EP2282029A1 - Self-propelled machine - Google Patents

Self-propelled machine Download PDF

Info

Publication number
EP2282029A1
EP2282029A1 EP09008470A EP09008470A EP2282029A1 EP 2282029 A1 EP2282029 A1 EP 2282029A1 EP 09008470 A EP09008470 A EP 09008470A EP 09008470 A EP09008470 A EP 09008470A EP 2282029 A1 EP2282029 A1 EP 2282029A1
Authority
EP
European Patent Office
Prior art keywords
hydraulic medium
hydraulic
cooling
operating temperature
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09008470A
Other languages
German (de)
French (fr)
Other versions
EP2282029B2 (en
EP2282029B1 (en
Inventor
Ralf Weiser
Tobias Noll
Andreas Letz
Martin Buschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joseph Voegele AG
Original Assignee
Joseph Voegele AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41697972&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2282029(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Joseph Voegele AG filed Critical Joseph Voegele AG
Priority to DE502009000490T priority Critical patent/DE502009000490D1/en
Priority to EP09008470.8A priority patent/EP2282029B2/en
Priority to AT09008470T priority patent/ATE503092T1/en
Priority to US12/821,925 priority patent/US20100326067A1/en
Priority to CN2010102202512A priority patent/CN101936211B/en
Priority to CN2010202491912U priority patent/CN201794654U/en
Publication of EP2282029A1 publication Critical patent/EP2282029A1/en
Publication of EP2282029B1 publication Critical patent/EP2282029B1/en
Application granted granted Critical
Publication of EP2282029B2 publication Critical patent/EP2282029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/044Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using hydraulic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/226Safety arrangements, e.g. hydraulic driven fans, preventing cavitation, leakage, overheating
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/48Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for laying-down the materials and consolidating them, or finishing the surface, e.g. slip forms therefor, forming kerbs or gutters in a continuous operation in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0427Heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/66Temperature control methods

