EP2299083A1 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
EP2299083A1
EP2299083A1 EP10170841A EP10170841A EP2299083A1 EP 2299083 A1 EP2299083 A1 EP 2299083A1 EP 10170841 A EP10170841 A EP 10170841A EP 10170841 A EP10170841 A EP 10170841A EP 2299083 A1 EP2299083 A1 EP 2299083A1
Authority
EP
European Patent Office
Prior art keywords
coolant
exhaust gas
gas recirculation
valve
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10170841A
Other languages
German (de)
French (fr)
Other versions
EP2299083B1 (en
Inventor
Peter Schubert
Carl Bohman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2299083A1 publication Critical patent/EP2299083A1/en
Application granted granted Critical
Publication of EP2299083B1 publication Critical patent/EP2299083B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops

Definitions

  • the invention relates to a cooling system.
  • the invention relates to a cooling system for an internal combustion engine.
  • An exhaust gas recirculation system returns a part of the exhaust gas that the engine discharges on its exhaust side to the intake side of the engine. Further reduction of pollutants can be achieved by additionally cooling the exhaust gases in the exhaust gas recirculation system.
  • Conventional exhaust gas recirculation systems are connected to a cooling circuit of the internal combustion engine, wherein circulates a coolant in the cooling circuit to absorb heat and transport. Excess heat is released by means of a radiator of the cooling circuit to an ambient air.
  • a flow of coolant through the internal combustion engine is throttled or completely prevented in order to allow a rapid heating of the internal combustion engine.
  • no coolant flows through the exhaust gas recirculation system.
  • the exhaust gas recirculation system is thermally heavily loaded, which can affect a lifetime and reliability of the exhaust gas recirculation system.
  • pollutants are reduced less than in an operating phase of the internal combustion engine, which is an additional environmental impact.
  • a turbocharger of the internal combustion engine which is also cooled by means of coolant, can set corresponding thermal requirements, such as the exhaust gas recirculation system.
  • the invention is based on the object to provide an improved cooling system.
  • a first coolant path extends through an internal combustion engine and a second coolant path through an exhaust gas recirculation system, wherein both coolant paths are connected in parallel with a radiator.
  • Coolant can be conveyed by means of a first coolant pump by the internal combustion engine. If the outlet side of the first coolant pump is accessible, the flow of coolant provided by the first coolant pump can also be conducted through the exhaust gas recirculation system. In this case, a controllable first coolant valve may be provided to control the cooling effect of the exhaust gas recirculation system.
  • a second coolant pump may be provided which conveys coolant from the radiator through the exhaust gas recirculation system. This arrangement is particularly advantageous when an outlet side of the first coolant pump is difficult to access. A cooling effect of the exhaust gas recirculation system may be controlled by the second coolant pump.
  • the exhaust gas recirculation system may include an exhaust gas recirculation valve and an exhaust gas recirculation cooler, which are flowed through in parallel by coolant. This allows improved cooling and thus an increase in the reliability of the exhaust gas recirculation valve with improved pollutant reduction.
  • a second coolant valve By means of a second coolant valve, coolant leaving the internal combustion engine can be recirculated directly to the radiator in a first flow and returned to the radiator in a second flow parallel to the first flow through a first heat exchanger.
  • the first heat exchanger may belong to an oil circuit of the internal combustion engine, so that a warm-up operation of the internal combustion engine can be controlled independently of a cooling of the exhaust gas recirculation system and the internal combustion engine.
  • the second coolant valve may also control a further flow of coolant to a second heat exchanger, which is part of an interior heating of the motor vehicle.
  • a conventional three-way valve may be used to control a refrigeration cycle through the engine that is independent of exhaust gas recirculation cooling.
  • the second coolant valve may be a three-way valve with a control disk, so that by rotating the control disk, the cooling conditions between the radiator, the first heat exchanger and the second heat exchanger are coupled coupled. A number of actuators can thus be minimized and a control device for the three-way valve can be designed accordingly simpler.
  • FIG. 1 1 shows a cooling system 100 for an internal combustion engine 105.
  • the cooling system 100 includes a radiator 110 that is provided with a first coolant path 115 and a second coolant path 120.
  • the radiator 110 includes an inlet for high temperature coolant on its right side and an outlet for low temperature coolant on its left side.
  • the coolant can be formed for example by water, glycol, alcohol or other liquids or liquid mixtures.
  • the radiator is usually designed as a heat exchanger with an ambient air and can be forced ventilated, for example by means of a blower (not shown), which may be driven electrically or by means of the internal combustion engine 105.
  • the first coolant path 115 starts at the outlet of the radiator 110 and leads from there to a first coolant pump 125.
  • the first coolant pump 125 is usually driven by the engine 105 and may be located in a housing which is flanged to the engine 105 or formed directly on the engine 105 is.
  • the first coolant path 115 continues from the first coolant pump 125 to the engine 105. This connection can be integrated with the engine 105 in such a way that it is practically inaccessible from the outside.
  • the first coolant path 115 continues through the engine 105, which may be a reciprocating engine or other internal combustion engine. From the internal combustion engine 105, the first coolant path 115 extends into a three-way valve 130.
  • the three-way valve 130 is typically a spool valve that includes a control disc with control ports.
  • the three-way valve 130 may be a three-port wax expansion thermostat.
  • the wax expansion thermostat can be influenced in its passage behavior.
  • One side of the control disk is fluid-tightly connected in a port E of the three-way valve 130.
  • the control disk is rotatable about an axis so that the control ports are more or less aligned with ports leading to three different outlets A, B and C of the three-way valve 130.
  • the control angle of the control disk is usually by means of an electric motor (not shown ) controlled as a function of one or more temperatures of the cooling system 100.
  • the first coolant path 115 continues from the three-way valve 130 through the port C to the inlet of the radiator 110. Another portion of the first coolant path 115 extends from the three-way valve 130 through the port B to the oil cooler 135 and from there to the outlet the radiator 110.
  • the oil cooler 135 is connected to an oil circuit of the internal combustion engine 105 and can be used both to introduce heat into the oil circuit to heat the engine 105 in a warm-up phase as quickly and uniformly as possible to an operating temperature, or heat in an operating phase remove from the engine 105, so that a maximum allowable operating temperature of the engine 105 is not exceeded.
  • first coolant path 115 extends from the three-way valve 130 through its port A to an interior heater 140 and from there to the outlet of the radiator 110.
  • the recirculation of coolant from the oil cooler 135 and the interior heater 140 to the outlet of the radiator 110 is selected so as to be able to use the oil cooler 135, the interior heater 140 and the radiator 110 in parallel with the heat dissipation from the internal combustion engine 105.
  • the three-way valve 130 controls the distribution of coolant and thus the distribution of heat to the oil cooler 135, the interior heater 140 and the radiator 110.
  • the second coolant path 120 extends from the outlet of the radiator 110 to a second coolant pump 145.
  • the second coolant pump 145 may be electrically driven and controllable by means of the drive in its flow rate.
  • the second coolant path 120 extends into an exhaust gas recirculation system 170 that includes an exhaust gas recirculation cooler 150 and an exhaust gas recirculation valve 155, with coolant flowing in parallel through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155.
  • the coolant first flows through the exhaust gas recirculation valve 155 and from there into the exhaust gas recirculation cooler 150.
  • the reverse order is also possible. Exhaust gases emitted from the engine 105 are passed through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 back to a combustion train of the engine 105.
  • the second coolant path 120 optionally extends (indicated by dashed lines) through one to the turbocharger 190 for the internal combustion engine 105.
  • the turbocharger 190 is connected in parallel with the exhaust gas recirculation system 170 in the second coolant path 120 to provide maximum cooling of the turbocharger 190 during the warm - up phase of the engine To provide internal combustion engine 105.
  • the turbocharger 190 may be serially connected to the exhaust recirculation cooler 150 and / or to the exhaust gas recirculation valve 155.
  • the turbocharger 190 may replace some or all of the elements of the exhaust gas recirculation system 170.
  • the turbocharger 190 typically heats faster than the engine 105, such that during the warm-up phase of the engine 105, cooling of the turbocharger 190 provided by the second coolant path 120 may be required. Flow of coolant through the engine 105 is unnecessary for cooling the exhaust gas recirculation system 170 or the turbocharger 190. Improved cooling of the turbocharger 190 in the operating phase of the internal combustion engine 105 by means of coolant of the lowest temperature available in the cooling system 100 may increase the life of the turbocharger 190.
  • the second coolant path 120 continues to a backflow barrier 180 and from there to the inlet of the radiator 110.
  • the backflow barrier 180 is configured to provide a flow of coolant opposite to that in FIG FIG. 1 indicated direction of the arrow of the second coolant path 120 and in particular a backflow of hot coolant from the inlet of the radiator 110 into the exhaust gas recirculation system 170 to prevent.
  • the return flow barrier 180 may also be part of the second coolant path 120 between the outlet of the radiator 110 and the suction side of the second coolant pump 145.
  • the return flow barrier 180 can be designed to be integrated with the second coolant pump 145, either by integration into a component or by an already realized by the second coolant pump 145 Blocking effect, for example, if the second coolant pump 145 is designed as a diaphragm or piston pump.
  • the exhaust gas recirculation cooler 150 is usually also designed as a heat exchanger with the coolant of the second coolant path 120.
  • the exhaust gas recirculation valve 155 may include an electric servomotor (not shown) that may be driven by a controller. Exhaust gases in the region of the exhaust gas recirculation valve 155 can reach temperatures of 600 ° C. and more, so that an uncooled exhaust gas recirculation valve 155 can be thermally loaded to such an extent that the servo motor and possibly the control device overheat.
  • FIG. 12 shows a cooling system 200 as an alternative embodiment to the cooling system 100 FIG. 1 ,
  • the first coolant pump 125 delivers coolant to both the first coolant path 115 and the second coolant path 120. Otherwise, the first coolant path 115 extends as in FIG FIG. 1 shown.
  • the second coolant path 120 extends from the outlet side of the first coolant pump 125 to an optional coolant valve 160. From the coolant valve 160, the second coolant path 120 extends in parallel through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 and together to the inlet of the radiator 110.
  • the coolant valve 160 may alternatively be provided in the connection of the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 to the radiator 110.
  • the coolant valve 160 is controllable, so that a flow of coolant through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 in the context of the promotion of coolant through the first coolant pump 125 is controllable.
  • a control can be proportional by means of a servo valve or clocked. The control can be carried out, for example, as a function of one or more temperatures in the cooling system 200. The controller may also consider the position of the three-way valve 130.
  • the non-return valve 180 may be integrated with the coolant valve 160.
  • a controllable coolant valve 160 may also provide the functionality of the non-return valve 180 by being opened only when there is no fear of backflow of coolant from the entrance of the radiator 110 into the exhaust gas recirculation system 170. This may be determined from pressure or temperature measurements within the cooling system 200 and / or read from operating conditions of valves and pumps in the cooling circuit 200.
  • the cooling system 200 provides over the cooling system 100 FIG. 1 the advantage that no additional coolant pump 145 is required. However, a precondition for use of the cooling system 200 is an accessibility of the connection between the first coolant pump 125 and the internal combustion engine 105.
  • FIG. 3 FIG. 12 shows a cooling system 300 based on the cooling system 100 FIG. 1 ,
  • the three-way valve 130 is not arranged on a coolant outlet side of the internal combustion engine 105, but on a coolant inlet side of the first coolant pump 125 in the first coolant path 115.
  • the port A of the three-way valve 130 is connected to the outlet of the radiator 110, the port B to an outlet side of the oil cooler 135, the port C to an outlet side of the interior heater 140, and the port E to the inlet side of the first coolant pump 125.
  • the cooling circuit 300 differs only from the cooling circuit 100 only by a down-flow control instead of an inflow control of coolant from / to the internal combustion engine 105.
  • a choice between the two alternative cooling systems may be based on what connections which elements on a given motor vehicle are best accessible.

