EP2303092A2 - Dispositif de détection pour un système de dosage - Google Patents

Dispositif de détection pour un système de dosage

Info

Publication number
EP2303092A2
EP2303092A2 EP09780548A EP09780548A EP2303092A2 EP 2303092 A2 EP2303092 A2 EP 2303092A2 EP 09780548 A EP09780548 A EP 09780548A EP 09780548 A EP09780548 A EP 09780548A EP 2303092 A2 EP2303092 A2 EP 2303092A2
Authority
EP
European Patent Office
Prior art keywords
sensors
dosing device
dosing
cartridge
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09780548A
Other languages
German (de)
English (en)
Inventor
Arnd Kessler
Salvatore Fileccia
Hans-Georg MÜHLHAUSEN
Dieter Eichholz
Roland Schmalz
Gerold Jans
Baloc Nguyen
Michael Pasternak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP2303092A2 publication Critical patent/EP2303092A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/4445Detachable devices
    • A47L15/4454Detachable devices with automatic identification means, e.g. barcodes, RFID tags or magnetic strips
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L15/00Washing or rinsing machines for crockery or tableware
    • A47L15/42Details
    • A47L15/44Devices for adding cleaning agents; Devices for dispensing cleaning agents, rinsing aids or deodorants
    • A47L15/4463Multi-dose dispensing arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F33/00Control of operations performed in washing machines or washer-dryers 
    • D06F33/30Control of washing machines characterised by the purpose or target of the control 
    • D06F33/32Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry
    • D06F33/37Control of operational steps, e.g. optimisation or improvement of operational steps depending on the condition of the laundry of metering of detergents or additives
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/12Water temperature
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2401/00Automatic detection in controlling methods of washing or rinsing machines for crockery or tableware, e.g. information provided by sensors entered into controlling devices
    • A47L2401/30Variation of electrical, magnetical or optical quantities
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2501/00Output in controlling method of washing or rinsing machines for crockery or tableware, i.e. quantities or components controlled, or actions performed by the controlling device executing the controlling method
    • A47L2501/07Consumable products, e.g. detergent, rinse aids or salt

