EP2298687B1 - System for determining the load mass of a load suspended on a lifting rope of a crane - Google Patents

System for determining the load mass of a load suspended on a lifting rope of a crane Download PDF

Info

Publication number
EP2298687B1
EP2298687B1 EP10009567.8A EP10009567A EP2298687B1 EP 2298687 B1 EP2298687 B1 EP 2298687B1 EP 10009567 A EP10009567 A EP 10009567A EP 2298687 B1 EP2298687 B1 EP 2298687B1
Authority
EP
European Patent Office
Prior art keywords
rope
load
mass
hoist
crane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10009567.8A
Other languages
German (de)
French (fr)
Other versions
EP2298687A3 (en
EP2298687A2 (en
Inventor
Klaus Dr. Schneider
Martin Amann
Mathias Schneller
Oliver Prof. Dr. Sawodny
Sebastian Küchler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Werk Nenzing GmbH
Original Assignee
Liebherr Werk Nenzing GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Werk Nenzing GmbH filed Critical Liebherr Werk Nenzing GmbH
Publication of EP2298687A2 publication Critical patent/EP2298687A2/en
Publication of EP2298687A3 publication Critical patent/EP2298687A3/en
Application granted granted Critical
Publication of EP2298687B1 publication Critical patent/EP2298687B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices

Definitions

  • the present invention comprises a system for detecting the load mass of a load suspended on a hoist rope of a crane, with a measuring device for measuring the cable force in the hoist rope and a calculation unit for determining the load mass on the basis of the cable force.
  • z. B. is the load mass for the load moment limitation of the crane, that is important for the anti-tip and for structural protection.
  • the load mass for data acquisition in terms of performance of the crane is of great importance.
  • the load mass is also of great importance as a parameter for other control tasks on the crane, such as load-swing damping.
  • a common method for determining the load mass is the measurement of the cable force in the hoisting rope.
  • the cable force in the hoist cable corresponds at least in a static state substantially the load mass.
  • the measuring arrangement for measuring the cable force can be arranged either directly on the load receiving means.
  • This arrangement on the load-carrying means has the advantage that only a few disturbing influences are present and thus greater accuracy can be achieved. Disadvantage of this solution, however, is that a power supply and a corresponding signal line to the load-carrying means is necessary.
  • Another possibility is the arrangement of a measuring arrangement in a connection region between the crane structure and the hoist rope, for example on a deflection roller or on the hoist.
  • This has the advantage that the measuring arrangement can be made very robust and the wiring is relatively simple.
  • a disadvantage of this arrangement of the measuring arrangement is the fact that further interference makes it difficult to accurately determine the load mass from the cable force.
  • the object of the present invention is therefore to provide a system for detecting the load mass of a load suspended on the hoist rope of a crane, which enables an improved determination of the load mass on the basis of the cable force.
  • the system according to the invention for detecting the load mass of a load suspended on a hoist rope of a crane comprises a measuring arrangement for measuring the cable force in the hoist rope and a calculation unit for determining the load mass based on the rope power.
  • the calculation unit has a compensation unit and a load mass observer based on a spring-mass model of the rope and the load, the calculation unit describing the influence of the indirect determination of the load mass on the cable force in a dynamic model, from which the load mass is calculated and at least partially compensated.
  • the compensation unit at least partially compensates static influences of the indirect determination of the load mass via the cable force.
  • the static influences of the indirect determination are modeled and compensated by the compensation unit. This results in a considerably more accurate determination of the load mass, which was not possible at all over averaging filters, since these can not eliminate static influences at all.
  • the compensation unit also at least partially compensates for dynamic influences of the indirect determination of the load mass via the cable force.
  • the compensation unit models the dynamic influences and compensates for the determination of the load mass.
  • the invention provides that the compensation unit is based on a physical model of the lifting process, which models the static and / or dynamic influences of the indirect determination of the load mass via the cable force.
  • the compensation unit can at least partially compensate for these static and / or dynamic influences.
  • the compensation unit operates on the basis of data on the position and / or movement of the crane.
  • data relating to the position and / or movement of the hoisting gear and / or data relating to the position and / or movement of the jib and / or the tower are advantageously entered into the compensation unit.
  • the system according to the invention is used in particular in cantilever turning cranes in which a boom can be up and down about a horizontal rocking axis and can be rotated about a vertical rotation axis via a tower or superstructure.
  • the measuring arrangement is arranged in a connecting element between an element of the crane structure and the hoist rope, in particular on a deflection roller or on the hoist.
  • the compensation unit at least partially compensates static and / or dynamic influences of the arrangement of the measuring arrangement.
  • the compensation unit models the influences of the arrangement of the measuring arrangement on the cable force.
  • the compensation unit comprises a rope mass compensation, which takes into account the weight of the hoisting rope.
  • the hoisting rope has a not to negligible own weight, which no longer falsifies the determination of the load mass by the present invention.
  • the compensation unit takes into account the influence of the change in the cable length when lifting and / or lowering the load in the calculation of the load mass. By changing the rope length, the weight of the hoist rope has a different influence on the cable force depending on the lifting phase. The system according to the invention takes this into account.
  • the system is used in a hoist, which includes a winch, wherein the angle of rotation and / or the rotational speed of the winch enters as an input in the rope mass - compensation. Based on the angle of rotation and / or the rotational speed of the rope length and / or rope speed can be determined and their influence on the cable force in the calculation of the load mass are taken into account.
  • the rope length and / or the rope speed can also be detected via a measuring roller.
  • This can e.g. be arranged separately on the rope or formed as a deflection roller.
  • the rope mass compensation takes into account the weight of the wound on the hoist hoist. This is particularly advantageous if the measuring arrangement for measuring the cable force is arranged on the hoist winch, in particular on a torque arm of the hoist winch, since then the rope wound on the winch is supported on the measuring arrangement and thus influences the measured values.
  • the cable mass compensation takes into account a changing by the movement of the crane structure length and / or orientation of Hubseilabitesen. This is particularly important in those cranes in which the Hubverseilung changes in a movement of the crane structure, in particular during a movement of the boom, in their length or orientation. In particular, this is the case when the rope is not guided parallel to the boom on the crane, but when the rope occupies an angle with the boom, which changes by a rocking up and down of the boom. Depending on the position of the crane structure, in particular of the boom, so different lengths and / or orientations of the sections of the hoisting rope, which in turn affects the influence of the own weight of the hoist rope on the output signal of the measuring arrangement.
  • the compensation unit comprises a Umlenkrollenkompensation, which takes into account friction effects by the deflection of the hoisting rope to one or more pulleys.
  • the bending work necessary for deflecting the hoist rope is considered as a frictional effect.
  • the rolling friction in the pulleys can be taken into account.
  • the Umlenkrollenkompensation considered the direction of rotation and / or rotational speed of the pulleys.
  • the direction of rotation has a significant influence on the cable strength.
  • the Umlenkrollenkompensation calculates the conditional by the movement of the crane structure and the movement of the lifting direction of rotation and / or rotational speed of the pulleys.
  • the hoisting rope between the tower and boom complicated movement patterns can arise here, which have a corresponding effect on the output signal of the measuring arrangement.
  • the deflection roller compensation determines the friction effects as a function of the measured cable force.
  • the cable force has a decisive influence on the friction effects.
  • the friction effects are determined on the basis of a linear function of the measured cable force, since a linear function represents a relatively good approximation of the physical situation.
  • the compensation unit takes into account the influence of the acceleration of the load mass and / or the hoist on the cable force in the determination of the load mass.
  • the acceleration of the load mass and / or the hoist generates a dynamic component of the cable force, which is at least partially compensated by the compensation according to the invention.
  • the compensation unit operates advantageously on the basis of a physical model, which describes the influence of the acceleration of the load mass and / or the hoist on the cable force.
  • the calculation unit takes into account the vibration dynamics, which arises due to the extensibility of the hoisting cable, in the determination of the load mass.
  • the system of rope and load also has a vibration dynamics, which arises due to the extensibility of the hoisting rope.
  • the compensation unit compensates for this vibration dynamics at least partially.
  • the compensation unit for compensating the vibration dynamics is based on a physical model.
  • the calculation unit of the system according to the invention comprises a load mass observer, which is based on a spring-mass model of the rope and the load.
  • the mass of the actual load as well as the mass of the load-receiving means and the sling means in the model are advantageously described as the mass.
  • the rope between the winch and the load-carrying means enters the model.
  • the load mass observer constantly compares the measured cable force with the cable force predicted on the basis of the previously measured cable force on the basis of the spring-mass model. Based on this comparison, the load mass observer estimates the load mass of the load which is included in the spring-mass model of the rope and the load as parameters. As a result, the load mass can be determined with high accuracy and compensation of dynamic influences.
  • the load mass observer takes into account the measuring noise of the measuring signals.
  • a mean-free white noise is used for this purpose.
  • a cable force normalized with respect to the permissible maximum load is used as the parameter of the load mass observer.
  • the present invention further includes a crane having a system for detecting the load mass of a load suspended on a hoist rope, as described above.
  • the crane is in particular a jib crane, in which the boom can be up and down about a horizontal rocking axis. Further advantageously, the crane can be rotated about a vertical axis of rotation.
  • the boom is hinged to a tower, which is rotatable relative to an undercarriage about a vertical axis of rotation.
  • the crane can be a mobile harbor crane.
  • the system according to the invention can also be used with other crane types, e.g. for overhead cranes or tower cranes.
  • the system is used in a crane in which the measuring arrangement for measuring the cable force is arranged in a connecting element between an element of the crane structure and the hoist rope, in particular in a deflection roller or on the hoist.
  • the measuring arrangement for measuring the cable force is arranged in a connecting element between an element of the crane structure and the hoist rope, in particular in a deflection roller or on the hoist.
  • a slack rope detection can be established which, based on the system of the invention, recognizes that the load has been dropped.
  • an immediate shutdown of the hoist is initiated, which prevents rope damage by unwound ropes.
  • this mechanical slack rope switch can be omitted.
  • a detection of very low loads, such as empty containers now also possible.
  • the system according to the invention has the great advantage over mean value filters that the load mass can be determined without much delay. This results in a higher turnover because fewer stops occur when the load mass signal is used for load torque limiting. In addition, will Increases the service life of the crane, since the load torque limit can intervene without a long time delay.
  • the present invention further comprises a method for detecting the load mass of a hoisting rope load with such a system, comprising the steps of:
  • the compensation takes place on the basis of a model of the static and / or dynamic influences of this determination.
  • these influences can be calculated and at least partially compensated by the compensation unit.
  • the method according to the invention is advantageously carried out as described above with reference to the system and the crane.
  • the method according to the invention is carried out by means of a system as described above.
  • FIG. 1 shows an embodiment of a crane according to the invention, in which an embodiment of a system according to the invention for detecting the load mass of the crane rope hanging load is used.
  • the crane in the exemplary embodiment is a mobile harbor crane.
  • the crane has an undercarriage 1 with a chassis 9. This allows the crane to be moved in the port. At the Hubort the crane can then be supported on support units 10.
  • a tower 2 On the undercarriage 1, a tower 2 is arranged rotatably about a vertical axis of rotation. On the tower 2, a boom 5 is articulated about a horizontal axis. The boom 5 can be pivoted about the hydraulic cylinder 7 in the rocker plane up and down.
  • the crane has a hoist rope 4, which is guided around a deflection roller 11 at the tip of the boom.
  • a load-receiving means 12 is arranged, with which a load 3 can be accommodated.
  • the load-receiving means 12 and the load 3 are thereby by moving the hoisting rope 4th raised or lowered.
  • the change of the position of the load receiving means 12 and the load 3 in the vertical direction is thus carried out by reducing or increasing the length I S of the hoisting rope 4.
  • a winch 13 is provided, which moves the hoist rope.
  • the winch 13 is arranged on the superstructure.
  • the hoist rope 4 is first guided by the winch 13 via a first deflection roller 6 at the top of the tower 2 to a deflection roller 14 at the top of the boom 5 and from there back to the tower 2, where it via a second guide roller 8 to a deflection roller 11 is guided on the jib tip, from where the hoist rope runs down to the load 3.
  • the load receiving means 12 and the load can be further moved by turning the tower 2 by the angle ⁇ D and by rocking up and down the boom 5 by the angle ⁇ A in the horizontal. Due to the arrangement of the winch 13 on the superstructure, the lifting and luffing of the jib 5 results in addition to the movement of the load in the radial direction, a lifting movement of the load 3. This must optionally be compensated by a corresponding control of the winch 13.
  • FIG. 2 shows an embodiment of a system according to the invention for detecting the load mass of a hanging on a hoist rope of a crane load.
  • the input 20 of the system is signal 20, which is generated by a measuring arrangement for measuring the cable force in the hoist rope.
  • This is supplied to the calculation unit 26 according to the invention for determining the load mass.
  • the calculation unit 26 supplies the exact load mass.
  • the calculation unit has a compensation unit which at least partially compensates for the influences of the indirect determination of the load mass via the cable force.
  • the compensation unit calculates the influences based on data on the crane state, which are transmitted from the crane state unit 25 to the calculation unit 26.
  • the erecting or rocking angle or the upright or rocking angular velocity of the boom are used in the calculation unit.
  • the rope length and / or the rope speed can enter the calculation unit, wherein these are determined in particular via the position and / or speed of the hoist winch 13.
  • the compensation unit is based on a physical model of the lifting system, by which the influences of the individual components of the lifting system on the cable force and the load mass can be calculated. As a result, the compensation unit can calculate these influences and at least partially compensate them.
  • the compensation unit comprises three components which, however, could also be used independently of each other:
  • the compensation unit initially comprises a deflection roller compensation 21 which compensates for the friction of the cable at the deflection rollers.
  • the compensation unit comprises a rope mass compensation, which compensates for the influence of the rope weight on the cable force and thus on the load mass.
  • the compensation unit further comprises a load mass observer 23, which takes into account dynamic disturbances of the signal due to the acceleration of the load mass or the hoist, and in particular those which arise due to the momentum of the system of hoisting rope and load.
  • FIGS. 3a and 3b the hoist winch of the crane according to the invention is shown, on which a measuring arrangement 34 for measuring the cable force is arranged.
  • the hoist winch 30 is rotatably mounted on two frame members 31 and 35 about a rotation axis 32.
  • the Kraftmeßan Ich 34 is arranged as a torque arm.
  • the frame member 31 is articulated about the axis 33 on the crane.
  • On the opposite side of the frame member 31 is articulated via the Kraftmeßan whatsoever 34 on the crane.
  • the force measuring arrangement 34 is rod-shaped and bolted via a Verbolzung 36 with the frame member 31 and a Verbolzung 37 with the crane.
  • Kraftmeßan effet nie 34 comes here a Tension Load Cell used (TLC), ie a Kraftmeßlasche.
  • Kraftmeßan eg a Kraftmeßbolzen or a load cell can be used.
  • the cable force F S acts first on the winch and on the winch frame on the force measuring arrangement in which a force F TLC is caused by the cable force F S.
  • the geometry of the arrangement of the force measuring arrangement 34 on the winch must be taken into account.
  • the mass of the winch itself is to be considered, which is supported on the force measuring arrangement 34 and thus counteracts the cable force.
  • the force measuring arrangement 34 as in FIG. 3b shown only on one of the two frame members 31 and 35 is arranged.
  • the frame member 35 is firmly bolted to the crane structure. At this frame member 35, the drive for the hoist winch is arranged.
  • the hoist rope 4 runs from the winch 30 via deflection rollers 6, 14 and 8 to the guide roller 11 at the tip of the boom, from where the hoist rope 4 is guided to the load 3.
  • the mass of the load 3 generates a force in the hoist rope 4, which introduces the hoist rope in the winch 30.
  • the winch 30 is hinged to a winch frame and acts on this with a corresponding force. This introduces a force F TLC into the force measuring assembly 34 which connects the frame member 31 of the winch frame to the crane structure. Due to the geometric relationships between hoist rope, hoist winch, winch frame and Kraftmeßan ever Thus, it is possible to deduce the mass of the load from the force measured by the force measuring arrangement 34.
  • the calculation unit according to the invention therefore has a corresponding compensation unit which compensates for these influences.
  • the compensation unit compensates for the influences resulting from the friction on the deflection rollers.
  • the compensation unit determines the direction of rotation of the pulleys on the basis of the position and / or movement of the hoist and the boom. It must be considered that in a combined movement of the hoist and boom quite complex movement patterns of the pulleys can arise, so that not all pulleys with the same sign enter into the cable force.
  • the Umlenkrollenkompensation is therefore advantageously based on the winch speed and the erection speed of the boom.
  • the calculation unit according to the invention further comprises a cable mass compensation which is now based on FIG. 6 is shown in more detail.
  • the weight force F W 36 of the winch must first be taken into account when calculating the cable force from the measuring signal of the measuring arrangement 34, which is supported on the Kraftmeßanssen 34.
  • the hoist rope is additionally at least partially wound up.
  • the mass of the hoisting rope, which is wound on the hoist winch, is thus also supported on the force measuring arrangement 34. Therefore, the weight F RW 37 of the wound on the winch hoist must be taken into account. This weight force can be determined, for example, based on the angle of rotation of the hoist winch.
  • the masses of the individual cable sections between the pulleys have an influence on the cable force and thus on the determination of the load mass.
  • the cable sections 41 and 42 thereby increase the measured cable force by the mass of the cable, while the cable sections 43, 44 and 45 reduce the measured cable force. In the calculation of this influence must be considered in each case the length and the angle of the cable sections to the horizontal.
  • the section 41 is changed in length by raising and lowering the load.
  • the sections 42-44 are in turn changed by rocking up and down the boom both in their length and in their orientation. The rope mass compensation is therefore based on the position of the boom and the hoist winch.
  • the Umlenkrollenkompensation and the rope mass compensation compensate thus substantially the influence of the arrangement of the measuring arrangement on the hoist winch.
  • Alternatively to the arrangement of the measuring arrangement on the hoist winch is also conceivable to integrate a measuring arrangement in one of the deflection rollers, in particular in the deflection roller 8 on the jib tip.
  • the measuring arrangement the compensation is again the principles presented above, but the friction effects and the effects of the cable mass must be adapted to the measured force by the other arrangement of the measuring device accordingly.
  • the system according to the invention not only takes into account the systematic influences which the arrangement of the measuring arrangement on a connecting element between Crane structure and hoisting rope on the determination of the load mass has, but also compensates for dynamic effects, which are due to the acceleration of load mass and / or hoist and the extensibility of the hoisting rope.
  • the system of hoist rope and load Due to the elasticity of the hoisting rope, the system of hoist rope and load essentially forms a spring-mass pendulum, which is excited by the hoist. This creates vibrations which are superimposed on the static component of the rope force signal which corresponds to the load mass.
  • the load mass observer is based on a physical model of the spring-mass system of hoisting rope and load. The model is schematically in Fig. 7 played. By comparing the cable force resulting from this model with the measured cable force, the load mass observer 23 estimates the exact load mass, which enters into the physical model as a parameter.
  • illustration 1 shows the complete construction of a mobile harbor crane (LHM).
  • LHM mobile harbor crane
  • the load with the mass m l is lifted by the crane by means of the lifting device and is connected to the lifting hoist via the rope with the total length l s .
  • the rope is deflected from the load handler via a respective deflection roller on the boom head and tower. It should be noted that the rope is not directly deflected from the boom head to the hoist winch, but that it is deflected from the boom head to the tower, back to the boom head and then over the tower to the hoist winch (see illustration 1 ).
  • m max is the maximum permitted lifting capacity for each crane type.
  • the load mass m l is used directly in the observer, but the normalized load mass m l m Max ,
  • a force measuring sensor provides the cable force F w measured at the winch. From the winch position and speed, the rope length and speed can be calculated by means of equation (3).
  • the cable force on the winch F w it should be noted that not only the force due to the load mass is measured, but also the friction influences of the pulleys and the dead weight of the rope. However, these disturbances can be eliminated by a compensation algorithm and the actual spring force F c (see equation (2)) can be calculated from the measured cable force on the winch F w .
  • the input quantities u and the output quantities (or measured quantities) y of the system must first be defined.
  • the cable speed is the only system input L s selected.
  • the output variables are the cable length l s and the normalized spring force F c m Max selected.
  • the state vector x l s z z ⁇ m l m Max T
  • the dynamic model consisting of equations (2), (4), (5), (6), (7), and (8) can be transformed into state space.
  • the observer is realized as an EKF.
  • x k stands for the currently estimated state.
  • the state space representation (9) represents a continuous system, the system described above is subsequently discretized by the Euler forward method [2].
  • the EKF performs a prediction and a correction step in each time step.
  • P k -1 is the error covariance matrix at time step (k-1) ⁇ t
  • a k is the transition matrix of the linearized system around the current state
  • Q k is the time discrete covariance matrix of the system noise.
  • x x ⁇ k - .
  • Fig. 8 shows once again the embodiment of the load mass observer in a block diagram.
  • the length of the hoist rope I S enters the load mass observer as measuring signals.
  • the measured force is initially compensated as described above, first with respect to the rope weight and the friction effects and normalized with the maximum permissible load mass m max .
  • the load mass observer estimates as x 4 the normalized load mass, which is accordingly converted back into the load mass ml by multiplication with m max .
  • the load mass observer also estimates the cable length I s , the position of the load z and the load speed ⁇ , which can also be used for control purposes.
  • the present invention enables an accurate determination of the load mass, in which both the effects of the arrangement of the measuring device for measuring the cable force via a connecting element between the crane structure and the hoist such as at a moment supported the hoist winch or a pulley, as well as dynamic effects due to the extensibility of the hoisting rope, are taken into account.
  • the load mass can be used either for control tasks or for data evaluation.
  • the load mass for each stroke may be stored in a memory unit, e.g. stored in a database and so evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Jib Cranes (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