Definitions

  • the invention relates to a self-propelled machine according to the preamble of claim 1.
  • a drive concept for functional and working components has prevailed, in which the internal combustion engine acts as a primary drive source, the functional and working components, however, exclusively or almost exclusively by hydraulic means, for example by means of hydrostatic drive units operated.
  • the paver builds on a planum of the paving material at least one ceiling layer with varying working width, levels and compacts this.
  • a feeder holds a sufficiently large stock of the paving material ready and loads the paver so that the paver can work continuously.
  • the feeder and the following paver drive at low installation speed on the surface, eg up to approx. 20 m / min. When transporting to another construction site, a transport speed of up to 20 km / h is common for both machines.
  • the pumping losses must be compensated by the internal combustion engine, which, for example, runs in normal operation with a rated power of 160 kW at approximately 2000 rpm as the primary drive source. These pumping losses significantly degrade the energy efficiency or energy balance of the self-propelled machine, and offer significant potential for saving primary energy, such as diesel, per year relative to the average operating hours of such a machine.
  • a large Mehrfeldkühlerals cooling device for the engine cooling water of the engine, the hydraulic medium, and in this case, the charge air of eg charged diesel engine, which ensures even at full load and high outside temperatures up to 50 ° C always optimal engine operating temperature and 100% engine performance.
  • the cooling device has at least one fan, which is operated, for example, depending on the engine speed.
  • the cooling device is traditionally designed for the internal combustion engine.
  • the hydraulic medium cooling area of the cooling device must be designed so that even under extreme working conditions overheating of the hydraulic medium is reliably avoided, but the cooling control takes place in view of the optimum operating temperature of the internal combustion engine, the hydraulic medium via e.g. more than 95% of the operating time is so cooled that the operating temperature of the hydraulic medium does not exceed approx. 40 ° C. Dictated by the viscosity behavior of the hydraulic medium above the operating temperature, this necessitates a waste of a significant part of the nominal engine power actually applied for processing the paving material, for example to compensate for pumping losses of the hydraulic medium.
  • the invention has for its object to provide a self-propelled machine for processing bituminous and / or concrete paving material whose internal combustion engine despite the special requirements due to the difficult processability of the paving materials with improved energy balance and energy efficiency is operable, significantly saves fuel, and the environment spares.
  • the hydraulic medium operating temperature setting and control device Thanks to the hydraulic medium operating temperature setting and control device, the operating temperature of the hydraulic medium is increased as quickly as possible and then controlled within an operating temperature range in which the additional load of the internal combustion engine is minimized by, for example, pumping losses of the hydraulic medium.
  • this may be the case when at high outside temperatures, low humidity and adverse processing conditions of the paving material and difficult ground and driving conditions, the machine breaks down because of the need to wait for the delivery of fresh paving material, the engine is operated at idle and the Engine cooling capacity is down regulated.
  • the hydraulic medium operating temperature setting and regulating device then regulates eg with maximum efficiency to reliably prevent overheating of the hydraulic medium.
  • a considerable amount of fuel can thus be saved over the operating time of the machine in normal operation per year.
  • This improvement in the energy efficiency of the internal combustion engine goes hand in hand with optimized operation of the pumps and hydrostatic drive units and rapid response at all times in the hydraulic circuit.
  • a loss of power and consumption optimized internal combustion engine can be used without loss in the processing of the installation material.
  • the hydraulic medium operating temperature adjusting and regulating device is independent of the engine cooling control system because it is connected to at least one hydraulic medium temperature sensor and / or hydraulic load state information device in the hydraulic circuit and the ambient environment.
  • the cooling capacity for the hydraulic medium drastically reduce or completely shut down to achieve optimum viscosity for the hydraulic medium.
  • the regulation of the operating temperature sensitively responds to momentary or temporary unfavorable hydraulic load situations or ambient climate situations to optimally set and maintain the operating temperature of the hydraulic medium, although then possibly the engine cooling control system responds differently.
  • the hydraulic medium operating temperature adjusting and regulating device has a programming and / or setting section for each hydraulic medium operating temperature which is considered optimum so that the hydraulic medium is only cooled to maintain its optimum viscosity, independently how the engine cooling control system works.
  • a selector device for an operating temperature of about 75 ° C to be set for the hydraulic medium to be heated preferably in the programming and / or setting section, a selector device for an operating temperature of about 75 ° C to be set for the hydraulic medium to be heated, and an operating temperature range to be maintained of from about 75 ° C to 80 ° C, preferably to about just under 90 ° C, provided.
  • this operating temperature of the hydraulic medium and this operating temperature range which is kept in normal operation, the viscosity can be further reduced and optimized, to minimize the additional load on the internal combustion engine from operating the hydraulic system and save even more fuel.
  • At least one hydraulic medium heating device is provided.
  • This can be connected to and operated by the hydraulic medium operating temperature setting and regulating device, but can alternatively or independently thereof be operated, for example, with a timer or operator-controlled.
  • the heater not only allows the hydraulic medium to be brought to the optimum operating temperature as quickly as possible, but also to maintain the optimum operating temperature range in normal operation, should the desired elevated operating temperature not be adjustable or stable by minimizing or disabling the cooling power alone.
  • the hydraulic medium heater is provided at or in the reservoir of the hydraulic medium, although the heater could be located at any suitable location of the at least one hydraulic circuit.
  • a maximum amount of the hydraulic medium is stored, e.g. about 400 liters, under a relatively moderate return pressure, so that the heater operates efficiently and can be made less pressure resistant.
  • the hydraulic medium heating device is operated with the cooling liquid of the internal combustion engine and / or electrically via a generator driven by the internal combustion engine and / or with waste heat at least of the internal combustion engine.
  • This concept also contributes to the improvement of the energy efficiency of the internal combustion engine, because this heat energy is available anyway, and for example, from the cooling liquid or the waste heat with little extra effort is removable and would otherwise be discharged into the environment anyway.
  • the cooling device has a combination cooler (eg a multi-field cooler or a set of separate individual coolers).
  • the combination cooler is associated with a cooling liquid and the hydraulic medium cooling area commonly associated fan, which, preferably, proportional to the speed of the Internal combustion engine can be driven.
  • an adjustable air flow shielding or deflecting device may be provided in the air flow path from the fan to the hydraulic medium cooling area, which, preferably, with the hydraulic medium operating temperature setting and control device is in Verstellitati.
  • the cooling capacity for the coolant for the hydraulic fluid should become too high to set and maintain the desired elevated operating temperature, the cooling capacity is reduced only for the cooling range of the hydraulic medium via the shielding or deflection until the desired operating temperature of the hydraulic medium is reached .
  • the effect of the shielding or deflection device can then be canceled or regulated accordingly. This does not affect the respectively required cooling capacity, for example for the cooling water of the internal combustion engine, or its intake air, or charge air.
  • the hydraulic medium cooling region of the cooling device has a separate blower which can be controlled independently of the blower for the cooling liquid cooling region.
  • the cooling of the hydraulic medium is independent of the engine cooling, for example, the cooling liquid of the internal combustion engine, only with regard to adjust the desired hydraulic medium operating temperature as quickly as possible and then to keep in the desired raised range.
  • a hydraulic medium cooler separated from the cooling liquid cooling region is provided as the hydraulic medium cooling region.
  • This at least one cooler may be associated with a speed-controllable and / or demand-dependent on and off blower, which, preferably, is connected to the hydraulic medium operating temperature setting and control device. Otherwise, the separate arrangement of the hydraulic medium cooler otherwise avoids, for example, unavoidable heating or cooling situations for the hydraulic medium radiator, which could occur in close spatial proximity between the cooling liquid cooling area and the hydraulic medium cooling area.
  • this concept may be advantageous to the machine to accommodate the tight spaces in the cooling fluid cooling area, and / or to improve the weight distribution in the machine.
  • the fan at least for the hydraulic medium-cooling region, a hydraulic or electric drive motor.
  • the power output and regulation of the drive motor can be adjusted or regulated independently of the speed of the internal combustion engine.
  • a circulation pump controllable by the hydraulic medium operating temperature adjusting and regulating device is expediently provided in the hydraulic medium cooling region or preferably adjacent thereto, preferably in a shorting section of the hydraulic circuit or hydraulic circuits provided between the reservoir and the hydraulic medium cooling region.
  • the delivery rate of the hydraulic medium can be varied via the circulation pump, depending on the cooling demand, in order to intensify or minimize the cooling.
  • At least one signal generator for the actual hydraulic medium temperature and / or hydraulic and / or thermal load situations of at least one selected pump and / or a selected hydrostatic drive unit is provided and connected as a control variable generator to the hydraulic medium operating temperature setting and control device.
  • a pump and / or a hydrostatic drive unit is expediently selected, which is extremely efficient or can be expected in the extreme hydraulic operating situations, so that the hydraulic medium operating temperature setting and control device is quickly informed of a critical condition and can regulate accordingly ,
  • a computerized main controller of the machine may be configured as a signal generator for at least the hydraulic and / or thermal load situations for at least one selected pump and / or a selected hydrostatic drive unit.
  • the main controller may be informed of the loading requirements of the pump and / or the hydrostatic drive unit, for example, because certain operating conditions are set, and so can timely or even preliminarily inform the hydraulic medium operating temperature setting and / or regulating device in order to reliably and preclude overshooting of the operating temperature of the hydraulic medium.
  • Another operating situation by which the main controller can inform the control device is an expected stop of operation, for example at the end of work or a waiting phase for a new supply of paving material, for which the operator has made appropriate preparations at the main control, and for example already the hydrostatic drive units and Internal combustion engine are down regulated. Since the hydraulic medium operating temperature setting and control device is then informed in good time about this future operating state, the hydraulic medium can optionally be cooled again particularly intensively in order to counteract an overshooting of the operating temperature of the hydraulic medium from the beginning of this operating pause.
  • a machine for processing bituminous or concrete paving material using an internal combustion engine especially a diesel engine, operated as a primary drive source for at least one hydraulic system with pumps and hydrostatic drive units so that to improve the energy efficiency of the internal combustion engine during operation or from operating recording of Engine, the hydraulic medium regardless of the load condition of the engine and the engine cooling control depending on the hydraulic load state in the at least one hydraulic circuit and depending on the ambient climate as quickly as possible brought to a raised operating temperature of at least about 60 ° C and then in an operating temperature range above about 60 ° C is controlled in order to waste with the optimal low viscosity of the hydraulic medium as little compensation power of the engine and save as much fuel.
  • Fig. 1 shows as an example of a self-propelled machine F a paver for processing bituminous and / or concrete paving material in the production of ceiling layers, for example, from traffic areas or the like.
  • the machine F has a chassis 32 with a chassis 33 (alternatively a crawler undercarriage) in the embodiment shown, and an internal combustion engine M, e.g. a diesel engine, as a prime mover on.
  • the machine has a variety of functional and working components, which are mainly hydraulically operated and powered by the engine M with drive power.
  • a material bunker 36 On the chassis 32 is a material bunker 36, from which extends in the chassis 32, a longitudinal conveyor 37 to the rear chassis end, where a transverse distribution device 38 with a height adjustment 47 and a drive 39 are arranged.
  • a screed 34 is articulated, the angle of attack adjustable by leveling cylinder 41 and by hydraulic cylinders 42 can be raised.
  • Adjusting cylinders 46, hydraulically operated tamper 44 and hydraulically operated, optional pressure bars 45 are provided in the screed.
  • bunker 36 bunker wall adjusting cylinder 41 are provided.
  • the internal combustion engine M is associated with a cooling device K, e.g. with a multi-field cooler and a blower, which, for example, is driven in proportion to the speed of the internal combustion engine M.
  • the above-mentioned functional and working components of the machine F are operated for processing the paving material by means of hydrostatic drive units or cylinders.
  • at least one hydraulic circuit H Fig. 2, 3rd
  • the various pumps are driven, for example via a pump distributor gearbox from the internal combustion engine.
  • a generator that provides electrical power available for electric consumers, such as heaters in the longitudinal conveyor 37, for the tamper 44, the pressure bars 45 and unspecified highlighted screed 34 of the screed 34 is driven by the engine M, a generator that provides electrical power available.
  • a hydraulic circuit (s) including connecting pipes and connecting hoses)
  • a reservoir for a hydraulic medium (hydraulic oil) is provided, which may have a capacity of several 100 liters.
  • the cooling device K is designed such that the cooling liquid of the internal combustion engine, optionally its intake air or charge air, and also the hydraulic medium are cooled, wherein a cooling control system is provided which primarily the cooling liquid of the internal combustion engine M treated so that the internal combustion engine in normal operation (for example, rated speed about 2000 rpm with a nominal power of about 160 kW) always has optimum operating temperature.
  • the hydraulic medium as soon as possible reaches an operating temperature of at least about 60 ° C, preferably between about 75 ° C and 80 ° C or slightly more, and a hydraulic medium operating temperature range of, for example, 75 ° C to 80 ° C in normal operation and independent of ambient climate conditions be complied with is according to Fig. 2 in the machine F, a hydraulic medium operating temperature adjusting and regulating device R is provided which, preferably, independently of the cooling control system S for the cooling liquid of the internal combustion engine M controls the operating temperature of the hydraulic medium.
  • Fig. 2 is associated with the internal combustion engine M, for example a diesel engine, a multi-field radiator or a radiator set 1 of a plurality of radiators, in the embodiment shown, a cooling area 1 a for the intake air or charge air, a cooling area 1 b for the cooling liquid of the internal combustion engine M, and a cooling area 1c for the hydraulic medium, and to which a common fan 2 is associated with a drive motor 3, which is controlled by the cooling control system S with respect to the optimum operating temperature of the engine M. 4, the power supply to the drive motor 3 is indicated.
  • the drive motor 3 can be fed, for example, from the hydraulic system, or electrically via the generator G driven by the engine M, or directly or indirectly via the crankshaft of the internal combustion engine M.
  • a pump distributor gearbox 5 flanged at the outputs of which a plurality of hydraulic pumps 6 are mounted, which are hydraulically connected via connecting lines or pressure hoses with various hydrostatic drive units 7, 8, 9, 10 for the basis Fig. 1 explained working and functional components of the machine are connected.
  • a common return line 11 to a hydraulic medium reservoir 12, usually a large-volume metal container, on the example, valve components 13 may be attached.
  • the reservoir 12 may be connected via a line 14 to the cooling area 1c.
  • the return line 11 may also be connected to the cooling area 1c.
  • a bypass 15 may be provided, in which a thermostatic valve 16 or controllable by the control device R valve 16 may be included for the hydraulic medium flow.
  • the internal combustion engine M is mounted on a motor console 17, which is mounted on motor bearings 18 on abutments 19 of the chassis 32 of the machine F vibration isolation.
  • the generator G which is for example driven (not shown) by the pump distributor gear 5, may be mounted on the engine console 17.
  • At least one heating device 20 may be provided for the hydraulic circuit or all hydraulic circuits H of the hydraulic system, for example in the return line 11, or in or at the reservoir 12, or at another suitable location in the machine F.
  • the heating device 20 will be described in US Pat Fig. 2 For example, operated by a controllable by the control device R controller 21 from the generator G electrically.
  • the heating device 20 could use the cooling water and / or waste heat at least of the internal combustion engine M.
  • a temperature sensor 22 for the operating temperature of the hydraulic medium is arranged and connected to the control device R.
  • a temperature sensor 22 may also be located on or in the reservoir 12, or in or at the cooling area 1c.
  • a preferably computerized main control CU of the machine F may also be connected to (or associated with) the control device R, and e.g. in real time or preparatory information i7 e.g. to the hydraulic load state of the selected hydrostatic drive unit 7 provide.
  • the hydraulic medium operating temperature setting and regulating device R has a programming and / or setting section P at which, for example, the desired operating temperature of the hydraulic medium can be set and monitored, and, if appropriate, a selection device W, at which a hydraulic medium operating temperature of at least about 60 ° C, preferably even about 75 ° C, adjustable, to which the hydraulic medium after commissioning is to be brought as quickly as possible, and an operating temperature range in normal operation of at least about 60 ° C.
  • preferably about 75 ° C to 80 ° C, or preferably even up to almost 90 ° C can be adjusted, within which the operating temperature of the hydraulic medium is to be maintained during normal operation of the machine during processing of the paving material, regardless of how the cooling control system S the Cooling at least the cooling liquid for the internal combustion engine M regulates.
  • a circulation pump 29 may be used.
  • the cooling areas 1 a, 1 b, 1 c commonly associated blower 2 in Fig. 1 is expediently provided in the air flow path from the fan 2 to the cooling area 1c for the hydraulic medium at least one shielding or deflecting device 30, with which the cooling power generated by the blower 2 can be regulated individually for the cooling area 1c, for example via an actuator 31, of the control device R is actuated, or else, not shown, by at least one thermostat or other temperature sensor in the hydraulic circuit.
  • the shielding or deflecting device 30 could include flaps, fins, or other airflow controlling elements.
  • the operating temperature of the hydraulic medium in the hydraulic circuit H is independent of the control intervention of the cooling control system S at least for the cooling liquid of the internal combustion engine M depending on hydraulic load situations in the hydraulic circuit, especially on the hydraulic pumps 6 and / or the hydrostatic drive units.
  • Fig. 3 illustrates a detail variant in which the cooling area 1c for the hydraulic medium is structurally separated from the cooling areas 1a and 1b of the cooling device 1.
  • the cooling area 1c is formed by a separate hydraulic medium cooler 24, for example, to the return line 11 and the connecting line 14 to the reservoir 12 is connected, and an independent fan 2a is associated with its own drive motor 3a and a separate drive power supply 4a.
  • the fan 2a may be operated via the control device R, as shown, or is thermostatically controlled only or depending on the measurement result of a temperature sensor in the hydraulic circuit H.
  • the drive motor 3a may be either a hydraulic motor or an electric motor or is (not shown) from the crankshaft driven by the internal combustion engine, for example via a switchable clutch.
  • the radiator 24 may be placed in the cooling device K, or at a suitable position in the engine F.
  • cooling fins 25 may be provided and another blower 26 may be provided with a drive motor 27, which is also controlled for example by the control device R to additionally cool the hydraulic medium in the reservoir 12 as needed.
  • the heating device 20 is arranged on or in the reservoir 12 in order to achieve as quickly as possible, for example, the desired operating temperature of at least about 60 ° C or more, or to keep the desired operating temperature range of above 60 ° C reliably, the In addition to heat hydraulic medium.
  • the diagram in Fig. 4 shows for a common hydraulic medium (hydraulic oil of specification HLP 46 according to DIN 51524, Part 2), the behavior of the applied on the vertical axis kinematic viscosity KV above the operating temperature T.
  • the kinematic viscosity is at an operating temperature of about 60 ° C, only half of kinematic viscosity at an operating temperature of about 40 ° C and substantially less than one tenth of the viscosity at about 0 ° C. In an operating temperature range between 75 ° C and about 80 ° C, the viscosity is only about half the viscosity at 60 ° C.
  • This viscosity behavior of the specified hydraulic medium (other common hydraulic media for machines for processing paving material show a similar behavior of the kinematic viscosity over the operating temperature) is in the machine F of FIGS. 1 to 3 , and also the machine F in Fig. 5 used to improve the energy efficiency of the internal combustion engine and fuel by adjusting the relatively high operating temperature of at least about 60 ° C and maintaining an operating temperature range above about 60 ° C to save, in which the hydraulic medium is cooled and / or heated independently of the engine cooling individually.
  • Fig. 4 illustrates as a built-in material processing machine F a feeder used to load, for example, the paver of Fig. 1 with paving material in front of the road paver drives on the subgrade, intermittently supplied from trucks or continuously via a conveyor with the paving material, and the paver always enough paving material in the bunker 36 fills so that the paver can continuously produce a ceiling layer.
  • a feeder used to load, for example, the paver of Fig. 1 with paving material in front of the road paver drives on the subgrade, intermittently supplied from trucks or continuously via a conveyor with the paving material, and the paver always enough paving material in the bunker 36 fills so that the paver can continuously produce a ceiling layer.
  • the in Fig. 5 shown feeder has on its chassis 32, the chassis 33, such as a crawler undercarriage, with at least one drive 43, and a very large bunker 36.
  • the feeder is self-propelled and contains, as the primary drive source, the liquid-cooled internal combustion engine M, eg a diesel engine, with the cooling device K at least for the coolant.
  • a hydraulically operated transverse conveyor 48 may be arranged, from which an ascending hydraulically operated longitudinal conveyor 49 extends rearwardly upwards, which has a hydraulically adjustable discharge end 52.
  • the conveying device 49 may have a further hydraulic device 50.
  • the feeder as the installation material processing machine F includes, for example, hydrostatic drive units for the traction drives 43, the cross conveyor 48, not shown Bunkerverstellwandzylinder, the device 50 and the discharge end 51, for the internal combustion engine M drives corresponding hydraulic pumps in at least one hydraulic circuit.
  • the cooling device K can according to Fig. 2 or Fig.
  • ⁇ 3 be adapted to adjust the hydraulic medium in the hydraulic circuit, regardless of the cooling of the cooling liquid of the internal combustion engine M depending on hydraulic load situations and the ambient climate to a hydraulic medium operating temperature of at least about 60 ° C and in a hydraulic medium operating temperature range of about about 60 ° C, preferably between 75 ° C and 80 ° C, in order to optimize the response in the hydraulic circuit, to reduce the viscosity of the hydraulic medium, and to reduce the fuel consumption of the internal combustion engine, which drive the feeder more efficiently and the hydraulic working and functional components more efficiently can operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Control Of Temperature (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Preliminary Treatment Of Fibers (AREA)

Abstract

The machine (F) has a setting and regulating device for setting operation temperature of hydraulic medium to about 60[deg] C. The hydraulic medium cooling region includes a cooler having a fan that is switched ON and OFF, while regulating the speed of fan. The hydraulic medium cooler is structurally separated from the cooling liquid cooling region. The fan is connected with the setting and regulating device. A thermostatic valve controlled by the setting and regulating device is arranged in the hydraulic circuit within a bypass deviating from the cooler.