Definitions

  • the invention relates to a metering device and a metering system with a sensor arrangement for the delivery of a plurality of preparations for use in water-bearing devices, in particular water-conducting household appliances such as
  • Dishwashers washing machines, dryers or automatic surface cleaning systems.
  • Prior art dishwashing detergents are available to the consumer in a variety of forms. In addition to the traditional liquid hand dishwashing detergents, machine dishwashing detergents are particularly important with the spread of household dishwashers. These automatic dishwashing agents are typically offered to the consumer in solid form, for example as powders or as tablets, but increasingly also in liquid form. For some time now, the main focus has been on the convenient dosing of detergents and cleaning agents and the simplification of the steps necessary to carry out a washing or cleaning process.
  • the cleaning agents were preferably added to new ingredients, for example, more effective surfactants, polymers, enzymes or bleach.
  • new ingredients for example, more effective surfactants, polymers, enzymes or bleach.
  • Detergent amount necessary to carry out a cleaning process, detergent or detergent portions are in automatic or semi-automatic Sampled in the course of several successive cleaning process in the interior of the cleaning machine. For the consumer eliminates the need for manual dosing with each cleaning or washing cycle. Examples of such devices are described in European patent application EP 1 759 624 A2 (Reckitt Benckiser) or in German patent application DE 53 5005 062 479 A1 (BSH Bosch and Siemens Hausmaschine GmbH).
  • An autonomous dosing device that can be positioned by the user substantially freely in a dish rack of a dishwasher must have a substantially identical product dispensing behavior in every position in the dish rack. For this purpose, it must be ensured that the parameter triggering or controlling the product delivery, which is to be detected via a corresponding sensor, is detected as independent as possible from the position of the metering device.
  • the object of the invention is therefore to provide a sensor arrangement for a metering system of the type described, which causes a similar product delivery behavior of the metering substantially independent of the position of the metering device in or on the cutlery basket of a dishwasher.
  • the advantages of the metering system according to the invention is that it is ensured by the spray arms of the dishwasher that water is brought to the bottom of the metering device and thus in contact with the sensor. Due to the fact that the distance between the spray arms and the sensor is as low as possible due to the bottom-side arrangement of the sensor, the water experiences only a slight cooling between the outlet on the spray arms and the contact with the sensor, so that the most accurate temperature measurement can be carried out , Furthermore, it is ensured that wetting of the sensor with water is not hindered by ware also arranged in the dishwasher.
  • the metering system consists of the basic components of a cartridge filled with preparation and a metering device which can be coupled to the cartridge, which in turn is formed from further assemblies such as component carrier, actuator, closure element, sensor, energy source and / or control unit.
  • the metering system according to the invention is mobile. Movable in the sense of this application means that the dosing system is not insoluble with a water-carrying device such as a dishwasher, Washing machine, washer or the like is connected, but for example, from a dishwasher by the user removed or positioned in a dishwasher, so is independently handled, is
  • the dosing device for the user is not detachably connected to a water-carrying device such as a dishwasher, washing machine, laundry dryer or the like and only the cartridge is movable.
  • the dosing system can be formed from materials which are dimensionally stable up to a temperature of 120 ° C.
  • the preparations to be dosed may have a pH value between 2 and 12, depending on the intended use, all components of the dosing system which come into contact with the preparations should have a corresponding acid and / or alkali resistance. Furthermore, these components should be largely chemically inert by a suitable choice of material, for example against nonionic surfactants, enzymes and / or fragrances.
  • a cartridge is understood to mean a packaging material which is suitable for enveloping or holding together at least one flowable, free-flowing or dispersible preparation and which can be coupled to a metering device for dispensing at least one preparation.
  • the cartridge has a preferably rigid chamber for storing a preparation.
  • a cartridge can also comprise a plurality of chambers which can be filled with mutually different compositions.
  • the cartridge has at least one outlet opening, which is arranged such that a gravity-induced release of preparation from the cartridge in the position of use of the dosing device can be effected.
  • no further funding for the release of preparation from the cartridge is required, whereby the structure of the metering device can be kept simple and the manufacturing cost low.
  • At least one second chamber is provided for receiving at least one second flowable preparation, the second chamber having at least one outlet opening arranged such that a gravity-induced product release from the second chamber in the use position of the dosing is feasible.
  • the arrangement of a second chamber is particularly advantageous if in the separate chambers of the cartridge preparations are stored, which are usually not stable to each other, such as bleaching agents and enzymes.
  • one of the chambers can be designed for the delivery of volatile preparations, such as a fragrance to the environment.
  • the cartridge may also be asymmetrical. It is particularly preferred to form the asymmetry of the cartridge in such a way that the cartridge can only be coupled to the dosing device in a predefined position in which an otherwise possible incorrect operation by the user is prevented.
  • the cartridge can take on any spatial form. It can for example be cube-shaped, spherical or plate-like.
  • the dispenser in dishwashers, it is particularly advantageous to mold the device based on dishes to be cleaned in dishwashers. So this example, plate-shaped, be formed in approximately the dimensions of a plate. As a result, the metering device can save space, e.g. be positioned in the lower basket of the dishwasher. Furthermore, the correct positioning of the dosing unit opens up to the user intuitively through the plate-like shape.
  • the dosing device and the cartridge preferably have a ratio of height: width: depth of between 5: 5: 1 and 50: 50: 1, particularly preferably of about 10: 10: 1. Due to the "slim" design of the dosing device and the cartridge, it is in particular possible to position the device in the lower cutlery basket of a dishwashing machine in the receptacles provided for plates This has the advantage that the preparations discharged from the dosing device pass directly into the wash liquor and can not adhere to other items to be washed. Usually, commercial household dishwashers are designed in such a way that the arrangement of larger items to be washed, such as pans or large plates, is provided in the lower basket of the dishwasher. In order to avoid a non-optimal positioning of the dosing system consisting of the dosing device and the coupled with the dosing device cartridge by the user in the upper basket, is in an advantageous
  • the metering system dimensioned such that a positioning of the metering system is only possible in the designated receptacles of the lower basket.
  • the width and the height of the metering system can be selected in particular between 150 mm and 300 mm, particularly preferably between 175 mm and 250 mm.
  • the metering unit in cup shape or pot shape with a substantially circular or square base.
  • the outlet openings of a cartridge are preferably arranged in a line, whereby a slender, plate-shaped design of the dosing device is made possible.
  • the cartridge has an RFID tag that contains at least information about the contents of the cartridge and that can be read by a sensor unit, which may be provided in particular in the metering device or dishwasher.
  • This information can be used, for example, to select a dosing program stored in the dosing unit control unit. In this way it can be ensured that an optimal dosing program is always used for a particular preparation. It can also be provided that in the absence of an RFID tag or an RFID tag with a false or faulty identifier, no metering is done by the metering device and instead an optical or acoustic signal is generated that the user to the present Error indicates.
  • the cartridges may also have structural elements which cooperate with corresponding elements of the metering device according to the key-lock principle, so that, for example, only cartridges of a particular type can be coupled to the metering device. Furthermore, this configuration makes it possible for information about the cartridge coupled to the dosing device to be transmitted to the control unit of the dosing device, as a result of which control of the dosing device coordinated with the contents of the corresponding container can take place.
  • the cartridge is designed in particular for receiving flowable detergents or cleaning agents. Particularly preferably, such a cartridge has a plurality of chambers for the spatially separated receiving in each case of different preparations of a washing or cleaning agent. Exemplary - but not exhaustive - are listed below some possible combinations of filling the chambers with different preparations:
  • all preparations are flowable, as this ensures rapid dissolution of the preparations in the washing liquor of the dishwasher, whereby these preparations a rapid to immediate cleaning or rinsing, especially on the walls of the washing compartment and / or a Achieve light guide of the cartridge and / or the dosing device.
  • the cartridge usually has a total filling volume of ⁇ 5,000 ml, in particular ⁇ 1,000 ml, preferably ⁇ 500 ml, more preferably ⁇ 250 ml, most preferably ⁇ 50 ml.
  • the chambers of a cartridge may have the same or different filling volumes.
  • the ratio of the chamber volumes is preferably 5: 1
  • a three-chamber configuration preferably 4: 1: 1
  • these configurations are particularly suitable for use in dishwashers.
