EP2291666A1 - Method for detecting the contact between measuring needles and a device under test - Google Patents
Method for detecting the contact between measuring needles and a device under testInfo
- Publication number
- EP2291666A1 EP2291666A1 EP09769199A EP09769199A EP2291666A1 EP 2291666 A1 EP2291666 A1 EP 2291666A1 EP 09769199 A EP09769199 A EP 09769199A EP 09769199 A EP09769199 A EP 09769199A EP 2291666 A1 EP2291666 A1 EP 2291666A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- measuring
- needle
- contact
- measuring needle
- needles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000012360 testing method Methods 0.000 title abstract description 9
- 238000005286 illumination Methods 0.000 claims abstract description 10
- 238000006073 displacement reaction Methods 0.000 claims abstract 2
- 238000005452 bending Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims 1
- 238000005259 measurement Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2851—Testing of integrated circuits [IC]
- G01R31/2886—Features relating to contacting the IC under test, e.g. probe heads; chucks
- G01R31/2891—Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06794—Devices for sensing when probes are in contact, or in position to contact, with measured object
Definitions
- the invention relates to the testing of electrical components, chips on wafers and similar components, wherein an object to be tested is driven under one or more measuring needles. To produce a contact between the measuring needles and the object to be tested, they are moved against each other. The position at which the needles get the first contact with the object or with measuring points on it must be accurately recognized.
- the problem of detecting the first mechanical contact between a measuring needle and a measurement object is solved by means of so-called mechanical edge probes.
- the edge probes consist of additionally attached measuring needle pairs whose needles are arranged in pairs one behind the other in the area of the actual measuring needles.
- the arrangement is set up such that the lower needles of the edge finder first comes into contact with the object to be measured, is pushed upwards, and thus contact is established with the second needle of a corresponding pair.
- the current flowing therewith within the edge probes indicates that a contact has been made so that a drive down drive is reduced or zeroed.
- a defined distance is moved further after this event in order to bring the measuring needles closer to the measuring object or to achieve a corresponding predetermined contact pressure of the needles.
- the object of the invention is to describe a simple procedure with which the time of or the mutual position between the measuring needle tips and the surface of a test object can be detected.
- the invention is based on the finding that, in a method for testing electrical assemblies, certain wafers and similar objects, the measuring needles that are usually necessary for this purpose, which are generally positioned several times next to one another, can be monitored in a simple manner by an optical system.
- the optical system consists of illumination, generation of a transmitted light image of the needles and a line scan camera onto which the transmitted light image is projected.
- the measuring needles are therefore displayed dark against a light background. As soon as a measuring needle touches the surface of the measurement object, one or more needles are deflected upwards and the image of the needle on the row of the line scan camera moves to one side.
- the detection of the contact time between the measuring needle tips and the surface of the measuring object leads directly to the position of the two mutually approaching system parts, the measuring object surface and the measuring needle tips.
- the contact position is reached, the production of the contact is detected by the image on a line scan camera.
- no mechanical and electrical additional elements are necessary, as was the case with the use of edge scanners.
- the method is non-contact and does not introduce any additional sources of interference into the measuring room.
- the non-contact procedure excludes surface damage to the measurement objects.
- FIG. 1 shows a measuring needle in side view
- FIG. 2 shows an overview of the arrangement as seen from above
- Figure 3 shows the arrangement according to the invention in front view
- Figure 4 shows the arrangement in the front view when manufactured contact.
- the measuring needle 1 is moved relative to the measuring object 3 in the direction of the double arrow in such a way that an approach takes place between the measuring needle 1 and the measuring object 3, a contacting leads directly to a Deflection or bending of the measuring needle 1.
- This is optically detected and detected in accordance with FIG. 2 via the lateral illumination of measuring needles with transmitted-light imaging on a line scan camera 6.
- the line of the line camera 6 is arranged such that it can differentiate deflections of the measuring needle according to FIG. 1 upwards and downwards.
- an optic 5 of the line scan camera is to be used.
- FIG. 3 again shows the illumination 4 from left to right, which guides light beams 7 sideways onto the measuring needles 1 and thus images them onto the line camera 6 via the optics 5.