Die vorliegende Erfindung umfaßt ein System zum Erfassen der Lastmasse einer an einem Hubseil eines Kranes hängenden Last, mit einer Meßanordnung zur Messung der Seilkraft im Hubseil und einer Berechnungseinheit zur Bestimmung der Lastmasse auf Grundlage der Seilkraft.The present invention comprises a system for detecting the load mass of a load suspended on a hoist rope of a crane, with a measuring device for measuring the cable force in the hoist rope and a calculation unit for determining the load mass on the basis of the cable force.

Ein solches System ist aus der US 2002/144968 bekannt.Such a system is out of the US 2002/144968 known.

Die exakte Bestimmung der Lastmasse einer von einem Kran angehobenen Last ist für eine Vielzahl von Anwendungen von großer Bedeutung: z. B. ist die Lastmasse für die Lastmomentbegrenzung des Kranes, das heißt für die Kippsicherung und für den Strukturschutz wichtig. Zudem ist die Lastmasse für die Datenerfassung hinsichtlich der Leistung des Kranes von großer Bedeutung. Insbesondere kann durch eine exakte Bestimmung der Lastmasse die gesamte umschlagende Nutzlast bestimmt werden. Weiterhin ist die Lastmasse auch als Parameter für andere Steuerungsaufgaben am Kran wie z.B. eine Lastpendeldämpfung von großer Wichtigkeit.The exact determination of the load mass of a crane lifted load is for a variety of applications of great importance: z. B. is the load mass for the load moment limitation of the crane, that is important for the anti-tip and for structural protection. In addition, the load mass for data acquisition in terms of performance of the crane is of great importance. In particular, can be determined by an exact determination of the load mass, the entire turnover payload. Furthermore, the load mass is also of great importance as a parameter for other control tasks on the crane, such as load-swing damping.

Ein gängiges Verfahren zur Bestimmung der Lastmasse ist die Messung der Seilkraft im Hubseil. Die Seilkraft im Hubseil entspricht dabei zumindest in einem statischen Zustand im wesentlichen der Lastmasse.A common method for determining the load mass is the measurement of the cable force in the hoisting rope. The cable force in the hoist cable corresponds at least in a static state substantially the load mass.

Die Meßanordnung zur Messung der Seilkraft kann dabei entweder direkt am Lastaufnahmemittel angeordnet werden. Diese Anordnung am Lastaufnahmemittel hat den Vorteil, daß hier nur wenige Störeinflüsse vorliegen und so eine größere Genauigkeit erreicht werden kann. Nachteil dieser Lösung ist jedoch, daß eine Stromversorgung und eine entsprechende Signalleitung zum Lastaufnahmemittel notwendig wird.The measuring arrangement for measuring the cable force can be arranged either directly on the load receiving means. This arrangement on the load-carrying means has the advantage that only a few disturbing influences are present and thus greater accuracy can be achieved. Disadvantage of this solution, however, is that a power supply and a corresponding signal line to the load-carrying means is necessary.

Eine weitere Möglichkeit ist die Anordnung einer Meßanordnung in ein Verbindungsbereich zwischen der Kranstruktur und dem Hubseil, zum Beispiel an einer Umlenkrolle oder am Hubwerk. Dies hat den Vorteil, daß die Meßanordnung sehr robust ausgeführt werden kann und die Verkabelung relativ einfach ist. Nachteilig an dieser Anordnung der Meßanordnung ist jedoch die Tatsache, daß weitere Störeinflüsse eine exakte Bestimmung der Lastmasse aus der Seilkraft erschweren.Another possibility is the arrangement of a measuring arrangement in a connection region between the crane structure and the hoist rope, for example on a deflection roller or on the hoist. This has the advantage that the measuring arrangement can be made very robust and the wiring is relatively simple. A disadvantage of this arrangement of the measuring arrangement, however, is the fact that further interference makes it difficult to accurately determine the load mass from the cable force.

Dabei ist es bereits bekannt, Mittelwertfilter zur Ermittelung der Seilkraft einzusetzen. Zum einen hat dies jedoch den Nachteil, daß eine relativ hohe Verzögerung in der Signalausgabe in Kauf genommen werden muß. Zudem anderen kann eine Vielzahl von Störeinflüssen über einen Mittelwertfilter nicht eliminiert werden.It is already known to use averaging filter for determining the cable force. On the one hand, however, this has the disadvantage that a relatively high delay in the signal output must be accepted. In addition, many other disturbances can not be eliminated by a mean value filter.

Aufgabe der vorliegenden Erfindung ist es daher, ein System zum Erfassen der Lastmasse einer am Hubseil eines Kranes hängenden Last zur Verfügung zu stellen, welche eine verbesserte Bestimmung der Lastmasse auf Grundlage der Seilkraft ermöglicht.The object of the present invention is therefore to provide a system for detecting the load mass of a load suspended on the hoist rope of a crane, which enables an improved determination of the load mass on the basis of the cable force.

Diese Aufgabe wird erfindungsgemäß von einem Gerät gemäß Anspruch 1 gelöst. Das erfindungsgemäße System zum Erfassen der Lastmasse einer an einem Hubseil eines Kranes hängenden Last umfaßt dabei eine Meßanordnung zur Messung der Seilkraft im Hubseil und eine Berechnungseinheit zur Bestimmung der Lastmasse auf Grundlage der Seilkraft. Erfindungsgemäß weist die Berechnungseinheit dabei eine Kompensationseinheit und einen Lastmassenbeobachter auf, welcher auf einen Feder-Masse Modell des Seils und der Last beruht, wobei die Berechnungseinheit den Einfluss der indirekten Bestimmung der Lastmasse über die Seilkraft in einem dynamischen Modell beschreibt, daraus die Lastmasse berechnet und zumindest teilweise kompensiert.This object is achieved by a device according to claim 1. The system according to the invention for detecting the load mass of a load suspended on a hoist rope of a crane comprises a measuring arrangement for measuring the cable force in the hoist rope and a calculation unit for determining the load mass based on the rope power. According to the invention, the calculation unit has a compensation unit and a load mass observer based on a spring-mass model of the rope and the load, the calculation unit describing the influence of the indirect determination of the load mass on the cable force in a dynamic model, from which the load mass is calculated and at least partially compensated.