  • the cartridge preferably has three chambers.
  • one chamber contains an alkaline cleaning preparation, another chamber an enzymatic preparation and a third chamber a rinse aid, wherein the volume ratio of the chambers is approximately 4: 1: 1.
  • the chamber containing the alkaline cleaning preparation preferably has the largest filling volume of the existing chambers.
  • the chambers, which store an enzymatic preparation or a rinse aid have approximately equal filling volumes.
  • a two- and / or three-chamber design of the cartridge is in particular possible to stockpile in particular a perfume, disinfectant and / or Vor harmonyszurung in a detachably arranged on the cartridge or the dosing, another chamber.
  • the cartridge comprises a cartridge bottom, which in the position of use in
  • Direction of gravity is directed downward and at the preferred for each chamber at least one arranged in the direction of gravity bottom outlet opening is provided.
  • the outlet openings arranged on the bottom side are in particular designed such that at least one, preferably all, outlet openings can communicate with the inlet openings of the dosing device, ie preparation via the outlet openings from the cartridge into the dosing device, preferably gravitationally effected, can flow in.
  • one or more chambers have a not arranged in the direction of gravity bottom outlet opening. This is particularly advantageous if, for example, a fragrance is to be delivered to the environment of the cartridge.
  • the cartridge is preferably formed from at least two elements connected to one another in a material-locking manner, wherein the connecting edge of the elements on the cartridge bottom extends outside the outlet openings, that is to say the connecting edge does not intersect the outlet openings.
  • This is particularly advantageous, since in this way leakage problems are avoided in the coupling with the metering device in the region of the outlet openings, which occur in particular in the case of the high thermal cycling usually occurring in a dishwasher.
  • the cohesive connection can be produced for example by gluing, welding, soldering, pressing or vulcanization.
  • the ratio of depth (T) of the cartridge to width (B) of the cartridge is about 1:20.
  • the ratio of height (H) of the cartridge to width (B) of the cartridge is preferably about 1: 1.
  • a sensor unit and / or a power source is also arranged on or in the metering device.
  • the dosing device consists of a splash-proof housing, that the penetration of water spray, as may occur, for example, when used in a dishwasher, in the interior of the dosing device by at least the control unit, sensor unit and / or actuator are arranged prevented.
  • potting materials for example, multicomponent epoxy, and acrylate casting compounds such as methacrylate esters, urethane-metha and cyanoacrylates or two-component materials can be used with polyurethanes, silicones, epoxy resins.
  • the material from which the dosing device is formed prevents or at least reduces the growth of a biofilm.
  • the material known from the prior art it is possible to use corresponding surface structures of the material known from the prior art, and additives such as biocides.
  • Film is prevented or at least reduced, equipped. In this case, for example, correspondingly effective films can be used.
  • the dosing device comprises at least a first interface which cooperates in or on a household appliance, in particular a water-conducting household appliance, preferably a dishwasher or washing machine formed corresponding interface in such a way that a transmission of electrical energy and / or signals from Household appliance for dosing and / or from the dosing device to the household appliance is realized.
  • a household appliance in particular a water-conducting household appliance, preferably a dishwasher or washing machine formed corresponding interface in such a way that a transmission of electrical energy and / or signals from Household appliance for dosing and / or from the dosing device to the household appliance is realized.
  • the interfaces are formed by connectors.
  • the interface cells can be designed in such a way that a wireless transmission of electrical energy and / or electrical and / or optical signals is effected.
  • the interfaces provided for the transmission of electrical energy are inductive transmitters or receivers of electromagnetic waves.
  • the interface of a water-conducting device such as a dishwasher, can be designed as an alternating-current transmitter coil with iron core and the interface of the dosing device as a receiver coil with iron core.
  • the transmission of electrical energy can also be provided by means of an interface, the household appliance side, an electrically operated light source and dosier confuse wheier yogurt.
  • a light sensor such as a photodiode or a solar cell comprises.
  • the light emitted by the light source is converted by the light sensor into electrical energy, which in turn feeds, for example, a metering device side accumulator.
  • an interface on the dosing device and the water-conducting device for transmitting (ie transmitting and receiving) electromagnetic and / or optical signals, which in particular Radios-, measuring and / or control information of the dosing and / or the water-bearing device such as a dishwasher.
  • such an interface can be designed such that a wireless transmission of electrical energy and / or electromagnetic and / or optical signals is effected.
  • the interface is configured to transmit and / or receive optical signals. It is very particularly preferred that the interface is configured to emit or receive light in the visible range. Since darkness usually prevails in the interior of the dishwasher during operation of a dishwasher, signals in the visible, optical region, for example in the form of signal pulses or light flashes, can be emitted and / or detected by the dosing device. It has proven particularly advantageous to use wavelengths between 600-800 nm in the visible spectrum.
  • the interface is configured to emit or receive infrared signals.
  • the interface for transmitting or receiving infrared signals in the near infrared range (780nm-3,000nm) is configured.
  • the interface comprises at least one LED.
  • the interface comprises at least two LEDs. It is also possible according to a further preferred embodiment of the invention to provide at least two LEDs which emit light in a mutually different wavelength. This makes it possible, for example, to define different signal bands on which information can be sent or received.
  • At least one LED is an RGB LED whose wavelength is adjustable.
  • an LED can be used to define different signal bands that emit signals at different wavelengths.
  • light is emitted at a different wavelength during the drying process, during which there is a high level of atmospheric humidity (mist) in the washing compartment, than, for example, during a washing step.
  • the interface of the dosing device may be configured so that the LED both for the transmission of signals inside the dishwasher, especially when closed Dishwasher door, as well as for visual display of an operating state of the metering device, in particular when the dishwasher door is open, is provided.
  • an optical signal is designed as a signal pulse with a pulse duration between 1 ms and 10 seconds, preferably between 5 ms and 100 ms seconds.
  • the interface of the dosing device is configured such that it emits an optical signal with the dishwasher closed and unloaded, that a mean illuminance E between 0.01 and 100 lux, preferably between 0.1 and 50 lux measured on the causes the Spülraum limiting walls. This illuminance is then sufficient to cause multiple reflections with or on the other Spülraum14n and so possible signal shadows in the washing compartment, in particular in the loading condition of the dishwasher to reduce or prevent.
  • the signal transmitted and / or received by the interface is in particular a carrier of information, in particular a control signal or a signal representing an operating state of the dosing device and / or the dishwasher.
  • the dosing device for dispensing at least one washing and / or cleaning agent preparation from a cartridge into the interior of a domestic appliance has a light source by means of which a light signal can be coupled into a light guide of the cartridge.
  • the light source may be an LED.
  • the corresponding light signals can for example be slid into the head of the cartridge, so that even if the dosing is positioned in the plate receptacle between other items to be washed, the light signals are visually perceptible by the user with proper loading of the dish drawer of the head-side portion of the dishes and the cartridge usually remains uncovered. Furthermore, it is possible for the light signal coupled into the optical waveguide of the cartridge and passing through the optical waveguide to be detectable by a sensor located on the dosing device. This will be explained in more detail in a subsequent section.
  • the dosing device for dispensing at least one washing and / or cleaning agent preparation inside a household appliance comprises at least one optical transmitting unit, wherein the optical transmitting unit is configured in such a way that signals from the transmitting unit in a coupled with the dosing device Cartridge can be coupled and signals from the transmitting unit in the environment of the dosing device are radiated.
  • the optical transmitting unit is configured in such a way that signals from the transmitting unit in a coupled with the dosing device Cartridge can be coupled and signals from the transmitting unit in the environment of the dosing device are radiated.
  • the optical transmitting unit may be an LED, which preferably emits light in the visible and / or IR range. It is also conceivable to use another suitable optical transmitting unit, e.g. a laser diode, to use. It is particularly preferable to use optical transmission units which emit light in the wavelength range between 600-800 nm.
  • the dosing device may comprise at least one optical receiving unit.
  • the dosing device can receive signals from an optical transmission unit arranged in the household appliance.
  • This can be realized by any suitable optical receiving unit, such as photocells, photomultipliers, semiconductor detectors, photodiodes, photoresistors, solar cells, phototransistors, CCD and / or CMOS image sensors. It is particularly preferred that the optical receiving unit is suitable for receiving light in the wavelength range of 600-800 nm.