- FIG. 3 shows a corresponding image for the measuring needle state without a contact made on the line of the line scan camera 6.
- FIG. 4 shows the test system with manufactured contact between measuring needles 1 and measuring points 2.
- an image of the measuring needles with a corresponding change in relation to the mark according to FIG. Since the front view of the system is selected in FIGS. 3 and 4, the measuring needle 1, which is bent backwards and correspondingly formed in FIG. 1, is designed or suspended so resiliently that when the contact is made, a bend corresponding to FIG.
- Front view is possible upwards. Ideally, all four measuring needles 1 set up simultaneously.
- the illumination, optics and camera are located in the same coordinate system as the measuring needles, with the method of measurement set out, for example, where the measuring object 3 is moved upwards.
- This distribution can also be varied depending on the requirement. It can be provided, for example, that the illumination and the line camera 6 are arranged in a defined geometric relationship to the measuring needles 1.
- the lighting, the line scan camera 6 and the measuring needles 1 are combined in one assembly.
- the detection of the production of a contact position of measuring needles on a mapping of a deflection of measuring needles on the line of a line scan camera represents a different overall approach to the problem of contact detection.
- the method is non-contact and brings no additional sources of interference in the system.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
Beschreibungdescription
Verfahren zur Erfassung der Kontaktierung zwischen Messnadeln und einem PrüfobjektMethod for detecting the contact between measuring needles and a test object
Die Erfindung betrifft die Prüfung von elektrischen Baugruppen, Chips auf Wafern und ähnlichen Komponenten, wobei ein zu testendes Objekt unter eine oder mehrere Messnadeln gefahren wird. Zur Herstellung eines Kontaktes zwischen den Messnadeln und dem zu prüfenden Objekt werden diese gegeneinander verfahren. Die Position, an der die Nadeln den ersten Kontakt mit dem Objekt beziehungsweise mit Messstellen darauf erlangen, muss genau erkannt werden.The invention relates to the testing of electrical components, chips on wafers and similar components, wherein an object to be tested is driven under one or more measuring needles. To produce a contact between the measuring needles and the object to be tested, they are moved against each other. The position at which the needles get the first contact with the object or with measuring points on it must be accurately recognized.
Bisher wird das Problem der Erkennung der ersten mechanischen Kontaktierung zwischen einer Messnadel und einem Messobjekt anhand von so genannten mechanischen Kantentastern gelöst. Dabei wird elektrisch abgefragt, wann durch die Herstellung eines mechanischen Kontaktes der erste elektrische Kreis ge- schlössen wird. Die Kantentaster bestehen aus zusätzlich angebrachten Messnadelpaaren, deren Nadeln paarweise hintereinander angeordnet im Bereich der eigentlichen Messnadeln angeordnet sind. Beim Aufsetzen der Messnadeln ist die Anordnung derart eingerichtet, dass die unteren Nadeln des Kantentas- ters mit dem Messobjekt zuerst in Berührung kommt, nach oben gedrückt wird, und somit Kontakt zur zweiten Nadel eines entsprechenden Paares hergestellt wird. Der damit fließende Strom innerhalb der Kantentasternadeln zeigt an, dass ein Kontakt hergestellt wurde, so dass eine Absteuerung eines Vortriebs zurückgefahren wird oder zu Null gesetzt wird. Um die Kontaktierung der eigentlichen Messnadeln sicherzustellen, wird nach diesem Ereignis eine definierte Strecke weiter verfahren, um die Messnadeln entsprechend weiter an das Messobjekt anzunähern oder um einen entsprechenden vorgegebenen Anpressdruck der Nadeln zu erreichen.So far, the problem of detecting the first mechanical contact between a measuring needle and a measurement object is solved by means of so-called mechanical edge probes. In this case, it is electrically queried when the first electrical circuit is closed by the production of a mechanical contact. The edge probes consist of additionally attached measuring needle pairs whose needles are arranged in pairs one behind the other in the area of the actual measuring needles. When placing the measuring needles, the arrangement is set up such that the lower needles of the edge finder first comes into contact with the object to be measured, is pushed upwards, and thus contact is established with the second needle of a corresponding pair. The current flowing therewith within the edge probes indicates that a contact has been made so that a drive down drive is reduced or zeroed. In order to ensure the contacting of the actual measuring needles, a defined distance is moved further after this event in order to bring the measuring needles closer to the measuring object or to achieve a corresponding predetermined contact pressure of the needles.