Abstract

The cooling system (100) has a cooling agent path (115), which is run by a combustion engine (105), a radiator (110) and another cooling agent path (120), which is run by an exhaust gas recycling system (170). The former cooling agent path and the latter cooling agent path are parallel connected with the radiator.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Kühlsystem. Insbesondere betrifft die Erfindung ein Kühlsystem für einen Verbrennungsmotor.The invention relates to a cooling system. In particular, the invention relates to a cooling system for an internal combustion engine.

Kraftfahrzeuge mit Verbrennungsmotoren können durch die Verwendung von Abgasrückführungssystemen reduzierte Schadstoffwerte in ihren Abgasen erreichen. Ein Abgasrückführungssystem leitet einen Teil der Abgase, die der Verbrennungsmotor an seiner Auslassseite abgibt, zur Einlassseite des Verbrennungsmotors zurück. Eine weitere Reduzierung von Schadstoffen kann erzielt werden, indem die Abgase im Abgasrückführungssystem zusätzlich gekühlt werden.Motor vehicles with internal combustion engines can achieve reduced pollutant values in their exhaust gases through the use of exhaust gas recirculation systems. An exhaust gas recirculation system returns a part of the exhaust gas that the engine discharges on its exhaust side to the intake side of the engine. Further reduction of pollutants can be achieved by additionally cooling the exhaust gases in the exhaust gas recirculation system.