  • the optical receiving unit on the dosing device can also be configured such that the signals that can be coupled from the transmitting unit into a cartridge coupled to the dosing device can be decoupled from the cartridge and detected by the optical receiving unit of the dosing device.
  • the signals emitted by the transmitting unit into the surroundings of the metering device may preferably represent information regarding operating conditions or control commands.
  • the metering device for dispensing at least one flowable detergent and / or cleaning agent preparation into the interior of a domestic appliance may in particular have a metering chamber communicating with the metering device communicating cartridge connected to a metering device in the metering chamber inlet, so that in the position of use of the metering preparation gravitational effects the cartridge is inserted into the metering chamber with a Dosierhuntauslass downstream of the Dosierhunteinlass which can be closed by a valve in the metering a float is arranged whose density is less than the density of the preparation, wherein the float is formed in the manner in that the preparation can circumnavigate and / or flow through the floating body and the floating body and the metering chamber inlet are configured in such a way that the metering chamber inlet can be closed by the floating body.
  • the float can close the Dosierhunteinlass sealing or non-sealing.
  • a non-sealing closure of the float is indeed at the Dosierhunteinlass, but this seals not against inflow of preparation from the cartridge, so that an exchange of preparation between the cartridge and the metering chamber is possible.
  • the float body acts in this embodiment of the invention as a targeted throttle, which minimizes the slip between Dosierhunteinlauf and Dosierhuntauslass when opening the valve and thus co-determines the dosing accuracy.
  • the float and the metering chamber can be designed as a self-closing valve, on the one hand, in order to bring about the lowest possible energy consumption in an energy self-sufficient dosing device; on the other hand, a defined amount of preparation, which corresponds approximately to the filling volume of the dosing, released.
  • the rate of climb of the floating body can advantageously also be stored in the control unit of the dosing device which activates the valve. This will be it it is also possible to apply the valve in such a way that a delivery of preparation greater than the volume of the metering chamber is realized. In this case, the valve is then reopened before the float reaches its upper closure position at Dosierhunteinlass and closes the Dosierhunteinlass.
  • the floating body and the metering chamber are configured such that in the delivery position of the valve associated with the metering chamber outlet, the rate of rise of the floating body in the washing and / or detergent preparation is smaller than the flow rate of the preparation surrounding the float from the metering chamber.
  • the float is preferred to form substantially spherical.
  • the float may also be substantially cylindrical.
  • the metering chamber is substantially cylindrical. Furthermore, it is advantageous that the diameter of the metering chamber is slightly larger than the diameter of the cylindrical or spherical floating body, so that a slip between the metering chamber and floating body arises with respect to the preparation.
  • the float is made of a foamed, polymeric material - in particular of foamed PP - formed.
  • the metering chamber is L-shaped.
  • a diaphragm between the Dosierhunteinlass and Dosierhuntauslass be arranged, wherein the aperture is formed such that it is sealingly or non-sealingly closed by the float, the float is preferably disposed between the aperture and the Dosierhunteinlass.
  • the dosing device comprises a component carrier on which at least the actuator and the closure element and the energy source and / or the control unit and / or the sensor unit and / or the dosing chamber are arranged.
  • the component carrier has receptacles for the said components and / or the components are formed integrally with the component carrier.
  • the receptacles for the components in the component carrier can be provided for a positive, positive and / or cohesive connection between a corresponding component and the corresponding receptacle.
  • the energy source, the control unit and the sensor unit are arranged in a module on or in the component carrier.
  • the energy source, the control unit and the sensor unit are arranged in a module on or in the component carrier.
  • Control unit and the sensor unit combined in an assembly.
  • This can be realized, for example, in that the energy source, the control unit and the sensor unit are arranged on a common electrical printed circuit board.
  • the component carrier is designed trough-like, manufactured as an injection molded part. It is particularly preferred that the metering chamber is formed integrally with the component carrier.
  • the component carrier By the component carrier a largely simple automatic assembly with the necessary components of the dosing device is possible.
  • the component carrier can be prefabricated as a whole, preferably automatically and assembled to form a dosing device.
  • the trough-like component carrier can be closed in accordance with an embodiment of the invention after the assembly liquid-tight from a, for example, cover-like closure element.
  • the closure element may be formed, for example, as a film which is liquid-tight, materially connected to the component carrier and forms one or more liquid-tight chambers with the trough-like component carrier.
  • the closure element can also be a console, in which the component carrier can be inserted, wherein the console and the component carrier in the assembled state form the dosing device.
  • the component carrier and the console act in the assembled state in such a way that between the component carrier and the console a liquid-tight connection is formed so that no rinse water can get into the interior of the dosing device or the component carrier.
  • the receptacle for the actuator on the component carrier in the direction of gravity is arranged above the metering chamber, whereby a compact design of the metering device can be realized.
  • the compact design can be further optimized by the Dosierhunteinlass is arranged on the component carrier above the receptacle of the actuator in the position of use of the dosing device. Also, it is preferable that the components on the
  • Component carrier are arranged substantially in a row to each other, in particular along the longitudinal axis of the component carrier.
  • the receptacle for the actuator on an opening which is in line with the Dosierhuntauslass, so that a
  • Closure element from the actuator through the opening and the Dosierhuntauslass can be moved back and forth.
  • the component carrier is formed of a transparent material.
  • the component carrier comprises at least one optical waveguide, via which light from the environment of the dosing device can be directed into and / or out of the interior of the dosing device or the component carrier, to an optical transmitting and / or receiving unit, the optical waveguide in particular is formed integrally with the transparent component carrier.
  • At least one opening is provided in the dosing device, by means of which light from the environment of the dosing device in and / or out of the optical waveguide can be coupled in and / or out.
  • an actuator is a device which converts an input variable into a different output quantity and with which an object is moved or whose movement is generated, wherein the actuator is coupled to at least one shutter element, directly or indirectly releasing the preparation at least one cartridge chamber can be effected.
  • the actuator may be driven by drives selected from the group of gravity drives, ion drives, electric drives, motor drives, hydraulic drives, pneumatic drives, gear drives, threaded spindle drives, ball screws, linear drives, roller screws, tooth worm drives, piezoelectric actuators, chain drives, and / or recoil drives.
  • the actuator may be formed of an electric motor coupled to a transmission that converts the rotational movement of the motor into a linear motion of a carriage coupled to the transmission. This is particularly advantageous for a slim, plate-shaped design of the dosing unit.
  • At least one magnetic element can be arranged on the actuator, which causes a product discharge from the container with a magnet element with the same polarity on a dispenser as soon as the two magnetic elements are positioned against one another such that magnetic repulsion of the homopolar magnetic elements is effected and a non-contact release mechanism is realized.
  • the actuator is a bistable solenoid, which forms a pulse-controlled, bi-stable valve together with an engaging in the bistable solenoid, designed as a plunger core closure element.
  • Bistable lifting magnets are electromechanical magnets with linear direction of movement, wherein the plunger locked in each end position without current.
  • Bistable lifting magnets or valves are known in the art.
  • a bistable valve requires a pulse to change valve positions (open / closed) and then remains in that position until a counter pulse is sent to the valve. Therefore, one speaks of a pulse-controlled valve.
  • a significant advantage of such pulse-controlled valves is that they do not consume energy to dwell in the Ventilendlagen, the closed position and discharge position, but only need an energy pulse to change the valve layers, thus the Ventilendlagen are considered to be stable.
  • a bistable valve remains in that switching position, which last received a control signal.
  • a bistable property of solenoids can be realized in different ways.
  • a division of the coil is known. The coil is split more or less centrally so that a gap is created. In this gap, a permanent magnet is used.
  • the plunger core itself is both the front and the back so turned off that he has in the respective end position a flat surface lying to the frame of the magnet. The magnetic field of the permanent magnet flows over this surface.
  • the diving core sticks here.
  • the use of two separate coils is possible.
  • the principle is similar to the bistable solenoid with split coil. The difference is that they are actually two electrically different coils. These are controlled separately, depending on the direction in which the plunger is to be moved.