Zum einen kann dabei vorgesehen sein, daß die Kompensationseinheit statische Einflüsse der indirekten Bestimmung der Lastmasse über die Seilkraft zumindest teilweise kompensiert. Hierzu werden erfindungsgemäß die statischen Einflüsse der indirekten Bestimmung modelliert und durch die Kompensationseinheit kompensiert. Hierdurch ergibt sich eine erheblich genauere Bestimmung der Lastmasse, welche über Mittelwertfilter überhaupt nicht möglich war, da diese statische Einflüsse überhaupt nicht eliminieren können.On the one hand, it may be provided that the compensation unit at least partially compensates static influences of the indirect determination of the load mass via the cable force. For this purpose, according to the invention, the static influences of the indirect determination are modeled and compensated by the compensation unit. This results in a considerably more accurate determination of the load mass, which was not possible at all over averaging filters, since these can not eliminate static influences at all.

Alternativ oder zusätzlich kann vorgesehen sein, daß die Kompensationseinheit auch dynamische Einflüsse der indirekten Bestimmung der Lastmasse über die Seilkraft zumindest teilweise kompensiert. Auch hierfür ist vorgesehen, daß die Kompensationseinheit die dynamischen Einflüsse modelliert und bei der Bestimmung der Lastmasse kompensiert.Alternatively or additionally, it may be provided that the compensation unit also at least partially compensates for dynamic influences of the indirect determination of the load mass via the cable force. For this purpose, too, it is provided that the compensation unit models the dynamic influences and compensates for the determination of the load mass.

Vorteilhafterweise ist erfindungsgemäß vorgesehen, daß die Kompensationseinheit auf einen physikalischen Modell des Hubvorgangs basiert, welches die statischen und/oder dynamischen Einflüsse der indirekten Bestimmung der Lastmasse über die Seilkraft modelliert. Durch dieses Modell kann die Kompensationseinheit diese statischen und/oder dynamischen Einflüsse zumindest teilweise kompensieren.Advantageously, the invention provides that the compensation unit is based on a physical model of the lifting process, which models the static and / or dynamic influences of the indirect determination of the load mass via the cable force. By means of this model, the compensation unit can at least partially compensate for these static and / or dynamic influences.

Vorteilhafterweise ist dabei vorgesehen, daß die Kompensationseinheit auf der Grundlage von Daten zur Position und/oder Bewegung des Kranes arbeitet. Insbesondere gehen dabei vorteilhafterweise Daten zur Position und/oder Bewegung des Hubwerkes, und/oder Daten zur Position und/oder Bewegung des Auslegers und/oder des Turmes in die Kompensationseinheit ein.Advantageously, it is provided that the compensation unit operates on the basis of data on the position and / or movement of the crane. In particular, data relating to the position and / or movement of the hoisting gear and / or data relating to the position and / or movement of the jib and / or the tower are advantageously entered into the compensation unit.

Das erfindungsgemäße System kommt dabei insbesondere bei Auslegerdrehkränen zum Einsatz, bei welchen ein Ausleger um eine horizontale Wippachse auf- und abgewippt werden kann und über einen Turm oder Oberwagen um eine vertikale Drehachse gedreht werden kann.The system according to the invention is used in particular in cantilever turning cranes in which a boom can be up and down about a horizontal rocking axis and can be rotated about a vertical rotation axis via a tower or superstructure.

Vorteilhafterweise ist dabei vorgesehen, daß die Meßanordnung in einem Verbindungselement zwischen einem Element der Kranstruktur und dem Hubseil angeordnet ist, insbesondere an einer Umlenkrolle oder am Hubwerk. Vorteilhafterweise ist dabei vorgesehen, daß die Kompensationseinheit statische und/oder dynamische Einflüsse der Anordnung der Meßanordnung zumindest teilweise kompensiert. Vorteilhafterweise modelliert die Kompensationseinheit dabei die Einflüsse der Anordnung der Meßanordnung auf die Seilkraft.Advantageously, it is provided that the measuring arrangement is arranged in a connecting element between an element of the crane structure and the hoist rope, in particular on a deflection roller or on the hoist. Advantageously, it is provided that the compensation unit at least partially compensates static and / or dynamic influences of the arrangement of the measuring arrangement. Advantageously, the compensation unit models the influences of the arrangement of the measuring arrangement on the cable force.

Vorteilhafterweise ist dabei vorgesehen, daß die Kompensationseinheit eine Seilmassenkompensation umfaßt, welche das Eigengewicht des Hubseiles berücksichtigt. Das Hubseil hat ein nicht zu vernachlässigendes Eigengewicht, welches durch die vorliegende Erfindung nicht mehr die Bestimmung der Lastmasse verfälscht. Vorteilhafterweise berücksichtigt die Kompensationseinheit dabei den Einfluß der Änderung der Seillänge beim Anheben und/oder Absenken der Last bei der Berechnung der Lastmasse. Durch die Änderung der Seillänge hat das Eigengewicht des Hubseiles je nach Hubphase einen unterschiedlichen Einfluß auf die Seilkraft. Das erfindungsgemäße System berücksichtigt dies.Advantageously, it is provided that the compensation unit comprises a rope mass compensation, which takes into account the weight of the hoisting rope. The hoisting rope has a not to negligible own weight, which no longer falsifies the determination of the load mass by the present invention. Advantageously, the compensation unit takes into account the influence of the change in the cable length when lifting and / or lowering the load in the calculation of the load mass. By changing the rope length, the weight of the hoist rope has a different influence on the cable force depending on the lifting phase. The system according to the invention takes this into account.

Vorteilhafterweise wird das System dabei bei einem Hubwerk eingesetzt, welches eine Winde umfaßt, wobei der Drehwinkel und/oder die Drehgeschwindigkeit der Winde als Eingangsgröße in die Seilmassen - Kompensation eingeht. Auf Grundlage des Drehwinkels und/oder der Drehgeschwindigkeit kann die Seillänge und/oder Seilgeschwindigkeit bestimmt und so deren Einfluß auf die Seilkraft bei der Berechnung der Lastmasse berücksichtigt werden.Advantageously, the system is used in a hoist, which includes a winch, wherein the angle of rotation and / or the rotational speed of the winch enters as an input in the rope mass - compensation. Based on the angle of rotation and / or the rotational speed of the rope length and / or rope speed can be determined and their influence on the cable force in the calculation of the load mass are taken into account.

Alternativ kann die Seillänge und/oder die Seilgeschwindigkeit auch über eine Meßrolle erfaßt werden. Diese kann z.B. separat am Seil angeordnet oder als Umlenkrolle ausgebildet werden.Alternatively, the rope length and / or the rope speed can also be detected via a measuring roller. This can e.g. be arranged separately on the rope or formed as a deflection roller.

Weiterhin vorteilhafterweise ist vorgesehen, daß die Seilmassenkompensation das Eigengewicht des auf der Winde aufgewickelten Hubseils berücksichtigt. Dies ist insbesondere dann von Vorteil, wenn die Meßanordnung zur Messung der Seilkraft an der Hubwinde angeordnet ist, insbesondere an einer Momentstütze der Hubwinde, da sich dann das auf der Winde aufgewickelte Seil auf der Meßanordnung abstützt und so die Meßwerte beeinflußt.Further advantageously, it is provided that the rope mass compensation takes into account the weight of the wound on the hoist hoist. This is particularly advantageous if the measuring arrangement for measuring the cable force is arranged on the hoist winch, in particular on a torque arm of the hoist winch, since then the rope wound on the winch is supported on the measuring arrangement and thus influences the measured values.

Weiterhin vorteilhafterweise ist vorgesehen, daß die Seilmassenkompensation eine sich durch die Bewegung der Kranstruktur ändernde Länge und/oder Ausrichtung von Hubseilabschnitten berücksichtigt. Dies ist insbesondere bei solchen Kranen von Bedeutung, bei welchen sich die Hubverseilung bei einer Bewegung der Kranstruktur, insbesondere bei einer Bewegung des Auslegers, in ihrer Länge oder Ausrichtung ändert. Insbesondere ist dies der Fall, wenn das Seil nicht parallel zum Ausleger am Kran geführt ist, sondern wenn das Seil einen Winkel mit dem Ausleger einnimmt, welcher sich durch ein Auf- und Abwippen des Auslegers ändert. Je nach Position der Kranstruktur, insbesondere des Auslegers, ergeben sich so unterschiedliche Längen und/oder Ausrichtungen der Abschnitte des Hubseils, was wiederum den Einfluß des Eigengewichts des Hubseils auf das Ausgangssignal der Meßanordnung beeinflußt.Further advantageously, it is provided that the cable mass compensation takes into account a changing by the movement of the crane structure length and / or orientation of Hubseilabschnitten. This is particularly important in those cranes in which the Hubverseilung changes in a movement of the crane structure, in particular during a movement of the boom, in their length or orientation. In particular, this is the case when the rope is not guided parallel to the boom on the crane, but when the rope occupies an angle with the boom, which changes by a rocking up and down of the boom. Depending on the position of the crane structure, in particular of the boom, so different lengths and / or orientations of the sections of the hoisting rope, which in turn affects the influence of the own weight of the hoist rope on the output signal of the measuring arrangement.

Weiterhin vorteilhafterweise ist vorgesehen, daß die Kompensationseinheit eine Umlenkrollenkompensation umfaßt, welche Reibungseffekte durch die Umlenkung des Hubseils um eine oder mehrer Umlenkrollen berücksichtigt. Vorteilhafterweise wird dabei insbesondere die zum Umlenken des Hubseils notwendige Biegearbeit als Reibungseffekt berücksichtigt. Alternativ oder zusätzlich kann auch die Rollreibung in den Umlenkrollen berücksichtig werden.Further advantageously, it is provided that the compensation unit comprises a Umlenkrollenkompensation, which takes into account friction effects by the deflection of the hoisting rope to one or more pulleys. Advantageously, in particular the bending work necessary for deflecting the hoist rope is considered as a frictional effect. Alternatively or additionally, the rolling friction in the pulleys can be taken into account.

Vorteilhafterweise ist dabei vorgesehen, daß die Umlenkrollenkompensation die Drehrichtung und/oder Drehgeschwindigkeit der Umlenkrollen berücksichtigt. Insbesondere die Drehrichtung hat dabei einen nicht unerheblichen Einfluß auf die Seilkraft.Advantageously, it is provided that the Umlenkrollenkompensation considered the direction of rotation and / or rotational speed of the pulleys. In particular, the direction of rotation has a significant influence on the cable strength.

Vorteilhafterweise berechnet die Umlenkrollenkompensation dabei die durch die Bewegung der Kranstruktur und die Bewegung des Hubwerks bedingte Drehrichtung und/oder Drehgeschwindigkeit der Umlenkrollen. Insbesondere bei mehrfachen Umlenkungen des Hubseils zwischen Turm und Ausleger können sich hier komplizierte Bewegungsmuster ergeben, welche sich entsprechend auf das Ausgangssignal der Meßanordnung auswirken.Advantageously, the Umlenkrollenkompensation calculates the conditional by the movement of the crane structure and the movement of the lifting direction of rotation and / or rotational speed of the pulleys. In particular, with multiple deflections of the hoisting rope between the tower and boom complicated movement patterns can arise here, which have a corresponding effect on the output signal of the measuring arrangement.

Vorteilhafterweise bestimmt die Umlenkrollenkompensation dabei die Reibungseffekte in Abhängigkeit von der gemessenen Seilkraft. Die Seilkraft hat einen entscheidenden Einfluß auf die Reibungseffekte. Vorteilhafterweise werden dabei die Reibungseffekte auf Grundlage einer linearen Funktion der gemessenen Seilkraft bestimmt, da eine lineare Funktion eine relativ gute Approximation der physikalischen Situation darstellt.Advantageously, the deflection roller compensation determines the friction effects as a function of the measured cable force. The cable force has a decisive influence on the friction effects. Advantageously, the friction effects are determined on the basis of a linear function of the measured cable force, since a linear function represents a relatively good approximation of the physical situation.

Weiterhin vorteilhafterweise ist bei dem erfindungsgemäßen System vorgesehen, daß die Kompensationseinheit den Einfluß der Beschleunigung der Lastmasse und/oder des Hubwerkes auf die Seilkraft bei der Bestimmung der Lastmasse berücksichtigt. Die Beschleunigung der Lastmasse und/oder des Hubwerkes erzeugt dabei eine dynamische Komponente der Seilkraft, welche durch die erfindungsgemäße Kompensation zumindest teilweise kompensiert wird. Die Kompensationseinheit arbeitet dabei vorteilhafterweise auf Grundlage eines physikalischen Modells, welches den Einfluß der Beschleunigung der Lastmasse und/oder des Hubwerks auf die Seilkraft beschreibt.Further advantageously, it is provided in the system according to the invention that the compensation unit takes into account the influence of the acceleration of the load mass and / or the hoist on the cable force in the determination of the load mass. The acceleration of the load mass and / or the hoist generates a dynamic component of the cable force, which is at least partially compensated by the compensation according to the invention. The compensation unit operates advantageously on the basis of a physical model, which describes the influence of the acceleration of the load mass and / or the hoist on the cable force.