Übliche Abgasrückführungssysteme sind mit einem Kühlkreislauf des Verbrennungsmotors verbunden, wobei im Kühlkreislauf ein Kühlmittel zirkuliert, um Wärme aufzunehmen und zu transportieren. Überschüssige Wärme wird mittels eines Radiators des Kühlkreislaufs an eine Umgebungsluft abgegeben. Während einer Warmlaufphase des Verbrennungsmotors wird ein Fließen von Kühlmittel durch den Verbrennungsmotor gedrosselt oder ganz unterbunden, um eine rasche Aufheizung des Verbrennungsmotors zu erlauben. In üblichen Kühlsystemen fließt dann auch kein Kühlmittel durch das Abgasrückführungssystem. Das Abgasrückführungssystem wird dabei thermisch stark belastet, was eine Lebensdauer und eine Betriebssicherheit des Abgasrückführungssystems beeinträchtigen kann. Außerdem werden Schadstoffe weniger stark als in einer Betriebsphase des Verbrennungsmotors reduziert, was eine zusätzliche Umweltbelastung darstellt.Conventional exhaust gas recirculation systems are connected to a cooling circuit of the internal combustion engine, wherein circulates a coolant in the cooling circuit to absorb heat and transport. Excess heat is released by means of a radiator of the cooling circuit to an ambient air. During a warm-up phase of the internal combustion engine, a flow of coolant through the internal combustion engine is throttled or completely prevented in order to allow a rapid heating of the internal combustion engine. In conventional cooling systems then no coolant flows through the exhaust gas recirculation system. The exhaust gas recirculation system is thermally heavily loaded, which can affect a lifetime and reliability of the exhaust gas recirculation system. In addition, pollutants are reduced less than in an operating phase of the internal combustion engine, which is an additional environmental impact.

Ein Turbolader des Verbrennungsmotors, der ebenfalls mittels Kühlmittel gekühlt wird, kann entsprechende thermische Anforderungen wie das Abgasrückführungssystem stellen.A turbocharger of the internal combustion engine, which is also cooled by means of coolant, can set corresponding thermal requirements, such as the exhaust gas recirculation system.

Der Erfindung liegt die Aufgabe zu Grunde, ein verbessertes Kühlsystem anzugeben.The invention is based on the object to provide an improved cooling system.

Offenbarung der ErfindungDisclosure of the invention

Die Aufgabe wird gelöst durch ein Kühlsystem mit den Merkmalen des Anspruchs 1. Unteransprüche geben mögliche Ausgestaltungen an.The object is achieved by a cooling system with the features of claim 1. Subclaims indicate possible embodiments.

Erfindungsgemäß verläuft ein erster Kühlmittelpfad durch einen Verbrennungsmotor und ein zweiter Kühlmittelpfad durch ein Abgasrückführungssystem, wobei beide Kühlmittelpfade parallel mit einem Radiator verbunden sind. So ist ein Zirkulieren von Kühlmittel durch das Abgasrückführungssystem unabhängig von einem Zirkulieren von Kühlmittel durch den Verbrennungsmotor möglich.According to the invention, a first coolant path extends through an internal combustion engine and a second coolant path through an exhaust gas recirculation system, wherein both coolant paths are connected in parallel with a radiator. Thus, circulating coolant through the exhaust gas recirculation system is possible regardless of circulating coolant through the engine.

Kühlmittel kann mittels einer ersten Kühlmittelpumpe durch den Verbrennungsmotor gefördert werden. Ist die Auslassseite der ersten Kühlmittelpumpe zugänglich, so kann der durch die erste Kühlmittelpumpe bereitgestellte Strom von Kühlmittel auch durch das Abgasrückführungssystem geleitet werden. In diesem Fall kann ein steuerbares erstes Kühlmittelventil vorgesehen sein, um die Kühlwirkung des Abgasrückführungssystems zu steuern.Coolant can be conveyed by means of a first coolant pump by the internal combustion engine. If the outlet side of the first coolant pump is accessible, the flow of coolant provided by the first coolant pump can also be conducted through the exhaust gas recirculation system. In this case, a controllable first coolant valve may be provided to control the cooling effect of the exhaust gas recirculation system.

Zusätzlich zu der ersten Kühlmittelpumpe kann eine zweite Kühlmittelpumpe vorgesehen sein, die Kühlmittel vom Radiator durch das Abgasrückführungssystem fördert. Diese Anordnung ist insbesondere dann vorteilhaft, wenn eine Auslassseite der ersten Kühlmittelpumpe schwer zugänglich ist. Eine Kühlwirkung des Abgasrückführungssystems kann durch die zweite Kühlmittelpumpe gesteuert werden.In addition to the first coolant pump, a second coolant pump may be provided which conveys coolant from the radiator through the exhaust gas recirculation system. This arrangement is particularly advantageous when an outlet side of the first coolant pump is difficult to access. A cooling effect of the exhaust gas recirculation system may be controlled by the second coolant pump.

Das Abgasrückführungssystem kann ein Abgasrückführungsventil und einen Abgasrückführungskühler umfassen, die parallel von Kühlmittel durchströmt werden. Dies erlaubt eine verbesserte Kühlung und so eine Erhöhung der Betriebssicherheit des Abgasrückführungsventils bei verbesserter Schadstoffreduktion. Mittels eines zweiten Kühlmittelventils kann aus dem Verbrennungsmotor austretendes Kühlmittel in einem ersten Strom unmittelbar zum Radiator zurückgeführt werden und in einem zum ersten Strom parallelen zweiten Strom durch einen ersten Wärmetauscher zum Radiator zurückgeführt werden. Der erste Wärmetauscher kann zu einem Ölkreislauf des Verbrennungsmotors gehören, so dass ein Aufwärmvorgang des Verbrennungsmotors unabhängig von einer Kühlung des Abgasrückführungssystems und des Verbrennungsmotors gesteuert werden kann.The exhaust gas recirculation system may include an exhaust gas recirculation valve and an exhaust gas recirculation cooler, which are flowed through in parallel by coolant. This allows improved cooling and thus an increase in the reliability of the exhaust gas recirculation valve with improved pollutant reduction. By means of a second coolant valve, coolant leaving the internal combustion engine can be recirculated directly to the radiator in a first flow and returned to the radiator in a second flow parallel to the first flow through a first heat exchanger. The first heat exchanger may belong to an oil circuit of the internal combustion engine, so that a warm-up operation of the internal combustion engine can be controlled independently of a cooling of the exhaust gas recirculation system and the internal combustion engine.