  • the actuator is arranged in a component carrier in the manner that in the use position of the metering device, a receptacle for the actuator on the component carrier in the direction of gravity above the metering chamber is arranged. It is particularly advantageous that in the position of use of the dosing of the inlet of the
  • Metering chamber is arranged on the component carrier above the receptacle of the actuator.
  • the metering device has a component carrier in which a receptacle for the actuator on the component carrier is arranged laterally next to the metering chamber in the use position of the metering device.
  • the receptacle for the actuator preferably has an opening which is in line with the outlet of the metering chamber, wherein the closure element from the actuator through the opening to the outlet is movable back and forth.
  • a closure element is a component that acts on the actuator and that as a result of this action causes the opening or the closure of an outlet opening.
  • the closure element can be valves which can be brought into a product delivery position or closure position by the actuator.
  • the embodiment of the closure element and the actuator in the form of a solenoid valve, wherein the dispenser are configured by the valve and the actuator by the electromagnetic or piezoelectric drive of the solenoid valve.
  • the amount and timing of dosing can be controlled very precisely by the use of solenoid valves.
  • a sensor is a sensor or sensor that has certain physical or chemical properties and / or material properties
  • the dosing unit preferably has at least one sensor which is suitable for detecting a temperature.
  • the temperature sensor is designed in particular for detecting a water temperature.
  • the dosing unit comprises a sensor for detecting the conductivity, whereby in particular the presence of water or the spraying of water, in particular in a dishwasher, is detected.
  • the dosing unit has a sensor which can determine physical, chemical and / or mechanical parameters from the surroundings of the dosing unit.
  • the sensor unit may comprise one or more active and / or passive sensors for the qualitative and / or quantitative detection of mechanical, electrical, physical and / or chemical variables, which are passed as control signals to the control unit.
  • the sensors of the sensor unit from the group of timers, temperature sensors, infrared sensors, brightness sensors, temperature sensors, motion sensors, strain sensors, speed sensors, proximity sensors,
  • Flow sensors color sensors, gas sensors, vibration sensors, pressure sensors, conductivity sensors, turbidity sensors, sound pressure sensors, "lab-on-a-chip” sensors, force sensors, acceleration sensors, inclination sensors, pH sensors, humidity sensors, magnetic field sensors, RFID sensors, magnetic field sensors, HaII sensors, biochips, odor sensors, hydrogen sulfide sensors and / or MEMS sensors may be selected. Particularly in the case of preparations whose viscosity varies greatly depending on the temperature, it is advantageous for volume or mass control of the metered preparations to provide flow sensors in the metering device.
  • Suitable flow sensors may be selected from the group of orifice flow rate sensors, electromagnetic flowmeters, Coriolis mass flow rate measurement, vortex flowmeter, ultrasonic flow rate measurement, variable area flow measurement, annular piston flow measurement, thermal mass flow measurement, or differential pressure flow measurement.
  • At least two sensor units are provided for measuring mutually different parameters, wherein very particularly preferably a sensor unit is a conductivity sensor and a further sensor unit is a temperature sensor. Furthermore, it is preferred that at least one sensor unit is a brightness sensor.
  • the sensors are especially adapted to detect the beginning, the course and the end of a washing program.
  • the sensor combinations listed in the following table can be used
  • the conductivity sensor can be detected, for example, whether the conductivity sensor is wetted by water, so that, for example. determine if there is water in the dishwasher.
  • Rinsing programs usually have a characteristic temperature profile, the u.a. is determined by the heating of the rinse water and the drying of the dishes, which can be detected by a temperature sensor.
  • a brightness sensor By means of a brightness sensor, it is possible, for example, to detect the incidence of light into the interior of a dishwasher when the dishwasher door is opened, from which, for example, it is possible to conclude that the washing program has ended.
  • a turbidity sensor can also be provided. From this it is also possible, for example, to select a dosing program in the dosing device that applies to the determined contamination situation.
  • a temperature-dependent viscosity curve of at least one preparation to be deposited in the control unit, the dosage being adapted by the control unit in accordance with the temperature and thus the viscosity of the preparation.
  • an apparatus for direct determination of the viscosity of the preparation is provided.
  • the data line between the sensor and the control unit can be realized via an electrically conductive cable or wirelessly.
  • at least one sensor outside the dosing device is positioned or positionable in the interior of a dishwasher and a data line - in particular wireless - for transmitting the measured data from the sensor to the dosing device is formed.
  • a wirelessly formed data line is formed in particular by the transmission of electromagnetic waves or light. It is preferable to form a wireless data line according to standardized standards such as Bluetooth, IrDA, IEEE 802, GSM, UMTS, etc.
  • At least one sensor unit is connected to or in the control unit is arranged.
  • a temperature sensor in the dosing device or directly on the board carrying the control unit, so that the temperature sensor has no direct contact with the surroundings.
  • the sensor unit is arranged at the bottom of the dosing device, wherein in the position of use the bottom of the dosing device is directed downward in the direction of gravity.
  • the sensor unit comprises a temperature and / or a conductivity sensor.
  • the energy consumers of the dosing device in particular the control unit, including an on / off switch can be connected to the power source and the energy source only after reaching the A state of the on / off switch loaded with a sensor unit forms the on / off switch or connected to this and switches this.
  • the sensor unit prefferably has two contacts in contact with the environment at the bottom of the dosing device, in particular configured as contact pins projecting downwards from the bottom, one contact as anode contact and the other contact as cathode contact the power source is connected and that without electrically conductive connection between the contacts of the off-state located on / off switch remains in the off state and upon the emergence of an electrically conductive connection between the contacts of the off-state on / off Switch in the on state switches.
  • the on / off switch is provided or combined with a self-holding circuit which ensures latching of the energy supply of the energy consumers after reaching the on state of the on / off switch up to a switch-off signal of the control unit . causes.
  • the on / off switch can be designed in particular as a transistor circuit. It is preferable that the transistor of the on / off switch designed as a pnp transistor and the emitter, possibly via a drive circuit, to the supply voltage to the collector, possibly via a drive circuit to ground and to the cathode contact and the base on the one hand, possibly via a drive circuit, to the supply voltage, on the other hand, if necessary via a drive circuit to the anode contact, is connected.
  • the drive circuit preferably has at least one drive resistor, which is designed in particular as a resistance voltage divider.
  • a sensor unit designed as a conductivity sensor which has two contacts in contact with the environment at the bottom of the dosing device and the anode contact of the on / off Sensor unit is simultaneously the anode contact of the conductivity sensor forming sensor unit.
  • the sensor unit forming the temperature sensor may be integrated in a contact, in particular the cathode contact, of the sensor unit forming the conductivity sensor.
  • the contact of the sensor unit forming the conductivity sensor, which receives the temperature sensor may preferably be designed as a hollow contact pin, in which the temperature sensor of the sensor unit forming the temperature sensor is arranged.
  • the energy source, the control unit and the sensor unit are combined in an assembly on or in the component carrier.
  • the contacts of a conductivity sensor arranged on the bottom side are surrounded by an electrically conductive silicone.
  • the conductivity sensor may in this case be designed, in particular in the form of a resistance measurement, between two contacts spaced apart from one another and in contact with the surroundings of the dosing device. It is particularly preferred that the silicone is flush-mounted in the bottom of the metering device.
  • Silicone on a roughly circular base The silicone shows a good wettability with water and thus provides good measurement results regarding the detection of water in the dishwasher.
  • Control unit A control unit in the sense of this application is a device which is suitable for
  • control unit influences actuators with the aid of information, in particular of measuring signals of the sensor unit, which processes them in the sense of the control target.
  • control unit may be a programmable microprocessor.
  • a plurality of dosing programs is stored on the microprocessor, which are selectable and executable in a particularly preferred embodiment according to the container coupled to the dosing device.
  • the control unit has, in a preferred embodiment, no connection to the possibly existing control of the household appliance. Accordingly, no information, in particular electrical, optical or electromagnetic signals, is exchanged directly between the control unit and the control of the household appliance.
  • control unit is coupled to the existing control of the household appliance.
  • this coupling is wireless.