Weiterhin vorteilhafterweise ist vorgesehen, daß die Berechnungseinheit die Schwingungsdynamik, welche aufgrund der Dehnbarkeit des Hubseils entsteht, bei der Bestimmung der Lastmasse berücksichtigt. Zusätzlich zu den Beschleunigungen, welche durch die über das Hubwerk induzierten Beschleunigungen hervorgerufen werden, weist das System aus Seil und Last zudem eine Schwingungsdynamik auf, welche aufgrund der Dehnbarkeit des Hubseils entsteht. Vorteilhafterweise kompensiert die Kompensationseinheit diese Schwingungsdynamik zumindest teilweise. Vorteilhafterweise beruht die Kompensationseinheit zur Kompensation der Schwingungsdynamik dabei auf einem physikalischen Modell.Further advantageously, it is provided that the calculation unit takes into account the vibration dynamics, which arises due to the extensibility of the hoisting cable, in the determination of the load mass. In addition to the accelerations, which are caused by the induced over the hoist accelerations, the system of rope and load also has a vibration dynamics, which arises due to the extensibility of the hoisting rope. Advantageously, the compensation unit compensates for this vibration dynamics at least partially. Advantageously, the compensation unit for compensating the vibration dynamics is based on a physical model.

Gemäß der Erfindung umfaßt die Berechnungseinheit des erfindungsgemäßen Systems dabei einen Lastmassenbeobachter, welcher auf einem Feder-Masse-Modell des Seils und der Last beruht. Als Masse wird dabei vorteilhafterweise die Masse der eigentlichen Last sowie die Masse der Lastaufnahmemittels und der Anschlagmittel im Modell beschrieben. Als Feder geht dagegen das Seil zwischen der Winde und dem Lastaufnahmemittel in das Modell ein.According to the invention, the calculation unit of the system according to the invention comprises a load mass observer, which is based on a spring-mass model of the rope and the load. In this case, the mass of the actual load as well as the mass of the load-receiving means and the sling means in the model are advantageously described as the mass. As a spring, however, the rope between the winch and the load-carrying means enters the model.

Vorteilhafterweise vergleicht der Lastmassenbeobachter dabei beständig die gemessene Seilkraft mit der anhand des Feder-Masse-Modells auf Grundlage der zuvor gemessenen Seilkraft vorhergesagten Seilkraft. Auf Grundlage dieses Vergleichs schätzt der Lastmassenbeobachter die Lastmasse der Last, welche in das Feder-Masse-Modell des Seils und der Last als Parameter eingeht. Hierdurch kann die Lastmasse mit hoher Genauigkeit und unter Kompensation von dynamischen Einflüssen bestimmt werden.Advantageously, the load mass observer constantly compares the measured cable force with the cable force predicted on the basis of the previously measured cable force on the basis of the spring-mass model. Based on this comparison, the load mass observer estimates the load mass of the load which is included in the spring-mass model of the rope and the load as parameters. As a result, the load mass can be determined with high accuracy and compensation of dynamic influences.

Vorteilhafterweise berücksichtigt der Lastmassenbeobachter dabei das Meßrauschen der Meßsignale. Vorteilhafterweise wird hierfür ein mittelwertfreies weißes Rauschen eingesetzt.Advantageously, the load mass observer takes into account the measuring noise of the measuring signals. Advantageously, a mean-free white noise is used for this purpose.

Vorteilhafterweise gehen als Meßsignale neben dem Ausgangssignal der Meßanordnung zur Bestimmung der Seilkraft noch Daten zur Länge des Seiles ein. Vorteilhafterweise wird dabei als Parameter des Lastmassenbeobachters eine bezüglich der zulässigen Maximallast normierte Seilkraft eingesetzt.Advantageously, as measurement signals in addition to the output signal of the measuring arrangement for determining the cable force data on the length of the rope. Advantageously, a cable force normalized with respect to the permissible maximum load is used as the parameter of the load mass observer.

Die vorliegende Erfindung umfaßt weiterhin einen Kran mit einem System zur Erfassung der Lastmasse einer an einem Hubseil hängenden Last, wie es oben dargestellt wurde. Bei dem Kran handelt es sich dabei insbesondere um einen Auslegerkran, bei welchem der Ausleger um eine Horizontale Wippachse auf- und abgewippt werden kann. Weiterhin vorteilhafterweise kann der Kran um eine vertikale Drehachse gedreht werden kann. Insbesondere ist der Ausleger dabei an einem Turm angelenkt, welcher gegenüber einem Unterwagen um eine Vertikale Drehachse drehbar ist. Insbesondere kann es sich bei dem Kran dabei um einen Hafenmobilkran handeln. Das erfindungsgemäße System kann jedoch ebenfalls bei anderen Krantypen zum Einsatz kommen, z.B. bei Brückenkranen oder Turmdrehkranen.The present invention further includes a crane having a system for detecting the load mass of a load suspended on a hoist rope, as described above. The crane is in particular a jib crane, in which the boom can be up and down about a horizontal rocking axis. Further advantageously, the crane can be rotated about a vertical axis of rotation. In particular, the boom is hinged to a tower, which is rotatable relative to an undercarriage about a vertical axis of rotation. In particular, the crane can be a mobile harbor crane. However, the system according to the invention can also be used with other crane types, e.g. for overhead cranes or tower cranes.

Vorteilhafterweise kommt das System dabei bei einem Kran zum Einsatz, bei welchem die Meßanordnung zur Messung der Seilkraft in einem Verbindungselement zwischen einem Element der Kranstruktur und dem Hubseil angeordnet ist, insbesondere in einer Umlenkrolle oder an dem Hubwerk. Hierdurch ergibt sich eine sehr robuste Anordnung, welche durch das erfindungsgemäße System dennoch eine exakte Bestimmung der Lastmasse ermöglicht.Advantageously, the system is used in a crane in which the measuring arrangement for measuring the cable force is arranged in a connecting element between an element of the crane structure and the hoist rope, in particular in a deflection roller or on the hoist. This results in a very robust arrangement, which still allows the inventive system an exact determination of the load mass.

Durch das erfindungsgemäße System sind dabei eine Vielzahl von Anwendungen möglich, welche mit bekannten ungenauen Systemen nicht realisiert werden konnten. Zum Beispiel kann eine Schlaffseilerkennung eingerichtet werden, welche auf Grundlage des erfindungsgemäßen Systems erkennt, daß die Last abgesetzt wurde. Hieraufhin wird eine sofortige Abschaltung des Hubwerks eingeleitet, welche Seilschäden durch abgewickelte Seile verhindert. Gegebenenfalls können hierdurch mechanische Schlaffseilschalter entfallen. Zudem ist eine Erkennung sehr geringer Lasten, wie zum Beispiel leerer Container, nun ebenfalls möglich.The inventive system a variety of applications are possible, which could not be realized with known inaccurate systems. For example, a slack rope detection can be established which, based on the system of the invention, recognizes that the load has been dropped. Hereupon, an immediate shutdown of the hoist is initiated, which prevents rope damage by unwound ropes. Optionally, this mechanical slack rope switch can be omitted. In addition, a detection of very low loads, such as empty containers, now also possible.

Weiterhin hat das erfindungsgemäße System gegenüber Mittelwertfiltern den großen Vorteil, daß die Lastmasse ohne größere Verzögerung bestimmt werden kann. Hierdurch ergibt sich ein höherer Umschlag, da weniger Stopps auftreten, wenn das Lastmassesignal für die Lastmomentbegrenzung eingesetzt wird. Zudem wird die Lebensdauer des Kranes erhöht, da die Lastmomentbegrenzung ohne größere Zeitverzögerung eingreifen kann.Furthermore, the system according to the invention has the great advantage over mean value filters that the load mass can be determined without much delay. This results in a higher turnover because fewer stops occur when the load mass signal is used for load torque limiting. In addition, will Increases the service life of the crane, since the load torque limit can intervene without a long time delay.

Neben dem System und dem Kran umfaßt die vorliegende Erfindung weiterhin ein Verfahren zum Erfassen der Lastmasse einer am Hubseil hängenden Last mit einem solchen System, mit den Schritten:In addition to the system and the crane, the present invention further comprises a method for detecting the load mass of a hoisting rope load with such a system, comprising the steps of:

Messen der Seilkraft in Hubseil; Berechnung der Lastmasse auf Grundlage der Seilkraft; wobei der Einfluß der Bestimmung der Lastmasse über die Seilkraft in einem Modell beschrieben und zumindest teilweise kompensiert wird.Measuring the rope force in hoist rope; Calculation of the load mass on the basis of the cable force; wherein the influence of the determination of the load mass on the cable force is described in a model and at least partially compensated.

Insbesondere erfolgt die Kompensation dabei auf Grundlage eines Modells der statischen und/oder dynamischen Einflüsse dieser Bestimmung. Hierdurch können diese Einflüsse berechnet und von der Kompensationseinheit zumindest teilweise kompensiert werden.In particular, the compensation takes place on the basis of a model of the static and / or dynamic influences of this determination. As a result, these influences can be calculated and at least partially compensated by the compensation unit.

Das erfindungsgemäße Verfahren erfolgt dabei vorteilhafterweise so, wie dies oben mit Bezug auf das System und den Kran dargestellt wurde. Insbesondere erfolgt das erfindungsgemäße Verfahren dabei mittels eines Systems, wie es oben dargestellt wurde.The method according to the invention is advantageously carried out as described above with reference to the system and the crane. In particular, the method according to the invention is carried out by means of a system as described above.

Die vorliegende Erfindung wird nun anhand von Ausführungsbeispielen sowie Zeichnungen näher erläutert.The present invention will now be explained in more detail with reference to embodiments and drawings.

Dabei zeigen:

Fig. 1
ein Ausführungsbeispiel eines erfindungsgemäßen Kranes,
Fig. 2
eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Systems und Verfahrens,
Fig. 3a und 3b
die Anordnung einer Meßanordnung an der Hubwinde,
Fig. 4
die Anordnung einer Meßanordnung an der Hubwinde und die Seilführung des Hubseils über Umlenkrollen,
Fig. 5
eine Darstellung der bei der Umlenkrollen-Kompensation berücksichtigten Kräfte,
Fig. 6
eine Darstellung der bei der Seilmassen-Kompensation berücksichtigten Kräfte,
Fig. 7
eine Prinzipdarstellung des Masse-Feder-Modells, welches dem erfindungsgemäßen Seilmassenbeobachter zu Grunde liegt, und
Fig. 8
eine schematische Darstellung eines Ausführungsbeispiels eines erfindungsgemäßen Seilmassenbeobachters.
Showing:
Fig. 1
an embodiment of a crane according to the invention,
Fig. 2
a schematic representation of an embodiment of a system and method according to the invention,
Fig. 3a and 3b
the arrangement of a measuring arrangement on the hoist winch,
Fig. 4
the arrangement of a measuring arrangement on the hoist winch and the cable guide of the hoist rope over pulleys,
Fig. 5
a representation of the forces taken into account in deflection pulley compensation,
Fig. 6
a representation of the forces taken into account in rope mass compensation,
Fig. 7
a schematic diagram of the mass-spring model, which is based on the rope mass observer according to the invention, and
Fig. 8
a schematic representation of an embodiment of a cable mass observer according to the invention.

Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Kranes, bei welcher ein Ausführungsbeispiel eines erfindungsgemäßen Systems zum Erfassen der Lastmasse der am Kranseil hängenden Last eingesetzt wird. Bei dem Kran handelt es sich im Ausführungsbeispiel um einen Hafenmobilkran. Der Kran weist dabei einen Unterwagen 1 mit einem Fahrgestell 9 auf. Hierdurch kann der Kran im Hafen verfahren werden. Am Hubort kann der Kran dann über Abstützeinheiten 10 abgestützt werden. FIG. 1 shows an embodiment of a crane according to the invention, in which an embodiment of a system according to the invention for detecting the load mass of the crane rope hanging load is used. The crane in the exemplary embodiment is a mobile harbor crane. The crane has an undercarriage 1 with a chassis 9. This allows the crane to be moved in the port. At the Hubort the crane can then be supported on support units 10.

Auf dem Unterwagen 1 ist um eine vertikale Drehachse drehbar ein Turm 2 angeordnet. Am Turm 2 ist um eine horizontale Achse ein Ausleger 5 angelenkt. Der Ausleger 5 kann dabei über den Hydraulikzylinder 7 in der Wippebene nach oben und nach unten verschwenkt werden.On the undercarriage 1, a tower 2 is arranged rotatably about a vertical axis of rotation. On the tower 2, a boom 5 is articulated about a horizontal axis. The boom 5 can be pivoted about the hydraulic cylinder 7 in the rocker plane up and down.

Der Kran weist dabei ein Hubseil 4 auf, welches um eine Umlenkrolle 11 an der Spitze des Auslegers geführt ist. Am Ende des Hubseils 4 ist ein Lastaufnahmemittel 12 angeordnet, mit welchem eine Last 3 aufgenommen werden kann. Das Lastaufnahmemittel 12 bzw. die Last 3 werden dabei durch Bewegen des Hubseils 4 angehoben bzw. abgesenkt. Die Veränderung der Position des Lastaufnahmemittels 12 bzw. der Last 3 in vertikaler Richtung erfolgt damit durch Verkleinern bzw. Vergrößern der Länge IS des Hubseils 4. Hierfür ist eine Winde 13 vorgesehen, welche das Hubseil bewegt. Die Winde 13 ist dabei am Oberwagen angeordnet. Weiterhin ist das Hubseil 4 zunächst von der Winde 13 über eine erste Umlenkrolle 6 an der Spitze des Turmes 2 zu einer Umlenkrolle 14 an der Spitze des Auslegers 5 und von dort zurück zum Turm 2 geführt, wo es über eine zweite Umlenkrolle 8 zu einer Umlenkrolle 11 an der Auslegerspitze geführt ist, von wo aus das Hubseil nach unten zur Last 3 verläuft.The crane has a hoist rope 4, which is guided around a deflection roller 11 at the tip of the boom. At the end of the hoisting rope 4, a load-receiving means 12 is arranged, with which a load 3 can be accommodated. The load-receiving means 12 and the load 3 are thereby by moving the hoisting rope 4th raised or lowered. The change of the position of the load receiving means 12 and the load 3 in the vertical direction is thus carried out by reducing or increasing the length I S of the hoisting rope 4. For this purpose, a winch 13 is provided, which moves the hoist rope. The winch 13 is arranged on the superstructure. Furthermore, the hoist rope 4 is first guided by the winch 13 via a first deflection roller 6 at the top of the tower 2 to a deflection roller 14 at the top of the boom 5 and from there back to the tower 2, where it via a second guide roller 8 to a deflection roller 11 is guided on the jib tip, from where the hoist rope runs down to the load 3.