Der Erfindung liegt die Aufgabe zugrunde, eine einfache Verfahrensweise zu beschreiben, mit der der Zeitpunkt des Auf- setzens beziehungsweise die gegenseitige Position zwischen Messnadelspitzen und Oberfläche eines Messobjekts erfassbar ist .The object of the invention is to describe a simple procedure with which the time of or the mutual position between the measuring needle tips and the surface of a test object can be detected.
Die Lösung dieser Aufgabe geschieht durch die Merkmalskombination des Patentanspruchs 1. Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.The solution of this problem is achieved by the combination of features of claim 1. Advantageous embodiments can be found in the dependent claims.
Der Erfindung liegt die Erkenntnis zugrunde, dass in einem Verfahren zur Prüfung von elektrischen Baugruppen, bestimmten Wafern und ähnlichen Objekten die hierfür in der Regel notwendigen Messnadeln, die in der Regel mehrfach nebeneinander positioniert sind, in einfacher Weise durch ein optisches System überwachbar sind.The invention is based on the finding that, in a method for testing electrical assemblies, certain wafers and similar objects, the measuring needles that are usually necessary for this purpose, which are generally positioned several times next to one another, can be monitored in a simple manner by an optical system.
Wesentlich ist die Erkennung des Aufsetzens der ersten Messnadel auf der Messobjektoberfläche, wobei unabhängig von einer elektrischen Kontaktierung die mechanische Biegung der Messnadel oder mehrerer Messnadeln erfasst wird. Das optische System besteht aus Beleuchtung, Erzeugung eines Durchlichtbildes der Nadeln und einer Zeilenkamera, auf die das Durchlichtbild projiziert wird. Die Messnadeln werden also dunkel vor hellem Hintergrund abgebildet. Sobald eine Messnadel die Oberfläche des Messobjekts berührt, werden die eine oder meh- rere Nadeln nach oben ausgelenkt und die Abbildung der Nadel auf der Zeile der Zeilenkamera wandert zu einer Seite aus.It is essential to detect the placement of the first measuring needle on the measuring object surface, wherein the mechanical bending of the measuring needle or of a plurality of measuring needles is detected independently of an electrical contact. The optical system consists of illumination, generation of a transmitted light image of the needles and a line scan camera onto which the transmitted light image is projected. The measuring needles are therefore displayed dark against a light background. As soon as a measuring needle touches the surface of the measurement object, one or more needles are deflected upwards and the image of the needle on the row of the line scan camera moves to one side.
Es ist vorteilhaft ein ständiges Auslesen der Zeile der Zeilenkamera in hoher Geschwindigkeit zu tätigen, beispielsweise mit 30 kHz. Somit wird die Lage der Messnadeln mit hoher zeitlicher Auflösung bestimmbar. Durch Wahl eines entsprechenden Abbildungsmaßstabs kann eine hohe örtliche Genauigkeit erzielt werden.It is advantageous to make a continuous reading of the line of the line camera at high speed, for example, 30 kHz. Thus, the position of the measuring needles with high temporal resolution can be determined. By choosing a corresponding magnification, a high local accuracy can be achieved.