Das zweite Kühlmittelventil kann auch einen weiteren Strom von Kühlmittel zu einem zweiten Wärmetauscher steuern, der Teil einer Innenraumheizung des Kraftfahrzeuges ist. So kann ein übliches Drei-Wege-Ventil verwendet werden, um einen Kühlkreislauf durch den Verbrennungsmotor zu steuern, der unabhängig von einer Kühlung der Abgasrückführung ist. Das zweite Kühlmittelventil kann ein Drei-Wege-Ventil mit einer Steuerscheibe sein, so dass durch Verdrehen der Steuerscheibe die Kühlverhältnisse zwischen dem Radiator, dem ersten Wärmetauscher und dem zweiten Wärmetauscher gekoppelt beeinflusst werden. Eine Anzahl von Aktuatoren kann so minimiert werden und eine Steuereinrichtung für das Drei-Wege-Ventil kann entsprechend einfacher ausgelegt sein.The second coolant valve may also control a further flow of coolant to a second heat exchanger, which is part of an interior heating of the motor vehicle. Thus, a conventional three-way valve may be used to control a refrigeration cycle through the engine that is independent of exhaust gas recirculation cooling. The second coolant valve may be a three-way valve with a control disk, so that by rotating the control disk, the cooling conditions between the radiator, the first heat exchanger and the second heat exchanger are coupled coupled. A number of actuators can thus be minimized and a control device for the three-way valve can be designed accordingly simpler.

Kurze Beschreibung der FigurenBrief description of the figures

Im Folgenden wird die Erfindung mit Bezug auf die beigefügten Figuren näher erläutert, in denen:

Fig. 1
ein Kühlsystem für einen Verbrennungsmotor;
Fig. 2
eine alternative Ausführungsform des Kühlsystems aus Fig. 1; und
Fig. 3
eine weitere alternative Ausführungsform des Kühlsystems aus Fig. 1 darstellen.
In the following the invention will be explained in more detail with reference to the attached figures, in which:
Fig. 1
a cooling system for an internal combustion engine;
Fig. 2
an alternative embodiment of the cooling system Fig. 1 ; and
Fig. 3
another alternative embodiment of the cooling system Fig. 1 represent.

Figur 1 zeigt ein Kühlsystem 100 für einen Verbrennungsmotor 105. Das Kühlsystem 100 umfasst einen Radiator 110, der mit einem ersten Kühlmittelpfad 115 und einem zweiten Kühlmittelpfad 120 verbunden ist. Der Radiator 110 umfasst auf seiner rechten Seite einen Einlass für Kühlmittel von hoher Temperatur und auf seiner linken Seite einen Auslass für Kühlmittel von niedriger Temperatur. FIG. 1 1 shows a cooling system 100 for an internal combustion engine 105. The cooling system 100 includes a radiator 110 that is provided with a first coolant path 115 and a second coolant path 120. The radiator 110 includes an inlet for high temperature coolant on its right side and an outlet for low temperature coolant on its left side.

Das Kühlmittel kann beispielsweise durch Wasser, Glykol, Alkohol oder andere Flüssigkeiten bzw. Flüssigkeitsgemische gebildet sein. Der Radiator ist üblicherweise als Wärmetauscher mit einer Umgebungsluft ausgeführt und kann zwangsbelüftet sein, etwa mittels eines Gebläses (nicht dargestellt), das elektrisch oder mittels des Verbrennungsmotors 105 angetrieben sein kann.The coolant can be formed for example by water, glycol, alcohol or other liquids or liquid mixtures. The radiator is usually designed as a heat exchanger with an ambient air and can be forced ventilated, for example by means of a blower (not shown), which may be driven electrically or by means of the internal combustion engine 105.

Der erste Kühlmittelpfad 115 beginnt am Auslass des Radiators 110 und führt von dort zu einer ersten Kühlmittelpumpe 125. Die erste Kühlmittelpumpe 125 wird üblicherweise vom Verbrennungsmotor 105 angetrieben und kann sich in einem Gehäuse befinden, welches an den Verbrennungsmotor 105 angeflanscht oder unmittelbar am Verbrennungsmotor 105 ausgebildet ist. Der erste Kühlmittelpfad 115 setzt sich von der ersten Kühlmittelpumpe 125 zum Verbrennungsmotor 105 fort. Diese Verbindung kann derartig mit dem Verbrennungsmotor 105 integriert sein, dass sie von außen praktisch nicht zugänglich ist.The first coolant path 115 starts at the outlet of the radiator 110 and leads from there to a first coolant pump 125. The first coolant pump 125 is usually driven by the engine 105 and may be located in a housing which is flanged to the engine 105 or formed directly on the engine 105 is. The first coolant path 115 continues from the first coolant pump 125 to the engine 105. This connection can be integrated with the engine 105 in such a way that it is practically inaccessible from the outside.

Der erste Kühlmittelpfad 115 verläuft weiter durch den Verbrennungsmotor 105, der ein Hubkolbenmotor oder ein anderer Verbrennungsmotor sein kann. Vom Verbrennungsmotor 105 aus verläuft der erste Kühlmittelpfad 115 in ein Drei-Wege-Ventil 130.The first coolant path 115 continues through the engine 105, which may be a reciprocating engine or other internal combustion engine. From the internal combustion engine 105, the first coolant path 115 extends into a three-way valve 130.

Das Drei-Wege-Ventil 130 ist üblicherweise ein Schieberventil, welches eine Steuerscheibe mit Steuer-Öffnungen umfasst. Alternativ kann das Drei-Wege-Ventil 130 ein Wachs-Dehnstoffthermostat mit drei Anschlüssen sein. Mittels einer zusätzlichen elektrischen Heizung kann das Wachs-Dehnstoffthermostat in seinem Durchlassverhalten beeinflussbar sein. Eine Seite der Steuerscheibe ist fluiddicht in einem Anschluss E des Drei-Wege-Ventils 130 verbunden. Die Steuerscheibe ist um eine Achse drehbar angeordnet, so dass die Steueröffnungen mehr oder weniger mit Öffnungen fluchten, die zu drei verschiedenen Auslässen A, B und C des Drei-Wege-Ventils 130 führen. Je nach Ausformung der Steuer-öffnungen besteht ein vorgegebener Zusammenhang zwischen einem Steuerwinkel der Steuerscheibe des Drei-Wege-Ventils 130 und effektiven Durchlassquerschnitten vom Anschluss E zu den Anschlüssen A, B und C. Der Steuerwinkel der Steuerscheibe wird üblicherweise mittels eines Elektromotors (nicht dargestellt) in Abhängigkeit einer oder mehrerer Temperaturen des Kühlsystems 100 gesteuert.The three-way valve 130 is typically a spool valve that includes a control disc with control ports. Alternatively, the three-way valve 130 may be a three-port wax expansion thermostat. By means of an additional electric heater, the wax expansion thermostat can be influenced in its passage behavior. One side of the control disk is fluid-tightly connected in a port E of the three-way valve 130. The control disk is rotatable about an axis so that the control ports are more or less aligned with ports leading to three different outlets A, B and C of the three-way valve 130. Depending on the shape of the control openings, there is a predetermined relationship between a control angle of the control disk of the three-way valve 130 and effective passage cross-sections from port E to ports A, B and C. The control angle of the control disk is usually by means of an electric motor (not shown ) controlled as a function of one or more temperatures of the cooling system 100.