Description

Die Erfindung betrifft eine selbstfahrende Maschine gemäß Oberbegriff des Anspruchs 1.The invention relates to a self-propelled machine according to the preamble of claim 1.

Für solche Maschinen, insbesondere Straßenfertiger und Beschicker, hat sich ein Antriebskonzept für Funktions- und Arbeitskomponenten durchgesetzt, bei welchem der Verbrennungsmotor als Primärantriebsquelle fungiert, die Funktions- und Arbeitskomponenten jedoch ausschließlich oder fast ausschließlich auf hydraulischem Weg, z.B. mittels hydrostatischer Antriebseinheiten, betrieben werden. Der Straßenfertiger baut auf einem Planum aus dem Einbaumaterial wenigstens eine Deckenschicht mit variierender Arbeitsbreite ein, ebnet und verdichtet diese. Ein Beschicker hält eine ausreichend große Vorratsmenge des Einbaumaterials bereit und beschickt den Straßenfertiger so, dass der Straßenfertiger kontinuierlich arbeiten kann. Dabei fahren der Beschicker und der nachfolgende Straßenfertiger mit niedriger Einbaufahrgeschwindigkeit auf dem Planum, z.B. bis etwa 20 m/min. Bei Transportfahrt zu einer anderen Baustelle ist für beide Maschinen eine Transportgeschwindigkeit bis etwa 20 km/h üblich. Aus der Verarbeitung von heißem bituminösem Einbaumaterial oder Beton-Einbaumaterial resultieren sehr spezielle Anforderungen an das Hydrauliksystem und den Verbrennungsmotor, bedingt beispielsweise durch die Materialkonsistenz, dessen Klebrigkeit, dessen Verarbeitungstemperatur, dessen Schleppwiderstand beim Einbau auf dem Planum oder Förderwiderstand beim Beschicken, und auch aus dem baustellenabhängig variierenden Fahrwiderstand gepaart mit klimatischen Einflüssen, so dass zumindest einige hydrostatische Antriebseinheiten extrem leistungsstark, schnell ansprechend und für Dauerbetrieb ausgelegt und im Betrieb gleichzeitig individuell geregelt werden müssen. Dies erfordert starke Hydraulikpumpen, teilweise lange hydraulische Wege zwischen den Hydraulikpumpen und den hydrostatischen Antriebseinheiten, und dabei die Berücksichtigung hoher Sicherheits- und Umweltstandards. Einen Straßenfertiger oder Beschicker mit einem Gesamtgewicht von rund 20 Tonnen enthält im Hydraulikkreis ein erhebliches Volumen Hydraulikmedium, beispielsweise bis zu 400 Liter, oder mehr. Für solche Maschinen übliche Hydraulikmedien (beispielsweise Spezifikation: HLP 46 nach DIN 51524 Teil 2) haben ein Verhalten der kinematischen Viskosität über der Temperatur, bei dem mit zunehmender Temperatur die Viskosität stark degressiv zunächst bis etwa 60°C abnimmt, und um etwa 100°C sehr niedrig bleibt. Temperaturen von etwa 100°C sind jedoch für Dichtungen und Schläuche im Hydraulikkreis solcher selbstfahrenden Maschinen kritisch. Bei etwa 60°C ist die Viskosität nur halb so hoch wie bei 40°C, und ist nur etwa ein Zehntel der Viskosität bei etwa 0°C. Zwischen etwa 75°C bis 80°C ist die Viskosität sogar nur etwa ein Fünftel der Viskosität bei 40°C. Je geringer nun die Viskosität des Hydraulikmediums ist, um so niedriger werden die Pumpverluste und um so feinfühliger sprechen die hydrostatischen Antriebseinheiten und Pumpen an, und um so effizienter arbeiten diese. Die Pumpverluste muss der als Primärantriebsquelle dienende Verbrennungsmotor kompensieren, der beispielsweise im Normalbetrieb mit einer Nennleistung von 160 kW bei etwa 2000 U/min läuft. Diese Pumpverluste verschlechtern die Energieeffizienz oder Energiebilanz der selbstfahrenden Maschine erheblich, und bieten bezogen auf die durchschnittlichen Betriebsstunden einer solchen Maschine pro Jahr ein erhebliches Potential zur Einsparung von Primärenergie, wie Dieseltreibstoff.For such machines, especially road pavers and feeders, a drive concept for functional and working components has prevailed, in which the internal combustion engine acts as a primary drive source, the functional and working components, however, exclusively or almost exclusively by hydraulic means, for example by means of hydrostatic drive units operated. The paver builds on a planum of the paving material at least one ceiling layer with varying working width, levels and compacts this. A feeder holds a sufficiently large stock of the paving material ready and loads the paver so that the paver can work continuously. The feeder and the following paver drive at low installation speed on the surface, eg up to approx. 20 m / min. When transporting to another construction site, a transport speed of up to 20 km / h is common for both machines. The processing of hot bituminous paving material or concrete paving material results in very specific requirements for the hydraulic system and the internal combustion engine, for example due to the material consistency, its tackiness, its processing temperature, drag resistance when installed on the planum or flow resistance during charging, and also from the Depending on the construction site, varying driving resistance coupled with climatic influences, so that at least some hydrostatic drive units have to be designed extremely powerfully, quickly responding and for continuous operation and at the same time individually controlled during operation. This requires strong hydraulic pumps, sometimes long hydraulic paths between the hydraulic pumps and the hydrostatic drive units, and the consideration of high safety and environmental standards. A road paver or feeder with a total weight of around 20 tons contains a considerable volume of hydraulic medium in the hydraulic circuit, for example up to 400 liters or more. For such machines usual hydraulic media (for example specification: HLP 46 according to DIN 51524 part 2) have a behavior of the kinematic viscosity above the temperature at which the viscosity decreases rapidly with increasing temperature, first to about 60 ° C, and about 100 ° C. stays very low. Temperatures of about 100 ° C, however, are critical for seals and hoses in the hydraulic circuit of such self-propelled machines. At about 60 ° C is the viscosity is only half that at 40 ° C, and is only about one tenth of the viscosity at about 0 ° C. Between about 75 ° C to 80 ° C, the viscosity is as low as about one fifth of the viscosity at 40 ° C. The lower the viscosity of the hydraulic medium, the lower the pumping losses and the more sensitive the hydrostatic drive units and pumps will be, and the more efficient they will be. The pumping losses must be compensated by the internal combustion engine, which, for example, runs in normal operation with a rated power of 160 kW at approximately 2000 rpm as the primary drive source. These pumping losses significantly degrade the energy efficiency or energy balance of the self-propelled machine, and offer significant potential for saving primary energy, such as diesel, per year relative to the average operating hours of such a machine.

Wie beispielsweise aus dem Prospekt "SUPER 1603-1" der Firma Joseph Vögele AG, 68146 Mannheim, DE, Seiten 4, 5, bekannt, ist ein großer Mehrfeldkühlerals Kühlvorrichtung für das Motorkühlwasser des Verbrennungsmotors, das Hydraulikmedium, und in diesem Fall auch die Ladeluft des z.B. aufgeladenen Dieselmotors vorgesehen, mit dem selbst bei Volllastbetrieb und hohen Außentemperaturen bis zu 50°C immer optimale Motorbetriebs-Temperatur und 100 %ige Motorleistung sichergestellt sind. Die Kühlvorrichtung weist zumindest ein Gebläse auf, das beispielsweise abhängig von der Motordrehzahl betrieben wird. Die Kühlvorrichtung ist traditionell für den Verbrennungsmotor ausgelegt. Da der Hydraulikmedium-Kühlbereich der Kühlvorrichtung so ausgelegt sein muss, dass selbst unter extremen Arbeitsbedingungen eine Überhitzung des Hydraulikmediums zuverlässig vermieden wird, die Kühlregelung aber im Hinblick auf die optimale Betriebstemperatur des Verbrennungsmotors erfolgt, wird das Hydraulikmedium über z.B. mehr als 95 % der Betriebsdauer so gekühlt, dass die Betriebstemperatur des Hydraulikmediums ca. 40°C nicht überschreitet. Diktiert durch das Viskositätsverhalten des Hydraulikmediums über der Betriebstemperatur bedingt dies zum Kompensieren beispielsweise von Pumpverlusten des Hydraulikmediums eine Vergeudung eines signifikanten Teils der eigentlich für die Verarbeitung des Einbaumaterials aufgebrachten Motornennleistung.As is known, for example, from the brochure "SUPER 1603-1" from Joseph Vögele AG, 68146 Mannheim, DE, pages 4, 5, a large Mehrfeldkühlerals cooling device for the engine cooling water of the engine, the hydraulic medium, and in this case, the charge air of eg charged diesel engine, which ensures even at full load and high outside temperatures up to 50 ° C always optimal engine operating temperature and 100% engine performance. The cooling device has at least one fan, which is operated, for example, depending on the engine speed. The cooling device is traditionally designed for the internal combustion engine. Since the hydraulic medium cooling area of the cooling device must be designed so that even under extreme working conditions overheating of the hydraulic medium is reliably avoided, but the cooling control takes place in view of the optimum operating temperature of the internal combustion engine, the hydraulic medium via e.g. more than 95% of the operating time is so cooled that the operating temperature of the hydraulic medium does not exceed approx. 40 ° C. Dictated by the viscosity behavior of the hydraulic medium above the operating temperature, this necessitates a waste of a significant part of the nominal engine power actually applied for processing the paving material, for example to compensate for pumping losses of the hydraulic medium.

Aus der Praxis ist es in solchen Maschinen ferner bekannt, für das Hydraulikmedium einen eigenen Kühler mit einem durch einen Hydromotor mit einer Ein-Aus-Regelung angetriebenen Gebläse vorzusehen. Auch bei diesem bekannten Konzept überschreitet die Betriebstemperatur des Hydraulikmediums 35°C bis 40°C nicht, weil der Bedeutung der Viskosität des Hydraulikmediums für die Energiebilanz oder Energieeffizienz des Verbrennungsmotors für solche selbstfahrende Maschinen zum Verarbeiten von bituminösem oder Beton-Einbaumaterial bisher aus übertriebenem Sicherheitsdenken keine Bedeutung zugemessen wird. Andererseits nehmen Bestrebungen zu, auch mit solchen Maschinen die Umwelt zu schonen (globale Erwärmung, Reduktion von CO2 und NOx-Emissionen, Einsparung nicht erneuerbarer Energieträger).In practice, it is also known in such machines to provide the hydraulic medium with its own radiator with a blower driven by a hydraulic motor with an on-off control. Also in this known concept, the operating temperature of the hydraulic medium does not exceed 35 ° C to 40 ° C, because of the importance of the viscosity of the hydraulic medium for the energy balance or energy efficiency of the internal combustion engine For such self-propelled machines for processing bituminous or concrete paving material so far no importance is attached to excessive safety concerns. On the other hand, efforts are increasing to protect the environment even with such machines (global warming, reduction of CO 2 and NO x emissions, saving of non-renewable energy sources).

