WO2009156350A1 - Method for detecting the contact between measuring needles and a device under test - Google Patents

Method for detecting the contact between measuring needles and a device under test Download PDF

Info

Publication number
WO2009156350A1
WO2009156350A1 PCT/EP2009/057676 EP2009057676W WO2009156350A1 WO 2009156350 A1 WO2009156350 A1 WO 2009156350A1 EP 2009057676 W EP2009057676 W EP 2009057676W WO 2009156350 A1 WO2009156350 A1 WO 2009156350A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
needle
contact
measuring needle
needles
Prior art date
Application number
PCT/EP2009/057676
Other languages
German (de)
French (fr)
Inventor
Ralf Heim
Klaus Rohfleisch
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09769199A priority Critical patent/EP2291666A1/en
Publication of WO2009156350A1 publication Critical patent/WO2009156350A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06794Devices for sensing when probes are in contact, or in position to contact, with measured object

Definitions

  • the invention relates to the testing of electrical components, chips on wafers and similar components, wherein an object to be tested is driven under one or more measuring needles. To produce a contact between the measuring needles and the object to be tested, they are moved against each other. The position at which the needles get the first contact with the object or with measuring points on it must be accurately recognized.
  • the problem of detecting the first mechanical contact between a measuring needle and a measurement object is solved by means of so-called mechanical edge probes.
  • the edge probes consist of additionally attached measuring needle pairs whose needles are arranged in pairs one behind the other in the area of the actual measuring needles.
  • the arrangement is set up such that the lower needles of the edge finder first comes into contact with the object to be measured, is pushed upwards, and thus contact is established with the second needle of a corresponding pair.
  • the current flowing therewith within the edge probes indicates that a contact has been made so that a drive down drive is reduced or zeroed.
  • a defined distance is moved further after this event in order to bring the measuring needles closer to the measuring object or to achieve a corresponding predetermined contact pressure of the needles.
  • the object of the invention is to describe a simple procedure with which the time of or the mutual position between the measuring needle tips and the surface of a test object can be detected.
  • the invention is based on the finding that, in a method for testing electrical assemblies, certain wafers and similar objects, the measuring needles that are usually necessary for this purpose, which are generally positioned several times next to one another, can be monitored in a simple manner by an optical system.
  • the optical system consists of illumination, generation of a transmitted light image of the needles and a line scan camera onto which the transmitted light image is projected.
  • the measuring needles are therefore displayed dark against a light background. As soon as a measuring needle touches the surface of the measurement object, one or more needles are deflected upwards and the image of the needle on the row of the line scan camera moves to one side.
  • the detection of the contact time between the measuring needle tips and the surface of the measuring object leads directly to the position of the two mutually approaching system parts, the measuring object surface and the measuring needle tips.
  • the contact position is reached, the production of the contact is detected by the image on a line scan camera.
  • no mechanical and electrical additional elements are necessary, as was the case with the use of edge scanners.
  • the method is non-contact and does not introduce any additional sources of interference into the measuring room.
  • the non-contact procedure excludes surface damage to the measurement objects.
  • FIG. 1 shows a measuring needle in side view
  • FIG. 2 shows an overview of the arrangement as seen from above
  • Figure 3 shows the arrangement according to the invention in front view
  • Figure 4 shows the arrangement in the front view when manufactured contact.
  • the measuring needle 1 is moved relative to the measuring object 3 in the direction of the double arrow in such a way that an approach takes place between the measuring needle 1 and the measuring object 3, a contacting leads directly to a Deflection or bending of the measuring needle 1.
  • This is optically detected and detected in accordance with FIG. 2 via the lateral illumination of measuring needles with transmitted-light imaging on a line scan camera 6.
  • the line of the line camera 6 is arranged such that it can differentiate deflections of the measuring needle according to FIG. 1 upwards and downwards.
  • an optic 5 of the line scan camera is to be used.
  • FIG. 3 again shows the illumination 4 from left to right, which guides light beams 7 sideways onto the measuring needles 1 and thus images them onto the line camera 6 via the optics 5.
  • FIG. 3 shows a corresponding image for the measuring needle state without a contact made on the line of the line scan camera 6.
  • FIG. 4 shows the test system with manufactured contact between measuring needles 1 and measuring points 2.
  • an image of the measuring needles with a corresponding change in relation to the mark according to FIG. Since the front view of the system is selected in FIGS. 3 and 4, the measuring needle 1, which is bent backwards and correspondingly formed in FIG. 1, is designed or suspended so resiliently that when the contact is made, a bend corresponding to FIG.
  • Front view is possible upwards. Ideally, all four measuring needles 1 set up simultaneously.
  • the illumination, optics and camera are located in the same coordinate system as the measuring needles, with the method of measurement set out, for example, where the measuring object 3 is moved upwards.
  • This distribution can also be varied depending on the requirement. It can be provided, for example, that the illumination and the line camera 6 are arranged in a defined geometric relationship to the measuring needles 1.
  • the lighting, the line scan camera 6 and the measuring needles 1 are combined in one assembly.
  • the detection of the production of a contact position of measuring needles on a mapping of a deflection of measuring needles on the line of a line scan camera represents a different overall approach to the problem of contact detection.
  • the method is non-contact and brings no additional sources of interference in the system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a method for detecting the contact of at least one measuring needle (1) with a device under test (3), wherein a transmitted light image of the at least one measuring needle (1) is generated on at least one line scan camera (6) during lateral illumination, the at least one measuring needle (1) and the device under test (3) are moved closer together, and the contact of the at least one measuring needle (1) with the device under test (3) can be detected by the deflection of the measuring needle (1) and the simultaneous displacement of the image on the line scan camera (6).