Der erste Kühlmittelpfad 115 verläuft vom Drei-Wege-Ventil 130 weiter durch den Anschluss C zum Einlass des Radiators 110. Ein weiterer Teil des ersten Kühlmittelpfads 115 verläuft vom Drei-Wege-Ventil 130 durch den Anschluss B zum Ölkühler 135 und von diesem zum Auslass des Radiators 110. Der Ölkühler 135 ist mit einem Ölkreislauf des Verbrennungsmotors 105 verbunden und kann sowohl dazu verwendet werden, Wärme in den Ölkreislauf einzutragen, um den Verbrennungsmotor 105 in einer Warmlaufphase möglichst rasch und gleichmäßig auf eine Betriebstemperatur zu erwärmen, oder in einer Betriebsphase Wärme aus dem Verbrennungsmotor 105 abzuführen, so dass eine maximal zulässige Betriebstemperatur des Verbrennungsmotors 105 nicht überstiegen wird. Noch ein weiterer Teil des ersten Kühlmittelpfads 115 verläuft vom Drei-Wege-Ventil 130 durch dessen Anschluss A zu einer Innenraumheizung 140 und von dort zum Auslass des Radiators 110. Die Rückführung von Kühlmittel vom Ölkühler 135 und der Innenraumheizung 140 zum Auslass des Radiators 110 ist so gewählt, um den Ölkühler 135, die Innenraumheizung 140 und den Radiator 110 parallel zum Wärmeabtransport aus dem Verbrennungsmotor 105 verwenden zu können. Dabei steuert das Drei-Wege-Ventil 130 jeweils die Verteilung von Kühlmittel und damit die Verteilung von Wärme an den Ölkühler 135, die Innenraumheizung 140 und den Radiator 110.The first coolant path 115 continues from the three-way valve 130 through the port C to the inlet of the radiator 110. Another portion of the first coolant path 115 extends from the three-way valve 130 through the port B to the oil cooler 135 and from there to the outlet the radiator 110. The oil cooler 135 is connected to an oil circuit of the internal combustion engine 105 and can be used both to introduce heat into the oil circuit to heat the engine 105 in a warm-up phase as quickly and uniformly as possible to an operating temperature, or heat in an operating phase remove from the engine 105, so that a maximum allowable operating temperature of the engine 105 is not exceeded. Yet another part of the first coolant path 115 extends from the three-way valve 130 through its port A to an interior heater 140 and from there to the outlet of the radiator 110. The recirculation of coolant from the oil cooler 135 and the interior heater 140 to the outlet of the radiator 110 is selected so as to be able to use the oil cooler 135, the interior heater 140 and the radiator 110 in parallel with the heat dissipation from the internal combustion engine 105. In this case, the three-way valve 130 controls the distribution of coolant and thus the distribution of heat to the oil cooler 135, the interior heater 140 and the radiator 110.

Der zweite Kühlmittelpfad 120 verläuft vom Auslass des Radiators 110 zu einer zweiten Kühlmittelpumpe 145. Die zweite Kühlmittelpumpe 145 kann elektrisch angetrieben und mittels des Antriebs in ihrer Förderleistung steuerbar sein. Von der zweiten Kühlmittelpumpe 145 aus verläuft der zweite Kühlmittelpfad 120 in ein Abgasrückführungssystem 170, das einen Abgasrückführungskühler 150 und ein Abgasrückführungsventil 155 umfasst, wobei Kühlmittel durch den Abgasrückführungskühler 150 und das Abgasrückführungsventil 155 parallel fließt. Für die Erfindung ist es unerheblich, ob Anschlüsse des Abgasrückführungskühlers 150 und des Abgasrückführungsventils 155 innerhalb oder außerhalb des Abgasrückführungssystems 170 miteinander verbunden sind. In einer weiteren Ausführungsform strömt das Kühlmittel zuerst durch das Abgasrückführungsventil 155 und von dort aus in den Abgasrückführungskühler 150. Die umgekehrte Reihenfolge ist ebenfalls möglich. Vom Verbrennungsmotor 105 ausgestoßene Abgase werden durch den Abgasrückführungskühler 150 und das Abgasrückführungsventil 155 zurück zu einem Verbrennungstrakt des Verbrennungsmotors 105 geleitet.The second coolant path 120 extends from the outlet of the radiator 110 to a second coolant pump 145. The second coolant pump 145 may be electrically driven and controllable by means of the drive in its flow rate. From the second coolant pump 145, the second coolant path 120 extends into an exhaust gas recirculation system 170 that includes an exhaust gas recirculation cooler 150 and an exhaust gas recirculation valve 155, with coolant flowing in parallel through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155. For the invention, it is irrelevant whether connections of the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 are connected to each other inside or outside of the exhaust gas recirculation system 170. In another embodiment, the coolant first flows through the exhaust gas recirculation valve 155 and from there into the exhaust gas recirculation cooler 150. The reverse order is also possible. Exhaust gases emitted from the engine 105 are passed through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 back to a combustion train of the engine 105.

Außerdem verläuft der zweite Kühlmittelpfad 120 optional (angedeutet durch gestrichelte Linien) durch einen mit dem Turbolader 190 für den Verbrennungsmotor 105. Der Turbolader 190 ist parallel zum Abgasrückführungssystem 170 im zweiten Kühlmittelpfad 120 angeschlossen, um eine maximale Kühlwirkung des Turboladers 190 auch während der Warmlaufphase des Verbrennungsmotors 105 bereitzustellen. Alternativ kann der Turbolader 190 seriell mit dem Abgasrückführungskühler 150 und/oder mit dem Abgasrückführungsventil 155 verbunden sein. In noch einer weiteren Ausführungsform kann der Turbolader 190 einige oder alle Elemente des Abgasrückführungssystems 170 ersetzen.In addition, the second coolant path 120 optionally extends (indicated by dashed lines) through one to the turbocharger 190 for the internal combustion engine 105. The turbocharger 190 is connected in parallel with the exhaust gas recirculation system 170 in the second coolant path 120 to provide maximum cooling of the turbocharger 190 during the warm - up phase of the engine To provide internal combustion engine 105. Alternatively, the turbocharger 190 may be serially connected to the exhaust recirculation cooler 150 and / or to the exhaust gas recirculation valve 155. In yet another embodiment, the turbocharger 190 may replace some or all of the elements of the exhaust gas recirculation system 170.