Der Erfindung liegt die Aufgabe zugrunde, eine selbstfahrende Maschine zum Verarbeiten von bituminösem und/oder Beton-Einbaumaterial anzugeben, deren Verbrennungsmotor trotz der speziellen Anforderungen aufgrund der schwierigen Verarbeitbarkeit der Einbaumaterialien mit verbesserter Energiebilanz bzw. Energieeffizienz betreibbar ist, nennenswert Brennstoff spart, und die Umwelt schont.The invention has for its object to provide a self-propelled machine for processing bituminous and / or concrete paving material whose internal combustion engine despite the special requirements due to the difficult processability of the paving materials with improved energy balance and energy efficiency is operable, significantly saves fuel, and the environment spares.

Die gestellte Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.The stated object is achieved with the features of claim 1.

Dank der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung wird die Betriebstemperatur des Hydraulikmediums so rasch wie möglich gesteigert und dann innerhalb eines Betriebstemperaturbereiches geregelt, bei dem die zusätzliche Belastung des Verbrennungsmotors durch beispielsweise Pumpverluste des Hydraulikmediums minimiert wird. Dies bedeutet zwar eine bewusste Abkehr von dem konventionellen Konzept, beispielsweise aus Gründen der Betriebssicherheit die Betriebstemperatur des Hydraulikmediums extrem niedrig zu halten, erhöht andererseits aber das Risiko für die Betriebssicherheit faktisch überhaupt nicht, da die Hydraulikmedium-Betriebstemperatur-Einstell- und - Regelvorrichtung den gewählten Betriebstemperaturbereich zuverlässig einhält und die Kühlleistung abhängig vom hydraulischen Belastungszustand und dem Umgebungsklima dann maximiert, wenn eine Tendenz zum Übersteigen des tolerierbaren Betriebstemperaturbereiches entstehen sollte. Beispielsweise kann dies der Fall sein, wenn bei hohen Außentemperaturen, niedriger Luftfeuchtigkeit und ungünstigen Verarbeitungskonditionen des Einbaumaterials und schwierigen Boden- und Fahrverhältnissen die Maschine eine Betriebspause macht, weil auf die Anlieferung frischen Einbaumaterials gewartet werden muss, wobei der Verbrennungsmotor im Leerlauf betrieben wird und die Motor-Kühlleistung herabgeregelt wird. Die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung regelt dann z.B. mit maximaler Leistungsfähigkeit, um eine Überhitzung des Hydraulikmediums zuverlässig zu vermeiden. Insgesamt lässt sich so über die Einsatzzeit der Maschine im Normalbetrieb pro Jahr eine erhebliche Menge an Brennstoff einsparen. Diese Verbesserung der Energieeffizienz des Verbrennungsmotors geht einher mit optimiertem Arbeiten der Pumpen und hydrostatischen Antriebseinheiten und einem jederzeitigen raschen Ansprechverhalten im Hydraulikkreis. Gegebenenfalls kann ohne Einbusse bei der Verarbeitung des Einbaumaterials ein leistungsschwächerer und verbrauchsoptimierter Verbrennungsmotor verwendet werden.Thanks to the hydraulic medium operating temperature setting and control device, the operating temperature of the hydraulic medium is increased as quickly as possible and then controlled within an operating temperature range in which the additional load of the internal combustion engine is minimized by, for example, pumping losses of the hydraulic medium. Although this means a deliberate departure from the conventional concept of keeping the operating temperature of the hydraulic medium extremely low, for reasons of operational safety, on the other hand, the risk for operational safety does not actually increase at all, since the hydraulic medium operating temperature setting and control device is the one selected Reliably maintains the operating temperature range and maximizes the cooling capacity depending on the hydraulic load condition and the ambient climate when there should be a tendency to exceed the tolerable operating temperature range. For example, this may be the case when at high outside temperatures, low humidity and adverse processing conditions of the paving material and difficult ground and driving conditions, the machine breaks down because of the need to wait for the delivery of fresh paving material, the engine is operated at idle and the Engine cooling capacity is down regulated. The hydraulic medium operating temperature setting and regulating device then regulates eg with maximum efficiency to reliably prevent overheating of the hydraulic medium. Overall, a considerable amount of fuel can thus be saved over the operating time of the machine in normal operation per year. This improvement in the energy efficiency of the internal combustion engine goes hand in hand with optimized operation of the pumps and hydrostatic drive units and rapid response at all times in the hydraulic circuit. Optionally, a loss of power and consumption optimized internal combustion engine can be used without loss in the processing of the installation material.

Bei einer zweckmäßigen Ausführungsform ist die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung unabhängig vom Motor-Kühlregelsystem, da sie an wenigstens einen Hydraulikmedium-Temperatursensor und/oder Informationsgeber für den hydraulischen Belastungszustand im Hydraulikkreis und das Umgebungsklima angeschlossen ist. Auf diese Weise lässt sich beispielsweise bei kalten Umgebungstemperaturen im Normalbetrieb bei mit der Nenndrehzahl laufendem Verbrennungsmotor und maximaler Kühlleistung für die Kühlflüssigkeit die Kühlleistung für das Hydraulikmedium drastisch reduzieren oder vollständig abschalten, um für das Hydraulikmedium eine optimale Viskosität zu erzielen. Umgekehrt wird mit der Regelung der Betriebstemperatur feinfühlig auf momentane oder vorübergehende ungünstige hydraulische Belastungssituationen oder Umgebungsklimasituationen reagiert, um die Betriebstemperatur des Hydraulikmediums optimal einzustellen und zu halten, obwohl dann gegebenenfalls das Motor-Kühlregelsystem anders anspricht. Der Mehraufwand für das Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung und zu deren Betrieb erforderlicher Temperatursensoren und/oder Informationsgeber ist im Hinblick auf das hohe Einsparungspotential an Brennstoff für den Verbrennungsmotor vernachlässigbar, ohne die Betriebssicherheit unter den aus der Verarbeitung des Einbaumaterials resultierenden, schwierigen Anforderungen an das Hydrauliksystem zu gefährden. Es lassen sich pro Jahr mehrere Tonnen Brennstoff einsparen.In an expedient embodiment, the hydraulic medium operating temperature adjusting and regulating device is independent of the engine cooling control system because it is connected to at least one hydraulic medium temperature sensor and / or hydraulic load state information device in the hydraulic circuit and the ambient environment. In this way, for example, at cold ambient temperatures in normal operation running at the rated speed engine and maximum cooling capacity for the cooling liquid, the cooling capacity for the hydraulic medium drastically reduce or completely shut down to achieve optimum viscosity for the hydraulic medium. Conversely, the regulation of the operating temperature sensitively responds to momentary or temporary unfavorable hydraulic load situations or ambient climate situations to optimally set and maintain the operating temperature of the hydraulic medium, although then possibly the engine cooling control system responds differently. The extra expense for the hydraulic medium operating temperature setting and regulating device and its operation required temperature sensors and / or information transmitter is negligible in view of the high potential savings of fuel for the internal combustion engine, without the reliability under the resulting from the processing of the paving material, difficult Requirements for the hydraulic system to endanger. It can save several tons of fuel per year.

Bei einer zweckmäßigen Ausführungsform weist die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung eine Programmier- und/oder Setzsektion für die jeweils als optimal angesehene Hydraulikmedium-Betriebstemperatur auf, damit das Hydraulikmedium nur so gekühlt wird, dass es seine optimale Viskosität hält, unabhängig davon, wie das Motor-Kühlregelsystem arbeitet.In an expedient embodiment, the hydraulic medium operating temperature adjusting and regulating device has a programming and / or setting section for each hydraulic medium operating temperature which is considered optimum so that the hydraulic medium is only cooled to maintain its optimum viscosity, independently how the engine cooling control system works.

Bei einer speziellen Ausführungsform ist, vorzugsweise in der Programmier- und/oder Setzsektion, eine Auswahlvorrichtung für eine für das aufzuwärmende Hydraulikmedium einzustellende Betriebstemperatur von etwa 75°C, und einen zu haltenden Betriebstemperaturbereich von etwa 75°C bis 80°C, vorzugsweise bis etwa knapp 90°C, vorgesehen. Mit dieser Betriebstemperatur des Hydraulikmediums und diesem Betriebstemperaturbereich, der im Normalbetrieb gehalten wird, lässt sich die Viskosität noch weiter verringern und optimieren, um die Zusatzbelastung für den Verbrennungsmotor aus dem Betrieb des Hydrauliksystems zu minimieren und noch mehr Brennstoff einzusparen.In a specific embodiment, preferably in the programming and / or setting section, a selector device for an operating temperature of about 75 ° C to be set for the hydraulic medium to be heated, and an operating temperature range to be maintained of from about 75 ° C to 80 ° C, preferably to about just under 90 ° C, provided. With this operating temperature of the hydraulic medium and this operating temperature range, which is kept in normal operation, the viscosity can be further reduced and optimized, to minimize the additional load on the internal combustion engine from operating the hydraulic system and save even more fuel.

Da es unter ungünstigen Umgebungsklimakonditionen, z.B. bei niedrigen Außentemperaturen und dgl. oder geringer Verarbeitungsrate eines sehr leicht zu verarbeitenden Einbaumaterials, z.B. für eine dünne Deckenschicht, gegebenenfalls nicht ausreicht, das Hydraulikmedium nur so wenig zu kühlen wie möglich, um eine optimal niedrige Viskosität zu erzielen, ist bei einer weiteren Ausführungsform im Hydraulikkreis sogar wenigstens eine Hydraulikmedium-Heizeinrichtung vorgesehen. Diese kann an die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung angeschlossen und über diese betrieben werden, kann alternativ aber auch unabhängig davon beispielsweise mit einer Zeitschaltung oder bedienergeführt betrieben werden. Die Heizeinrichtung ermöglicht es nicht nur, das Hydraulikmedium so rasch wie möglich auf die optimale Betriebstemperatur zu bringen, sondern auch den optimalen Betriebstemperaturbereich im Normalbetrieb zu halten, falls die gewünschte angehobene Betriebstemperatur nicht allein durch Minimieren oder Abschalten der Kühlleistung einstellbar bzw. haltbar sein sollte.Since, under unfavorable ambient climate conditions, e.g. at low outdoor temperatures and the like, or low processing rate of a built-in material that is very easy to process, e.g. for a thin top layer, possibly not sufficient to cool the hydraulic medium as little as possible to achieve an optimally low viscosity, in a further embodiment in the hydraulic circuit even at least one hydraulic medium heating device is provided. This can be connected to and operated by the hydraulic medium operating temperature setting and regulating device, but can alternatively or independently thereof be operated, for example, with a timer or operator-controlled. The heater not only allows the hydraulic medium to be brought to the optimum operating temperature as quickly as possible, but also to maintain the optimum operating temperature range in normal operation, should the desired elevated operating temperature not be adjustable or stable by minimizing or disabling the cooling power alone.

Bei einer zweckmäßigen Ausführungsform ist die Hydraulikmedium-Heizeinrichtung am oder im Reservoir des Hydraulikmediums vorgesehen, obwohl die Heizeinrichtung an jeder geeigneten Stelle des wenigstens einen Hydraulikkreises angeordnet werden könnte. Im Reservoir ist üblicherweise eine maximale Menge des Hydraulikmediums gespeichert, z.B. etwa 400 Liter, und zwar unter relativ moderatem Rücklaufdruck, so dass die Heizeinrichtung effizient arbeitet und wenig druckfest ausgebildet werden kann.In an expedient embodiment, the hydraulic medium heater is provided at or in the reservoir of the hydraulic medium, although the heater could be located at any suitable location of the at least one hydraulic circuit. In the reservoir, usually a maximum amount of the hydraulic medium is stored, e.g. about 400 liters, under a relatively moderate return pressure, so that the heater operates efficiently and can be made less pressure resistant.