Description

Beschreibungdescription
Verfahren zur Erfassung der Kontaktierung zwischen Messnadeln und einem PrüfobjektMethod for detecting the contact between measuring needles and a test object
Die Erfindung betrifft die Prüfung von elektrischen Baugruppen, Chips auf Wafern und ähnlichen Komponenten, wobei ein zu testendes Objekt unter eine oder mehrere Messnadeln gefahren wird. Zur Herstellung eines Kontaktes zwischen den Messnadeln und dem zu prüfenden Objekt werden diese gegeneinander verfahren. Die Position, an der die Nadeln den ersten Kontakt mit dem Objekt beziehungsweise mit Messstellen darauf erlangen, muss genau erkannt werden.The invention relates to the testing of electrical components, chips on wafers and similar components, wherein an object to be tested is driven under one or more measuring needles. To produce a contact between the measuring needles and the object to be tested, they are moved against each other. The position at which the needles get the first contact with the object or with measuring points on it must be accurately recognized.
Bisher wird das Problem der Erkennung der ersten mechanischen Kontaktierung zwischen einer Messnadel und einem Messobjekt anhand von so genannten mechanischen Kantentastern gelöst. Dabei wird elektrisch abgefragt, wann durch die Herstellung eines mechanischen Kontaktes der erste elektrische Kreis ge- schlössen wird. Die Kantentaster bestehen aus zusätzlich angebrachten Messnadelpaaren, deren Nadeln paarweise hintereinander angeordnet im Bereich der eigentlichen Messnadeln angeordnet sind. Beim Aufsetzen der Messnadeln ist die Anordnung derart eingerichtet, dass die unteren Nadeln des Kantentas- ters mit dem Messobjekt zuerst in Berührung kommt, nach oben gedrückt wird, und somit Kontakt zur zweiten Nadel eines entsprechenden Paares hergestellt wird. Der damit fließende Strom innerhalb der Kantentasternadeln zeigt an, dass ein Kontakt hergestellt wurde, so dass eine Absteuerung eines Vortriebs zurückgefahren wird oder zu Null gesetzt wird. Um die Kontaktierung der eigentlichen Messnadeln sicherzustellen, wird nach diesem Ereignis eine definierte Strecke weiter verfahren, um die Messnadeln entsprechend weiter an das Messobjekt anzunähern oder um einen entsprechenden vorgegebenen Anpressdruck der Nadeln zu erreichen.So far, the problem of detecting the first mechanical contact between a measuring needle and a measurement object is solved by means of so-called mechanical edge probes. In this case, it is electrically queried when the first electrical circuit is closed by the production of a mechanical contact. The edge probes consist of additionally attached measuring needle pairs whose needles are arranged in pairs one behind the other in the area of the actual measuring needles. When placing the measuring needles, the arrangement is set up such that the lower needles of the edge finder first comes into contact with the object to be measured, is pushed upwards, and thus contact is established with the second needle of a corresponding pair. The current flowing therewith within the edge probes indicates that a contact has been made so that a drive down drive is reduced or zeroed. In order to ensure the contacting of the actual measuring needles, a defined distance is moved further after this event in order to bring the measuring needles closer to the measuring object or to achieve a corresponding predetermined contact pressure of the needles.
Der Erfindung liegt die Aufgabe zugrunde, eine einfache Verfahrensweise zu beschreiben, mit der der Zeitpunkt des Auf- setzens beziehungsweise die gegenseitige Position zwischen Messnadelspitzen und Oberfläche eines Messobjekts erfassbar ist .The object of the invention is to describe a simple procedure with which the time of or the mutual position between the measuring needle tips and the surface of a test object can be detected.