Der Turbolader 190 erwärmt sich üblicherweise schneller als der Verbrennungsmotor 105, so dass während der Warmlaufphase des Verbrennungsmotors 105 eine Kühlung des Turboladers 190 erforderlich sein kann, die durch den zweiten Kühlmittelpfad 120 bereitgestellt wird. Ein Fließen von Kühlmittel durch den Verbrennungsmotor 105 ist zur Kühlung des Abgasrückführungssystems 170 oder des Turboladers 190 nicht erforderlich. Durch verbesserte Kühlung des Turboladers 190 in der Betriebsphase der Verbrennungsmotors 105 mittels Kühlmittel der geringsten im Kühlsystem 100 verfügbaren Temperatur kann sich eine Lebensdauer des Turboladers 190 erhöhen.The turbocharger 190 typically heats faster than the engine 105, such that during the warm-up phase of the engine 105, cooling of the turbocharger 190 provided by the second coolant path 120 may be required. Flow of coolant through the engine 105 is unnecessary for cooling the exhaust gas recirculation system 170 or the turbocharger 190. Improved cooling of the turbocharger 190 in the operating phase of the internal combustion engine 105 by means of coolant of the lowest temperature available in the cooling system 100 may increase the life of the turbocharger 190.

Vom Abgasrückführungsventil 155 und dem Abgasrückführungskühler 150 setzt sich der zweite Kühlmittelpfad 120 zu einer Rückflusssperre 180 und von dort aus zum Einlass des Radiators 110 fort. Die Rückflusssperre 180 ist dazu eingerichtet, einen Fluss von Kühlmittel entgegen der in Figur 1 angedeuteten Pfeilrichtung des zweiten Kühlmittelpfades 120 und insbesondere einen Rückfluss von heißem Kühlmittel vom Einlass des Radiators 110 in das Abgasrückführungssystem 170 zu verhindern. Die Rückflusssperre 180 kann alternativ auch zwischen dem Auslass des Radiators 110 und der Saugseite der zweiten Kühlmittelpumpe 145 Bestandteil des zweiten Kühlmittelpfades 120 sein. In einer weiteren Ausführungsform kann die Rückflusssperre 180 mit der zweiten Kühlmittelpumpe 145 integriert ausgeführt sein, entweder durch Integration in ein Bauelement oder durch eine ohnehin durch die zweite Kühlmittelpumpe 145 realisierte Sperrwirkung, beispielsweise falls die zweite Kühlmittelpumpe 145 als Membran- oder Kolbenpumpe ausgeführt ist.From the exhaust gas recirculation valve 155 and the exhaust gas recirculation cooler 150, the second coolant path 120 continues to a backflow barrier 180 and from there to the inlet of the radiator 110. The backflow barrier 180 is configured to provide a flow of coolant opposite to that in FIG FIG. 1 indicated direction of the arrow of the second coolant path 120 and in particular a backflow of hot coolant from the inlet of the radiator 110 into the exhaust gas recirculation system 170 to prevent. Alternatively, the return flow barrier 180 may also be part of the second coolant path 120 between the outlet of the radiator 110 and the suction side of the second coolant pump 145. In a further embodiment, the return flow barrier 180 can be designed to be integrated with the second coolant pump 145, either by integration into a component or by an already realized by the second coolant pump 145 Blocking effect, for example, if the second coolant pump 145 is designed as a diaphragm or piston pump.

Der Abgasrückführungskühler 150 ist üblicherweise ebenfalls als Wärmetauscher mit dem Kühlmittel des zweiten Kühlmittelpfades 120 ausgeführt. Das Abgasrückführungsventil 155 kann einen elektrischen Stellmotor (nicht dargestellt) umfassen, der mittels einer Steuereinrichtung angesteuert sein kann. Abgase im Bereich des Abgasrückführungsventils 155 können Temperaturen von 600 °C und mehr erreichen, so dass ein ungekühltes Abgasrückführungsventil 155 thermisch so stark belastet werden kann, dass der Stellmotor und ggf. die Steuereinrichtung überhitzen.The exhaust gas recirculation cooler 150 is usually also designed as a heat exchanger with the coolant of the second coolant path 120. The exhaust gas recirculation valve 155 may include an electric servomotor (not shown) that may be driven by a controller. Exhaust gases in the region of the exhaust gas recirculation valve 155 can reach temperatures of 600 ° C. and more, so that an uncooled exhaust gas recirculation valve 155 can be thermally loaded to such an extent that the servo motor and possibly the control device overheat.

Figur 2 zeigt ein Kühlsystem 200 als alternative Ausführungsform zum Kühlsystem 100 aus Figur 1. Die erste Kühlmittelpumpe 125 fördert Kühlmittel sowohl zum ersten Kühlmittelpfad 115 als zum zweiten Kühlmittelpfad 120. Ansonsten verläuft der erste Kühlmittelpfad 115 wie in Figur 1 dargestellt. Der zweite Kühlmittelpfad 120 verläuft von der Auslassseite der ersten Kühlmittelpumpe 125 zu einem optionalen Kühlmittelventil 160. Aus dem Kühlmittelventil 160 verläuft der zweite Kühlmittelpfad 120 parallel durch den Abgasrückführungskühler 150 und das Abgasrückführungsventil 155 und gemeinsam zum Einlass des Radiators 110. Das Kühlmittelventil 160 kann alternativ auch in der Verbindung vom Abgasrückführungskühler 150 und dem Abgasrückführungsventil 155 zum Radiator 110 vorgesehen werden. FIG. 2 FIG. 12 shows a cooling system 200 as an alternative embodiment to the cooling system 100 FIG. 1 , The first coolant pump 125 delivers coolant to both the first coolant path 115 and the second coolant path 120. Otherwise, the first coolant path 115 extends as in FIG FIG. 1 shown. The second coolant path 120 extends from the outlet side of the first coolant pump 125 to an optional coolant valve 160. From the coolant valve 160, the second coolant path 120 extends in parallel through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 and together to the inlet of the radiator 110. The coolant valve 160 may alternatively be provided in the connection of the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 to the radiator 110.

