EP2299453A2 - Elektrische Leitung - Google Patents

Elektrische Leitung Download PDF

Info

Publication number
EP2299453A2
EP2299453A2 EP10009704A EP10009704A EP2299453A2 EP 2299453 A2 EP2299453 A2 EP 2299453A2 EP 10009704 A EP10009704 A EP 10009704A EP 10009704 A EP10009704 A EP 10009704A EP 2299453 A2 EP2299453 A2 EP 2299453A2
Authority
EP
European Patent Office
Prior art keywords
line
conductor
maximum
designed
short fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10009704A
Other languages
English (en)
French (fr)
Other versions
EP2299453A3 (de
EP2299453B1 (de
Inventor
Helmut Kalb
Markus Schill
Hubert Walheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leoni Kabel GmbH
Original Assignee
Leoni Kabel Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leoni Kabel Holding GmbH filed Critical Leoni Kabel Holding GmbH
Priority to PL10009704T priority Critical patent/PL2299453T3/pl
Publication of EP2299453A2 publication Critical patent/EP2299453A2/de
Publication of EP2299453A3 publication Critical patent/EP2299453A3/de
Application granted granted Critical
Publication of EP2299453B1 publication Critical patent/EP2299453B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/182Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments
    • H01B7/183Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring comprising synthetic filaments forming part of an outer sheath