Die Lösung dieser Aufgabe geschieht durch die Merkmalskombination des Patentanspruchs 1. Vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.The solution of this problem is achieved by the combination of features of claim 1. Advantageous embodiments can be found in the dependent claims.
Der Erfindung liegt die Erkenntnis zugrunde, dass in einem Verfahren zur Prüfung von elektrischen Baugruppen, bestimmten Wafern und ähnlichen Objekten die hierfür in der Regel notwendigen Messnadeln, die in der Regel mehrfach nebeneinander positioniert sind, in einfacher Weise durch ein optisches System überwachbar sind.The invention is based on the finding that, in a method for testing electrical assemblies, certain wafers and similar objects, the measuring needles that are usually necessary for this purpose, which are generally positioned several times next to one another, can be monitored in a simple manner by an optical system.
Wesentlich ist die Erkennung des Aufsetzens der ersten Messnadel auf der Messobjektoberfläche, wobei unabhängig von einer elektrischen Kontaktierung die mechanische Biegung der Messnadel oder mehrerer Messnadeln erfasst wird. Das optische System besteht aus Beleuchtung, Erzeugung eines Durchlichtbildes der Nadeln und einer Zeilenkamera, auf die das Durchlichtbild projiziert wird. Die Messnadeln werden also dunkel vor hellem Hintergrund abgebildet. Sobald eine Messnadel die Oberfläche des Messobjekts berührt, werden die eine oder meh- rere Nadeln nach oben ausgelenkt und die Abbildung der Nadel auf der Zeile der Zeilenkamera wandert zu einer Seite aus.It is essential to detect the placement of the first measuring needle on the measuring object surface, wherein the mechanical bending of the measuring needle or of a plurality of measuring needles is detected independently of an electrical contact. The optical system consists of illumination, generation of a transmitted light image of the needles and a line scan camera onto which the transmitted light image is projected. The measuring needles are therefore displayed dark against a light background. As soon as a measuring needle touches the surface of the measurement object, one or more needles are deflected upwards and the image of the needle on the row of the line scan camera moves to one side.
Es ist vorteilhaft ein ständiges Auslesen der Zeile der Zeilenkamera in hoher Geschwindigkeit zu tätigen, beispielsweise mit 30 kHz. Somit wird die Lage der Messnadeln mit hoher zeitlicher Auflösung bestimmbar. Durch Wahl eines entsprechenden Abbildungsmaßstabs kann eine hohe örtliche Genauigkeit erzielt werden.It is advantageous to make a continuous reading of the line of the line camera at high speed, for example, 30 kHz. Thus, the position of the measuring needles with high temporal resolution can be determined. By choosing a corresponding magnification, a high local accuracy can be achieved.
Die Erkennung des Kontaktzeitpunktes zwischen Messnadelspitzen und Messobjektoberfläche lässt direkt auf die Position der beiden sich gegenseitig annähernden Systemteile, die Messobjektoberfläche und die Messnadelspitzen, rückschließen. Bei Erreichen der Kontaktposition wird über die Abbildung auf einer Zeilenkamera die Herstellung der Kontaktierung erfasst. Somit sind keinerlei mechanische und elektrische zusätzliche Elemente notwendig, wie es bei der Verwendung von Kantentas- tern der Fall war. Das Verfahren ist berührungslos und bringt in den Messraum keine zusätzlichen Störquellen ein.The detection of the contact time between the measuring needle tips and the surface of the measuring object leads directly to the position of the two mutually approaching system parts, the measuring object surface and the measuring needle tips. When the contact position is reached, the production of the contact is detected by the image on a line scan camera. Thus, no mechanical and electrical additional elements are necessary, as was the case with the use of edge scanners. The method is non-contact and does not introduce any additional sources of interference into the measuring room.