Vorzugsweise ist das Kühlmittelventil 160 steuerbar, so dass ein Strom von Kühlmittel durch den Abgasrückführungskühler 150 und das Abgasrückführungsventil 155 im Rahmen der Förderung von Kühlmittel durch die erste Kühlmittelpumpe 125 steuerbar ist. Eine Steuerung kann proportional mittels eines Servoventils oder getaktet erfolgen. Die Steuerung kann beispielsweise in Abhängigkeit einer oder mehrerer Temperaturen im Kühlsystem 200 durchgeführt werden. Die Steuerung kann ferner die Stellung des Drei-Wege-Ventils 130 berücksichtigen. In einer weiteren Ausführungsform kann die Rückflusssperre 180 mit dem Kühlmittelventil 160 integriert ausgeführt sein. Ein steuerbares Kühlmittelventil 160 kann auch die Funktionalität der Rückflusssperre 180 mit bereitstellen, indem es nur dann geöffnet wird, wenn ein Rückfluss von Kühlmittel vom Eingang des Radiators 110 ins Abgasrückführungssystem 170 nicht zu befürchten ist. Dies kann anhand von Druck-, oder Temperaturmessungen innerhalb des Kühlsystems 200 bestimmt und/oder aus Betriebszuständen von Ventilen und Pumpen im Kühlkreislauf 200 abgelesen werden.Preferably, the coolant valve 160 is controllable, so that a flow of coolant through the exhaust gas recirculation cooler 150 and the exhaust gas recirculation valve 155 in the context of the promotion of coolant through the first coolant pump 125 is controllable. A control can be proportional by means of a servo valve or clocked. The control can be carried out, for example, as a function of one or more temperatures in the cooling system 200. The controller may also consider the position of the three-way valve 130. In a further embodiment, the non-return valve 180 may be integrated with the coolant valve 160. A controllable coolant valve 160 may also provide the functionality of the non-return valve 180 by being opened only when there is no fear of backflow of coolant from the entrance of the radiator 110 into the exhaust gas recirculation system 170. This may be determined from pressure or temperature measurements within the cooling system 200 and / or read from operating conditions of valves and pumps in the cooling circuit 200.

Das Kühlsystem 200 bietet gegenüber dem Kühlsystem 100 aus Figur 1 den Vorteil, dass keine zusätzliche Kühlmittelpumpe 145 erforderlich ist. Voraussetzung für einen Einsatz des Kühlsystems 200 ist allerdings eine Zugänglichkeit der Verbindung zwischen der ersten Kühlmittelpumpe 125 und dem Verbrennungsmotor 105.The cooling system 200 provides over the cooling system 100 FIG. 1 the advantage that no additional coolant pump 145 is required. However, a precondition for use of the cooling system 200 is an accessibility of the connection between the first coolant pump 125 and the internal combustion engine 105.

Figur 3 zeigt ein Kühlsystem 300 auf der Basis des Kühlsystems 100 aus Figur 1. Im Unterschied zum Kühlsystem 100 ist hier das Drei-Wege-Ventil 130 nicht auf einer Kühlmittel-Auslassseite von des Verbrennungsmotors 105, sondern an einer Kühlmittel-Einlassseite der ersten Kühlmittelpumpe 125 im ersten Kühlmittelpfad 115 angeordnet. Der Anschluss A des Drei-Wege-Ventils 130 ist mit dem Auslass des Radiators 110 verbunden, der Anschluss B mit einer Auslassseite des Ölkühlers 135, der Anschluss C mit einer Auslassseite der Innenraumheizung 140 und der Anschluss E mit der Einlassseite der ersten Kühlmittelpumpe 125. Hydraulisch und steuerungstechnisch unterscheidet sich der Kühlkreislauf 300 nur vom Kühlkreislauf 100 lediglich durch eine Abstrom-Regelung an Stelle einer Zustrom-Regelung von Kühlmittel vom/zum Verbrennungsmotor 105. Eine Auswahl zwischen den beiden alternativen Kühlsystemen kann sich daran orientieren, welche Anschlüsse welcher Elemente an einem gegebenen Kraftfahrzeug am besten zugänglich sind. FIG. 3 FIG. 12 shows a cooling system 300 based on the cooling system 100 FIG. 1 , In contrast to the cooling system 100, here the three-way valve 130 is not arranged on a coolant outlet side of the internal combustion engine 105, but on a coolant inlet side of the first coolant pump 125 in the first coolant path 115. The port A of the three-way valve 130 is connected to the outlet of the radiator 110, the port B to an outlet side of the oil cooler 135, the port C to an outlet side of the interior heater 140, and the port E to the inlet side of the first coolant pump 125. Hydraulically and control technology, the cooling circuit 300 differs only from the cooling circuit 100 only by a down-flow control instead of an inflow control of coolant from / to the internal combustion engine 105. A choice between the two alternative cooling systems may be based on what connections which elements on a given motor vehicle are best accessible.

Claims (10)

Kühlsystem (100) für einen Verbrennungsmotor (105) und ein Abgasrückführungssystem (170), mit - einem ersten Kühlmittelpfad (115), der durch den Verbrennungsmotor (105) verläuft; - einem Radiator (110) und - einem zweiten Kühlmittelpfad (120), der durch das Abgasrückführungssystem (170) verläuft,
dadurch gekennzeichnet, dass der erste Kühlmittelpfad (115) und der zweite Kühlmittelpfad (120) parallel mit dem Radiator (110) verbunden sind.
Cooling system (100) for an internal combustion engine (105) and an exhaust gas recirculation system (170), with a first coolant path (115) passing through the internal combustion engine (105); a radiator (110) and a second coolant path (120) passing through the exhaust gas recirculation system (170),
characterized in that the first coolant path (115) and the second coolant path (120) are connected in parallel with the radiator (110).
Kühlsystem (100) nach Anspruch 1, gekennzeichnet durch eine erste Kühlmittelpumpe (125), durch die der erste Kühlmittelpfad (115) verläuft, und eine zweite Kühlmittelpumpe, durch die der zweite Kühlmittelpfad (120) verläuft.Cooling system (100) according to claim 1, characterized by a first coolant pump (125) through which the first coolant path (115) passes, and a second coolant pump through which the second coolant path (120) passes. Kühlsystem (100) nach Anspruch 2, dadurch gekennzeichnet, dass die zweite Kühlmittelpumpe in Abhängigkeit einer Temperatur im Bereich des Abgasrückführungssystems steuerbar ist.Cooling system (100) according to claim 2, characterized in that the second coolant pump is controllable in dependence on a temperature in the region of the exhaust gas recirculation system. Kühlsystem (100) nach Anspruch 1, gekennzeichnet durch eine erste Kühlmittelpumpe (125), die den Radiator (110) mit beiden Kühlmittelpfaden (115,120) verbindet.Cooling system (100) according to claim 1, characterized by a first coolant pump (125) connecting the radiator (110) with two coolant paths (115,120). Kühlsystem (100) nach Anspruch 4, gekennzeichnet durch ein steuerbares erstes Kühlmittelventil (160), durch das der zweite Kühlmittelpfad (120) verläuft.Cooling system (100) according to claim 4, characterized by a controllable first coolant valve (160) through which the second coolant path (120) extends. Kühlsystem (100) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Abgasrückführungssystem (170) ein Abgasrückführungsventil (155) und einen Abgasrückführungskühler (150) umfasst und dass der zweite Kühlmittelpfad (120) parallel durch das Abgasrückführungsventil (155) und den Abgasrückführungskühler (150) verläuft.Cooling system (100) according to one of the preceding claims, characterized in that the exhaust gas recirculation system (170) comprises an exhaust gas recirculation valve (155) and an exhaust gas recirculation cooler (150) and in that the second coolant path (120) runs in parallel through the exhaust gas recirculation valve (155) and the exhaust gas recirculation cooler (150). Kühlsystem (100) nach einem der vorangehenden Ansprüche, gekennzeichnet durch einen ersten Wärmetauscher (135) und ein zweites Kühlmittelventil (130), das dazu eingerichtet ist, einen ersten Strom von Kühlmittel vom Verbrennungsmotor (105) durch den ersten Wärmetauscher (135) zum Radiator (110) und einen zweiten Strom von Kühlmittel vom Verbrennungsmotor (105) zum Radiator (110) zu steuern.Cooling system (100) according to one of the preceding claims, characterized by a first heat exchanger (135) and a second coolant valve (130), which is adapted to a first flow of coolant from the internal combustion engine (105) through the first heat exchanger (135) to the radiator (110) and a second flow of coolant from the internal combustion engine (105) to the radiator (110) to control. Kühlsystem (100) nach Anspruch 7, gekennzeichnet durch einen zweiten Wärmetauscher (140), wobei das zweite Kühlmittelventil (130) dazu eingerichtet ist, einen dritten Strom von Kühlmittel vom Verbrennungsmotor (105) zum zweiten Wärmetauscher (140) zu verteilen.Cooling system (100) according to claim 7, characterized by a second heat exchanger (140), wherein the second coolant valve (130) is adapted to distribute a third flow of coolant from the internal combustion engine (105) to the second heat exchanger (140). Kühlsystem (100) nach Anspruch 8, dadurch gekennzeichnet, dass der dritte Strom von Kühlmittel aus dem zweiten Wärmetauscher (140) unmittelbar zum Verbrennungsmotor (105) verläuft.Cooling system (100) according to claim 8, characterized in that the third flow of coolant from the second heat exchanger (140) extends directly to the internal combustion engine (105). Kühlsystem (100) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das zweite Kühlmittelventil (130) ein Drei-Wege-Ventil mit einer Steuerscheibe ist.Cooling system (100) according to claim 8 or 9, characterized in that the second coolant valve (130) is a three-way valve with a control disk.
EP20100170841 2009-08-24 2010-07-27 Cooling system Not-in-force EP2299083B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910028827 DE102009028827A1 (en) 2009-08-24 2009-08-24 cooling system