Das Lastaufnahmemittel 12 bzw. die Last können weiterhin durch Drehen des Turmes 2 um den Winkel ϕD und durch Auf- und Abwippen des Auslegers 5 um den Winkel ϕA in der Horizontalen bewegt werden. Durch die Anordnung der Winde 13 am Oberwagen ergibt sich beim Auf- und Abwippen des Auslegers 5 zusätzlich zu der Bewegung der Last in radialer Richtung eine Hubbewegung der Last 3. Diese muss gegebenenfalls durch ein entsprechendes Ansteuern der Winde 13 ausgeglichen werden.The load receiving means 12 and the load can be further moved by turning the tower 2 by the angle φ D and by rocking up and down the boom 5 by the angle φ A in the horizontal. Due to the arrangement of the winch 13 on the superstructure, the lifting and luffing of the jib 5 results in addition to the movement of the load in the radial direction, a lifting movement of the load 3. This must optionally be compensated by a corresponding control of the winch 13.

Figur 2 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Systems zum Erfassen der Lastmasse einer an einem Hubseil eines Krans hängenden Last. Als Eingangsgröße des Systems dient dabei das Signal 20, welches von einer Meßanordnung zur Messung der Seilkraft im Hubseil erzeugt wird. Dieses wird der erfindungsgemäßen Berechnungseinheit 26 zur Bestimmung der Lastmasse zugeführt. Als Ausgangssignal 24 liefert die Berechnungseinheit 26 dabei die exakte Lastmasse. Die Berechnungseinheit weist dabei eine Kompensationseinheit auf, welche die Einflüsse der indirekten Bestimmung der Lastmasse über die Seilkraft zumindest teilweise kompensiert. Die Kompensationseinheit berechnet dabei die Einflüsse auf Grundlage von Daten zum Kranzustand, welcher von der Kranzustandseinheit 25 an die Berechnungseinheit 26 übertragen werden. Insbesondere werden dabei der Aufricht- bzw. Wippwinkel oder die Aufrecht- bzw. Wippwinkelgeschwindigkeit des Auslegers in der Berechnungseinheit genutzt. Weiterhin können die Seillänge und/oder die Seilgeschwindigkeit in die Berechnungseinheit eingehen, wobei diese insbesondere über die Position und/oder Geschwindigkeit der Hubwinde 13 ermittelt werden. FIG. 2 shows an embodiment of a system according to the invention for detecting the load mass of a hanging on a hoist rope of a crane load. The input 20 of the system is signal 20, which is generated by a measuring arrangement for measuring the cable force in the hoist rope. This is supplied to the calculation unit 26 according to the invention for determining the load mass. As output signal 24, the calculation unit 26 supplies the exact load mass. In this case, the calculation unit has a compensation unit which at least partially compensates for the influences of the indirect determination of the load mass via the cable force. The compensation unit calculates the influences based on data on the crane state, which are transmitted from the crane state unit 25 to the calculation unit 26. In particular, the erecting or rocking angle or the upright or rocking angular velocity of the boom are used in the calculation unit. Furthermore, the rope length and / or the rope speed can enter the calculation unit, wherein these are determined in particular via the position and / or speed of the hoist winch 13.

Die Kompensationseinheit beruht dabei auf einem physikalischen Modell des Hubsystems, durch welches die Einflüsse der einzelnen Komponenten des Hubsystems auf die Seilkraft und auf die Lastmasse berechnet werden können. Hierdurch kann die Kompensationseinheit diese Einflüsse berechnen und zumindest teilweise kompensieren.The compensation unit is based on a physical model of the lifting system, by which the influences of the individual components of the lifting system on the cable force and the load mass can be calculated. As a result, the compensation unit can calculate these influences and at least partially compensate them.

Die Kompensationseinheit umfaßt dabei im Ausführungsbeispiel drei Komponenten, welche jedoch auch unabhängig voneinander eingesetzt werden könnten: Die Kompensationseinheit umfaßt dabei zunächst eine Umlenkrollenkompensation 21, welche die Reibung des Seils an den Umlenkrollen kompensiert. Weiterhin umfaßt die Kompensationseinheit eine Seilmassenkompensation, welche den Einfluß des Seilgewichts auf die Seilkraft und damit auf die Lastmasse kompensiert. Die Kompensationseinheit umfaßt weiterhin einen Lastmassenbeobachter 23, welcher dynamische Störungen des Signals aufgrund der Beschleunigung der Lastmasse bzw. des Hubwerks, und insbesondere solche, welche aufgrund der Eigendynamik des Systems aus Hubseil und Last entstehen, berücksichtigt.In the exemplary embodiment, the compensation unit comprises three components which, however, could also be used independently of each other: The compensation unit initially comprises a deflection roller compensation 21 which compensates for the friction of the cable at the deflection rollers. Furthermore, the compensation unit comprises a rope mass compensation, which compensates for the influence of the rope weight on the cable force and thus on the load mass. The compensation unit further comprises a load mass observer 23, which takes into account dynamic disturbances of the signal due to the acceleration of the load mass or the hoist, and in particular those which arise due to the momentum of the system of hoisting rope and load.

Die einzelnen Komponenten des erfindungsgemäßen Systems werden nun im Einzelnen näher dargestellt:The individual components of the system according to the invention will now be described in detail in more detail:

In den Figuren 3a und 3b ist die Hubwinde des erfindungsgemäßen Krans dargestellt, an welcher eine Meßanordnung 34 zur Messung der Seilkraft angeordnet ist. Die Hubwinde 30 ist dabei an zwei Rahmenelementen 31 und 35 um eine Drehachse 32 drehbar gelagert. An dem Rahmenelement 31 ist die Kraftmeßanordnung 34 als Momentenstütze angeordnet. Das Rahmenelement 31 ist dabei um die Achse 33 am Kran angelenkt. Auf der gegenüberliegenden Seite ist das Rahmenelement 31 über die Kraftmeßanordnung 34 am Kran angelenkt. Die Kraftmeßanordnung 34 ist dabei stabförmig ausgebildet und über eine Verbolzung 36 mit dem Rahmenelement 31 und über eine Verbolzung 37 mit dem Kran verbolzt. Als Kraftmeßanordnung 34 kommt dabei eine Tension Load Cell zum Einsatz (TLC), d.h. eine Kraftmeßlasche. Alternativ könnten als Kraftmeßanordnung z.B. auch ein Kraftmeßbolzen oder ein Druckmeßdose eingesetzt werden.In the FIGS. 3a and 3b the hoist winch of the crane according to the invention is shown, on which a measuring arrangement 34 for measuring the cable force is arranged. The hoist winch 30 is rotatably mounted on two frame members 31 and 35 about a rotation axis 32. On the frame member 31, the Kraftmeßanordnung 34 is arranged as a torque arm. The frame member 31 is articulated about the axis 33 on the crane. On the opposite side of the frame member 31 is articulated via the Kraftmeßanordnung 34 on the crane. The force measuring arrangement 34 is rod-shaped and bolted via a Verbolzung 36 with the frame member 31 and a Verbolzung 37 with the crane. As Kraftmeßanordnung 34 comes here a Tension Load Cell used (TLC), ie a Kraftmeßlasche. Alternatively, as Kraftmeßanordnung eg a Kraftmeßbolzen or a load cell can be used.

Durch die Anordnung der Kraftmeßanordnung 34 zwischen der Kranstruktur und der Winde wirkt die Seilkraft FS zunächst auf die Winde und über den Windenrahmen auf die Kraftmeßanordnung, in welcher durch die Seilkraft FS eine Kraft FTLC hervorgerufen wird.Due to the arrangement of the force measuring arrangement 34 between the crane structure and the winch, the cable force F S acts first on the winch and on the winch frame on the force measuring arrangement in which a force F TLC is caused by the cable force F S.

Zur Berechnung der Seilkraft FS aus der durch die Kraftmeßanordnung 34 gemessenen Kraft FTLC muß die Geometrie der Anordnung der Kraftmeßanordnung 34 an der Winde berücksichtigt. Dabei ist auch die Masse der Winde selbst zu berücksichtigen, welche sich auf der Kraftmeßanordnung 34 abstützt und so der Seilkraft entgegenwirkt.In order to calculate the cable force F S from the force F TLC measured by the force measuring arrangement 34, the geometry of the arrangement of the force measuring arrangement 34 on the winch must be taken into account. In this case, the mass of the winch itself is to be considered, which is supported on the force measuring arrangement 34 and thus counteracts the cable force.

Zudem ist gegebenenfalls zu berücksichtigten, daß die Kraftmeßanordnung 34 wie in Figur 3b gezeigt nur an einem der zwei Rahmenelemente 31 und 35 angeordnet ist. Das Rahmenelement 35 ist dabei fest mit der Kranstruktur verbolzt. An diesem Rahmenelement 35 ist der Antrieb für die Hubwinde angeordnet.In addition, it may be necessary to take into account that the force measuring arrangement 34 as in FIG. 3b shown only on one of the two frame members 31 and 35 is arranged. The frame member 35 is firmly bolted to the crane structure. At this frame member 35, the drive for the hoist winch is arranged.

Das Prinzip der Messung der Lastmasse anhand der Seilkraft bzw. anhand der Kraft, die von der Meßanordnung 34 gemessen wird, sowie die dabei auftretenden Kräfte sind dabei nochmals in Figur 4 zusammenfassend dargestellt.The principle of measurement of the load mass on the basis of the cable force or on the basis of the force which is measured by the measuring arrangement 34 and the forces occurring are again in FIG. 4 summarized.

Das Hubseil 4 läuft dabei von der Winde 30 über Umlenkrollen 6, 14 und 8 zur Umlenkrolle 11 an der Spitze des Auslegers, von wo aus das Hubseil 4 zur Last 3 geführt ist. Die Masse der Last 3 erzeugt dabei eine Kraft im Hubseil 4, welche das Hubseil in die Winde 30 einbringt. Die Winde 30 ist dabei an einem Windenrahmen angelenkt und beaufschlagt diesen mit einer entsprechenden Kraft. Hierdurch wird eine Kraft FTLC in die Kraftmeßanordnung 34, welche das Rahmenelement 31 des Windenrahmens mit der Kranstruktur verbindet, eingebracht. Durch die geometrischen Verhältnisse zwischen Hubseil, Hubwinde, Windenrahmen und Kraftmeßanordnung kann so aus der durch die Kraftmeßanordnung 34 gemessenen Kraft auf die Masse der Last geschlossen werden.The hoist rope 4 runs from the winch 30 via deflection rollers 6, 14 and 8 to the guide roller 11 at the tip of the boom, from where the hoist rope 4 is guided to the load 3. The mass of the load 3 generates a force in the hoist rope 4, which introduces the hoist rope in the winch 30. The winch 30 is hinged to a winch frame and acts on this with a corresponding force. This introduces a force F TLC into the force measuring assembly 34 which connects the frame member 31 of the winch frame to the crane structure. Due to the geometric relationships between hoist rope, hoist winch, winch frame and Kraftmeßanordnung Thus, it is possible to deduce the mass of the load from the force measured by the force measuring arrangement 34.

Durch die Anordnung der Meßanordnung in einem Verbindungselement zwischen Kranstruktur und Hubseil ergeben sich jedoch eine Reihe von Einflüssen, welche ohne eine Kompensation zu erheblichen Ungenauigkeiten bei der Bestimmung der Lastmasse führen würden. Die erfindungsgemäße Berechnungseinheit weist daher eine entsprechende Kompensationseinheit auf, welche diese Einflüsse kompensiert.However, the arrangement of the measuring arrangement in a connecting element between crane structure and hoist rope, there are a number of influences, which would lead to significant inaccuracies in the determination of the load mass without compensation. The calculation unit according to the invention therefore has a corresponding compensation unit which compensates for these influences.

Dabei soll zunächst anhand von Figur 5 die erfindungsgemäße Umlenkrollenkompensation näher beschrieben werden, durch welche Reibungseffekte an den Umlenkrollen kompensiert werden. Das Hubseil 4 wird dabei an den Umlenkrollen 6, 14, 8 und 11 jeweils um einen bestimmten Winkel umgelenkt. Hierdurch ergeben sich eine Reihe von Reibungseinflüssen auf die Seilkraft. Dabei entsteht an jeder Umlenkrolle eine Reibungskraft, welche je nach Situation, insbesondere je nach Drehrichtung der Umlenkrolle die durch die Meßanordnung gemessene Kraft erhöht oder erniedrigt.It should first be based on FIG. 5 the Umlenkrollenkompensation invention are described in more detail, are compensated by which friction effects on the pulleys. The hoist rope 4 is thereby deflected at the deflection rollers 6, 14, 8 and 11 in each case by a certain angle. This results in a number of frictional effects on the cable force. In this case, a frictional force arises on each deflection roller which, depending on the situation, in particular depending on the direction of rotation of the deflection roller, increases or decreases the force measured by the measuring arrangement.