Bei einer zweckmäßigen umweltschonenden Ausführungsform wird die Hydraulikmedium-Heizeinrichtung mit der Kühlflüssigkeit des Verbrennungsmotors und/oder elektrisch über einen vom Verbrennungsmotor getriebenen Generator und/oder mit Abwärme zumindest des Verbrennungsmotors betrieben. Dieses Konzept trägt ebenfalls zur Verbesserung der Energieeffizienz des Verbrennungsmotors bei, weil diese Heizenergie ohnedies verfügbar ist, und beispielsweise aus der Kühlflüssigkeit oder der Abwärme mit geringem Mehraufwand abnehmbar ist und andernfalls ohnedies in die Umgebung abgegeben würde.In an expedient environmentally friendly embodiment, the hydraulic medium heating device is operated with the cooling liquid of the internal combustion engine and / or electrically via a generator driven by the internal combustion engine and / or with waste heat at least of the internal combustion engine. This concept also contributes to the improvement of the energy efficiency of the internal combustion engine, because this heat energy is available anyway, and for example, from the cooling liquid or the waste heat with little extra effort is removable and would otherwise be discharged into the environment anyway.

In einer zweckmäßigen Ausführungsform weist die Kühlvorrichtung einen Kombinationskühler (z.B. einen Mehrfeldkühler oder einen Satz getrennter Einzelkühler) auf. Dem Kombinationskühler ist ein dem Kühlflüssigkeits- und dem Hydraulikmedium-Kühlbereich gemeinsam zugeordnetes Gebläse zugeordnet, das, vorzugsweise, proportional zur Drehzahl des Verbrennungsmotors antreibbar sein kann. Um die Kühlleistung für das Hydraulikmedium unabhängig von der Motor-Kühlleistung regeln zu können, kann im Luftströmungsweg vom Gebläse zu dem Hydraulikmedium-Kühlbereich eine verstellbare Luftstrom-Abschirm- oder -Umlenkeinrichtung vorgesehen sein, die, vorzugsweise, mit der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung in Verstellverbindung ist. Sobald die Kühlleistung für die Kühlflüssigkeit für das Hydraulikmedium zu hoch werden sollte, um die gewünschte angehobene Betriebstemperatur einstellen und halten zu können, wird die Kühlleistung nur für den Kühlbereich des Hydraulikmediums über die Abschirm- oder Umlenkeinrichtung reduziert, bis die gewünschte Betriebstemperatur des Hydraulikmediums erreicht ist. Zum Einhalten des gewünschten Betriebstemperaturbereiches des Hydraulikmediums kann dann die Wirkung der Abschirm- oder Umlenkeinrichtung aufgehoben oder entsprechend geregelt werden. Dies beeinflusst die jeweils erforderliche Kühlleistung beispielsweise für das Kühlwasser des Verbrennungsmotors, oder dessen Ansaugluft, oder Ladeluft, nicht.In an expedient embodiment, the cooling device has a combination cooler (eg a multi-field cooler or a set of separate individual coolers). The combination cooler is associated with a cooling liquid and the hydraulic medium cooling area commonly associated fan, which, preferably, proportional to the speed of the Internal combustion engine can be driven. In order to be able to control the cooling capacity for the hydraulic medium independently of the engine cooling capacity, an adjustable air flow shielding or deflecting device may be provided in the air flow path from the fan to the hydraulic medium cooling area, which, preferably, with the hydraulic medium operating temperature setting and control device is in Verstellverbindung. As soon as the cooling capacity for the coolant for the hydraulic fluid should become too high to set and maintain the desired elevated operating temperature, the cooling capacity is reduced only for the cooling range of the hydraulic medium via the shielding or deflection until the desired operating temperature of the hydraulic medium is reached , In order to maintain the desired operating temperature range of the hydraulic medium, the effect of the shielding or deflection device can then be canceled or regulated accordingly. This does not affect the respectively required cooling capacity, for example for the cooling water of the internal combustion engine, or its intake air, or charge air.

Bei einer anderen Ausführungsform weist der Hydraulikmedium-Kühlbereich der Kühlvorrichtung ein separates und unabhängig vom Gebläse für den Kühlflüssigkeits-Kühlbereich regelbares Gebläse auf. Auch hierbei erfolgt die Kühlung des Hydraulikmediums unabhängig von der Motor-Kühlung, beispielsweise der Kühlflüssigkeit des Verbrennungsmotors, nur im Hinblick darauf, die gewünschte Hydraulikmedium-Betriebstemperatur so rasch wie möglich einzustellen und dann in dem gewünschten angehobenen Bereich zu halten.In another embodiment, the hydraulic medium cooling region of the cooling device has a separate blower which can be controlled independently of the blower for the cooling liquid cooling region. Again, the cooling of the hydraulic medium is independent of the engine cooling, for example, the cooling liquid of the internal combustion engine, only with regard to adjust the desired hydraulic medium operating temperature as quickly as possible and then to keep in the desired raised range.

Bei einer weiteren Ausführungsform ist sogar ein vom Kühlflüssigkeits-Kühlbereich separierter Hydraulikmedium-Kühler als der Hydraulikmedium-Kühlbereich vorgesehen. Diesem wenigstens einen Kühler kann ein drehzahlregelbares und/oder bedarfsabhängig ein- und ausschaltbares Gebläse zugeordnet sein, das, vorzugsweise, mit der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung verbunden ist. Die separate Anordnung des Hydraulikmedium-Kühlers vermeidet andernfalls beispielsweise unvermeidbare Aufheizungs- oder Abkühlungssituationen für den Hydraulikmedium-Kühler, die bei räumlich enger Nachbarschaft zwischen dem Kühlflüssigkeits-Kühlbereich und dem Hydraulikmedium-Kühlbereich auftreten könnten. Außerdem ist dieses Konzept unter Umständen für die Maschine von Vorteil, um ohnedies beengten Platzverhältnissen beim Kühlflüssigkeits-Kühlbereich Rechnung zu tragen, und/oder die Gewichtsverteilung in der Maschine zu verbessern.In another embodiment, even a hydraulic medium cooler separated from the cooling liquid cooling region is provided as the hydraulic medium cooling region. This at least one cooler may be associated with a speed-controllable and / or demand-dependent on and off blower, which, preferably, is connected to the hydraulic medium operating temperature setting and control device. Otherwise, the separate arrangement of the hydraulic medium cooler otherwise avoids, for example, unavoidable heating or cooling situations for the hydraulic medium radiator, which could occur in close spatial proximity between the cooling liquid cooling area and the hydraulic medium cooling area. In addition, this concept may be advantageous to the machine to accommodate the tight spaces in the cooling fluid cooling area, and / or to improve the weight distribution in the machine.

Bei einer zweckmäßigen Ausführungsform weist das Gebläse, zumindest für den Hydraulikmedium-Kühlbereich, einen hydraulischen oder elektrischen Antriebsmotor auf. Die Leistungsabgabe und Regelung des Antriebsmotors lässt sich hierbei unabhängig von der Drehzahl des Verbrennungsmotors einstellen oder regeln.In an expedient embodiment, the fan, at least for the hydraulic medium-cooling region, a hydraulic or electric drive motor. The power output and regulation of the drive motor can be adjusted or regulated independently of the speed of the internal combustion engine.

Zur Regelung des optimalen Hydraulikmedium-Betriebstemperaturbereiches oder zum raschen Einstellen der gewünschten Hydraulikmedium-Betriebstemperatur unabhängig von der Motor-Kühlung kann es zweckmäßig sein, im Hydraulikkreis in einem den Hydraulikmedium-Kühlbereich umgehenden Bypass ein Thermostatventil oder ein von der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung betätigbares Ventil anzuordnen, und über den Bypass den Hydraulikmedium-Kühlbereich zumindest nach Aufnahme des Normalbetriebes der Maschine bei kaltem Hydraulikmedium vollständig zu umgehen, z.B. auch bei Betrieb einer Heizeinrichtung zum rascheren Aufheizen des Hydraulikmediums im Hydraulikkreis oder in den Hydraulikkreisen.To control the optimum hydraulic medium operating temperature range or for quickly setting the desired hydraulic medium operating temperature independent of the engine cooling, it may be appropriate in the hydraulic circuit in a bypass the hydraulic medium cooling area bypass a thermostatic valve or one of the hydraulic medium operating temperature setting and To arrange-operable control valve, and bypass the hydraulic medium-cooling area completely at least after receiving the normal operation of the machine with cold hydraulic medium over the bypass, eg even when operating a heater for faster heating of the hydraulic medium in the hydraulic circuit or in the hydraulic circuits.

Zweckmäßig wird in dem Hydraulikmedium-Kühlbereich oder angrenzend an diesen eine durch die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung steuerbare Zirkulationspumpe vorgesehen, vorzugsweise in einem zwischen dem Reservoir und dem Hydraulikmedium-Kühlbereich vorgesehenen Kurzschlussabschnitt des Hydraulikkreises oder der Hydraulikkreise. Über die Zirkulationspumpe kann beispielsweise kühlbedarfsabhängig die Förderrate des Hydraulikmediums variiert werden, um die Kühlung zu intensivieren oder zu minimieren.A circulation pump controllable by the hydraulic medium operating temperature adjusting and regulating device is expediently provided in the hydraulic medium cooling region or preferably adjacent thereto, preferably in a shorting section of the hydraulic circuit or hydraulic circuits provided between the reservoir and the hydraulic medium cooling region. By way of example, the delivery rate of the hydraulic medium can be varied via the circulation pump, depending on the cooling demand, in order to intensify or minimize the cooling.

Bei einer zweckmäßigen Ausführungsform ist wenigstens ein Signalgeber für die Hydraulikmedium-Isttemperatur und/oder hydraulische und/oder thermische Lastsituationen zumindest einer ausgewählten Pumpe und/oder einer ausgewählten hydrostatischen Antriebseinheit vorgesehen und als Regelführungsgrößengeber an die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung angeschlossen. Hierbei wird zweckmäßig eine Pumpe und/oder eine hydrostatische Antriebseinheit ausgewählt, die extrem leistungsfähig ist oder bei der extreme hydraulische Betriebssituationen erwartet werden können, so dass die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung rasch über einen kritischen Zustand informiert wird und entsprechend regeln kann.In an expedient embodiment, at least one signal generator for the actual hydraulic medium temperature and / or hydraulic and / or thermal load situations of at least one selected pump and / or a selected hydrostatic drive unit is provided and connected as a control variable generator to the hydraulic medium operating temperature setting and control device. In this case, a pump and / or a hydrostatic drive unit is expediently selected, which is extremely efficient or can be expected in the extreme hydraulic operating situations, so that the hydraulic medium operating temperature setting and control device is quickly informed of a critical condition and can regulate accordingly ,