Definitions

  • the invention relates to an electrical line, in particular signal line.
  • Electrical lines such as signal lines, which are designed only for the transport of low currents, for example, up to 1 A and signal lines up to a maximum of 0.5 A, are used in a variety of areas, including. also in the automotive industry.
  • FLRY cables are used today, which are referred to as FLRY cables.
  • FLRY lines are described, for example, in DIN 72551 (parts 5 and 6) or ISO 6722 (class A and B).
  • the thickness of the insulation is reduced in these FLRY lines.
  • the nominal cross sections of the electrical conductors have been reduced in recent years. For signal cables today the typical nominal cross-sections are about 0.35 mm 2 .
  • a reduction in the nominal cross-section is also of interest from a cost point of view because of the significantly higher price for copper, the typical conductor material, which has increased in recent years.
  • the invention has for its object to provide an electrical line, in particular signal line, which have a reduced conductor cross-section compared to the usual today lines, in particular the so-called FLRY lines, with the same or improved mechanical strength.
  • an electrical line in particular signal line
  • an electrical conductor preferably a multi-strand stranded wire, in particular of copper
  • the sheath is surrounded directly by the fiber-reinforced insulation jacket.
  • Other layers or an additional cable sheath are usually not provided.
  • the line is usually designed for a given tensile stress, so it must be able to absorb a predetermined tensile force that may occur, for example, when laying the line.
  • short fibers are meant here those fibers which are arranged as individual discrete short pieces, preferably homogeneously distributed in the matrix.
  • the short fibers have lengths of up to 5 mm.
  • the nominal cross section of the conductor is preferably by a factor of 1.5 to 3, partially over it, compared to previous lines, in particular so-called FLRY lines, reduced.
  • the nominal cross section of a conventional FLRY 0.35 line that is, with a nominal cross section of 0.35 mm 2
  • the one described here Signal line therefore generally has in comparison to a line with the same structure except for the use of the fiber-reinforced plastic, in particular a FLRY line eg according to DIN or ISO standard, with the same or improved mechanical (tensile) load by a factor of 1.5 to 3 reduced nominal cross section.
  • a FLRY line eg according to DIN or ISO standard
  • the fiber-reinforced insulation jacket Of particular importance for the assumption of tensile forces through the fiber-reinforced insulation jacket is the special stress-strain behavior of the fiber-reinforced material of the insulation jacket. Decisive here is that the fiber-reinforced insulation material already at a relevant (low) strain, which shows the electrical conduction in a tensile stress, has sufficient tension.
  • the relevant strain range is typically less than 10% strain and, for example, in the range of about 4% strain. That the insulation jacket already has the required tensile strength at these elongation values of ⁇ 10% and in particular about 4%.
  • the fiber-reinforced material By introducing the short fibers into a suitable plastic for the insulation jacket, the fiber-reinforced material usually exhibits a special characteristic in the stress-strain curve with an initially steep increase in the expansion range of a few% until typically at least a local maximum in the relevant strain range is achieved.
  • a stranded conductor of a plurality of individual wires is usually used.
  • stranded conductors with 7 or 19 individual wires are usually used.
  • solid conductors single-core conductor
  • the conductors in today's lines have a nominal cross section typically of about 0.35 mm 2 , 0.5 mm 2 or 0.75 mm 2 .
  • the nominal cross-section of the conductor at a predetermined target current for which the line is designed, adapted to the extent required for the electrical conductivity.
  • the nominal cross section determined by the electrical requirements and at the same time It is also stipulated that therefore the nominal cross section is not chosen larger than is necessary due to the electrical requirements.
  • the nominal cross section in this case is dependent, in particular, on the conductivity of the conductor and therefore on the choice of material and on the current intensity and voltage for which the conductor is provided in use.
  • the short fibers expediently have a length in the range of a maximum of a few millimeters, preferably a maximum of 10 mm and in particular a maximum of 2 mm.
  • the diameter of the fibers is typically in the range of a few 1 .mu.m to a few 100 .mu.m. Such short fibers can be easily processed manufacturing technology.
  • the insulation sheath is produced by extrusion of a plastics material in which the short fibers are already contained prior to extrusion.
  • the insulating jacket therefore nestles directly against the electrical conductor. Due to the extrusion, the fibers have a preferred direction in the longitudinal direction of the conduit in an expedient embodiment. Due to this forced orientation of at least a majority of the fibers, the tensile strength in the longitudinal direction of the line is positively influenced.
  • the proportion of the fibers is in the range of 0.5 vol.% To a maximum of 10 vol.%, Preferably up to a maximum of about 5 vol% based on the total volume of the insulating material. This allows a good tensile strength while still achieving good insulation properties.
  • the fiber material used is preferably glass fibers with a diameter in the ⁇ m range.
  • other fibers such as polymer fibers, cellulose fibers, carbon fibers, etc. may be provided.
  • their content is preferably in a range of about 0.5 to 10% by volume.
  • the insulation jacket takes over a range of 20 to 80% and in particular more than 40% of the predetermined tensile stress, ie it is for the inclusion of a comparatively large proportion of the predetermined tensile stress designed.
  • the insulating jacket takes over a greater proportion than the electrical conductor
  • the remaining residual tensile stress carries the electrical conductor itself.
  • the predetermined tensile stress is for example up to 500 N and in particular at only about 70 N, ie the line must have a tensile force of 500 N or max Maximum 50 - 100 N can withstand. This means that it must not experience any mechanical damage in such a tensile stress - with the appropriate safety tolerances. The line therefore deforms substantially elastically, only a slight plastic deformation is allowed. This high mechanical tensile strength shows the insulation jacket already in particular in the relevant strain range of less than 10% elongation.
  • the conductor material used is preferably copper.
  • other conductor materials can be used, in particular those with copper increased tensile strength.
  • a method according to claim 11 which provides that in the design of an electrical line, the nominal cross section of the conductor is reduced compared to a comparable line without fiber-reinforced plastic, taking into account that at least part of a predetermined tensile load is taken over by the fiber-reinforced plastic.
  • a comparable line is understood to mean that the two lines are designed for comparable, in particular the same mechanical (tensile) loads and show the same structure with regard to their architecture / structure.
  • the line differs from the comparable line in particular only by the insulating jacket (fiber-reinforced) and by the reduced conductor and preferably also cable diameter.
  • An electrical line 2 comprises in the embodiment according to FIG. 1 an electrical stranded conductor 4, which is formed from a total of seven individual wires 6.
  • the individual wires 6 are stranded with one another and consist, for example, of copper.
  • the stranded conductor 4 is surrounded by an insulating jacket 8, in which - here only greatly simplified and shown schematically - short fibers 10 are embedded in a plastic matrix 12. If a smooth outer surface without fiber content is desired or required, a fiber-free plastic skin is preferably provided around the insulation jacket 8 or an additional jacket.
  • the line is preferably formed in the variant shown in the figure as a single round cable without further elements, such as additional strain relief threads, etc.
  • the signal line shown is laid, for example, together with other lines within a motor vehicle electrical system.
  • the cable 2 described here with the insulating sheath reinforced by the embedded short fibers 10 has several advantages in comparison with the previous such cables without a fiber-reinforced insulation sheath.
  • the copper which is particularly suitable with regard to the electrical properties can be used with its good conductivity.
  • the mechanical function of the tensile strength is in fact transferred from the expensive copper material to the comparatively inexpensive fiber-reinforced plastic.
  • the line can be manufactured and processed by the usual methods. Both the extrusion process is easily possible with the fibers. The laying of the cable, the connection of plugs, etc.
  • the diagram shown is the interaction between the insulating jacket 8 and the stranded conductor 4 outlined in terms of the assumption of traction.
  • the applied tensile force is plotted on the vertical axis and the elongation on the horizontal axis.
  • the lower curve shows the force-elongation behavior of an exemplary insulation jacket 8 made of a thermoplastic thermoplastic elastomer (TPE) with a minimum wall thickness of about 0.2 mm, which surrounds a stranded conductor with a nominal cross-sectional area of about 0.22 mm 2 , so that the total cross-sectional area of the insulation jacket is approximately 0.5 mm 2 .
  • TPE thermoplastic thermoplastic elastomer
  • the middle curve shows the force-strain behavior of an exemplary copper stranded conductor with a nominal cross-section of 0.22 mm 2 .
  • This curve shows the typical stress-strain behavior of copper, whose tensile strength is usually about 230 N / mm 2 .
  • the uppermost curve shows a mathematical superimposition of the two curves for the stranded conductor 4 and for the insulation jacket 8.
  • Typical requirements require that such a line 2 must withstand a tensile force of 70 N. As can be seen from the upper superimposed curve, this is achieved by the interaction of the insulation jacket 8 with the stranded conductor 4 without problems at a relevant expansion range of about 5%. This therefore shows that, due to the special choice of the insulating jacket 8 and its good mechanical properties with regard to the tensile strength, a clear reduction in the cross section of the conductor 4 is achieved from the nominal cross sections of 0.35 mm 2 customary today.
  • the fiber-reinforced material used for the insulation jacket 8 generally shows a maximum in the expansion range ⁇ 15% and - especially at a high fiber content - even at elongation values of well below 10%, a maximum in the stress-strain behavior. Together with a high modulus of elasticity at low strains in the range for example up to 5% elongation, a very good mechanical stress-strain behavior of the insulation jacket 8 is achieved overall.
  • the fiber-reinforced insulation material shows a significantly different characteristic behavior to conventional non-fiber reinforced insulation materials such as PVC, which has a continuous increase in tensile strength up to its elongation at break at about 300% elongation.
  • conventional non-fiber reinforced insulation materials such as PVC
  • each selected fiber-reinforced insulation material and its cross-sectional area can be a traction-absorbing capacity of the insulating jacket 8 according to the requirements and in particular also set in dependence of the selected conductor cross-section. For example, assuming a given tensile force of 70 N and the use of a copper stranded conductor with 0.13 mm 2 cross-sectional area, the stranded conductor 4 at the typical copper tensile strength of 230 N / mm 2 only about 29, Take 9 N of traction. The rest must therefore be taken over by the insulation jacket.