Dabei entsteht zunächst eine Rollreibung am Lager der Umlenkrolle, welche sich gemäß der Striebeck-Kurve bestimmt. Diese Rollreibung ist jedoch relativ gering und kann daher vernachlässigt werden. Den weitaus größeren Einfluß hat die Abwinkelung des Hubseils an den Umlenkrollen. Dabei unterliegt das Hubseil sowohl beim Einlaufen als auch beim Auslaufen von der Umlenkrolle einer Deformation, welche eine entsprechende Deformationsarbeit erfordert. Die Größe dieser aufgrund der Deformation des Hubseils entstehenden Reibung an den Umlenkrollen wird dabei im wesentlichen durch den Radius der Umlenkrollen sowie durch die Seilkraft bestimmt.This initially creates a rolling friction on the bearing of the pulley, which is determined according to the Striebeck curve. However, this rolling friction is relatively low and can therefore be neglected. The far greater influence has the bending of the hoist rope on the pulleys. In this case, the hoist rope is subject both during running and when leaving the deflection roller of a deformation which requires a corresponding deformation work. The size of this due to the deformation of the hoisting rope friction on the pulleys is determined essentially by the radius of the pulleys and by the cable force.

Messungen haben dabei ergeben, daß die Gesamtreibung an jeder Umlenkrolle im Wesentlichen linear zur Seilkraft verläuft. Die Winkelgeschwindigkeit der Umlenkrollen hat dagegen nur einen sehr geringen Einfluß auf die Reibung. Dabei ist jedoch zu beachten, daß sich die Reibung an jeder Umlenkrolle je nach Drehrichtung der Umlenkrolle entweder zur gemessenen Seilkraft addiert oder von dieser subtrahiert werden muß. Beim Anheben der Last wirkt dabei die Reibungskraft der Umlenkrollen der durch die Hubwinde erzeugten Hubkraft entgegen, so daß die gemessene Seilkraft sich um die Reibungskräfte erhöht. Beim Ablassen der Last durch das Hubwerk vermindert sich dagegen die gemessene Seilkraft um einen entsprechenden Betrag.Measurements have shown that the total friction on each deflection roller is substantially linear to the cable force. The angular velocity of the pulleys, however, has only a very small influence on the friction. It is, however to note that the friction on each pulley depending on the direction of rotation of the pulley either added to the measured cable force or must be subtracted from this. When lifting the load while the frictional force of the pulleys counteracts the lifting force generated by the hoisting winch, so that the measured cable force increases by the frictional forces. When lowering the load by the hoist, however, the measured cable force decreases by a corresponding amount.

Dabei ist weiterhin zu berücksichtigen, daß das Hubseil zwischen der Turmspitze und der Auslegerspitze hin- und hergeführt ist, wobei die beiden Umlenkrollen 6 und 8 an der Turmspitze und die beiden Umlenkrollen 14 und 11 an der Auslegerspitze angeordnet sind. Daher ergibt sich auch beim Auf- und Abwippen des Auslegers ebenfalls eine Bewegung der Umlenkrollen 8, 11, und 14, während die Umlenkrolle 6 ohne eine Bewegung des Hubwerks nicht bewegt wird. Dementsprechend ergibt sich beim Auf- und Abwippen des Auslegers eine Reibungskraft, welche im Wesentlichen % der Reibungskraft beim Anheben und Senken der Last über das Hubwerk entspricht.It should also be noted that the hoist rope between the tower top and the jib tip back and forth, wherein the two pulleys 6 and 8 are arranged on the tower top and the two pulleys 14 and 11 on the jib tip. Therefore, there is also a movement of the deflection rollers 8, 11, and 14, while the deflection roller 6 is not moved without movement of the lifting mechanism also when rocking and jogging the boom. Accordingly, a frictional force, which essentially corresponds to% of the frictional force during raising and lowering of the load via the hoisting mechanism, results during the rocking up and down of the jib.

Die erfindungsgemäße Kompensationseinheit kompensiert dabei die durch die Reibung an den Umlenkrollen entstehenden Einflüsse. Hierfür bestimmt die Kompensationseinheit jeweils die Drehrichtung der Umlenkrollen auf Grundlage der Position und/oder Bewegung des Hubwerks sowie des Auslegers. Dabei muß berücksichtigt werden, daß bei einer kombinierten Bewegung des Hubwerks und des Auslegers durchaus komplexe Bewegungsmuster der Umlenkrollen entstehen können, so daß nicht alle Umlenkrollen mit gleichem Vorzeichen in die Seilkraft eingehen. Die Umlenkrollenkompensation erfolgt daher vorteilhafterweise auf Grundlage der Windengeschwindigkeit und der Aufrichtgeschwindigkeit des Auslegers.The compensation unit according to the invention compensates for the influences resulting from the friction on the deflection rollers. For this purpose, the compensation unit determines the direction of rotation of the pulleys on the basis of the position and / or movement of the hoist and the boom. It must be considered that in a combined movement of the hoist and boom quite complex movement patterns of the pulleys can arise, so that not all pulleys with the same sign enter into the cable force. The Umlenkrollenkompensation is therefore advantageously based on the winch speed and the erection speed of the boom.

Die erfindungsgemäße Berechnungseinheit umfaßt weiterhin eine Seilmassenkompensation welche nun anhand von Figur 6 näher dargestellt wird. Wie bereits oben beschrieben, muß bei der Berechnung der Seilkraft aus dem Meßsignal der Meßanordnung 34 zunächst die Gewichtskraft FW 36 der Winde berücksichtigt werden, welche sich auf der Kraftmeßanordnung 34 abstützt. Auf der Winde ist jedoch zusätzlich das Hubseil zumindest teilweise aufgewickelt. Die Masse des Hubseils, welches auf der Hubwinde aufgewickelt ist, stützt sich damit ebenfalls auf der Kraftmeßanordnung 34 ab. Daher muß auch die Gewichtskraft FRW 37 des auf der Winde aufgewickelten Hubseils berücksichtig werden. Diese Gewichtskraft kann zum Beispiel aufgrund des Drehwinkels der Hubwinde bestimmt werden.The calculation unit according to the invention further comprises a cable mass compensation which is now based on FIG. 6 is shown in more detail. As already described above, the weight force F W 36 of the winch must first be taken into account when calculating the cable force from the measuring signal of the measuring arrangement 34, which is supported on the Kraftmeßanordnung 34. On the winch, however, the hoist rope is additionally at least partially wound up. The mass of the hoisting rope, which is wound on the hoist winch, is thus also supported on the force measuring arrangement 34. Therefore, the weight F RW 37 of the wound on the winch hoist must be taken into account. This weight force can be determined, for example, based on the angle of rotation of the hoist winch.

Weiterhin haben auch die Massen der einzelnen Seilabschnitte zwischen den Umlenkrollen einen Einfluß auf die Seilkraft und damit auf die Bestimmung de Lastmasse. Die Seilabschnitte 41 und 42 erhöhen dabei durch die Masse des Seiles die gemessene Seilkraft, während die Seilabschnitte 43, 44 und 45 die gemessene Seilkraft vermindern. In die Berechung dieses Einflusses muß jeweils die Länge sowie der Winkel der Seilabschnitte zur Horizontalen betrachtet werden. Dabei ist zu berücksichtigen, daß nur für den Seilabschnitt 45 eine konstante Länge und ein konstanter Winkel vorliegen. Der Abschnitt 41 wird dagegen durch Anheben und Absenken der Last in seiner Länge verändert. Die Abschnitte 42 - 44 werden wiederum durch Auf- und Abwippen des Auslegers sowohl in ihrer Länge, als auch in ihrer Ausrichtung verändert. Die Seilmassenkompensation erfolgt daher auf Grundlage der Position des Auslegers sowie der Hubwinde.Furthermore, the masses of the individual cable sections between the pulleys have an influence on the cable force and thus on the determination of the load mass. The cable sections 41 and 42 thereby increase the measured cable force by the mass of the cable, while the cable sections 43, 44 and 45 reduce the measured cable force. In the calculation of this influence must be considered in each case the length and the angle of the cable sections to the horizontal. It should be noted that only for the cable section 45 is a constant length and a constant angle. The section 41, however, is changed in length by raising and lowering the load. The sections 42-44 are in turn changed by rocking up and down the boom both in their length and in their orientation. The rope mass compensation is therefore based on the position of the boom and the hoist winch.

Die Umlenkrollenkompensation und die Seilmassenkompensation kompensieren damit im wesentlichen den Einfluß der Anordnung der Meßanordnung an der Hubwinde. Alternativ zur Anordnung der Meßanordnung an der Hubwinde ist ebenfalls denkbar, eine Meßanordnung in eine der Umlenkrollen zu integrieren, insbesondere in die Umlenkrolle 8 an der Auslegerspitze. Bei dieser Anordnung der Meßanordnung erfolgt die Kompensation wiederum den oben dargestellten Prinzipien, wobei jedoch die Reibungseffekte sowie die Einflüsse der Seilmasse auf die gemessene Kraft durch die andere Anordnung der Meßanordnung entsprechend angepaßt werden müssen.The Umlenkrollenkompensation and the rope mass compensation compensate thus substantially the influence of the arrangement of the measuring arrangement on the hoist winch. Alternatively to the arrangement of the measuring arrangement on the hoist winch is also conceivable to integrate a measuring arrangement in one of the deflection rollers, in particular in the deflection roller 8 on the jib tip. In this arrangement, the measuring arrangement, the compensation is again the principles presented above, but the friction effects and the effects of the cable mass must be adapted to the measured force by the other arrangement of the measuring device accordingly.

Das erfindungsgemäße System berücksichtigt nicht nur die systematischen Einflüsse, welche die Anordnung der Meßanordnung an einem Verbindungselement zwischen Kranstruktur und Hubseil auf die Bestimmung der Lastmasse hat, sondern kompensiert auch dynamische Effekte, welche auf der Beschleunigung von Lastmasse und/oder Hubwerk und die Dehnbarkeit des Hubseiles zurückgehen.The system according to the invention not only takes into account the systematic influences which the arrangement of the measuring arrangement on a connecting element between Crane structure and hoisting rope on the determination of the load mass has, but also compensates for dynamic effects, which are due to the acceleration of load mass and / or hoist and the extensibility of the hoisting rope.

Durch die Elastizität des Hubseils bildet das System aus Hubseil und Last dabei im wesentlichen ein Feder-Masse-Pendel, welches durch das Hubwerk angeregt wird. Hierdurch entstehen Schwingungen, welche dem statischen Anteil des Seilkraftsignals, welches der Lastmasse entspricht, überlagert sind. Der Lastmassenbeobachter beruht dabei auf einem physikalischen Modell des Feder-Masse-Systems aus Hubseil und Last. Das Modell ist dabei schematisch in Fig. 7 wiedergegeben. Durch Vergleich der sich aus diesem Modell ergebenden Seilkraft mit der gemessenen Seilkraft schätzt der Lastmassenbeobachter 23 die exakte Lastmasse, welche als Parameter in das physikalische Modell eingeht.Due to the elasticity of the hoisting rope, the system of hoist rope and load essentially forms a spring-mass pendulum, which is excited by the hoist. This creates vibrations which are superimposed on the static component of the rope force signal which corresponds to the load mass. The load mass observer is based on a physical model of the spring-mass system of hoisting rope and load. The model is schematically in Fig. 7 played. By comparing the cable force resulting from this model with the measured cable force, the load mass observer 23 estimates the exact load mass, which enters into the physical model as a parameter.

Ein Ausführungsbeispiel des erfindungsgemäßen Lastmassenbeobachters, welcher als erweiterter Kalman Filter (EKF) implementiert ist, soll nun im Folgenden näher dargestellt werden:An exemplary embodiment of the load mass observer according to the invention, which is implemented as an extended Kalman filter (EKF), will now be described in more detail below:

2 Modellierung Hubwerksstrang 2 modeling hoist train

Im Folgenden Abschnitt wird das dynamische Modell für den Hubwerksstrang hergeleitet. Abbildung 1 zeigt den kompletten Aufbau eines Hafenmobilkrans (LHM). Die Last mit der Masse ml wird mittels des Lastaufnahmemittels vom Kran angehoben und ist über das Seil mit der Gesamtlänge ls mit der Hubwinde verbunden. Das Seil wird vom Lastaufnahmemittel aus über je eine Umlenkrolle am Auslegerkopf und Turm umgelenkt. Hierbei ist zu beachten, dass das Seil nicht direkt vom Auslegerkopf zur Hubwinde umgelenkt wird, sondern dass es vom Auslegerkopf zum Turm, zurück zum Auslegerkopf und dann über den Turm zur Hubwinde umgelenkt wird (siehe Abbildung 1). Somit ergibt sich die gesamte Seillänge zu l s t = l 1 t + 3 l 2 t + l 3 t ,

Figure imgb0001
wobei l 1, l 2 und l 3 die Teillängen von der Hubwinde zum Turm, vom Turm zum Auslegerkopf und vom Auslegerkopf zum Lastaufnahmemittel sind. Der Hubwerksstrang bestehend aus Hubwinde, Seil und Lastmasse wird im Folgenden vereinfacht als Feder-Masse-Dämpfer System modelliert und ist in Abbildung 7 dargestellt.The following section derives the dynamic model for the hoist harness. illustration 1 shows the complete construction of a mobile harbor crane (LHM). The load with the mass m l is lifted by the crane by means of the lifting device and is connected to the lifting hoist via the rope with the total length l s . The rope is deflected from the load handler via a respective deflection roller on the boom head and tower. It should be noted that the rope is not directly deflected from the boom head to the hoist winch, but that it is deflected from the boom head to the tower, back to the boom head and then over the tower to the hoist winch (see illustration 1 ). This results in the entire rope length too l s t = l 1 t + 3 l 2 t + l 3 t .
Figure imgb0001
where l 1 , l 2 and l 3 are the partial lengths from the hoist winch to the tower, from the tower to the boom head and from the boom head to the load handler. The hoist train consisting of hoist winch, rope and load mass is simplified in the following as a spring mass damper system and is modeled in Figure 7 shown.