Bei einer anderen Ausführungsform kann eine computerisierte Hauptsteuerung der Maschine als Signalgeber für zumindest die hydraulischen und/oder thermischen Lastsituationen für wenigstens eine ausgewählte Pumpe und/oder eine ausgewählte hydrostatische Antriebseinheit ausgebildet sein. Die Hauptsteuerung ist nämlich gegebenenfalls über die Belastungsanforderungen der Pumpe und/oder der hydrostatischen Antriebseinheit informiert, beispielsweise weil bestimmte Betriebskonditionen eingestellt sind, und kann so die Hydraulikmedium-Betriebstemperatur-Einstell- und/oder -Regelvorrichtung zeitgerecht oder sogar vorbereitend informieren, um ein Überschießen der Betriebstemperatur des Hydraulikmediums zuverlässig und vorbereitend auszuschließen. Eine andere Betriebssituation, über die die Hauptsteuerung die Regelvorrichtung informieren kann, ist ein erwarteter Betriebsstopp, beispielsweise am Arbeitsende oder eine Wartephase auf eine neue Lieferung an Einbaumaterial, wofür an der Hauptsteuerung vom Bediener entsprechende Vorbereitungen getroffen wurden, und beispielsweise bereits die hydrostatischen Antriebseinheiten und der Verbrennungsmotor herabgeregelt werden. Da die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung dann frühzeitig über diesen zukünftigen Betriebszustand informiert wird, kann gegebenenfalls das Hydraulikmedium nochmals besonders intensiv gekühlt werden, um einem Überschießen der Betriebstemperatur des Hydraulikmediums ab Beginn dieser Betriebspause entgegenzuwirken.In another embodiment, a computerized main controller of the machine may be configured as a signal generator for at least the hydraulic and / or thermal load situations for at least one selected pump and / or a selected hydrostatic drive unit. Namely, the main controller may be informed of the loading requirements of the pump and / or the hydrostatic drive unit, for example, because certain operating conditions are set, and so can timely or even preliminarily inform the hydraulic medium operating temperature setting and / or regulating device in order to reliably and preclude overshooting of the operating temperature of the hydraulic medium. Another operating situation by which the main controller can inform the control device is an expected stop of operation, for example at the end of work or a waiting phase for a new supply of paving material, for which the operator has made appropriate preparations at the main control, and for example already the hydrostatic drive units and Internal combustion engine are down regulated. Since the hydraulic medium operating temperature setting and control device is then informed in good time about this future operating state, the hydraulic medium can optionally be cooled again particularly intensively in order to counteract an overshooting of the operating temperature of the hydraulic medium from the beginning of this operating pause.

Grundsätzlich wird erfindungsgemäß eine Maschine zum Verarbeiten von bituminösem oder Beton-Einbaumaterial unter Nutzen eines Verbrennungsmotors, speziell eines Dieselmotors, als Primärantriebsquelle für wenigstens ein Hydrauliksystem mit Pumpen und hydrostatischen Antriebseinheiten so betrieben, dass zur Verbesserung der Energieeffizienz des Verbrennungsmotors im Betrieb bzw. ab Betriebsaufnahme der Maschine das Hydraulikmedium unabhängig von der Lastkondition des Verbrennungsmotors und der Motor-Kühlregelung abhängig vom hydraulischen Belastungszustand in dem wenigstens einen Hydraulikkreis und abhängig vom Umgebungsklima möglichst schnell auf eine angehobene Betriebstemperatur von mindestens etwa 60°C gebracht und dann in einem Betriebstemperatur-Bereich von oberhalb etwa 60°C geregelt wird, um mit der optimal niedrigen Viskosität des Hydraulikmediums möglichst wenig Kompensationsleistung des Verbrennungsmotors zu vergeuden und möglichst viel Brennstoff einzusparen.Basically, according to the invention, a machine for processing bituminous or concrete paving material using an internal combustion engine, especially a diesel engine, operated as a primary drive source for at least one hydraulic system with pumps and hydrostatic drive units so that to improve the energy efficiency of the internal combustion engine during operation or from operating recording of Engine, the hydraulic medium regardless of the load condition of the engine and the engine cooling control depending on the hydraulic load state in the at least one hydraulic circuit and depending on the ambient climate as quickly as possible brought to a raised operating temperature of at least about 60 ° C and then in an operating temperature range above about 60 ° C is controlled in order to waste with the optimal low viscosity of the hydraulic medium as little compensation power of the engine and save as much fuel.

Ausführungsformen des Erfindungsgegenstandes werden anhand der Zeichnungen erläutert. Es zeigen:

Fig. 1
eine schematische Seitenansicht einer selbstfahrenden Maschine zum Verar- beiten von Einbaumaterial, und zwar eines Straßenfertigers,
Fig. 2
ein schematisches Blockschaltbild eines hydraulischen Antriebskonzeptes der Maschine,
Fig. 3
eine Detailvariante zu Fig. 2,
Fig. 4
ein Schaubild der kinematischen Viskosität eines Hydraulikmediums über der Betriebstemperatur, und
Fig. 5
eine schematische Seitenansicht einer anderen Maschine zum Verarbeiten von Einbaumaterial, nämlich eines Beschickers.
Embodiments of the subject invention will be explained with reference to the drawings. Show it:
Fig. 1
1 is a schematic side view of a self-propelled machine for processing paving material, namely a paver,
Fig. 2
a schematic block diagram of a hydraulic drive concept of the machine,
Fig. 3
a detail variant too Fig. 2 .
Fig. 4
a graph of the kinematic viscosity of a hydraulic medium above the operating temperature, and
Fig. 5
a schematic side view of another machine for processing paving material, namely a feeder.

Fig. 1 zeigt als Beispiel einer selbstfahrenden Maschine F einen Straßenfertiger zum Verarbeiten von bituminösem und/oder Beton-Einbaumaterial bei der Herstellung von Deckenschichten beispielsweise von Verkehrsflächen oder dgl.. Fig. 1 shows as an example of a self-propelled machine F a paver for processing bituminous and / or concrete paving material in the production of ceiling layers, for example, from traffic areas or the like.

Die Maschine F weist ein Chassis 32 mit einem in der gezeigten Ausführungsform Räder aufweisenden Fahrwerk 33 (alternativ ein Raupenfahrwerk) und einen Verbrennungsmotor M, z.B. einen Dieselmotor, als Primärantriebsquelle auf. Die Maschine besitzt eine Vielzahl Funktions- und Arbeitskomponenten, die überwiegend hydraulisch betrieben und von dem Verbrennungsmotor M mit Antriebsleistung versorgt werden. Auf dem Chassis 32 befindet sich ein Materialbunker 36, von dem sich im Chassis 32 eine Längsfördervorrichtung 37 zum hinteren Chassisende erstreckt, wo eine Querverteileinrichtung 38 mit einer Höhenverstellung 47 und einem Antrieb 39 angeordnet sind. Am Chassis 32 ist eine Einbaubohle 34 angelenkt, deren Anstellwinkel durch Nivellierzylinder 41 einstellbar und die durch Hydraulikzylinder 42 anhebbar ist. In der Einbaubohle sind Verstellzylinder 46, hydraulisch betriebene Tamper 44 und hydraulisch betriebene, optionale Pressleisten 45 vorgesehen. Für den Bunker 36 sind Bunkerwand-Verstellzylinder 41 vorgesehen. Dem Verbrennungsmotor M ist eine Kühlvorrichtung K zugeordnet, z.B. mit einem Mehrfeldkühler und einem Gebläse, das, beispielsweise, proportional zur Drehzahl des Verbrennungsmotors M angetrieben wird.The machine F has a chassis 32 with a chassis 33 (alternatively a crawler undercarriage) in the embodiment shown, and an internal combustion engine M, e.g. a diesel engine, as a prime mover on. The machine has a variety of functional and working components, which are mainly hydraulically operated and powered by the engine M with drive power. On the chassis 32 is a material bunker 36, from which extends in the chassis 32, a longitudinal conveyor 37 to the rear chassis end, where a transverse distribution device 38 with a height adjustment 47 and a drive 39 are arranged. On the chassis 32, a screed 34 is articulated, the angle of attack adjustable by leveling cylinder 41 and by hydraulic cylinders 42 can be raised. Adjusting cylinders 46, hydraulically operated tamper 44 and hydraulically operated, optional pressure bars 45 are provided in the screed. For the bunker 36 bunker wall adjusting cylinder 41 are provided. The internal combustion engine M is associated with a cooling device K, e.g. with a multi-field cooler and a blower, which, for example, is driven in proportion to the speed of the internal combustion engine M.

Die vorerwähnten Funktions- und Arbeitskomponenten der Maschine F werden zum Verarbeiten des Einbaumaterials mittels hydrostatischer Antriebseinheiten oder Zylinder betrieben. Hierfür ist wenigstens ein Hydraulikkreis H (Fig. 2, 3) und sind Hydraulikpumpen und Ventilanordnungen vorgesehen. Die verschiedenen Pumpen werden beispielsweise über ein Pumpenverteilergetriebe vom Verbrennungsmotor angetrieben. Ferner wird für elektrische Verbraucher, z.B. Heizeinrichtungen im Bereich der Längsfördervorrichtung 37, für die Tamper 44, die Pressleisten 45 und nicht näher hervorgehobene Glättbleche der Einbaubohle 34 vom Verbrennungsmotor M ein Generator angetrieben, der elektrische Leistung zur Verfügung stellt. Für den oder die Hydraulikkreise (einschließlich Verbindungsleitungen und Verbindungsschläuche) ist ferner ein Reservoir für ein Hydraulikmedium (Hydrauliköl) vorgesehen, das ein Fassungsvermögen von mehreren 100 Litern haben kann. Die Kühlvorrichtung K ist so ausgebildet, dass die Kühlflüssigkeit des Verbrennungsmotors, gegebenenfalls dessen Ansaugluft oder Ladeluft, und auch das Hydraulikmedium gekühlt werden, wobei ein Kühlregelsystem vorgesehen ist, das primär die Kühlflüssigkeit des Verbrennungsmotors M so behandelt, dass der Verbrennungsmotor im Normalbetrieb (beispielsweise Nenndrehzahl etwa 2000 U/min bei einer Nennleistung von rund 160 kW) stets optimale Betriebstemperatur hat.The above-mentioned functional and working components of the machine F are operated for processing the paving material by means of hydrostatic drive units or cylinders. For this purpose, at least one hydraulic circuit H ( Fig. 2, 3rd ) and hydraulic pumps and valve assemblies are provided. The various pumps are driven, for example via a pump distributor gearbox from the internal combustion engine. Further, for electric consumers, such as heaters in the longitudinal conveyor 37, for the tamper 44, the pressure bars 45 and unspecified highlighted screed 34 of the screed 34 is driven by the engine M, a generator that provides electrical power available. For the hydraulic circuit (s) (including connecting pipes and connecting hoses) Furthermore, a reservoir for a hydraulic medium (hydraulic oil) is provided, which may have a capacity of several 100 liters. The cooling device K is designed such that the cooling liquid of the internal combustion engine, optionally its intake air or charge air, and also the hydraulic medium are cooled, wherein a cooling control system is provided which primarily the cooling liquid of the internal combustion engine M treated so that the internal combustion engine in normal operation (for example, rated speed about 2000 rpm with a nominal power of about 160 kW) always has optimum operating temperature.

Damit das Hydraulikmedium möglichst rasch eine Betriebstemperatur von mindestens etwa 60°C, vorzugsweise zwischen etwa 75°C und 80°C oder geringfügig mehr, erreicht, und ein Hydraulikmedium-Betriebstemperaturbereich von beispielsweise 75°C bis 80°C im Normalbetrieb und unabhängig von Umgebungsklimakonditionen eingehalten werden, ist gemäß Fig. 2 in der Maschine F eine Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung R vorgesehen, die, vorzugsweise, unabhängig von dem Kühlregelsystem S für die Kühlflüssigkeit des Verbrennungsmotors M die Betriebstemperatur des Hydraulikmediums regelt.Thus, the hydraulic medium as soon as possible reaches an operating temperature of at least about 60 ° C, preferably between about 75 ° C and 80 ° C or slightly more, and a hydraulic medium operating temperature range of, for example, 75 ° C to 80 ° C in normal operation and independent of ambient climate conditions be complied with is according to Fig. 2 in the machine F, a hydraulic medium operating temperature adjusting and regulating device R is provided which, preferably, independently of the cooling control system S for the cooling liquid of the internal combustion engine M controls the operating temperature of the hydraulic medium.