  • a transmitter on or in a dishwasher preferably on or at the dosing chamber embedded in the door of the dishwasher, which wirelessly transmits a signal to the dosing unit when the control of the domestic appliance controls the dosing of, for example, a detergent from the dosing unit Dosing or rinse aid causes.
  • the control unit can store several programs for releasing different preparations or releasing products in different applications.
  • the call of the corresponding program can be effected by means of corresponding RFID labels or geometric information carriers formed on the container.
  • control unit can be configured in such a way that on the one hand the dosing takes place in a sufficiently short time to ensure a good cleaning result and on the other hand the dosing of the preparation does not occur so quickly.
  • This can be realized, for example, by an interval-type release, whereby the individual metering intervals are set in such a way that the corresponding metered amount dissolves completely during a cleaning cycle.
  • the metering intervals for dispensing a preparation are between 30-90 seconds, particularly preferably 45-75 seconds.
  • the delivery of preparations from the dosing device can be done sequentially or simultaneously.
  • the dishwasher and the dosing device work together in such a way that 1 mg to 1 g of surfactant are released in the final rinse program of the dishwasher per m 2 Spülraumwand Design. This ensures that the walls of the washing compartment retain their gloss even after a plurality of rinsing cycles and the dosing system retains its optical transmission capability.
  • the dishwasher and the dosing device to interact in such a way that at least one enzyme-containing preparation and / or alkaline preparation is released in the pre-washing program and / or main washing program, with the release of the enzyme-containing preparation preferably taking place prior to release the alkaline preparation takes place.
  • the dishwasher and the dosing device work together in such a way that 0.1 mg-250 mg of enzyme protein is released in the pre-washing program and / or main wash program of the dishwasher per m 2 of dishwashing area, whereby the gloss level of the dishwashing walls is further improved or even after a plurality of rinsing cycles is maintained.
  • data such as control and / or dosing programs of the control unit or operating parameters or protocols stored by the control unit can be read from the control unit or loaded into the control unit.
  • This can be realized for example by means of an optical interface, wherein the optical interface is correspondingly connected to the control unit.
  • the data to be transmitted are then coded and transmitted or received as light signals, in particular in the visible range, the wavelength range between 600-800 nm being preferred.
  • a present in the metering sensor for transmitting data from and / or to the control unit.
  • the contacts of a conductivity sensor which are connected to the control unit and which provides a conductivity determination by means of a resistance measurement at the contacts of the conductivity sensor, can be used for data transmission.
  • the energy source a component of the dosing, which is expedient to provide a suitable for the operation of the dosing or the dosing energy.
  • the energy source is designed such that the dosing system is self-sufficient.
  • the energy source provides electrical energy.
  • the energy source may be, for example, a battery, an accumulator, a power supply, solar cells or the like.
  • a battery may be selected from the group of alkaline manganese batteries, zinc carbon batteries, nickel oxyhydroxide batteries, lithium batteries, lithium iron sulfide batteries, zinc air batteries, zinc chloride batteries, Mercury oxide zinc batteries and / or silver oxide zinc batteries.
  • Lead accumulators lead dioxide / lead
  • nickel nickel
  • Cadmium Batteries Nickel Metal Hydride Batteries, Lithium Ion Batteries, Lithium Polymer Batteries, Alkaline Manganese Batteries, Silver Zinc Batteries, Nickel Hydrogen Batteries, Zinc Bromine Batteries, Sodium Nickel Chloride Batteries Batteries and / or nickel-iron batteries.
  • the accumulator may in particular be designed in such a way that it is by loading wide up lad bar.
  • mechanical energy sources consisting of one or more coil spring, torsion spring or torsion bar spring, spiral spring, air spring / gas spring and / or elastomer spring.
  • the energy source is dimensioned such that the dosing device can go through about 300 dosing cycles before the energy source is exhausted. It is particularly preferred that the energy source can run between 1 and 300 dosing cycles, most preferably between 10 and 300, more preferably between 100 and 300, before the energy source is depleted.
  • means for energy conversion can be provided in or on the dosing unit, which generate a voltage by means of which the accumulator is charged. For example, these means may be designed as a dynamo, which is driven by the water flows during a rinse cycle in a dishwasher and emits the voltage thus generated to the accumulator.
  • Figure 4 dosing and cartridge in an exploded view
  • FIG. 6 Component carrier in an exploded view
  • FIG. 7 Component carrier in an exploded view
  • FIG. 9 Component carrier in a perspective view on outlet openings
  • FIG. 10 Component carrier in a perspective front view
  • FIG. 11 Component carrier in bottom view
  • FIG. 12 Dosing device in the state assembled with the cartridge in a perspective view
  • FIG. 1 shows a self-sufficient dosing device 2 with a two-chamber cartridge 1 in the separated and assembled state.
  • the metering device 2 has two metering chamber inlets 21a, 21b for repeatedly releasably receiving the corresponding outlet openings 5a, 5b of the chambers 3a, 3b of the cartridge 1.
  • display and controls 37 On the front are display and controls 37, which indicate the operating state of the dosing device 2 and act on this.
  • the metering chamber inlets 21a, 21b furthermore have means which, when the cartridge 1 is pushed onto the metering device 2, effect the opening of the outlet openings 5a, 5b of the chambers 3a, 3b, so that the interior of the chambers 3a, 3b communicating with the metering chamber inlets 21a, 21 b is connected.
  • the cartridge 1 may consist of one or more chambers 3a, 3b.
  • the cartridge 1 may be integrally formed with a plurality of chambers 3a, 3b or more pieces, in which case the individual chambers 3a, 3b are joined together to form a cartridge 1, in particular by cohesive, positive or non-positive connection methods.
  • the fixation by one or more of the types of compounds from the group of snap-in compounds, compression joints, fusions, adhesive bonds, welded joints, solder joints, screw, wedge, clamp or bounce joints can be done.
  • the fixation can also be formed by a shrink sleeve (so-called sleeve), which is pulled in a heated state at least in sections over the cartridge and firmly encloses the cartridge in the cooled state.
  • the bottom of the cartridge 1 may be funnel-shaped inclined to the discharge opening 5a, 5b.
  • the inner wall of the cartridge 1 can be formed by suitable choice of material and / or surface design in such a way that a low material adhesion of the product to the inner cartridge wall is realized. Also by this measure, the residual emptying of the cartridge 1 can be further optimized.
  • the chambers 3a, 3b of the cartridge 1 may have the same or different filling volumes. In a configuration with two chambers 3a, 3b this is Ratio of the chamber volumes preferably 5: 1, in a configuration with three chambers preferably 4: 1: 1, these configurations are particularly suitable for use in dishwashers.
  • a connection method can also be that the chambers 3a, 3b are inserted into one of the corresponding metering chamber inlets 21a, 21b of the metering device 2 and thus fixed against each other.
  • connection between the chambers 3a, 3b may in particular be made detachable in order to allow a separate exchange of a chamber.
  • the chambers 3a, 3b each contain a preparation 40a, 40b.
  • the preparation 40a, 40b may have the same or different composition.
  • the chambers 3a, 3b are made of a transparent material, so that the filling level of the preparations 40a, 40b is visible from the outside by the user.
  • the outlet openings 5a, 5b are designed such that they form a positive and / or non-positive, in particular liquid-tight, connection with the corresponding metering chamber inlets 21a, 21b.
  • each of the outlet openings 5a, 5b is formed so that it fits only one of the Dosierhunteinlässe 21a, 21b, thereby preventing a chamber is accidentally plugged onto a wrong Dosierhunteinlass.
  • the cartridge 1 usually has a filling volume of ⁇ 5,000 ml, in particular ⁇ 1,000 ml, preferably ⁇ 500 ml, more preferably ⁇ 250 ml, most preferably ⁇ 50 ml.
  • the metering unit 2 and the cartridge 1 can be adapted in the assembled state in particular to the geometries of the devices or in which they are applied in order to ensure the least possible loss of useful volume.
  • the dosing unit 2 and the cartridge 1 for example, plate-shaped, approximately in the dimensions of a plate, be educated. As a result, the dosing unit can be positioned to save space in the lower basket.
  • the cartridge 1 is advantageous to form the cartridge 1 at least in sections of a transparent material.
  • the cartridge 1 In order to protect heat-sensitive components of a product contained in a cartridge from heat, it is advantageous to produce the cartridge 1 from a material with a low thermal conductivity.
  • the outlet openings 5a, 5b of the cartridge 1 are preferably arranged on a line or in alignment, whereby a slender, plate-shaped design of the dosing dispenser is made possible.
  • FIG. 2 shows a self-sufficient dosing device with a two-chamber cartridge 1 in the dish drawer 11 with the dishwasher door 39 of a dishwashing machine 38 open.
  • the dosing device 2 with the cartridge 1 can in principle be positioned anywhere within the dish drawer 1 1, it being advantageous to provide a dish-shaped or cup-shaped metering system 1, 2 in a corresponding dish or cup receptacle of the dish drawer 11.
  • a metering chamber 53 in which a dishwasher cleaner preparation can be given, for example in the form of a tablet.
  • An advantage of this embodiment of the invention is that in the arrangement of the self-sufficient dosing 1, 2 in the lower dish drawer 1 1, the delivery of the preparations 40a, 40b from the cartridge 1 directly via the bottom side arranged on the dispenser outlet openings in the rinse water liquor, so that a fast solution and even distribution of the rinse formulations in the washing program is guaranteed.