Landscapes

  • Insulated Conductors (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Die elektrische Leitung (2), insbesondere Signalleitung weist einen elektrischen Leiter (4) und einen diesen umgebenden Isolationsmantel (8) auf. Die Leitung ist für eine vorgegebene Zugbeanspruchung ausgelegt, die zumindest teilweise von dem Isolationsmantel (8) übernommen wird. Dieser ist hierzu als faserverstärkter Kunststoff mit in einer Kunststoffmatrix (12) eingebetteten Kurzfasern (10) ausgebildet. Hierdurch kann der Nennquerschnitt des Leiters (4) reduziert werden und der Leiter (4) wird vorzugsweise lediglich im Hinblick auf die elektrischen Anforderungen ausgelegt.

Description

  • Die Erfindung betrifft eine elektrische Leitung, insbesondere Signalleitung.
  • Elektrische Leitungen, wie beispielsweise Signalleitungen, die lediglich für den Transport von geringen Strömen, beispielsweise bis maximal 1 A und bei Signalleitungen bis maximal 0,5 A ausgelegt sind, werden in vielfältigen Bereichen eingesetzt, u.a. auch in der Kraftfahrzeugindustrie.
  • Aufgrund von Umweltgesichtspunkten werden speziell in der Kraftfahrzeugindustrie gewichtsreduzierte Kabel und Leitungen entwickelt, um durch die Gewichtsersparnis letztendlich Kraftstoff einsparen zu können. Hierzu werden heute beispielsweise so genannte Außendurchmesser-reduzierte Fahrzeugleitungen eingesetzt, die als FLRY-Leitungen bezeichnet werden. FLRY-Leitungen sind beispielsweise in der DIN 72551 (Teil 5 und 6) oder der ISO 6722 (Klasse A und B) beschrieben. Bei diesen FLRY-Leitungen ist insbesondere die Dicke der Isolierung reduziert. Weiterhin wurden in den vergangenen Jahren die Nennquerschnitte der elektrischen Leiter reduziert. Für Signalleitungen liegen heute die typischen Nennquerschnitte bei etwa 0,35 mm2.
  • Selbst dieser im Vergleich zu früheren Querschnitten geringe Querschnitt ist im Hinblick auf die elektrische Anforderung noch deutlich überdimensioniert, d.h. die so genannte Stromtragfähigkeit derartiger Signalleitungen ist deutlich größer als erforderlich. Sie sind also prinzipiell für höhere Ströme geeignet, obwohl dies gar nicht erforderlich ist. Allerdings bestimmen die Anforderungen an die mechanische Stabilität sowie an Verarbeitungseigenschaften, beispielsweise bei der Verlegung, den letztendlich gewählten Nennquerschnitt.
  • Eine Reduzierung des Nennquerschnitts ist auch aus Kostengesichtspunkten aufgrund des in den letzten Jahren deutlich gestiegenen Preises für Kupfer, dem typischen Leitermaterial, von Interesse.
  • Der Erfindung liegt die Aufgabe zugrunde, eine elektrische Leitung, insbesondere Signalleitung, anzugeben, die im Vergleich zu den heute üblichen Leitungen, insbesondere den so genannten FLRY-Leitungen, bei gleicher oder verbesserter mechanischer Belastbarkeit einen reduzierten Leiterquerschnitt aufweisen.
  • Die Aufgabe wird erfindungsgemäß gelöst durch eine elektrische Leitung, insbesondere Signalleitung, mit einem elektrischen Leiter und einen diesen umgebenden Isolationsmantel, wobei der Mantel aus einem faserverstärkten Kunststoff besteht und der Kunststoff hierzu eine Matrix bildet, in der einzelweise und verteilt Kurzfasern eingebettet sind. Der Leiter, vorzugsweise ein mehradriger Litzendraht, insbesondere aus Kupfer, ist dabei unmittelbar vom faserverstärkten Isolationsmantel umgeben. Weitere Lagen oder ein zusätzlicher Kabelmantel sind üblicherweise nicht vorgesehen.
  • Die Leitung ist üblicherweise für eine vorgegebene Zugbeanspruchung ausgelegt, muss also eine vorgegebene Zugkraft aufnehmen können, die beispielsweise beim Verlegen der Leitung auftreten kann.
  • Unter Kurzfasern werden hierbei solche Fasern verstanden, die als einzelne diskrete kurze Stücke vorzugsweise homogen verteilt in der Matrix angeordnet sind. Die Kurzfasern weisen hierbei Längen bis maximal 5 mm auf.
  • Durch die Faserverstärkung des Isolationsmantels übernimmt dieser eine mechanische Aufgabe und weist im Vergleich zu nicht faserverstärkten Isolationsmänteln bei bisherigen Signalleitungen eine deutlich höhere Zugfestigkeit auf. Hierdurch besteht die Möglichkeit, den Querschnitt des Leiters zu reduzieren, da die mechanischen Anforderungen quasi auf den Leiter und den Isolationsmantel aufgeteilt werden. Durch diese Maßnahme wird der Nennquerschnitt des Leiters vorzugsweise um den Faktor 1,5 bis 3, teilweise darüber, im Vergleich zu bisherigen Leitungen, insbesondere so genannte FLRY-Leitungen, reduziert. So wird beispielsweise der Nennquerschnitt einer herkömmlichen FLRY 0,35-Leitung (also mit Nennquerschnitt von 0,35 mm2) auf etwa 0,15 mm2 reduziert. Die hier beschriebene Signalleitung weist daher allgemein im Vergleich zu einer Leitung mit bis auf die Verwendung des faserverstärkten Kunststoffes gleichen Aufbau, insbesondere eine FLRY-Leitung z.B. gemäß DIN oder ISO-Norm, bei gleicher oder verbesserter mechanischer (Zug-) Belastung einen um den Faktor 1,5 bis 3 reduzierten Nennquerschnitt auf.