In Fig. 2 ist dem Verbrennungsmotor M, beispielsweise einem Dieselmotor, ein Mehrfeldkühler oder ein Kühlersatz 1 aus mehreren Kühlern zugeordnet, der in der gezeigten Ausführungsform einen Kühlbereich 1 a für die Ansaugluft oder Ladeluft, einen Kühlbereich 1 b für die Kühlflüssigkeit des Verbrennungsmotors M, und einen Kühlbereich 1c für das Hydraulikmedium umfasst, und dem ein gemeinsames Gebläse 2 mit einem Antriebsmotor 3 zugeordnet ist, der vom Kühlregelsystem S im Hinblick auf der optimale Betriebstemperatur des Verbrennungsmotors M gesteuert wird. Mit 4 ist die Energiezufuhr zum Antriebsmotor 3 angedeutet. Der Antriebsmotor 3 kann beispielsweise aus dem Hydrauliksystem gespeist werden, oder elektrisch über den vom Verbrennungsmotor M getriebenen Generator G, oder direkt oder indirekt über die Kurbelwelle des Verbrennungsmotors M.In Fig. 2 is associated with the internal combustion engine M, for example a diesel engine, a multi-field radiator or a radiator set 1 of a plurality of radiators, in the embodiment shown, a cooling area 1 a for the intake air or charge air, a cooling area 1 b for the cooling liquid of the internal combustion engine M, and a cooling area 1c for the hydraulic medium, and to which a common fan 2 is associated with a drive motor 3, which is controlled by the cooling control system S with respect to the optimum operating temperature of the engine M. 4, the power supply to the drive motor 3 is indicated. The drive motor 3 can be fed, for example, from the hydraulic system, or electrically via the generator G driven by the engine M, or directly or indirectly via the crankshaft of the internal combustion engine M.

An den Verbrennungsmotor M ist in Fig. 2 ein Pumpenverteilergetriebe 5 angeflanscht, an dessen Ausgängen mehrere Hydraulikpumpen 6 montiert sind, die über Verbindungsleitungen oder Druckschläuche hydraulisch mit verschiedenen hydrostatischen Antriebseinheiten 7, 8, 9, 10 für die anhand Fig. 1 erläuterten Arbeits- und Funktionskomponenten der Maschine verbunden sind. Beispielsweise erstreckt sich von den hydrostatischen Antriebseinheiten 7 bis 10 eine gemeinsame Rücklaufleitung 11 zu einem Hydraulikmedium-Reservoir 12, üblicherweise einem großvolumigen Metallbehälter, an dem beispielsweise Ventilkomponenten 13 angebracht sein können. Das Reservoir 12 kann über eine Leitung 14 mit dem Kühlbereich 1c verbunden sein. Die Rücklaufleitung 11 kann ebenfalls an den Kühlbereich 1c angeschlossen sein. Zwischen dem Reservoir 12 bzw. der Ventilanordnung 13 und der Rücklaufleitung 11 kann ein Bypass 15 vorgesehen sein, in dem ein Thermostatventil 16 oder ein von der Regelvorrichtung R steuerbares Ventil 16 für den Hydraulikmediumstrom enthalten sein kann.To the internal combustion engine M is in Fig. 2 a pump distributor gearbox 5 flanged at the outputs of which a plurality of hydraulic pumps 6 are mounted, which are hydraulically connected via connecting lines or pressure hoses with various hydrostatic drive units 7, 8, 9, 10 for the basis Fig. 1 explained working and functional components of the machine are connected. For example, extends from the hydrostatic drive units 7 to 10, a common return line 11 to a hydraulic medium reservoir 12, usually a large-volume metal container, on the example, valve components 13 may be attached. The reservoir 12 may be connected via a line 14 to the cooling area 1c. The return line 11 may also be connected to the cooling area 1c. Between the reservoir 12 and the valve assembly 13 and the return line 11, a bypass 15 may be provided, in which a thermostatic valve 16 or controllable by the control device R valve 16 may be included for the hydraulic medium flow.

Der Verbrennungsmotor M ist auf einer Motorkonsole 17 angebracht, die über Motorlager 18 auf Widerlagern 19 des Chassis 32 der Maschine F schwingungsisoliert gelagert ist. Der Generator G, der beispielsweise (nicht gezeigt) vom Pumpenverteilergetriebe 5 aus angetrieben wird, kann auf der Motorkonsole 17 gelagert sein.The internal combustion engine M is mounted on a motor console 17, which is mounted on motor bearings 18 on abutments 19 of the chassis 32 of the machine F vibration isolation. The generator G, which is for example driven (not shown) by the pump distributor gear 5, may be mounted on the engine console 17.

In der gezeigten Ausführungsform in Fig. 2 kann optional wenigstens eine Heizeinrichtung 20 für den Hydraulikkreis oder alle Hydraulikkreise H des Hydrauliksystems vorgesehen sein, beispielsweise in der Rücklaufleitung 11, oder im oder am Reservoir 12, oder an einer anderen, geeigneten Stelle in der Maschine F. Die Heizeinrichtung 20 wird in Fig. 2 z.B. über eine von der Regelvorrichtung R ansteuerbare Steuerung 21 vom Generator G elektrisch betrieben. Alternativ oder additiv könnte die Heizeinrichtung 20 das Kühlwasser und oder Abwärme zumindest des Verbrennungsmotors M nutzen.In the embodiment shown in FIG Fig. 2 Optionally at least one heating device 20 may be provided for the hydraulic circuit or all hydraulic circuits H of the hydraulic system, for example in the return line 11, or in or at the reservoir 12, or at another suitable location in the machine F. The heating device 20 will be described in US Pat Fig. 2 For example, operated by a controllable by the control device R controller 21 from the generator G electrically. Alternatively or additionally, the heating device 20 could use the cooling water and / or waste heat at least of the internal combustion engine M.

An zumindest einer ausgewählten, oder an mehreren oder allen hydrostatischen Antriebseinheiten 7 bis 10 (bzw. den Pumpen 6) oder an anderen geeigneten Stellen des Hydraulikkreises H ist ein Temperatursensor 22 für die Betriebstemperatur des Hydraulikmediums (oder ein Sensor für den hydraulischen Belastungszustand) angeordnet und mit der Regelvorrichtung R verbunden. Ein solcher Temperatursensor 22 kann sich auch am oder im Reservoir 12 befinden, oder im oder beim Kühlbereich 1c. Ferner ist wenigstens ein Informationsgeber 23, z.B. ein Temperatur- und/oder Feuchtigkeitssensor, vorgesehen und an die Regelvorrichtung R angeschlossen, der das Umgebungsklima detektiert. Eine vorzugsweise computerisierte Hauptsteuerung CU der Maschine F kann ebenfalls an die Regelvorrichtung R angeschlossen (oder mit dieser vereinigt) sein und z.B. in Echtzeit oder vorbereitend Informationen i7 z.B. zum hydraulischen Belastungszustand der ausgewählten hydrostatischen Antriebseinheit 7 bereitstellen.On at least one selected, or on several or all hydrostatic drive units 7 to 10 (or the pump 6) or other suitable locations of the hydraulic circuit H, a temperature sensor 22 for the operating temperature of the hydraulic medium (or a sensor for the hydraulic load condition) is arranged and connected to the control device R. Such a temperature sensor 22 may also be located on or in the reservoir 12, or in or at the cooling area 1c. Furthermore, at least one information transmitter 23, e.g. a temperature and / or humidity sensor, provided and connected to the control device R, which detects the ambient climate. A preferably computerized main control CU of the machine F may also be connected to (or associated with) the control device R, and e.g. in real time or preparatory information i7 e.g. to the hydraulic load state of the selected hydrostatic drive unit 7 provide.

Die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung R weist eine Programmier- und/oder Setzsektion P auf, an der beispielsweise die gewünschte Betriebstemperatur des Hydraulikmediums eingestellt und überwacht werden kann, und, zweckmäßig, eine Auswahlvorrichtung W, an der eine Hydraulikmedium-Betriebstemperatur von mindestens etwa 60°C, vorzugsweise sogar etwa 75°C, einstellbar ist, auf die das Hydraulikmedium nach Betriebsaufnahme möglichst schnell gebracht werden soll, und ein Betriebstemperaturbereich im Normalbetrieb von mindestens etwa 60°C, vorzugsweise etwa 75°C bis 80°C, oder vorzugsweise sogar bis knapp 90°C, eingestellt werden kann, innerhalb dessen die Betriebstemperatur des Hydraulikmediums im Normalbetrieb der Maschine beim Verarbeiten des Einbaumaterials gehalten werden soll, unabhängig davon, wie das Kühlregelsystem S die Kühlung zumindest der Kühlflüssigkeit für den Verbrennungsmotor M regelt.The hydraulic medium operating temperature setting and regulating device R has a programming and / or setting section P at which, for example, the desired operating temperature of the hydraulic medium can be set and monitored, and, if appropriate, a selection device W, at which a hydraulic medium operating temperature of at least about 60 ° C, preferably even about 75 ° C, adjustable, to which the hydraulic medium after commissioning is to be brought as quickly as possible, and an operating temperature range in normal operation of at least about 60 ° C. , preferably about 75 ° C to 80 ° C, or preferably even up to almost 90 ° C, can be adjusted, within which the operating temperature of the hydraulic medium is to be maintained during normal operation of the machine during processing of the paving material, regardless of how the cooling control system S the Cooling at least the cooling liquid for the internal combustion engine M regulates.

In einem Kurzschlusskreis 28, beispielsweise zwischen dem Kühlbereich 1c und dem Reservoir 12 oder dem Hydraulikkreis H kann eine Zirkulationspumpe 29 eingesetzt sein.In a short circuit 28, for example between the cooling area 1c and the reservoir 12 or the hydraulic circuit H, a circulation pump 29 may be used.

Wegen des den Kühlbereichen 1a, 1b, 1c gemeinsam zugeordneten Gebläses 2 in Fig. 1 ist zweckmäßig im Luftströmungsweg vom Gebläse 2 zum Kühlbereich 1c für das Hydraulikmedium wenigstens eine Abschirm- oder Umlenkeinrichtung 30 vorgesehen, mit der sich die durch das Gebläse 2 generierte Kühlleistung individuell für den Kühlbereich 1c regulieren lässt, beispielsweise über einen Aktuator 31, der von der Regelvorrichtung R betätigbar ist, oder auch, nicht gezeigt, durch wenigstens einen Thermostaten oder anderen Temperatursensor im Hydraulikkreis. Die Abschirm- oder Umlenkeinrichtung 30 könnte beispielsweise Klappen, Lamellen oder andere, den Luftstrom steuernde Elemente umfassen.Because of the cooling areas 1 a, 1 b, 1 c commonly associated blower 2 in Fig. 1 is expediently provided in the air flow path from the fan 2 to the cooling area 1c for the hydraulic medium at least one shielding or deflecting device 30, with which the cooling power generated by the blower 2 can be regulated individually for the cooling area 1c, for example via an actuator 31, of the control device R is actuated, or else, not shown, by at least one thermostat or other temperature sensor in the hydraulic circuit. For example, the shielding or deflecting device 30 could include flaps, fins, or other airflow controlling elements.