Es wird insgesamt der sonst notwendige Raum zusätzlicher Hilfsmittel für Sensorik eingespart. Das elektrische Signal zur Erkennung mittels eines Kanttasters kann eliminiert werden und somit als Störgröße entfallen. Insgesamt sind die Voraussetzungen des Messsystems so ausgerichtet, dass zur Absicherung einer genauen Messung keine elektrischen Störgrößen eingebracht werden.Overall, the otherwise necessary space for additional aids for sensor technology is saved. The electrical signal for detection by means of an edge switch can be eliminated and thus omitted as a disturbance. Overall, the requirements of the measuring system are aligned so that no electrical disturbances are introduced to ensure accurate measurement.
Die berührungslose Verfahrensweise schließt Oberflächenzerstörungen an den Messobjekten aus.The non-contact procedure excludes surface damage to the measurement objects.
Im Folgenden werden anhand der schematischen Figuren die Er- findung nicht einschränkende Ausführungsbeispiele beschrieben .In the following, the invention will be described with reference to the schematic figures, non-limiting embodiments.
Figur 1 zeigt eine Messnadel in der Seitenansicht,FIG. 1 shows a measuring needle in side view,
Figur 2 zeigt eine Übersicht der Anordnung mit Blickrichtung von oben,FIG. 2 shows an overview of the arrangement as seen from above,
Figur 3 zeigt die Anordnung entsprechend der Erfindung in der Vorderansicht,Figure 3 shows the arrangement according to the invention in front view,
Figur 4 zeigt die Anordnung in der Vorderansicht bei hergestellter Kontaktierung.Figure 4 shows the arrangement in the front view when manufactured contact.
Wird entsprechend Figur 1 die Messnadel 1 relativ zum Messobjekt 3 in Richtung des Doppelpfeils derart verfahren, dass eine Annäherung zwischen Messnadel 1 und Messobjekt 3 geschieht, so führt eine Kontaktierung unmittelbar zu einer Auslenkung beziehungsweise Biegung der Messnadel 1. Dies wird optisch detektiert und entsprechend Figur 2 über die seitliche Beleuchtung von Messnadeln mit Durchlichtabbildung auf einer Zeilenkamera 6 erfasst. Dabei ist die Zeile der Zeilen- kamera 6 derart angeordnet, dass sie Auslenkungen der Messnadel entsprechend Figur 1 nach oben und unten differenzieren kann. In der Regel ist eine Optik 5 der Zeilenkamera vorzuschalten .If, according to FIG. 1, the measuring needle 1 is moved relative to the measuring object 3 in the direction of the double arrow in such a way that an approach takes place between the measuring needle 1 and the measuring object 3, a contacting leads directly to a Deflection or bending of the measuring needle 1. This is optically detected and detected in accordance with FIG. 2 via the lateral illumination of measuring needles with transmitted-light imaging on a line scan camera 6. In this case, the line of the line camera 6 is arranged such that it can differentiate deflections of the measuring needle according to FIG. 1 upwards and downwards. As a rule, an optic 5 of the line scan camera is to be used.