  • FIG. 3 shows a further possible embodiment of the cartridge 1 with three chambers 3a, 3b, 3c.
  • the first chamber 3a and the second chamber 3b are approximately the same
  • the third chamber 3c has a filling volume about 5 times that of one of the chambers 3a or 3b.
  • the cartridge base 4 has a ramp-like shoulder in the region of the third chamber 3c. Due to this asymmetrical design of the Cartridge 1 can be ensured that the cartridge 1 in a designated position with the dosing device 2 can be coupled and insertion in a wrong position by a corresponding configuration of the dosing device 2 and the console 54 is prevented.
  • Cartridge element 7 and the cover-like cartridge element 6 along the common connecting edge 8 cohesively connected to each other. This can be realized for example by welding or gluing.
  • the webs 9a, 9b are also firmly bonded to the cartridge element 6.
  • the connecting edge 8 does not run through the outlet openings 5a-c, as a result of which leakage problems, in particular in the state coupled to the dosing device, are avoided in the region of the openings 5a-c.
  • FIG. 4 shows in an exploded view the essential components of the metering system consisting of cartridge 1 and metering device 2.
  • the cartridge 1 is composed of two cartridge elements 6, 7.
  • the dosing device 2 consists essentially of a component carrier 23 and a bracket 54 into which the component carrier 23 can be inserted.
  • Figure 5 shows a side view of the component carrier 23 of the dosing device 2, which will be explained in more detail below.
  • the metering chamber 20 On the component carrier 23, the metering chamber 20, the actuator 18 and the closure element 19 and the power source 15, the control unit 16 and the sensor unit 17 are arranged.
  • the metering chamber 20, the predosing chamber 26, the metering chamber inlet 21 and the receptacle 29 are formed integrally with the component carrier 23.
  • the energy source 15, the control unit 16 and the sensor unit 17 are combined in an assembly by being arranged on a corresponding circuit board.
  • the pre-metering chamber 26 and the actuator 18 are, as shown in Figure 23, on the
  • the predosing chamber 26 has an L-shaped basic shape with a shoulder in the lower region in which the receptacle 29 for the actuator 18 is embedded. Below the pre-metering chamber 26 and of the actuator 18, the outlet chamber 27 is arranged. The pre-metering chamber 26 and the discharge chamber 27 together form the metering chamber 20.
  • the pre-metering chamber 26 and the outlet chamber 27 are connected to each other through the opening 34.
  • the receptacle 29, the opening 34 and the Dosierhuntauslass 22 lie on a plane perpendicular to the longitudinal axis of the component carrier 23 escape, so that the rod-shaped closure element 19 can be passed through the openings 22,29,34.
  • the rear walls of the pre-metering chamber 26 and the outlet chamber 27 are integrally formed with the component carrier 23.
  • the front wall can then be connected to the metering chamber 20 in a material-tight manner, for example by a cover element or a film (not shown).
  • the embodiment of the dosing chamber 20 will be explained in more detail below with reference to the detail view of FIG.
  • the bottom 62 is inclined in a funnel-like manner toward the metering chamber outlet 22 arranged centrally in the outlet chamber 27.
  • the Dosierhuntauslass 22 is located in a channel 63 which is perpendicular to the longitudinal axis of the component carrier 23 in the outlet chamber 27.
  • the funnel-shaped bottom 62 and the channel 63 and the outlet opening 22 arranged therein ensure at a deviating from the horizontal position of the dosing metering and a nearly complete emptying of preparation from the dosing 20. Further, the preparation flows through the corresponding funnel-shaped floor design faster , Especially in higher-viscosity preparations, from the metering chamber, so that the metering interval in the preparation is released, can be kept short.
  • FIG. 1 The arrangement of the actuator 18, the closure element 19 and the seal 36 on the component carrier 23 will be explained in more detail with reference to the exploded view in FIG.
  • the figure shows a component carrier 23 with three arranged side by side Dosing chambers 20.
  • the actuator 18c, the closure element 19c and the seal 36c in the assembled state on the component carrier 23 is shown.
  • the seal 36b and the closure element 19b are shown in the assembled state in the metering chamber, while the actuator 18b is detached from the closure element 19b.
  • Dosing chamber 20a, both the seal 36a, the closure member 19a and the actuator 18a is shown in an exploded view.
  • Predosing chamber 26 is arranged in an L-shaped manner above the metering chamber 20, the receptacle for the actuator 18 being arranged on the limb of the predosing chamber running parallel to the bottom of the component carrier 23.
  • the metering chamber 20 and the predosing chamber 26 are connected to each other through the opening 34.
  • the receptacle 29, the opening 34 and the Dosierhuntauslass 22 lie on an axis which is perpendicular to the longitudinal axis of the component carrier 23.
  • the seal 36 has a substantially hollow cylinder-like space shape with a closed by a plate-like tail head.
  • the elastic seal 36 can be arranged in the metering chamber 20 in such a way that the plate-like end piece presses against the opening 34 on the inside against the metering chamber outlet 22 and with the side of the seal 36 facing away from the plate-like end piece.
  • the cylindrical closure element 19 is formed with its first end such that it engages in the hollow-cylindrical seal 36 and there material, force and / or positively fixed.
  • the closure element 19 is dimensioned in such a way that it can be passed through the opening 34 and the opening of the receptacle 29, but strikes the Dosierhuntauslass 22 so that the closure member 19 can not slip down out of the component carrier 23.
  • the closure element 19 protrudes with one end out of the receptacle 29. This end is plugged into the actuator 18 designed as a bistable electromagnet and acts as an anchor.
  • FIG. 8 shows the component carrier 23 known from FIG. 7 in plan view. It can be seen that the metering chamber inlets 21a-c and the receptacles 29a-c for the actuators 18a-c are arranged on a line which corresponds to the longitudinal axis of the component carrier 23.
  • FIG. 9 shows the bottom side of the component carrier 23 in a perspective view. It can be seen that the Dosierhuntauslässe 22a-c and the receptacle 28 are formed for the sensor unit hollow cylinder-like, whereby the actual outlet opening and the Dosiersortauslässe 22a-c closing seal 36a-c are protected from mechanical damage.
  • the ventilation system of the dosing unit 2 will be explained in more detail with reference to FIG. If a preparation is discharged from the metering chamber via the Dosierhuntauslass 22 to the environment, created by the falling liquid level in the chambers of the cartridge 1, a negative pressure, by the ambient air for pressure equalization in the
  • Dosierhunteinlass 22 and the outlet chamber 27 is sucked.
  • the L-shaped predosing chamber 26 extends within the vertical leg, a chamber wall 31 in the region of the vertical leg, a first channel 32 and a second Train channel 33.
  • Chamber wall 31 the rising air is passed into the right channel 33, so that this channel 33 primarily acts as a vent channel, while the other channel 32 primarily ensures a flow of preparation from the cartridge 1.
  • the Dosierhunteinlass 21 is disposed on a nozzle 30 which is communicatively connected to the pre-metering chamber 26. It can be seen that the chamber wall 31 also extends into the nozzle 30 and divides it into two separate channels.
  • FIG. 1 the bottom side of the component carrier 23 is shown in a plan view.
  • the Dosierzigauslässe 22a-c and the receptacle 28 for the sensor unit 17 are arranged on a line which corresponds substantially to the longitudinal axis of the component carrier 23.
  • FIG. 12 shows the metering device 2 in the assembled state with the cartridge 1 in a perspective view.
  • the metering system has a height h, a width b and a depth t in the assembled state.
  • the width b and the height h should not exceed 210 mm.
  • the depth t should be less than 20mm.
  • the ratio of width / height / depth should be about 10: 10: 1.
  • the height h and the width b preferably correspond to the format of a medium-sized dining table.
  • the dosing system can be positioned in a simple, and intuitive way for the user in the appropriate dish of a dishwasher washing rack.
  • FIG. 13 shows a perspective view of the bracket 54.
  • a hook 56 is integrally formed on the hinge 55 which engages in a corresponding receptacle of the cartridge 1 and thus fixes the cartridge opposite the metering device 2.
  • the hooks 56 are substantially opposite. It is also conceivable that in total only one hook 56 is arranged on an inner side of the bracket 54.
  • FIG. 14 shows a schematic representation of a cross-sectional view through an actuator 18 embodied as a bistable lifting magnet.
  • a first coil 58 and a second coil 59 are shown with a permanent magnet 57 arranged between the coils 58, 59.
  • the closure element 19 is accommodated as a plunger core.
  • the closure element 19 can be moved to the holding points 60 and 61 by a pulse-like energization of the coils 58, 59, in that an electrically generated magnetic field of one of the coils 58, 59 with a corresponding polarization is superimposed on the magnetic field of the permanent magnet 57.
  • a pulse-like energization of the coils 58, 59 in that an electrically generated magnetic field of one of the coils 58, 59 with a corresponding polarization is superimposed on the magnetic field of the permanent magnet 57.
  • the metering system of the type described above is basically suitable for being used in or in connection with water-conducting devices of any kind.
  • the dosing system according to the invention is particularly suitable for use in water-bearing household appliances such as dishwashers and / or washing machines, but not limited to such use.
  • the dosing system according to the invention wherever a dosage of at least one, preferably several preparations in a liquid medium according to a dosing program triggering or controlling external physical or chemical parameters is needed.