Die Erkennung des Kontaktzeitpunktes zwischen Messnadelspitzen und Messobjektoberfläche lässt direkt auf die Position der beiden sich gegenseitig annähernden Systemteile, die Messobjektoberfläche und die Messnadelspitzen, rückschließen. Bei Erreichen der Kontaktposition wird über die Abbildung auf einer Zeilenkamera die Herstellung der Kontaktierung erfasst. Somit sind keinerlei mechanische und elektrische zusätzliche Elemente notwendig, wie es bei der Verwendung von Kantentas- tern der Fall war. Das Verfahren ist berührungslos und bringt in den Messraum keine zusätzlichen Störquellen ein.The detection of the contact time between the measuring needle tips and the surface of the measuring object leads directly to the position of the two mutually approaching system parts, the measuring object surface and the measuring needle tips. When the contact position is reached, the production of the contact is detected by the image on a line scan camera. Thus, no mechanical and electrical additional elements are necessary, as was the case with the use of edge scanners. The method is non-contact and does not introduce any additional sources of interference into the measuring room.
Es wird insgesamt der sonst notwendige Raum zusätzlicher Hilfsmittel für Sensorik eingespart. Das elektrische Signal zur Erkennung mittels eines Kanttasters kann eliminiert werden und somit als Störgröße entfallen. Insgesamt sind die Voraussetzungen des Messsystems so ausgerichtet, dass zur Absicherung einer genauen Messung keine elektrischen Störgrößen eingebracht werden.Overall, the otherwise necessary space for additional aids for sensor technology is saved. The electrical signal for detection by means of an edge switch can be eliminated and thus omitted as a disturbance. Overall, the requirements of the measuring system are aligned so that no electrical disturbances are introduced to ensure accurate measurement.
Die berührungslose Verfahrensweise schließt Oberflächenzerstörungen an den Messobjekten aus.The non-contact procedure excludes surface damage to the measurement objects.
Im Folgenden werden anhand der schematischen Figuren die Er- findung nicht einschränkende Ausführungsbeispiele beschrieben .In the following, the invention will be described with reference to the schematic figures, non-limiting embodiments.
Figur 1 zeigt eine Messnadel in der Seitenansicht,FIG. 1 shows a measuring needle in side view,
Figur 2 zeigt eine Übersicht der Anordnung mit Blickrichtung von oben,FIG. 2 shows an overview of the arrangement as seen from above,
Figur 3 zeigt die Anordnung entsprechend der Erfindung in der Vorderansicht,Figure 3 shows the arrangement according to the invention in front view,
Figur 4 zeigt die Anordnung in der Vorderansicht bei hergestellter Kontaktierung.Figure 4 shows the arrangement in the front view when manufactured contact.
Wird entsprechend Figur 1 die Messnadel 1 relativ zum Messobjekt 3 in Richtung des Doppelpfeils derart verfahren, dass eine Annäherung zwischen Messnadel 1 und Messobjekt 3 geschieht, so führt eine Kontaktierung unmittelbar zu einer Auslenkung beziehungsweise Biegung der Messnadel 1. Dies wird optisch detektiert und entsprechend Figur 2 über die seitliche Beleuchtung von Messnadeln mit Durchlichtabbildung auf einer Zeilenkamera 6 erfasst. Dabei ist die Zeile der Zeilen- kamera 6 derart angeordnet, dass sie Auslenkungen der Messnadel entsprechend Figur 1 nach oben und unten differenzieren kann. In der Regel ist eine Optik 5 der Zeilenkamera vorzuschalten .If, according to FIG. 1, the measuring needle 1 is moved relative to the measuring object 3 in the direction of the double arrow in such a way that an approach takes place between the measuring needle 1 and the measuring object 3, a contacting leads directly to a Deflection or bending of the measuring needle 1. This is optically detected and detected in accordance with FIG. 2 via the lateral illumination of measuring needles with transmitted-light imaging on a line scan camera 6. In this case, the line of the line camera 6 is arranged such that it can differentiate deflections of the measuring needle according to FIG. 1 upwards and downwards. As a rule, an optic 5 of the line scan camera is to be used.
Figur 3 zeigt wiederum von links nach rechts die Beleuchtung 4, welche Lichtstrahlen 7 seitwärts auf die Messnadeln 1 leitet und diese somit über die Optik 5 auf die Zeilenkamera 6 abbildet. In Figur 3 ist eine entsprechende Abbildung für den Messnadelzustand ohne hergestellten Kontakt auf der Zeile der Zeilenkamera 6 dargestellt.FIG. 3 again shows the illumination 4 from left to right, which guides light beams 7 sideways onto the measuring needles 1 and thus images them onto the line camera 6 via the optics 5. FIG. 3 shows a corresponding image for the measuring needle state without a contact made on the line of the line scan camera 6.