Figur 3 zeigt wiederum von links nach rechts die Beleuchtung 4, welche Lichtstrahlen 7 seitwärts auf die Messnadeln 1 leitet und diese somit über die Optik 5 auf die Zeilenkamera 6 abbildet. In Figur 3 ist eine entsprechende Abbildung für den Messnadelzustand ohne hergestellten Kontakt auf der Zeile der Zeilenkamera 6 dargestellt.FIG. 3 again shows the illumination 4 from left to right, which guides light beams 7 sideways onto the measuring needles 1 and thus images them onto the line camera 6 via the optics 5. FIG. 3 shows a corresponding image for the measuring needle state without a contact made on the line of the line scan camera 6.
Figur 4 zeigt das Prüfsystem mit hergestelltem Kontakt zwischen Messnadeln 1 und Messstellen 2. Auf der Zeile der Zeilenkamera 6 ist damit entsprechend der Pfeilrichtung eine Ab- bildung der Messnadeln mit entsprechender Veränderung im Verhältnis zu der Marke entsprechend Figur 3 sichtbar. Da in den Figuren 3 und 4 die Frontansicht des Systems gewählt ist, ist die nach hinten gebogene, entsprechend Figur 1 geformte, Messnadel 1 derart federnd ausgebildet oder aufgehängt, dass bei hergestelltem Kontakt eine Biegung entsprechend derFIG. 4 shows the test system with manufactured contact between measuring needles 1 and measuring points 2. On the line of the line camera 6, an image of the measuring needles with a corresponding change in relation to the mark according to FIG. Since the front view of the system is selected in FIGS. 3 and 4, the measuring needle 1, which is bent backwards and correspondingly formed in FIG. 1, is designed or suspended so resiliently that when the contact is made, a bend corresponding to FIG
Frontansicht nach oben möglich ist. Idealerweise setzen sämtliche dargestellten vier Messnadeln 1 gleichzeitig auf.Front view is possible upwards. Ideally, all four measuring needles 1 set up simultaneously.
Für die Figuren 3 und 4 gilt, dass bei der dargelegten Ver- fahrensweise Beleuchtung, Optik und Kamera im gleichen Koordinatensystem wie die Messnadeln angesiedelt sind, wobei beispielsweise das Messobjekt 3 nach oben verfahren wird. Diese Aufteilung kann, je nach Anforderung, auch variiert werden. Es kann zum Beispiel vorgesehen werden, dass die Beleuchtung und die Zeilenkamera 6 in einer definierten geometrischen Beziehung zu den Messnadeln 1 angeordnet sind. Insbesondere ist es möglich, dass die Beleuchtung, die Zeilenkamera 6 und die Messnadeln 1 in einer Baugruppe zusammengefasst sind. Hier- durch wird vorteilhaft gewährleistet, dass zwischen diesen Bauteilen einen eindeutige geometrische Beziehung besteht. Dies verbessert die Genauigkeit und die Geschwindigkeit des Messverfahrens .For the FIGS. 3 and 4, the illumination, optics and camera are located in the same coordinate system as the measuring needles, with the method of measurement set out, for example, where the measuring object 3 is moved upwards. This distribution can also be varied depending on the requirement. It can be provided, for example, that the illumination and the line camera 6 are arranged in a defined geometric relationship to the measuring needles 1. In particular, it is possible that the lighting, the line scan camera 6 and the measuring needles 1 are combined in one assembly. Here- By is advantageously ensured that there is a clear geometric relationship between these components. This improves the accuracy and speed of the measurement process.
Die Erkennung der Herstellung einer Kontaktposition von Messnadeln über eine Abbildung einer Auslenkung von Messnadeln auf die Zeile einer Zeilenkamera stellt insgesamt eine andere Herangehensweise an das Problem der Kontakterkennung dar. Das Verfahren ist berührungslos und bringt keine zusätzlichen Störquellen mit in das System ein. The detection of the production of a contact position of measuring needles on a mapping of a deflection of measuring needles on the line of a line scan camera represents a different overall approach to the problem of contact detection. The method is non-contact and brings no additional sources of interference in the system.