Nach dem Newtonschen Bewegungsgesetz ergibt sich somit die Bewegungsgleichung für das Feder-Masse-Dämpfer System zu m l z ¨ t = m l g c z t l s t + d z ˙ t l ˙ s t F c

Figure imgb0002
mit der Erdbeschleunigung g, der Federkonstante c, der Dämpferkonstante d, der Lastposition z, der Lastgeschwindigkeit und der Lastbeschleunigung z. Die Seilgeschwindigkeit s folgt aus der Windengeschwindigkeit ϕ̇w und dem Windenradius rw zu l ˙ s t = r w ϕ ˙ w t .
Figure imgb0003
According to Newton's law of motion, the equation of motion for the spring-mass-damper system thus results m l z ¨ t = m l G - c z t - l s t + d z ˙ t - l ˙ s t } F c
Figure imgb0002
with the gravitational acceleration g , the spring constant c, the damper constant d, the load position z, the load speed ż and the load acceleration z. The rope speed ls s follows from the winch speed φ̇ w and the winch radius r w l ˙ s t = r w φ ˙ w t ,
Figure imgb0003

Die Federsteifigkeit cs eines Seils der Länge ls kann mittels des Hooke'schen Gesetz zu c s = E s A s l s

Figure imgb0004
berechnet werden. Hierbei sind Es und As das Elastizitätsmodul und die Querschnittsfläche des Seils. Da am Hafenmobilkran ns parallele Seile die Last anheben (vgl. Abbildung 1) ergibt sich die Federsteifigkeit c des Hubwerksstrangs zu c = n s c s .
Figure imgb0005
The spring stiffness c s of a rope of length l s can by means of Hooke's law to c s = e s A s l s
Figure imgb0004
be calculated. Here, E s and A s are the elastic modulus and the cross-sectional area of the rope. Since the mobile harbor crane n s parallel ropes the load lift (see FIG. illustration 1 ) gives the spring stiffness c of the hoist to c = n s c s ,
Figure imgb0005

Die Dämpferkonstante d des Hubwerksstrangs ist durch d = 2 D cm l

Figure imgb0006
gegeben, wobei D das Lehrsche Dämpfungsmaß des Seils darstellt.The damper constant d of the hoist is through d = 2 D cm l
Figure imgb0006
where D is the gauge damping measure of the rope.

Da die Hauptaufgabe des Lastmassenbeobachters die Schätzung der aktuellen Lastmasse ist, muss für die Lastmasse eine dynamische Gleichung hergeleitet werden. Innerhalb dieser Arbeit wird die Lastmasse ml als Random-Walk Prozess modelliert, d.h. ml wird durch ein additives, mittelwertfreies, weißes Rauschen gestört. Somit ergibt sich für die Lastmasse folgende dynamische Gleichung m ˙ l = γ l ,

Figure imgb0007
wobei γl ein mittelwertfreies, weißes Rauschen darstellt.Since the main task of the load mass observer is the estimate of the actual load mass, a dynamic equation must be derived for the load mass. Within this work, the load mass m l is modeled as a random-walk process, ie m l is disturbed by an additive, mean-free, white noise. Thus, the following dynamic equation results for the load mass m ˙ l = γ l .
Figure imgb0007
where γ l represents a mean-free white noise.

3 Beobachterentwurf3 Observer Draft

In diesem Abschnitt wird ein auf das EKF |3| basierender Beobachter entworfen. Hierbei ist zu beachten, dass die Wertebereiche der einzelnen Größen sehr unterschiedlich sind. So liegt die Seillänge ls und die Lastposition üblicherweise zwischen 100 m und 200 m, die Seilgeschwindigkeit s und die Lastgeschwindigkeit zwischen 0 m s

Figure imgb0008
und 2 2 m s
Figure imgb0009
und die Lastmasse zwischen 0 kg und 150 x 103kg. Außerdem besitzen die beiden Parameter Es und As auch sehr unterschiedliche Wertebereiche. Diese unterschiedlichen Wertebereiche können bei der Online-Schätzung des Beobachters zu numerischen Problemen führen. Zur Vermeidung dieser numerischen Probleme wird für den Beobachterentwurf ein neuer Parameter a hw = E s A s n s m max
Figure imgb0010
eingeführt, wobei mmax die für den jeweiligen Krantyp maximal zulässige Hublast ist. Außerdem wird im Beobachter nicht direkt die Lastmasse ml verwendet, sondern die normierte Lastmasse m l m max .
Figure imgb0011
In this section, a link to the EKF | 3 | based observer. It should be noted that the value ranges of the individual variables are very different. The rope length l s and the load position ż are usually between 100 m and 200 m, the rope speed s and the load speed ż between 0 m s
Figure imgb0008
and 2 2 m s
Figure imgb0009
and the load mass between 0 kg and 150 x 10 3 kg. In addition, the two parameters E s and A s also have very different value ranges. These different ranges of values can lead to numerical problems in the online estimation of the observer. To avoid these numerical problems, the observer design becomes a new parameter a hw = e s A s n s m Max
Figure imgb0010
introduced, where m max is the maximum permitted lifting capacity for each crane type. In addition, not the load mass m l is used directly in the observer, but the normalized load mass m l m Max ,
Figure imgb0011

Über einen Inkrementalgeber werden am Kran die Windenposition ϕw gemessen und die Windengeschwindigkeit ϕw berechnet. Ein Kraftmesssensor stellt die an der Winde gemessene Seilkraft Fw zur Verfügung. Aus der Windenposition und -geschwindigkeit kann mittels Gleichung (3) die Seillänge und -geschwindigkeit berechnet werden. Bei der gemessenen Seilkraft an der Winde Fw ist zu beachten, dass hier nicht nur die Kraft auf Grund der Lastmasse gemessen wird, sondern auch die Reibeinflüsse der Umlenkrollen und das Eigengewicht des Seils. Jedoch können diese Störeinflüsse durch einen Kompensationsalgorithmus beseitigt werden und die aktuelle Federkraft Fc (vgl. Gleichung (2)) kann aus der gemessenen Seilkraft an der Winde Fw berechnet werden.About an incremental wind position be on the crane φ w measured and the wind speed φ w calculated. A force measuring sensor provides the cable force F w measured at the winch. From the winch position and speed, the rope length and speed can be calculated by means of equation (3). When measuring the cable force on the winch F w , it should be noted that not only the force due to the load mass is measured, but also the friction influences of the pulleys and the dead weight of the rope. However, these disturbances can be eliminated by a compensation algorithm and the actual spring force F c (see equation (2)) can be calculated from the measured cable force on the winch F w .

Für einen Beobachterentwurf müssen zunächst die Eingangsgrößen u und die Ausgangsgrößen (oder Messgrößen) y des Systems definiert werden. Für das hier vorliegende Problem wird als einziger Systemeingang die Seilgeschwindigkeit s gewählt. Als Ausgangsgrößen werden die Seillänge ls und die normierte Federkraft F c m max

Figure imgb0012
gewählt. Mit dem Zustandsvektor x = l s z z ˙ m l m max T
Figure imgb0013
kann das dynamische Modell, bestehend aus Gleichungen (2), (4), (5), (6), (7) und (8) in den Zustandsraum transformiert werden.For an observer design, the input quantities u and the output quantities (or measured quantities) y of the system must first be defined. For the present this problem the cable speed is the only system input L s selected. The output variables are the cable length l s and the normalized spring force F c m Max
Figure imgb0012
selected. With the state vector x = l s z z ˙ m l m Max T
Figure imgb0013
For example, the dynamic model consisting of equations (2), (4), (5), (6), (7), and (8) can be transformed into state space.

Das resultierende System von Differentialgleichungen erster Ordnung lautet x ˙ = f x u , x 0 = x 0 , y ˙ = h x u , t 0 ,

Figure imgb0014
wobei f x = u x 3 g a hw x 2 x 1 x 1 x 4 2 D a hw x 3 u sqrtx 1 x 4 0 ,
Figure imgb0015
h x = x 1 a hw x 2 x 1 x 1 + 2 D a hw x 4 x 1 x 3 u ,
Figure imgb0016
u = l s .
Figure imgb0017
The resulting system of first-order differential equations is x ˙ = f x u . x 0 = x 0 . y ˙ = H x u . t 0 .
Figure imgb0014
in which f x = u x 3 G - a hw x 2 - x 1 x 1 x 4 - 2 D a hw x 3 - u sqrtx 1 x 4 0 .
Figure imgb0015
H x = x 1 a hw x 2 - x 1 x 1 + 2 D a hw x 4 x 1 x 3 - u .
Figure imgb0016
u = l s ,
Figure imgb0017

Wie oben schon erwähnt, wird der Beobachter als EKF realisiert. Das EKF ist ein Beobachter für nichtlineare, zeitdiskrete Systeme, welches die Fehlerkovarianz des Schätzfehlers x̂ k - x̂ k P k = E x ^ k x k x ^ k x k Τ

Figure imgb0018
in jedem Zeitschritt minimiert [3], wobei x̂ k für den aktuell geschätzten Zustand steht. In Gleichung (13) und im Folgenden gilt [●] k = [●] (kΔt) mit der diskreten Abtastrate Δt. Da die Zustandsraumdarstellung (9) jedoch ein kontinuierliches System darstellt, wird das oben beschriebene System im Folgenden mit dem Euler-Vorwärts Verfahren [2] diskretisiert.As mentioned above, the observer is realized as an EKF. The EKF is an observer for non-linear discrete-time systems, which estimates the error covariance of the estimation error x k - x k P k = e x ^ k - x k x ^ k - x k Τ
Figure imgb0018
in each time step minimizes [3], where x k stands for the currently estimated state. In equation (13) and is [●] in the following k = [●] (k At) with the discrete sampling rate Δ t. However, since the state space representation (9) represents a continuous system, the system described above is subsequently discretized by the Euler forward method [2].

Für die Zustandsschätzung führt das EKF in jedem Zeitschritt einen Prädiktions- und einen Korrekturschritt aus. Innerhalb des Prädiktionsschritts wird der Zustand zum nächsten Zeitschritt basierend auf den Systemgleichungen (9) vorhergesagt x ^ k = x ^ k 1 + Δ t f x ^ k 1 u k , y ^ k = h x ^ k u k .

Figure imgb0019
For the state estimation, the EKF performs a prediction and a correction step in each time step. Within the prediction step, the state is predicted to the next time step based on the system equations (9) x ^ k - = x ^ k - 1 + Δ t f x ^ k - 1 u k . y ^ k - = H x ^ k - u k ,
Figure imgb0019

Neben den Systemzuständen wird innerhalb des Prädiktionsschritts auch die Fehlerkovarianzmatrix vorhergesagt P k = A k P k 1 A k T + Q k ,

Figure imgb0020
wobei P k-1 die Fehlerkovarianzmatrix zum Zeitschritt (k - 1)Δt ist, A k die Transitionsmatrix des linearisierten Systems um den aktuellen Zustand und Q k die zeitdiskrete Kovarianzmatrix des Systemrauschens. A k wird näherungsweise durch die Taylor-Reihe der Matrixexponentialfunktion bis zum ersten Glied berechnet A k = I + f x u k x | x = x ^ k ,
Figure imgb0021
In addition to the system states, the error covariance matrix is also predicted within the prediction step P k - = A k P k - 1 A k T + Q k .
Figure imgb0020
where P k -1 is the error covariance matrix at time step (k-1) Δ t , A k is the transition matrix of the linearized system around the current state, and Q k is the time discrete covariance matrix of the system noise. A k is approximated by the Taylor series of the matrix exponential function up to the first term A k = I + f x u k x | x = x ^ k - .
Figure imgb0021

Fig. 8 zeigt noch einmal das Ausführungsbeispiel des Lastmassenbeobachters in einem Blockschaltbild. Als Meßsignale geht dabei neben der an der Winde gemessenen Kraft FW die Länge des Hubseils IS in den Lastmassenbeobachter ein. Die gemessene Kraft wird dabei wie oben näher dargestellt zunächst hinsichtlich des Seilgewichts und der Reibungseffekte kompensiert und mit der maximal zulässigen Lastmasse mmax normalisiert. Der Lastmassenbeobachter schätzt dann als x4 die normalisierte Lastmasse, welche dementsprechend durch Multiplikation mit mmax wieder in die Lastmasse ml umgerechnet wird. Daneben schätzt der Lastmassenbeobachter auch die Seillänge Is, die Position der Last z und die Lastgeschwindigkeit , welche ebenfalls zu Steuerungszwecken herangezogen werden können. Fig. 8 shows once again the embodiment of the load mass observer in a block diagram. In addition to the force F W measured on the winch, the length of the hoist rope I S enters the load mass observer as measuring signals. The measured force is initially compensated as described above, first with respect to the rope weight and the friction effects and normalized with the maximum permissible load mass m max . The load mass observer then estimates as x 4 the normalized load mass, which is accordingly converted back into the load mass ml by multiplication with m max . In addition, the load mass observer also estimates the cable length I s , the position of the load z and the load speed ż , which can also be used for control purposes.