Figur 4 zeigt das Prüfsystem mit hergestelltem Kontakt zwischen Messnadeln 1 und Messstellen 2. Auf der Zeile der Zeilenkamera 6 ist damit entsprechend der Pfeilrichtung eine Ab- bildung der Messnadeln mit entsprechender Veränderung im Verhältnis zu der Marke entsprechend Figur 3 sichtbar. Da in den Figuren 3 und 4 die Frontansicht des Systems gewählt ist, ist die nach hinten gebogene, entsprechend Figur 1 geformte, Messnadel 1 derart federnd ausgebildet oder aufgehängt, dass bei hergestelltem Kontakt eine Biegung entsprechend derFIG. 4 shows the test system with manufactured contact between measuring needles 1 and measuring points 2. On the line of the line camera 6, an image of the measuring needles with a corresponding change in relation to the mark according to FIG. Since the front view of the system is selected in FIGS. 3 and 4, the measuring needle 1, which is bent backwards and correspondingly formed in FIG. 1, is designed or suspended so resiliently that when the contact is made, a bend corresponding to FIG
Frontansicht nach oben möglich ist. Idealerweise setzen sämtliche dargestellten vier Messnadeln 1 gleichzeitig auf.Front view is possible upwards. Ideally, all four measuring needles 1 set up simultaneously.
Für die Figuren 3 und 4 gilt, dass bei der dargelegten Ver- fahrensweise Beleuchtung, Optik und Kamera im gleichen Koordinatensystem wie die Messnadeln angesiedelt sind, wobei beispielsweise das Messobjekt 3 nach oben verfahren wird. Diese Aufteilung kann, je nach Anforderung, auch variiert werden. Es kann zum Beispiel vorgesehen werden, dass die Beleuchtung und die Zeilenkamera 6 in einer definierten geometrischen Beziehung zu den Messnadeln 1 angeordnet sind. Insbesondere ist es möglich, dass die Beleuchtung, die Zeilenkamera 6 und die Messnadeln 1 in einer Baugruppe zusammengefasst sind. Hier- durch wird vorteilhaft gewährleistet, dass zwischen diesen Bauteilen einen eindeutige geometrische Beziehung besteht. Dies verbessert die Genauigkeit und die Geschwindigkeit des Messverfahrens .For the FIGS. 3 and 4, the illumination, optics and camera are located in the same coordinate system as the measuring needles, with the method of measurement set out, for example, where the measuring object 3 is moved upwards. This distribution can also be varied depending on the requirement. It can be provided, for example, that the illumination and the line camera 6 are arranged in a defined geometric relationship to the measuring needles 1. In particular, it is possible that the lighting, the line scan camera 6 and the measuring needles 1 are combined in one assembly. Here- By is advantageously ensured that there is a clear geometric relationship between these components. This improves the accuracy and speed of the measurement process.
Die Erkennung der Herstellung einer Kontaktposition von Messnadeln über eine Abbildung einer Auslenkung von Messnadeln auf die Zeile einer Zeilenkamera stellt insgesamt eine andere Herangehensweise an das Problem der Kontakterkennung dar. Das Verfahren ist berührungslos und bringt keine zusätzlichen Störquellen mit in das System ein. The detection of the production of a contact position of measuring needles on a mapping of a deflection of measuring needles on the line of a line scan camera represents a different overall approach to the problem of contact detection. The method is non-contact and brings no additional sources of interference in the system.