Claims

Patentansprüche claims
1. Verfahren zur Erfassung des Aufsetzens mindestens einer Messnadel (1) auf einem Messobjekt (3), wobei - die mindestens eine Messnadel (1) bei seitlicher Beleuchtung auf mindestens einer Zeilenkamera (6) dunkel vor dem hellen Hintergrund der Beleuchtung abgebildet wird, - die mindestens eine Messnadel (1) und das Messobjekt (3) relativ zueinander angenähert werden, und - das Aufsetzen der mindestens einen Messnadel (1) auf dem Messobjekt (3) und die damit verbundene Biegung der mindestens einen Messnadel (1) durch eine Verschiebung der Abbildung der mindestens einen Messnadel (1) auf der Zeilenkamera (6) erfasst wird.1. A method for detecting the placement of at least one measuring needle (1) on a measuring object (3), wherein - the at least one measuring needle (1) is illuminated with lateral illumination on at least one line camera (6) dark against the bright background of the illumination, the at least one measuring needle (1) and the measuring object (3) are approximated relative to each other, and - the placement of the at least one measuring needle (1) on the measuring object (3) and the associated bending of the at least one measuring needle (1) by a displacement the image of the at least one measuring needle (1) on the line scan camera (6) is detected.
2. Verfahren nach Anspruch 1, bei dem die Abtastrate größer als 30 kHz ist.2. The method of claim 1, wherein the sampling rate is greater than 30 kHz.
3. Verfahren nach Anspruch 1 oder 2, bei dem die mindestens eine Messnadel (1) auf mindestens eine Messstelle (2), die an der Oberfläche des Messobjektes (3) vorhanden ist, aufsetzt.3. The method of claim 1 or 2, wherein the at least one measuring needle (1) on at least one measuring point (2), which is present on the surface of the measuring object (3) touches.
4. Verfahren nach Anspruch 3, bei dem die Messstelle (2) zur Kontaktierung eine ebene und parallel zur Messobjektoberflä- che ausgebildete Fläche aufweisen.4. The method of claim 3, wherein the measuring point (2) for contacting a flat and parallel to the measuring object surface have formed surface.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei die mindestens eine Messnadel (1) in ihrem vorderen Bereich zur Oberfläche des Messobjektes (3) beziehungsweise zu der Mess- stelle (2) hin gebogen ist.5. The method according to any one of claims 1 to 4, wherein at least one measuring needle (1) in its front region to the surface of the measuring object (3) or to the measuring point (2) is bent out.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem die Beleuchtung und die Zeilenkamera (6) in einer definierten geometrischen Beziehung zu der mindestens einen Messnadel ange- ordnet sind. 6. The method according to any one of claims 1 to 5, wherein the illumination and the line scan camera (6) are arranged in a defined geometric relationship to the at least one measuring needle.
7. Verfahren nach Anspruch 6, bei dem die Beleuchtung, die Zeilenkamera (6) und die mindestens eine Messnadel (1) in einer Baugruppe zusammengefasst sind. 7. The method of claim 6, wherein the illumination, the line scan camera (6) and the at least one measuring needle (1) are combined in an assembly.
PCT/EP2009/057676 2008-06-26 2009-06-19 Method for detecting the contact between measuring needles and a device under test WO2009156350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09769199A EP2291666A1 (en) 2008-06-26 2009-06-19 Method for detecting the contact between measuring needles and a device under test

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008030426 2008-06-26
DE102008030426.3 2008-06-26

Publications (1)

Publication Number Publication Date
WO2009156350A1 true WO2009156350A1 (en) 2009-12-30

Family

ID=41278637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/057676 WO2009156350A1 (en) 2008-06-26 2009-06-19 Method for detecting the contact between measuring needles and a device under test

Country Status (2)

Country Link
EP (1) EP2291666A1 (en)
WO (1) WO2009156350A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4038428A4 (en) * 2019-09-30 2023-12-20 FormFactor, Inc. Maintaining gap spacing between an optical probe and an optical device of a device under test