Abstract

L'invention concerne un système de dosage (1, 2) destiné à être disposé dans un lave-vaisselle par un utilisateur, comportant au moins une cartouche (1) pour des lessives ou détergents à écoulement libre, comprenant une pluralité de chambres (3a, 3b, 3c) pour la réception spatialement séparée de préparations différentes d'une lessive ou d'un détergent, et un appareil de dosage (2) pouvant être couplé à la cartouche (1), présentant au moins une source d'énergie (15), une unité de commande (16), une unité de détection (17), au moins un actionneur (18) connecté à la source d'énergie (15) et à l'unité de commande (16) de telle manière qu'un signal de commande de l'unité de commande (16) produit un mouvement de l'actionneur (18), un élément de fermeture (19) couplé à l'actionneur (18) de telle manière qu'un mouvement de l'actionneur (18) amène l'élément de fermeture (19) dans une position de fermeture ou de distribution, et au moins une chambre de dosage (20) connectée en communication avec au moins une chambre de cartouche (3a, 3b, 3c) lorsque la cartouche (1) et l'appareil de dosage (2) sont assemblés. La chambre de dosage (20) comporte un orifice d'entrée (21) pour l'entrée de lessive ou de détergent depuis une chambre de cartouche (3a, 3b, 3c), et un orifice de sortie (22) pour l'écoulement de lessive ou de détergent hors de la chambre de dosage (20), vers l'extérieur. Au moins l'orifice de sortie (22) de la chambre de dosage (20) peut être fermé ou libéré par l'élément de fermeture (19). L'unité de détection (17) est disposée à la base de l'appareil de dosage et en position d'utilisation, la base de l'appareil de dosage (2) est dirigée vers le bas, dans le sens de la gravité.
EP09780548A 2008-07-15 2009-07-14 Dispositif de détection pour un système de dosage Withdrawn EP2303092A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008033239A DE102008033239A1 (de) 2008-07-15 2008-07-15 Sensoranordnung für ein Dosiersystem
PCT/EP2009/058966 WO2010007051A2 (fr) 2008-07-15 2009-07-14 Dispositif de détection pour un système de dosage

Publications (1)

Publication Number Publication Date
EP2303092A2 true EP2303092A2 (fr) 2011-04-06

Family

ID=41427131

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09780548A Withdrawn EP2303092A2 (fr) 2008-07-15 2009-07-14 Dispositif de détection pour un système de dosage

Country Status (3)

Country Link
EP (1) EP2303092A2 (fr)
DE (1) DE102008033239A1 (fr)
WO (1) WO2010007051A2 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9549658B2 (en) 2010-11-23 2017-01-24 Whirlpool Corporation Household appliance having a signal relay
US8337628B2 (en) 2010-11-23 2012-12-25 Whirlpool Corporation Non-integrated bulk dispenser and method of operating a dishwasher having same
DE102011005979A1 (de) * 2011-03-23 2012-09-27 Henkel Ag & Co. Kgaa Dosiersystem für eine Geschirrspülmaschine
US9538901B2 (en) 2014-11-20 2017-01-10 The Procter & Gamble Company Composition dispensing device for an automatic dishwasher
US9706897B2 (en) * 2014-11-20 2017-07-18 The Procter & Gamble Company Personalized cleaning composition dispensing device
CN109898282B (zh) * 2017-12-08 2023-04-25 青岛海尔洗涤电器有限公司 自动投放装置清洗方法、自动投放装置及衣物处理装置
DE102022108280A1 (de) * 2022-04-06 2023-10-12 Testo SE & Co. KGaA Vorrichtung zur Erfassung wenigstens einer Prozessgröße und Verfahren zum Betrieb einer Reinigungsmaschine
EP4306913A1 (fr) * 2022-07-14 2024-01-17 Herbert Saier GmbH Dispositif de raccordement

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29520992U1 (de) * 1994-04-07 1996-07-11 Wash Ball Ag Vorrichtung zum Reinigen von verschmutzten Gegenständen, beispielsweise von verschmutzten Textilien oder Geschirr, Ladegerät hierfür, sowie Kombination hieraus
DE19934592C2 (de) * 1999-07-23 2003-10-23 Benckiser Nv Vorrichtung zur Aufnahme und dosierten Abgabe einer aktiven Zusammensetzung in eine Waschmaschine, einen Wäschetrockner oder eine Geschirrspülmaschine
EP1088927A1 (fr) * 1999-10-01 2001-04-04 The Procter & Gamble Company Doseur intélligent
US20020088502A1 (en) * 2000-10-04 2002-07-11 Van Rompuy Tanya Cecile Corneel Smart dosing device
GB2386129B (en) 2002-03-06 2004-12-01 Reckitt Benckiser Nv Detergent dosing device
DE102005062479A1 (de) 2005-12-27 2007-07-05 BSH Bosch und Siemens Hausgeräte GmbH Dosiervorrichtung für die Zugabe eines Zuschlagmittels in einen Behandlungsraum und Geschirrspülmaschine mit einer Dosiervorrichtung
DE102006043916A1 (de) * 2006-09-19 2008-03-27 BSH Bosch und Siemens Hausgeräte GmbH Wasserführendes Haushaltsgerät mit einem Reinigungsmitteldosiersystem sowie Kartusche hierfür
DE102008027280B4 (de) * 2007-10-30 2023-09-28 Henkel Ag & Co. Kgaa Haushaltsmaschine, insbesondere Geschirrspülmaschine
DE202007018460U1 (de) * 2007-10-30 2008-09-04 Aweco Appliance Systems Gmbh & Co. Kg Dosiervorrichtung für die Dosierung von Reinigungs-, Wasch- oder Spülmitteln in Haushaltsmaschinen, insbesondere Geschirrspülmaschinen
CA2731100A1 (fr) * 2008-07-15 2010-01-21 Henkel Ag & Co. Kgaa Systeme de dosage comportant un support de composant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010007051A2 *

Also Published As

Publication number Publication date
DE102008033239A1 (de) 2010-01-21
WO2010007051A2 (fr) 2010-01-21
WO2010007051A3 (fr) 2010-05-14

Similar Documents

Publication Publication Date Title
EP2296522B1 (fr) Système de dosage comportant un support de composant
EP2297500B1 (fr) Actionneur pour un système de dosage
EP2303091B1 (fr) Agencement pour le couplage d'un système de dosage à une conduite d'eau d'une lave-vaisselle
EP2299892B1 (fr) Appareil de dosage couplable
EP2306881B1 (fr) Appareil menager
DE102009045580A1 (de) Tür zum flüssigkeitsdichten Verschluss einer Wäscheaufgabe- bzw. Entnahmeöffnung eines Wäschebehandlungsgeräts insbesondere einer Waschmaschine und/oder eines Wäschetrockners
EP2642908B2 (fr) Système de dosage pour un lave-vaisselle
EP2398952B1 (fr) Procédé pour faire fonctionner un appareil de dosage disposé dans un appareil ménager
WO2010007051A2 (fr) Dispositif de détection pour un système de dosage
WO2010091782A1 (fr) Cartouche
EP2395900B1 (fr) Cartouche avec guide de lumière
EP2296521A1 (fr) Système de dosage à libération de produit contrôlée en position oblique
WO2010094393A1 (fr) Dispositif de distribution présentant une unité d'émission et/ou de réception pour la transmission de signaux sans fil
WO2010007049A1 (fr) Système de dosage à libération d'une préparation dans la phase gazeuse
EP2398373B1 (fr) Doseur à chambre de dosage
EP2398372A1 (fr) Appareil de dosage pour la distribution d'au moins une préparation de lessive et/ou nettoyant à l'intérieur d'un appareil ménager
WO2010091784A2 (fr) Cartouches pour dispositif doseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101026

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140201