  • Von besonderer Bedeutung für die Übernahme von Zugkräften durch den faserverstärkten Isolationsmantel ist das spezielle Spannungs-Dehnungs-Verhalten des faserverstärkten Materials des Isolationsmantels. Entscheidend ist hierbei, dass das faserverstärkte Isolationsmaterial bereits bei einer relevanten (geringen) Dehnung, die die elektrische Leitung bei einer Zugbeanspruchung zeigt, eine ausreichende Zugspannung aufweist. Der relevante Dehnungsbereich liegt hierbei typischerweise unter 10% Dehnung und beispielsweise im Bereich von etwa 4% Dehnung. D.h. der Isolationsmantel weist die geforderte Zugfestigkeit bereits bei diesen Dehnungswerten von <10% und insbesondere bei etwa 4% auf.
  • Durch das Einbringen der Kurzfasern in einen geeigneten Kunststoff für den Isolationsmantel zeigt das faserverstärkte Material üblicherweise eine spezielle Charakteristik im Spannungs-Dehnungs-Verlauf mit einem zunächst steilen Anstieg im Dehnungsbereich von wenigen % bis typischerweise ein zumindest lokales Maximum im relevanten Dehnungsbereich erreicht wird.
  • Als Leiter wird üblicherweise ein Litzenleiter aus mehreren Einzeldrähten eingesetzt. Für die geringen Ströme bis etwa maximal 1 A werden üblicherweise Litzenleiter mit 7 oder 19 Einzeldrähten (mehradriger Leiter) eingesetzt. Alternativ können auch Massivleiter (einadriger Leiter) eingesetzt werden. Die Leiter weisen bei heutigen Leitungen einen Nennquerschnitt typischerweise von etwa 0,35 mm2, 0,5mm2 oder 0,75 mm2 auf.
  • Gemäß einer zweckdienlichen Weiterbildung ist der Nennquerschnitt des Leiters bei einer vorgegebenen Soll-Stromstärke, für die die Leitung ausgelegt ist, an das für die elektrische Leitfähigkeit erforderliche Maß angepasst. Dies bedeutet, dass der Nennquerschnitt durch die elektrischen Anforderungen bestimmt und zugleich auch festgelegt ist, dass also der Nennquerschnitt nicht größer gewählt wird als aufgrund der elektrischen Anforderungen notwendig ist. Der Nennquerschnitt ist hierbei insbesondere abhängig von der Leitfähigkeit des Leiters und damit maßgebend von der Materialwahl sowie von der Stromstärke und Spannung, für die der Leiter im Einsatz vorgesehen ist.
  • Die Kurzfasern weisen zweckdienlicherweise eine Länge im Bereich von maximal einigen Millimetern, vorzugsweise maximal 10 mm und insbesondere maximal 2 mm auf. Der Durchmesser der Fasern liegt typischerweise im Bereich von einigen 1 µm bis wenige 100 µm. Derartige Kurzfasern lassen sich herstellungstechnisch einfach verarbeiten.
  • Zweckdienlicherweise wird der Isolationsmantel durch Extrusion einer Kunststoffmasse erzeugt, in der die Kurzfasern bereits vor der Extrusion enthalten sind. Der Isolationsmantel schmiegt sich daher unmittelbar an den elektrischen Leiter an. Aufgrund der Extrusion weisen die Fasern in Längsrichtung der Leitung in zweckdienlicher Ausgestaltung eine Vorzugsrichtung auf. Durch diese Zwangsorientierung zumindest eines Großteils der Fasern wird die Zugfestigkeit in Längsrichtung der Leitung positiv beeinflusst.
  • Vorzugsweise liegt der Anteil der Fasern im Bereich von 0,5 Vol.% bis maximal 10 Vol.% vorzugsweise bis maximal etwa 5 Vol% bezogen auf das Gesamtvolumen des Isolationsmaterials. Damit lässt sich eine gute Zugfestigkeit bei weiterhin guten Isolationseigenschaften erreichen.
  • Als Fasermaterial werden vorzugsweise Glasfasern mit Durchmesser im µm-Bereich eingesetzt. Daneben können auch weitere Fasern, wie beispielsweise Polymerfasern, Zellulosefasern, Kohlefasern, etc. vorgesehen sein. Bei Verwendung von Glasfasern liegt deren Anteil beispielsweise vorzugsweise in einem Bereich von ca. 0,5 bis 10 Vol.%.
  • Vorzugsweise übernimmt der Isolationsmantel einen Bereich von 20 bis 80 % und insbesondere mehr als 40 % der vorgegebenen Zugbeanspruchung, d.h. er ist für die Aufnahme eines vergleichsweise großen Anteils an der vorgegebenen Zugbeanspruchung ausgelegt. Vorzugsweise übernimmt der Isolationsmantel einen größeren Anteil als der elektrische Leiter Die verbleibende restliche Zugbeanspruchung trägt der elektrische Leiter selbst. Die vorgegebene Zugbeanspruchung liegt hierbei beispielsweise bis zu 500 N und insbesondere bei etwa lediglich 70 N, d.h. die Leitung muss einer Zugkraft von maximal 500 N bzw. maximal 50 - 100 N standhalten können. Dies bedeutet, sie darf bei einer derartigen Zugbeanspruchung - mit den entsprechenden Sicherheitstoleranzen - keine mechanische Schädigung erfahren. Die Leitung verformt sich daher im Wesentlichen elastisch, lediglich eine geringe plastische Verformung ist zulässig. Diese hohe mechanische Zugfestigkeit zeigt der Isolationsmantel dabei bereits insbesondere im relevanten Dehnungsbereich von kleiner 10% Dehnung.
  • Die Leitung für geringe Ströme zeigt typischerweise weiterhin zumindest eine Anzahl der folgende Merkmale vorzugsweise alle Merkmale in Kombination:
    • Die Leitung ist für einen Strom kleiner 1A und vorzugsweise als Signalleitung für einen Signalstrom kleiner 0,5 A ausgelegt;
    • der Nennquerschnitt des Leiters beträgt maximal 2 mm2 und liegt vorzugsweise unter 1 mm2, bei der Verwendung für Signalleitungen und Kupfer als Leitermaterial liegt er vorzugsweise im Bereich von unter 0,25 mm2;
    • der Außendurchmesser der Leitung beträgt maximal 1 bis 4 mm und liegt vorzugsweise bei maximal 1 bis 2 mm. Je nach Anwendungsfall kann hierbei vorgesehen sein, dass zusammen mit der Reduzierung des Leiterquerschnitts auch der Gesamt-Außenquerschnitt reduziert wird. Alternativ kann jedoch auch der Außenquerschnitt beibehalten werden, beispielsweise für den Einsatz bei Durchführungen mit definierten Öffnungsdurchmessern, um den Außendurchmesser also an vorgegebene Loch-Geometrien anzupassen. In diesem Fall wird dann die Reduzierung des Leiterquerschnitts durch eine größere Wanddicke des Isolationsmantels kompensiert;
    • die Wanddicke des Isolationsmantels liegt im Bereich typischerweise bis maximal 0,7 mm und vorzugsweise bei lediglich 0,2 bis 0,3 mm;
    • als Kunststoffmaterial wird ein extrudiertes Material, insbesondere ein PVC, verwendet. Bevorzugt werden derartige Isolationsmaterialien eingesetzt, die neben den Fasern keine hohen Anteile weiterer Füllstoffe, insbesondere mineralische Füllstoffe, wie beispielsweise Flammschutzmittel, enthalten. Dadurch ist der Füllstoffgehalt, d.h. der Anteil der in der Kunststoff-Matrix eingebetteten Fasern, Partikel und sonstiger Stoffe, gering gehalten, um die Isolationseigenschaften nicht negativ zu beeinflussen.
  • Als Leitermaterial wird vorzugsweise Kupfer eingesetzt. Alternativ hierzu können auch andere Leitermaterialien eingesetzt werden, insbesondere solche mit gegenüber Kupfer erhöhter Zugfestigkeit.
  • Die Aufgabe wird gemäß der Erfindung weiterhin gelöst durch ein Verfahren gemäß Anspruch 11, wonach vorgesehen ist, dass bei der Auslegung einer elektrischen Leitung der Nennquerschnitt des Leiters gegenüber einer vergleichbaren Leitung ohne faserverstärkten Kunststoff reduziert ist, unter Berücksichtigung, dass zumindest ein Teil einer vorgegebenen Zugbelastung durch den faserverstärkten Kunststoff übernommen wird. Unter vergleichbarer Leitung wird hierbei verstanden, dass die beiden Leitungen für vergleichbare, insbesondere gleiche mechanische (Zug-)belastungen ausgelegt sind und einen bezüglich ihrer Architektur / Struktur gleichen Aufbau zeigen. Die Leitung unterscheidet sich von der vergleichbaren Leitung insbesondere lediglich durch den Isolationsmantel (faserverstärkt) und durch den verringerten Leiter- und vorzugsweise auch Leitungsdurchmesser.
  • Ein Ausführungsbeispiel der Erfindung wird anhand der Figuren näher erläutert.
  • Fig. 1
    zeigt eine vereinfachte, schematische Querschnittsdarstellung einer Leitung, insbesondere einer Signalleitung und
    Fig. 2
    zeigt ein beispielhaftes Zugkraft-Dehnungs-Diagramm.
  • Eine elektrische Leitung 2 umfasst im Ausführungsbeispiel gemäß Figur 1 einen elektrischen Litzenleiter 4, der aus insgesamt sieben Einzeldrähten 6 gebildet ist. Die Einzeldrähte 6 sind hierzu miteinander verseilt und bestehen beispielsweise aus Kupfer. Der Litzenleiter 4 ist von einem Isolationsmantel 8 umgeben, in dem - hier nur stark vereinfacht und schematisch dargestellt - Kurzfasern 10 in einer Kunststoffmatrix 12 eingebettet sind. Falls eine glatte Außenoberfläche ohne Faseranteil gewünscht oder erforderlich ist, so ist vorzugsweise um den Isolationsmantel 8 herum eine faserfreie Kunststoffhaut vorgesehen oder ein zusätzlicher Mantel. Die Leitung wird vorzugsweise in der in der Figur dargestellten Variante als Einzel-Rundleitung ohne weitere Elemente, wie beispielsweise zusätzliche Zugentlastungsfäden, etc. ausgebildet. Die dargestellte Signalleitung wird innerhalb eines Kraftfahrzeug-Bordnetzes beispielsweise gemeinsam mit weiteren Leitungen verlegt.
  • Alternativ können bereits mehrere dieser Leitungen vorkonfektioniert von einem gemeinsamen Schutzmantel umgeben sein.
  • Die hier beschriebene Leitung 2 mit dem durch die eingebetteten Kurzfasern 10 verstärkten Isolationsmantel weist im Vergleich zu den bisherigen derartigen Leitungen ohne faserverstärkten Isolationsmantel mehrere Vorteile auf. So kann weiterhin das im Hinblick auf die elektrischen Eigenschaften besonders geeignete Kupfer mit seiner guten Leitfähigkeit eingesetzt werden. Durch die Reduzierung des Nennquerschnitts auf das für die elektrischen Eigenschaften erforderliche Maß ist zugleich eine deutliche Kostenreduzierung erzielt. Die mechanische Funktion der Zugfestigkeit wird nämlich von dem teuren Kupfermaterial auf den vergleichsweise günstigen faserverstärkten Kunststoff übertragen. Weiterhin kann die Leitung mit den üblichen Verfahren hergestellt und verarbeitet werden. Sowohl das Extrusionsverfahren ist problemlos mit den Fasern möglich. Auch die Verlegung der Leitung, das Anschließen von Steckern, etc. erfordert keine neuen Prozesstechnologien, da lediglich die Leiterquerschnitte reduziert sind. Es sind daher auch keine Probleme aufgrund eines Technologiewechsels beispielsweise bei der Kontaktierung, wie z.B. Korrosion, etc. zu erwarten. Da beim Anschließen eines Kontaktelements beispielsweise über eine Crimp-Verbindung diese auch am Isolationsmantel eingreift, wird automatisch auch eine mechanische Krafteinleitung über die Crimp-Verbindung in den Isolationsmantel erfolgen.
  • In dem in der Figur 2 dargestellten Diagramm ist das Zusammenspiel zwischen dem Isolationsmantel 8 und dem Litzenleiter 4 im Hinblick auf die Übernahme einer Zugkraft skizziert. In dem Diagramm ist auf der vertikalen Achse die ausgeübte Zugkraft und auf der horizontalen Achse die Dehnung aufgetragen. Die untere Kurve zeigt hierbei das Kraft-Dehnungs-Verhalten eines beispielhaften Isolationsmantels 8 aus einem thermoplastischen Thermoplastischer Elastomer (TPE) mit einer minimalen Wandstärke von etwa 0,2 mm, die einen Litzenleiter mit einer Nennquerschnittsfläche von etwa 0,22 mm2 umgibt, so dass die Gesamtquerschnittsfläche des Isolationsmantels etwa bei 0,5 mm2 liegt. Die mittlere Kurve zeigt das Kraft-Dehnungs-Verhalten eines beispielhaften Cu-Litzenleiters mit einem Nennquerschnitt von 0,22 mm2. Diese Kurve zeigt das typische Spannungs-Dehnungs-Verhalten von Kupfer, dessen Zugfestigkeit üblicherweise bei etwa 230 N/mm2 liegt. Die oberste Kurve zeigt eine rechnerische Überlagerung der beiden Kurven für den Litzenleiter 4 und für den Isolationsmantel 8.
  • Typische Anforderungen verlangen, dass eine derartige Leitung 2 einer Zugkraft von 70 N stand halten muss. Wie aus der oberen überlagerten Kurve zu entnehmen ist, wird dies durch das Zusammenwirken des Isolationsmantels 8 mit dem Litzenleiter 4 problemlos bei einem relevanten Dehnungsbereich von etwa 5% erreicht. Dies zeigt also, dass durch die spezielle Wahl des Isolationsmantels 8 und dessen guten mechanischen Eigenschaften im Hinblick auf die Zugfestigkeit eine deutliche Querschnittsreduzierung des Leiters 4 von den heute üblichen Nennquerschnitten von 0,35 mm2 erreicht.
  • Das für den Isolationsmantel 8 verwendete faserverstärkte Material zeigt allgemein vorzugsweise im Dehnungsbereich < 15% und - insbesondere bei einem hohen Faseranteil - auch bei Dehnungswerten von deutlich unter 10% ein Maximum im Spannungs-Dehnungs-Verhalten. Zusammen mit einem hohen Elastizitätsmodul bei geringen Dehnungen im Bereich beispielsweise bis 5% Dehnung wird insgesamt ein sehr gutes mechanisches Spannungs-Dehnungs-Verhalten des Isolationsmantels 8 erreicht.
  • Damit zeigt das faserverstärkte Isolationsmaterial ein deutlich unterschiedliches charakteristisches Verhalten zu üblichen nicht faserverstärkten Isolationsmaterialien wie beispielsweise PVC, welches einen kontinuierlichen Anstieg der Zugfestigkeit bis hin zu seiner Reißdehnung bei etwa 300 % Dehnung aufweist. In dem für die Leitung 2 im Hinblick auf die Zugfestigkeit relevanten Dehnungsbereich von < 10% zeigt dabei ein solches herkömmliches Isolationsmaterial erst einen Bruchteil seiner maximalen Zugfestigkeit.
  • Allgemein gilt die Relation, dass mit zunehmenden Faseranteil die maximale Zugspannung des faserverstärkten Materials zunimmt bei gleichzeitiger Abnahme der Reißdehnung. Untersuchungen haben gezeigt, dass ein guter Kompromiss zwischen einer ausreichenden Reißdehnung und einer möglichst guten Zugspannung bei bereits geringen Dehnungswerten mit geringen Faseranteilen erreicht werden können.
  • Über die speziellen Eigenschaften des jeweils gewählten faserverstärkten Isolationsmaterials und dessen Querschnittsfläche (also die Wahl der Wandstärke des Isolationsmantels 8) lässt sich eine Zugkraft-Aufnahmefähigkeit des Isolationsmantels 8 entsprechend den jeweiligen Anforderungen und insbesondere auch in Abhängigkeit des gewählten Leiterquerschnitts einstellen. Geht man beispielsweise von einer vorgegebenen Zugkraft in Höhe von 70 N und der Verwendung von einem Kupfer-Litzenleiter mit 0,13 mm2 Querschnittsfläche aus, so kann der Litzenleiter 4 bei der typischen Kupfer-Zugfestigkeit von 230 N/mm2 lediglich etwa 29,9 N an Zugkraft übernehmen. Der Rest muss daher vom Isolationsmantel übernommen werden.

Claims (12)

  1. Elektrische Leitung (2), insbesondere Signalleitung, mit einem elektrischen Leiter (4) und einem diesen umgebenden Isolationsmantel (8), wobei die Leitung (2) für eine vorgegebene Zugbeanspruchung ausgelegt ist, die zumindest teilweise von dem Isolationsmantel (8) aufnehmbar ist, der hierzu aus Kunststoff als Matrix (12) mit darin einzelweise und verteilt eingebetteten Kurzfasern (10) ausgebildet ist.
  2. Leitung (2) nach Anspruch 1,
    bei der der Nennquerschnitt des Leiters (4) bei einer vorgegebenen Soll-Stromstärke, für die die Leitung (2) ausgelegt ist, auf den für die elektrische Leitfähigkeit erforderlichen Nennquerschnitt begrenzt ist.
  3. Leitung (2) nach Anspruch 1 oder 2,
    bei der die Kurzfasern (10) eine Länge im Bereich von maximal einigen Millimetern haben.
  4. Leitung (2) nach Anspruch 3,
    bei der die Länge maximal 10 mm, vorzugsweise maximal 2 mm beträgt.
  5. Leitung (2) nach einem der vorhergehenden Ansprüche,
    bei der die Kurzfasern (10) in Längsrichtung der Leitung (2) ausgerichtet sind.
  6. Leitung (2) nach einem der vorhergehenden Ansprüche,
    bei der der Isolationsmantel (8) durch Extrusion einer Kunststoffmasse mit bereits darin enthaltenen Kurzfasern (10) ausgebildet ist.
  7. Leitung (2) nach einem der vorhergehenden Ansprüche,
    bei der der Anteil der Kurzfasern (10) im Bereich von 0,5 Vol.% bis maximal 10 Vol.% bezogen auf das Gesamtvolumen des Isolationsmantels (8) liegt.
  8. Leitung (2) nach einem der vorhergehenden Ansprüche,
    bei dem der Isolationsmantel (8) für eine Zugbeanspruchung im Bereich von 20 bis 80 % der vorgegebenen Zugbeanspruchung ausgelegt ist.
  9. Leitung (2) nach einem der vorhergehenden Ansprüche,
    die für eine vorgegebene Zugbeanspruchung von bis zu etwa 500 N und insbesondere von etwa 50 bis 100 N ausgelegt ist.
  10. Leitung (2) nach einem der vorhergehenden Ansprüche,
    die in Kombination folgende Merkmale aufweist:
    - sie ist für einen Strom kleiner 1A ausgelegt,
    - der Nennquerschnitt des Leiters beträgt maximal 2mm2 und liegt vorzugsweise unter 1mm2,
    - der Außendurchmesser beträgt maximal 1 bis 4 mm und vorzugsweise maximal 1 bis 2 mm
    - der Isolationsmantel (8) weist eine Wanddicke auf, die im Bereich bis maximal 0,7 mm liegt,
    - als Kunststoff wird ein extrudierbares Material, beispielsweise ein Thermoplast, insbesondere ein PVC verwendet.
  11. Verfahren zur Auslegung einer elektrischen Leitung (2) mit einem elektrischen Leiter (4) und einem diesen umgebenden Isolationsmantel (8) aus einem faserverstärkten Kunststoff mit darin einzelweise und verteilt eingebetteten Kurzfasern (10), wobei die Leitung (2) für eine vorgegebene Zugbelastung ausgelegt wird, die teilweise vom Isolationsmantel (8) aufnehmbar ist und wobei der Nennquerschnitt des Leiters (4) gegenüber einer im Hinblick auf den Aufbau und der mechanischen Belastbarkeit vergleichbaren Leitung jedoch ohne faserverstärkten Kunststoff reduziert wird.
  12. Verwendung einer Leitung (2) nach einem der Ansprüche 1 bis 10 oder einer nach Anspruch 11 ausgelegten Leitung (2) in einem Kraftfahrzeug.
EP10009704.7A 2009-09-16 2010-09-16 Elektrische Leitung Active EP2299453B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10009704T PL2299453T3 (pl) 2009-09-16 2010-09-16 Przewód elektryczny