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644245A (en) * 1993-11-24 1997-07-01 Tokyo Electron Limited Probe apparatus for inspecting electrical characteristics of a microelectronic element
WO2003040734A2 (en) * 2001-11-02 2003-05-15 Formfactor, Inc. Method and system for compensating thermally induced motion of probe cards
DE102004030881A1 (en) * 2003-07-01 2005-04-14 Suss Microtec Test Systems Gmbh Contact area contacting method for prober, involves observing vertical movement of semiconductor wafer along observation axis which runs in plane that is slight distance away from free wafer surface in its expected end position
WO2007066659A1 (en) * 2005-12-06 2007-06-14 Shibaura Mechatronics Corporation Surface roughness tester

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644245A (en) * 1993-11-24 1997-07-01 Tokyo Electron Limited Probe apparatus for inspecting electrical characteristics of a microelectronic element
WO2003040734A2 (en) * 2001-11-02 2003-05-15 Formfactor, Inc. Method and system for compensating thermally induced motion of probe cards
DE102004030881A1 (en) * 2003-07-01 2005-04-14 Suss Microtec Test Systems Gmbh Contact area contacting method for prober, involves observing vertical movement of semiconductor wafer along observation axis which runs in plane that is slight distance away from free wafer surface in its expected end position
WO2007066659A1 (en) * 2005-12-06 2007-06-14 Shibaura Mechatronics Corporation Surface roughness tester
EP1959487A1 (en) * 2005-12-06 2008-08-20 Shibaura Mechatronics Corporation Surface roughness tester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4038428A4 (en) * 2019-09-30 2023-12-20 FormFactor, Inc. Maintaining gap spacing between an optical probe and an optical device of a device under test

Also Published As

Publication number Publication date
EP2291666A1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
EP1266234B1 (en) Testing device for printed boards
EP2449338B1 (en) Method and apparatus for the contactless determination of the thickness of a web of material, including correction of the alignment error
EP2707734B1 (en) Contactless capacitive distance sensor
EP1315975B1 (en) Method and device for testing printed circuit boards with a parallel tester
EP3414581B1 (en) Method and ict device for inspecting modules of a lighting device, said lighting device containing at least two leds
DE2818060A1 (en) METHOD AND DEVICE FOR VISUAL MEASUREMENT INSPECTION
DE19802848B4 (en) Method and apparatus for testing a substrate
EP0399138B1 (en) Method for three-dimensional examination of printed circuits
WO2009156350A1 (en) Method for detecting the contact between measuring needles and a device under test
EP0668185A1 (en) Test methode and device for estimating the relative position of a catenary line with regard to the railwaytrack
DE102010029133A1 (en) Method and device for characterization of pyramidal surface structures on a substrate
DE102008048081A1 (en) Method for testing electronic components of a repeating structure under defined thermal conditions
DE102017223501A1 (en) Method and device for detecting defects in electrical components or assemblies
DE19506388C1 (en) Method for recognizing systematic errors, in particular for the automatic detection of malfunctions in quality controls, by means of measuring devices equipped with measuring sensors
EP2446285B1 (en) Method for measuring a power component
DE102010003095A1 (en) Planar, light sensitive semiconductor component i.e. solar cell, examining method, involves supplying characteristic of component as input value, and utilizing values of characteristic for recognizing damages or defects of component
EP0592878A2 (en) Method and device for inspecting probe cards for testing integrated circuits
EP2392893A1 (en) Height measuring device and method for measuring the height of a motor vehicle's central electricity system
DE102019000167A1 (en) Test card for measuring integrated circuits on a semiconductor wafer and test method
EP3407035B1 (en) Measuring device and method for measuring the intensity distribution of incident light radiation
DD260983A1 (en) PROCESS FOR THE CONTACTLESS MEASUREMENT OF OBJECTS
WO2020160731A1 (en) Retaining device for an optical fiber
DE102021124940A1 (en) Method for determining the fracture-mechanical stress of at least one crack when a component is loaded, computer program product and device for carrying out the method, and their use
EP1242827A1 (en) Method and device for testing circuit boards
DD249525A1 (en) ARRANGEMENT FOR THE PHOTOELECTRIC RECOGNITION OF THE COLLAPSE OF TWO OBJECT IMAGES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09769199

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009769199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE