aux processus de gazeification et de reformage de methane a la vapeur
FR2929955B1 (fr) * 2008-04-09 2012-02-10 Saint Gobain Gazeification de materiaux organiques combustibles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010007325A2 *

Also Published As

Publication number Publication date
FR2933988B1 (fr) 2011-09-09
EA201170225A1 (ru) 2011-06-30
WO2010007325A2 (fr) 2010-01-21
FR2933988A1 (fr) 2010-01-22
KR20110043594A (ko) 2011-04-27
BRPI0916785A2 (pt) 2018-02-14
US20110179716A1 (en) 2011-07-28
CN102099448A (zh) 2011-06-15
JP2011528390A (ja) 2011-11-17
MX2011000530A (es) 2011-03-15
WO2010007325A3 (fr) 2010-03-11

Similar Documents

Publication Publication Date Title
US8658414B2 (en) Biomass processing
US8383870B2 (en) Environmentally friendly methods and systems of energy production
CN101519604B (zh) 多级控制聚自由基生物质气化再生能源系统
US20070049648A1 (en) Manufacture of fuels by a co-generation cycle
KR100742159B1 (ko) 바이오매스 가스화에 의한 열병합 발전방법
EP2304003A2 (fr) Dispositif industriel fabriquant son propre combustible
Kurniawan et al. Wastewater sludge as an alternative energy resource: A review
Vardin et al. Developing a novel downdraft fixed bed gasifier for hydrogen production from sawdust to improve an SI engine exhaust emissions
KR101798332B1 (ko) 바이오촤 생산 및 열분해 가스 처리 시스템 및 처리 방법
KR102451467B1 (ko) 바이오매스를 저온열분해에 의해 제조하는 연료용 수성가스 제조방법
WO2022117591A1 (fr) Procede et systeme de production de biogaz et de traitement de boues de station d'epuration
US10876057B1 (en) Waste to energy conversion without CO2 emissions
Dutta et al. Fuel characteristics of some indigenous plants
Susta et al. Biomass energy utilization and environment protection commercial reality and outlook
Mukhtar Manure to energy: understanding processes, principles and jargon
KR102451497B1 (ko) 바이오매스를 열분해하여 얻어진 정제 가스를 혼합한 혼합연료의 제조방법
Mokraoui Introduction to biomass energy conversions
SOBEK et al. Biomass torrefaction: a brief review
Akpu et al. 1&2 Department of Physics, Michael Okpara University of Agriculture, Umudike, PMB 7267 Umuahia, Abia State, Nigeria 3 Department of Physics, Nasarawa State University Keffi, Nasarawa State, Nigeria
CN117264664A (zh) 一种太阳能加热熔盐链条炉生物质裂解气装置
Varghese et al. Journal of Global Biosciences
Mvogo et al. Prediction of Cotton Shell from Sodecoton Behavior in Thermal Conversion and Theoretical Energy Potential
CN202973505U (zh) 一种生物质气化炉
Nyakuma Potential Routes and Innovative Technologies for Valorisation of Cassava Peels
Singh et al. Richa Kothari, Anita Singh, Ashish Pathak, Sanjeev Anand, and VV Tyagi

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GALLEY, DAVID

Inventor name: JEANVOINE, PIERRE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130131

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130611