Die vorliegende Erfindung ermöglicht eine exakte Bestimmung der Lastmasse, bei welcher sowohl die Effekte der Anordnung der Meßanordnung zur Messung der Seilkraft über ein Verbindungselement zwischen der Kranstruktur und dem Hubseil wie zum Beispiel an einer Momentenstützte der Hubwinde oder eine Umlenkrolle, als auch dynamische Effekte, welche durch die Dehnbarkeit des Hubseils entstehen, berücksichtigt werden. Die Lastmasse kann dabei entweder für Steuerungsaufgaben oder zur Datenauswertung herangezogen werden. Insbesondere kann die Lastmasse für jeden Hub in einer Speichereinheit, z.B. einer Datenbank gespeichert und so ausgewertet werden.The present invention enables an accurate determination of the load mass, in which both the effects of the arrangement of the measuring device for measuring the cable force via a connecting element between the crane structure and the hoist such as at a moment supported the hoist winch or a pulley, as well as dynamic effects due to the extensibility of the hoisting rope, are taken into account. The load mass can be used either for control tasks or for data evaluation. In particular, the load mass for each stroke may be stored in a memory unit, e.g. stored in a database and so evaluated.

Claims (13)

  1. A system for determining the load mass of a load (3) suspended at a hoist rope (4) of a crane, comprising:
    a measurement arrangement for measuring the rope force in the hoist rope (4); and
    a calculation unit (26) for determining the load mass on the basis of the rope force,
    characterized in that
    the calculation unit (26) has a compensation unit and a load mass observer which is based on a spring mass model of the rope (4) and of the load (3),
    wherein the calculation unit (26) describes the influence of the indirect determination of the load mass via the rope force in a dynamic model, calculates the load mass therefrom and at least partly compensates it.
  2. A system in accordance with claim 1, wherein the compensation unit works on the basis of data on the position and/or movement of the crane, in particular on the basis of data on the position and/or movement of the hoisting gear, and/or data on the position and/or movement of the boom (5) and/or of the tower (2).
  3. A system in accordance with either of claims 1 or 2 for a crane comprising a hoisting gear for raising and lowering the load (3) suspended at the hoist rope of the crane,
    wherein the hoist rope (4) is led from the measurement arrangement via at least one deflection pulley of the crane to the load (3), and/or wherein the measurement arrangement for measuring the rope force in the hoist rope is arranged at a deflection pulley or at the hoisting gear,
    wherein the compensation unit (26) at least partly compensates the effect of the arrangement of the measurement arrangement on the resulting load mass.
  4. A system in accordance with claim 3, wherein the compensation unit includes a rope mass compensation which takes account of the unladen weight of the hoist rope and in particular the effect of a change of the rope length on raising and/or lowering the load in the calculation of the load mass,
    wherein the hoisting gear advantageously includes a winch (13) and the angle of rotation and/or the speed of rotation of the winch (13) is included in the rope mass compensation as an input parameter.
  5. A system in accordance with claim 4, wherein the rope mass compensation takes account of the unladen weight of the hoist rope (4) wound on the winch (13).
  6. A system in accordance with one of the claims 3 to 5, wherein the rope mass compensation takes account of a length and/or an alignment of hoist rope sections changing by the movement of the crane structure.
  7. A system in accordance with one of the preceding claims, wherein the compensation unit includes a deflection pulley compensation which takes account of friction effects by the deflection of the hoist rope (4) about one or several deflection pulleys (6, 8, 11, 14).
  8. A system in accordance with claim 7, wherein the deflection pulley compensation takes account of the direction of rotation and/or the speed of rotation of the deflection pulleys (6, 8, 11, 14), wherein the deflection pulley compensation advantageously calculates the direction of rotation and/or the speed of rotation of the deflection pulleys (6, 8, 11, 14) caused by the movement of the crane structure together with the movement of the hoisting gear.
  9. A system in accordance with one of the claims 7 or 8, wherein the deflection pulley compensation calculates the friction effects in dependence on the measured rope force, in particular on the basis of a linear function of the measured rope force.
  10. A system in accordance with one of the preceding claims, wherein the compensation unit takes account of the effect of the acceleration of the load mass and/or of the hoisting gear on the rope force in the determination of the load mass.
  11. A system in accordance with claim 10, wherein the calculation unit takes account of the oscillation dynamics which arise due to the stretchability of the hoist rope (4) in the determination of the load mass.
  12. A crane having a system for determining the load mass of a load (3) suspended at a hoist rope (4) in accordance with one of the preceding claims.
  13. A method for determining the load mass of a load (3) suspended at a hoist rope (4) with a system in accordance with one of the claims 1-11, comprising the steps:
    measuring the rope force in the hoist rope (4),
    calculating the load mass on the basis of the rope force, with the influence of the determining of the load mass via the rope force being described and at least partly compensated in a model.
EP10009567.8A 2009-09-16 2010-09-14 System for determining the load mass of a load suspended on a lifting rope of a crane Active EP2298687B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200910041662 DE102009041662A1 (en) 2009-09-16 2009-09-16 System for detecting the load mass of a hanging on a hoist rope of a crane load

Publications (3)

Publication Number Publication Date
EP2298687A2 EP2298687A2 (en) 2011-03-23
EP2298687A3 EP2298687A3 (en) 2013-08-21
EP2298687B1 true EP2298687B1 (en) 2016-11-30

Family

ID=43384415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10009567.8A Active EP2298687B1 (en) 2009-09-16 2010-09-14 System for determining the load mass of a load suspended on a lifting rope of a crane

Country Status (11)

Country Link
US (1) US8949058B2 (en)
EP (1) EP2298687B1 (en)
JP (1) JP5933915B2 (en)
KR (1) KR20110030398A (en)
CN (1) CN102020199B (en)
AU (1) AU2010219433B2 (en)
BR (1) BRPI1010334A2 (en)
CA (1) CA2714913C (en)
DE (1) DE102009041662A1 (en)
ES (1) ES2617505T3 (en)
RU (1) RU2537728C2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2562125B1 (en) * 2011-08-26 2014-01-22 Liebherr-Werk Nenzing GmbH Crane control apparatus
WO2013042667A1 (en) * 2011-09-20 2013-03-28 株式会社イシダ Mass measurement device
CN102390781B (en) * 2011-11-14 2014-07-09 三一汽车起重机械有限公司 Lateral load protection device and method for crane
DE102012004803A1 (en) * 2012-03-09 2013-09-12 Liebherr-Werk Nenzing Gmbh Crane control with drive limitation
AU2013267148B9 (en) * 2012-06-01 2017-04-06 Seatrax, Inc. System and method to determine relative velocity of crane and target load
FI124888B (en) * 2013-06-04 2015-03-13 Ponsse Oyj Method and arrangement of the weighing system and corresponding software product and material handling machine
KR102040335B1 (en) * 2013-12-24 2019-11-04 두산인프라코어 주식회사 Load weighing apparatus of construction equipment and method thereof
CN104150359B (en) * 2014-07-08 2016-06-08 湖南中联重科智能技术有限公司 Hoisting capacity measuring method, equipment, system and engineering machinery
DE102014110060A1 (en) 2014-07-17 2016-01-21 Terex Mhps Gmbh Filling degree control for a bulk grapple of a crane
CN105438983B (en) * 2014-07-28 2017-05-24 徐州重型机械有限公司 Engineering machinery and engineering machinery winding disorder cable monitoring device and method
EP3378694B1 (en) * 2017-03-23 2019-08-14 Vestel Elektronik Sanayi ve Ticaret A.S. Apparatus and method for providing a measure of current capacity
EP3461783B1 (en) * 2017-09-29 2019-11-13 B&R Industrial Automation GmbH Lifting device and method for controlling a lifting device
CN108116989B (en) * 2017-11-03 2019-11-15 武汉船用机械有限责任公司 A kind of Crane control method and system
JP7059605B2 (en) * 2017-12-08 2022-04-26 富士電機株式会社 Crane operation control device
DE102017130792A1 (en) * 2017-12-20 2019-06-27 Liebherr-Werk Ehingen Gmbh Measuring device for load measurement in a hoist
GB201800250D0 (en) 2018-01-08 2018-02-21 Element Six Gmbh Drill bit with wearshield
CN109977608B (en) * 2019-04-16 2023-02-28 兖州煤业股份有限公司 Hoisting method and device based on cocking frame
CN110759281B (en) * 2019-10-31 2021-04-27 三一海洋重工有限公司 Weighing method of telescopic arm structure, equipment and storage medium thereof
CN111753435A (en) * 2020-07-04 2020-10-09 四川公路桥梁建设集团有限公司 Cable hoisting system calculation method based on segmented catenary and cable force continuous algorithm
CN112065358B (en) * 2020-09-17 2023-07-18 北京三一智造科技有限公司 Drilling bucket state prompting method and device, rotary drilling rig and soil shaking control method of rotary drilling rig
CN112607596B (en) * 2020-12-16 2023-05-09 中联恒通机械有限公司 Method and device for inhibiting swing of lifting hook of automobile crane
DE102021103934A1 (en) 2021-01-27 2022-07-28 Liebherr-Werk Biberach Gmbh Hoist and method of determining slack in the hoist
CN116296517B (en) * 2023-05-08 2023-07-25 四川经准特种设备检验有限公司 Lifting machinery comprehensive performance detection device and detection method
CN116573557B (en) * 2023-05-25 2024-03-19 南京工业大学 Amplitude saturation nonlinear output feedback control method and system for tower crane

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832435U (en) * 1981-08-28 1983-03-03 石川島播磨重工業株式会社 load detection device
JPS59170594U (en) * 1983-04-28 1984-11-14 住友重機械工業株式会社 Load detector with hysteresis correction device in rope hoisting device
JPS59176883U (en) * 1983-05-12 1984-11-26 石川島播磨重工業株式会社 Crane safety device
SU1142738A1 (en) * 1983-09-02 1985-02-28 Киевское Производственное Объединение "Веда" Device for weighing under conditions of cargo vibration
DD222577A1 (en) * 1984-03-27 1985-05-22 Seefahrt Inghochschule ELECTRONIC CRANE SCALE
JPS6232086U (en) * 1985-08-12 1987-02-25
US4677579A (en) * 1985-09-25 1987-06-30 Becor Western Inc. Suspended load measurement system
DE19512103C2 (en) * 1995-04-03 1997-06-05 Rotzler Gmbh Co Cable winch with operating data acquisition
JP2001039670A (en) * 1999-07-30 2001-02-13 Sumitomo Constr Mach Co Ltd Crane lifting load calculation device
US6527130B2 (en) * 2001-02-16 2003-03-04 General Electric Co. Method and system for load measurement in a crane hoist
DE102004027106A1 (en) * 2004-06-03 2005-12-29 Demag Cranes & Components Gmbh Hoist with lifting load measuring device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2010138232A (en) 2012-03-20
AU2010219433A1 (en) 2011-03-31
RU2537728C2 (en) 2015-01-10
JP2011079674A (en) 2011-04-21
CN102020199B (en) 2015-08-05
KR20110030398A (en) 2011-03-23
BRPI1010334A2 (en) 2012-12-18
JP5933915B2 (en) 2016-06-15
CA2714913A1 (en) 2011-03-16
DE102009041662A1 (en) 2011-03-24
EP2298687A3 (en) 2013-08-21
CN102020199A (en) 2011-04-20
US20110066394A1 (en) 2011-03-17
AU2010219433B2 (en) 2015-07-09
CA2714913C (en) 2017-10-24
EP2298687A2 (en) 2011-03-23
ES2617505T3 (en) 2017-06-19
US8949058B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
EP2298687B1 (en) System for determining the load mass of a load suspended on a lifting rope of a crane
EP2272786B1 (en) Crane control for controlling a crane's hoisting gear
EP3649072B1 (en) Crane and method for controlling such a crane
DE102018005068A1 (en) Crane and method for controlling such a crane
EP2502871B1 (en) Crane control, crane and method
EP2272785B1 (en) Method for controlling a drive of a crane
EP1326798B1 (en) Crane or digger for swinging a load hanging on a support cable with damping of load oscillations
EP3408208B1 (en) Crane, and method for controlling such a crane
EP2636635B1 (en) Crane controls with rope force mode
EP2524892B1 (en) Crane control
EP2636632A1 (en) Crane controls with drive restriction
DE102005042721A1 (en) Rotating ladder e.g. fire fighting ladder, for use on vehicle, has controller provided to move ladder parts, where map-based pilot control representing idealized movement behavior of ladder in dynamic model is provided
EP2878566B1 (en) Method for influencing a movement of a load lifted by a crane
EP4013713B1 (en) Crane and method for controlling such a crane
AT520008B1 (en) Method for damping torsional vibrations of a load-bearing element of a lifting device
AT501509A1 (en) METHOD AND POSITION CONTROL APPARATUS FOR CONTROLLING THE OPERATION OF A LOAD TRACTOR DEVICE
EP1992583B2 (en) Crane control, crane and method
DE10029579A1 (en) Method for orientating a load in crane equipment uses slewing gear between a cable and a load to rotate the load suspended on cables at a defined absolute angle.
EP2878567A1 (en) Method for determining at least one pendulum angle of a load lifted by a load transportation device and method for damping the pendular movements of the load
WO2023025643A1 (en) Tower crane, method and control unit for operating a tower crane, trolley and trolley travel unit
DE10230469B4 (en) Device for monitoring the permissibility of the instantaneous load of a lifting device
WO2019121990A1 (en) Measuring device for load measurement in a hoist
EP3326957A1 (en) Operating method for a crane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/16 20060101AFI20130716BHEP

17P Request for examination filed

Effective date: 20140221

17Q First examination report despatched

Effective date: 20140428

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160627

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 849591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010012794

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170301

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2617505

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010012794

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 849591

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220930

Year of fee payment: 13

Ref country code: ES

Payment date: 20221003

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230922

Year of fee payment: 14

Ref country code: DE

Payment date: 20230928

Year of fee payment: 14