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009041739A DE102009041739A1 (de) 2009-09-16 2009-09-16 Elektrische Leitung

Publications (3)

Publication Number Publication Date
EP2299453A2 true EP2299453A2 (de) 2011-03-23
EP2299453A3 EP2299453A3 (de) 2012-07-18
EP2299453B1 EP2299453B1 (de) 2013-11-13

Family

ID=43063389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10009704.7A Active EP2299453B1 (de) 2009-09-16 2010-09-16 Elektrische Leitung

Country Status (3)

Country Link
EP (1) EP2299453B1 (de)
DE (1) DE102009041739A1 (de)
PL (1) PL2299453T3 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015211763A1 (de) 2015-06-24 2016-12-29 Leoni Kabel Holding Gmbh Elektrische Leitung und Verfahren zur Herstellung einer solchen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1037542B (de) * 1955-03-30 1958-08-28 Felten & Guilleaume Carlswerk Elektrisches Kabel mit einer zugfesten Bewehrung, insbesondere Tiefseekabel oder selbsttragendes Luftkabel
JPH0345637A (ja) * 1989-07-14 1991-02-27 Hitachi Cable Ltd 難燃性電気絶緑組成物
JPH06103828A (ja) * 1992-09-21 1994-04-15 Hitachi Cable Ltd 塩素化ポリエチレンシースケーブル及びその製造方法
BR9705768A (pt) * 1997-03-20 1999-02-23 Servicios Condumex Sa Cabo primário de parede ultradelgada para serviço automotor
EP1191545A1 (de) * 2000-09-20 2002-03-27 Nexans Litzenleiter
DE20309934U1 (de) * 2003-07-02 2003-08-28 Verta Ag St Gallen Schutzvorrichtung für Kabel u.dgl.
NZ572688A (en) * 2006-05-22 2011-12-22 Prysmian Spa Heavy duty cable with an outer sheath having an extruded fibril reinforced polymeric matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
PL2299453T3 (pl) 2014-04-30
DE102009041739A1 (de) 2011-03-24
EP2299453A3 (de) 2012-07-18
EP2299453B1 (de) 2013-11-13

Similar Documents

Publication Publication Date Title
DE102008063086B4 (de) Erdungskabel zur Erdung von Eisenbahneinrichtungen
DE102007042680B4 (de) Faserseil aus hochfesten Kunstfasern für eine Hubschrauberrettungswinde
CH705337B1 (de) Elektrooptisches Kommunikations- und Energiekabel.
DE3513859A1 (de) Unterwasser-nachrichtenuebertragungskabel mit einer mehrzahl von optischen fasern
EP2329503B1 (de) Mit geschäumtem polyurethan ummantelte elektrische leitung
DE102013005901A1 (de) Erdungskabel, insbesondere Bahnerdungskabel zur Erdung von Eisenbahneinrichtungen
DE102009043164B4 (de) Elektrisches Kabel
EP2299453B1 (de) Elektrische Leitung
EP1653483A1 (de) Mehradrige flexible elektrische Leitung
DE3538664C2 (de)
DE102006027498B4 (de) Mechanisches Schutzschlauchsystem für elektrische Leitungen, insbesondere in Kraftfahrzeugen
DE2512830B2 (de) Fernsehkamerakabel mit Lichtleitfasern
DE3446766A1 (de) Leitungsseil fuer hochspannungsfreileitungen
EP3499518B1 (de) Elektrischer leiter aus massiven segmenten
DE3544085C2 (de)
WO2011035450A2 (de) Elektrooptisches kabel
DE102015211763A1 (de) Elektrische Leitung und Verfahren zur Herstellung einer solchen
EP1973677A1 (de) Elektrischer verbundleiter und herstellverfahren dafür
DE102010046955A1 (de) Elektrisches Kabel
DE3048454C2 (de) Elektrische Schwachstromleitung
EP2280401B1 (de) Elektrische Leitung
EP0277157B1 (de) Selbsttragendes freileitungsseil
DE3146238A1 (de) Elektro-zugseil
DD229242A1 (de) Kraftfahrzeug-leitung mit zugfester leiterkonstruktion
DE102009042723B4 (de) Elektrisches Kabel, das Einzeldrähte aus Kupfer und aus einer Kupfer-Zinn-Legierung aufweist

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 7/18 20060101AFI20120611BHEP

17P Request for examination filed

Effective date: 20121015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130618

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 640872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010005358

Country of ref document: DE

Effective date: 20140102

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005358

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

26N No opposition filed

Effective date: 20140814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010005358

Country of ref document: DE

Effective date: 20140814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140916

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140916

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140214

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100916

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20170905

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131113

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005358

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005358

Country of ref document: DE

Owner name: LEONI KABEL GMBH, DE

Free format text: FORMER OWNER: LEONI KABEL HOLDING GMBH, 90402 NUERNBERG, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010005358

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010005358

Country of ref document: DE

Owner name: LEONI KABEL GMBH, DE

Free format text: FORMER OWNER: LEONI KABEL GMBH, 90402 NUERNBERG, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180916

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 640872

Country of ref document: AT

Kind code of ref document: T

Owner name: LEONI KABEL GMBH, DE

Effective date: 20200901

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230505

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 14

Ref country code: AT

Payment date: 20230915

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 14

Ref country code: DE

Payment date: 20230919

Year of fee payment: 14