Publications (2)

Publication Number Publication Date
EP2299083A1 true EP2299083A1 (en) 2011-03-23
EP2299083B1 EP2299083B1 (en) 2012-07-04

Family

ID=43365299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20100170841 Not-in-force EP2299083B1 (en) 2009-08-24 2010-07-27 Cooling system

Country Status (2)

Country Link
EP (1) EP2299083B1 (en)
DE (1) DE102009028827A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887620A1 (en) * 2005-06-28 2006-12-29 Denso Corp HEAT EXCHANGE DEVICE FOR EXHAUST GAS
EP1995424A2 (en) * 2007-05-07 2008-11-26 Nissan Motor Co., Ltd. Internal combustion engine cooling system
WO2009085055A1 (en) * 2008-01-03 2009-07-09 Mack Trucks, Inc. Exhaust gas recirculation cooling circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887620A1 (en) * 2005-06-28 2006-12-29 Denso Corp HEAT EXCHANGE DEVICE FOR EXHAUST GAS
EP1995424A2 (en) * 2007-05-07 2008-11-26 Nissan Motor Co., Ltd. Internal combustion engine cooling system
WO2009085055A1 (en) * 2008-01-03 2009-07-09 Mack Trucks, Inc. Exhaust gas recirculation cooling circuit

Also Published As

Publication number Publication date
DE102009028827A1 (en) 2011-03-03
EP2299083B1 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
DE102011104113B4 (en) Fuel efficient powertrain cooling systems and cooler modules
DE102015113485B4 (en) Split cooling internal combustion engine cooling system with thermostat
DE102012113213B4 (en) Heat exchanger for a vehicle
DE102007023186A1 (en) Exhaust gas recirculation cooler with dual coolant circuit
DE102014215074A1 (en) Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle
DE102013103423A1 (en) An internal combustion engine cooling system for a vehicle and control method thereof
DE102014201678A1 (en) Intercooler system with integrated heating device
EP1923549B1 (en) Cooling system for a motor vehicle
DE10146313A1 (en) Coolant circulation system has flow direction in branch circuit reversible by means of pump or valve
DE102008058856A1 (en) Coolant circulation circuit for a motor
DE102015201240B4 (en) Split cooling system and internal combustion engine with a split cooling system and vehicle equipped accordingly
DE102017200328A1 (en) Urea container as heat storage
DE102012205001B4 (en) Coolant circuit for an internal combustion engine and method for operating the internal combustion engine
DE102007061495A1 (en) Explosion internal combustion engine for motor vehicle, has cooler arrangement including low temperature cooling circuit with air heat exchanger that cools compressed combustion air and condenser heat exchanger
DE102010033125A1 (en) Heat exchanger device for use as e.g. intercooler for combustion engine of motor car, has bypass valve arranged in inlet region or exhaust region and connected with heat exchanger region that is connected with exhaust region
DE102010015107A1 (en) Coolant circuit for internal combustion engine of motor car, has secondary coolant pump producing coolant circulation through heating circuit according to turning off of combustion engine depending on detected actual coolant temperature
WO2008046490A1 (en) Cooling circuit for an internal combustion engine
EP2299083B1 (en) Cooling system
DE102019205575A1 (en) Device for cooling a vehicle battery
EP3557023B1 (en) Charge air cooler for a combustion engine and method for charge air cooling of a combustion engine
DE202016100731U1 (en) Temperature regulation in an exhaust gas recirculation system
EP2307678B1 (en) Cooling device for a motor vehicle internal combustion engine, and method for operating the same
DE102004030153A1 (en) Cooling cycle for internal combustion engine has coolant circulating pump and valve, arranged in coolant bypass-line for its opening and closing whereby coolant bypass-line transmits part of coolant from cooling circuit to coolant radiator
EP3527800A1 (en) Cooling system for a propulsion unit of a vehicle
DE102013217154A1 (en) Temperature control arrangement for transmission oil of a motor vehicle and method for controlling the temperature of transmission oil of a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110923

17Q First examination report despatched

Effective date: 20111018

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 565265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010000976

Country of ref document: DE

Effective date: 20120830

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120927

Year of fee payment: 3

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121004

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121005

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121105

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121015

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130426

26N No opposition filed

Effective date: 20130405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121004

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010000976

Country of ref document: DE

Effective date: 20130405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010000976

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100727

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 565265

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150727