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008030426 | 2008-06-26 | ||
PCT/EP2009/057676 WO2009156350A1 (en) | 2008-06-26 | 2009-06-19 | Method for detecting the contact between measuring needles and a device under test |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2291666A1 true EP2291666A1 (en) | 2011-03-09 |
Family
ID=41278637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09769199A Withdrawn EP2291666A1 (en) | 2008-06-26 | 2009-06-19 | Method for detecting the contact between measuring needles and a device under test |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2291666A1 (en) |
WO (1) | WO2009156350A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11204383B2 (en) * | 2019-09-30 | 2021-12-21 | Formfactor, Inc. | Methods for maintaining gap spacing between an optical probe of a probe system and an optical device of a device under test, and probe systems that perform the methods |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5644245A (en) * | 1993-11-24 | 1997-07-01 | Tokyo Electron Limited | Probe apparatus for inspecting electrical characteristics of a microelectronic element |
US6972578B2 (en) * | 2001-11-02 | 2005-12-06 | Formfactor, Inc. | Method and system for compensating thermally induced motion of probe cards |
DE102004030881B4 (en) * | 2003-07-01 | 2015-05-13 | Cascade Microtech, Inc. | Method and prober for contacting a contact surface with a contact tip |
CN101326622B (en) * | 2005-12-06 | 2010-06-16 | 芝浦机械电子装置股份有限公司 | Surface roughness inspection device |
-
2009
- 2009-06-19 WO PCT/EP2009/057676 patent/WO2009156350A1/en active Application Filing
- 2009-06-19 EP EP09769199A patent/EP2291666A1/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2009156350A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2009156350A1 (en) | 2009-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10220343B4 (en) | Apparatus and method for testing printed circuit boards and probes | |
EP1266234B1 (en) | Testing device for printed boards | |
EP1982197B1 (en) | Finger tester for testing unpopulated printed circuit boards and method for testing unpopulated printed circuit boards using a finger tester | |
EP2707734B1 (en) | Contactless capacitive distance sensor | |
EP1315975B1 (en) | Method and device for testing printed circuit boards with a parallel tester | |
DE2818060A1 (en) | METHOD AND DEVICE FOR VISUAL MEASUREMENT INSPECTION | |
DE19802848B4 (en) | Method and apparatus for testing a substrate | |
EP3414581B1 (en) | Method and ict device for inspecting modules of a lighting device, said lighting device containing at least two leds | |
EP0399138B1 (en) | Method for three-dimensional examination of printed circuits | |
WO2009156350A1 (en) | Method for detecting the contact between measuring needles and a device under test | |
DE102009010837A1 (en) | Method for inspecting existence of sawing grooves on wafers utilized for manufacturing solar cells, involves evaluating wafer based on images of partial region at short exposure time | |
EP0255552B1 (en) | Method and device for contactless measuring of changes of length on structural members | |
WO2020160731A1 (en) | Retaining device for an optical fiber | |
DE102010029133A1 (en) | Method and device for characterization of pyramidal surface structures on a substrate | |
DE102008048081A1 (en) | Method for testing electronic components of a repeating structure under defined thermal conditions | |
DE19506388C1 (en) | Method for recognizing systematic errors, in particular for the automatic detection of malfunctions in quality controls, by means of measuring devices equipped with measuring sensors | |
DE102021124940A1 (en) | Method for determining the fracture-mechanical stress of at least one crack when a component is loaded, computer program product and device for carrying out the method, and their use | |
EP0592878A2 (en) | Method and device for inspecting probe cards for testing integrated circuits | |
EP2446285B1 (en) | Method for measuring a power component | |
DE4232837A1 (en) | Detecting faults in galvanised surfaces - by monitoring the change in intensity of a laser beam reflected from the surface | |
EP2392893A1 (en) | Height measuring device and method for measuring the height of a motor vehicle's central electricity system | |
DE102019000167A1 (en) | Test card for measuring integrated circuits on a semiconductor wafer and test method | |
EP3407035B1 (en) | Measuring device and method for measuring the intensity distribution of incident light radiation | |
EP1190212B1 (en) | Device for optoelectronic determination of the length and/or width of a body situated on a support | |
WO2024227207A1 (en) | Device for measuring the flatness of a surface or the thickness of a flat glass panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100924 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20120412 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01R 31/28 20060101ALI20130109BHEP Ipc: G01R 1/067 20060101AFI20130109BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20130626 |