Im Betrieb der Maschine F und bei laufendem Verbrennungsmotor M wird die Betriebstemperatur des Hydraulikmediums im Hydraulikkreis H unabhängig vom Regeleingriff des Kühlregelsystems S zumindest für die Kühlflüssigkeit des Verbrennungsmotors M abhängig von hydraulischen Belastungssituationen im Hydraulikkreis, speziell an den Hydraulikpumpen 6 und/oder den hydrostatischen Antriebseinheiten 7 bis 10, vorzugsweise an einer ausgewählten Pumpe oder Antriebseinheit, von der z.B. die größte Antriebsleistung verbraucht werden oder bei der die stärksten Variationen auftreten, auf eine hinsichtlich der Viskosität des Hydraulikmediums optimale Betriebstemperatur von mindestens etwa 60°C gebracht, und dann in einem hinsichtlich der Viskosität optimalen Betriebstemperaturbereich von oberhalb etwa 60°C gehalten, um ein rasches Ansprechen der Hydraulikpumpen 6 und/oder hydrostatischen Antriebseinheiten 7 bis 10 zu gewährleisten, und Pumpverluste im Hydraulikkreis H zu minimieren, die der Verbrennungsmotor M mit zusätzlichem Brennstoffverbrauch kompensieren muss.During operation of the engine F and with the internal combustion engine M, the operating temperature of the hydraulic medium in the hydraulic circuit H is independent of the control intervention of the cooling control system S at least for the cooling liquid of the internal combustion engine M depending on hydraulic load situations in the hydraulic circuit, especially on the hydraulic pumps 6 and / or the hydrostatic drive units. 7 to 10, preferably at a selected pump or drive unit from which, for example, the largest drive power is consumed or in which the strongest variations occur, brought to an optimum in terms of viscosity of the hydraulic medium operating temperature of at least about 60 ° C, and then in a respect Viscosity optimum operating temperature range of above about 60 ° C held to ensure a rapid response of the hydraulic pumps 6 and / or hydrostatic drive units 7 to 10, and to minimize pumping losses in the hydraulic circuit H, the de r Compensate combustion engine M with additional fuel consumption.

Fig. 3 verdeutlicht eine Detailvariante, bei der der Kühlbereich 1c für das Hydraulikmedium baulich separiert ist von den Kühlbereichen 1a und 1b der Kühlvorrichtung 1. Der Kühlbereich 1c wird durch einen eigenständigen Hydraulikmedium-Kühler 24 gebildet, der beispielsweise an die Rücklaufleitung 11 und die Verbindungsleitung 14 zum Reservoir 12 angeschlossen ist, und dem ein eigenständiges Gebläse 2a mit einem eigenen Antriebsmotor 3a und einer eigenen Antriebsleistungsversorgung 4a zugeordnet ist. Das Gebläse 2a kann über die Regelvorrichtung R betrieben werden, wie gezeigt, oder wird nur thermostatgesteuert oder in Abhängigkeit von dem Messresultat eines Temperatursensors im Hydraulikkreis H. Der Antriebsmotor 3a kann entweder ein Hydromotor oder ein Elektromotor sein oder wird (nicht gezeigt) von der Kurbelwelle des Verbrennungsmotors z.B. über eine schaltbare Kupplung angetrieben. Der Kühler 24 kann in der Kühlvorrichtung K platziert sein, oder an einer geeigneten Position in der Maschine F. Fig. 3 illustrates a detail variant in which the cooling area 1c for the hydraulic medium is structurally separated from the cooling areas 1a and 1b of the cooling device 1. The cooling area 1c is formed by a separate hydraulic medium cooler 24, for example, to the return line 11 and the connecting line 14 to the reservoir 12 is connected, and an independent fan 2a is associated with its own drive motor 3a and a separate drive power supply 4a. The fan 2a may be operated via the control device R, as shown, or is thermostatically controlled only or depending on the measurement result of a temperature sensor in the hydraulic circuit H. The drive motor 3a may be either a hydraulic motor or an electric motor or is (not shown) from the crankshaft driven by the internal combustion engine, for example via a switchable clutch. The radiator 24 may be placed in the cooling device K, or at a suitable position in the engine F.

Als weitere Detailvariante ist in Fig. 3 angedeutet, dass an dem Reservoir 12 Kühlrippen 25 vorgesehen und ein weiteres Gebläse 26 mit einem Antriebsmotor 27 vorgesehen sein kann, der ebenfalls beispielsweise von der Regelvorrichtung R gesteuert wird, um das Hydraulikmedium im Reservoir 12 bei Bedarf zusätzlich zu kühlen. Gegebenenfalls ist (Fig. 3) auch die Heizeinrichtung 20 am oder im Reservoir 12 angeordnet, um bei Bedarf, beispielsweise um die gewünschte Betriebstemperatur von mindestens etwa 60°C oder mehr möglichst schnell zu erreichen, oder den gewünschten Betriebstemperatur-Bereich von oberhalb 60°C zuverlässig zu halten, das Hydraulikmedium zusätzlich zu beheizen.As a further detail variant is in Fig. 3 indicated that at the reservoir 12 cooling fins 25 may be provided and another blower 26 may be provided with a drive motor 27, which is also controlled for example by the control device R to additionally cool the hydraulic medium in the reservoir 12 as needed. If necessary, ( Fig. 3 ), the heating device 20 is arranged on or in the reservoir 12 in order to achieve as quickly as possible, for example, the desired operating temperature of at least about 60 ° C or more, or to keep the desired operating temperature range of above 60 ° C reliably, the In addition to heat hydraulic medium.

Das Schaubild in Fig. 4 zeigt für ein übliches Hydraulikmedium (Hydrauliköl der Spezifikation HLP 46 nach DIN 51524, Teil 2) das Verhalten der auf der vertikalen Achse aufgetragenen kinematischen Viskosität KV über der Betriebstemperatur T. Die kinematische Viskosität beträgt bei einer Betriebstemperatur von etwa 60°C nur die Hälfte der kinematischen Viskosität bei einer Betriebstemperatur von etwa 40°C und wesentlich weniger als ein Zehntel der Viskosität bei etwa 0°C. In einem Betriebstemperatur-Bereich zwischen 75°C und etwa 80°C beträgt die Viskosität nur etwa die Hälfte der Viskosität bei 60°C. Dieses Viskositätsverhalten des spezifizierten Hydraulikmediums (andere, übliche Hydraulikmedien für Maschinen zum Verarbeiten von Einbaumaterial zeigen ein ähnliches Verhalten der kinematischen Viskosität über der Betriebstemperatur) wird in der Maschine F der Figuren 1 bis 3, und auch der Maschine F in Fig. 5, dazu benutzt, durch Einstellen der relativ hohen Betriebstemperatur von mindestens etwa 60°C und Einhalten eines Betriebstemperaturbereiches von oberhalb etwa 60°C die Energieeffizienz des Verbrennungsmotors zu verbessern und Treibstoff einzusparen, in dem das Hydraulikmedium unabhängig von der Motorkühlung individuell gekühlt und/oder beheizt wird.The diagram in Fig. 4 shows for a common hydraulic medium (hydraulic oil of specification HLP 46 according to DIN 51524, Part 2), the behavior of the applied on the vertical axis kinematic viscosity KV above the operating temperature T. The kinematic viscosity is at an operating temperature of about 60 ° C, only half of kinematic viscosity at an operating temperature of about 40 ° C and substantially less than one tenth of the viscosity at about 0 ° C. In an operating temperature range between 75 ° C and about 80 ° C, the viscosity is only about half the viscosity at 60 ° C. This viscosity behavior of the specified hydraulic medium (other common hydraulic media for machines for processing paving material show a similar behavior of the kinematic viscosity over the operating temperature) is in the machine F of FIGS. 1 to 3 , and also the machine F in Fig. 5 used to improve the energy efficiency of the internal combustion engine and fuel by adjusting the relatively high operating temperature of at least about 60 ° C and maintaining an operating temperature range above about 60 ° C to save, in which the hydraulic medium is cooled and / or heated independently of the engine cooling individually.

Fig. 4 verdeutlicht als Einbaumaterial verarbeitende Maschine F einen Beschicker, der zum Beschicken beispielsweise des Straßenfertigers von Fig. 1 mit Einbaumaterial vor dem Straßenfertiger auf dem Planum fährt, intermittierend aus Lastkraftwagen oder kontinuierlich über eine Fördervorrichtung mit dem Einbaumaterial versorgt wird, und dem Straßenfertiger stets genug Einbaumaterial in den Bunker 36 einfüllt, damit der Straßenfertiger kontinuierlich eine Deckenschicht herstellen kann. Fig. 4 illustrates as a built-in material processing machine F a feeder used to load, for example, the paver of Fig. 1 with paving material in front of the road paver drives on the subgrade, intermittently supplied from trucks or continuously via a conveyor with the paving material, and the paver always enough paving material in the bunker 36 fills so that the paver can continuously produce a ceiling layer.

Der in Fig. 5 gezeigte Beschicker weist an seinem Chassis 32 das Fahrwerk 33, z.B. ein Raupenfahrwerk, mit wenigstens einem Antrieb 43, und einen sehr großen Bunker 36 auf. Der Beschicker ist selbstfahrend und enthält als Primärantriebsquelle den flüssigkeitsgekühlten Verbrennungsmotor M, z.B. einen Dieselmotor, mit der Kühlvorrichtung K zumindest für die Kühlflüssigkeit. Im Bunker 36 kann eine hydraulisch betriebene Querfördervorrichtung 48 angeordnet sein, von der sich eine aufsteigende hydraulisch betriebene Längsfördervorrichtung 49 nach hinten oben erstreckt, die ein hydraulisch verstellbares Abgabeende 52 aufweist. Die Fördervorrichtung 49 kann eine weitere hydraulische Einrichtung 50 aufweisen. Der Beschicker als die das Einbaumaterial verarbeitende Maschine F enthält beispielsweise hydrostatische Antriebseinheiten für die Fahrantriebe 43, die Querfördervorrichtung 48, nicht gezeigte Bunkerverstellwandzylinder, die Einrichtung 50 und das Abgabeende 51, für die der Verbrennungsmotor M entsprechende hydraulische Pumpen in wenigstens einem Hydraulikkreis antreibt. Die Kühlvorrichtung K kann gemäß Fig. 2 oder Fig. 3 ausgelegt sein, um das Hydraulikmedium im Hydraulikkreis unabhängig von der Kühlung der Kühlflüssigkeit des Verbrennungsmotors M abhängig von hydraulischen Belastungssituationen und dem Umgebungsklima auf eine Hydraulikmedium-Betriebstemperatur von mindestens etwa 60°C einstellen und in einem Hydraulikmedium-Betriebstemperaturbereich von oberhalb etwa 60°C, vorzugsweise zwischen 75°C und 80°C, zu halten, um so das Ansprechverhalten im Hydraulikkreis zu optimieren, die Viskosität des Hydraulikmediums zu reduzieren, und den Brennstoffverbrauch des Verbrennungsmotors zu reduzieren, der so den Beschicker effizienter fahren und die hydraulischen Arbeits- und Funktionskomponenten effizienter betätigen kann.The in Fig. 5 shown feeder has on its chassis 32, the chassis 33, such as a crawler undercarriage, with at least one drive 43, and a very large bunker 36. The feeder is self-propelled and contains, as the primary drive source, the liquid-cooled internal combustion engine M, eg a diesel engine, with the cooling device K at least for the coolant. In the bunker 36, a hydraulically operated transverse conveyor 48 may be arranged, from which an ascending hydraulically operated longitudinal conveyor 49 extends rearwardly upwards, which has a hydraulically adjustable discharge end 52. The conveying device 49 may have a further hydraulic device 50. The feeder as the installation material processing machine F includes, for example, hydrostatic drive units for the traction drives 43, the cross conveyor 48, not shown Bunkerverstellwandzylinder, the device 50 and the discharge end 51, for the internal combustion engine M drives corresponding hydraulic pumps in at least one hydraulic circuit. The cooling device K can according to Fig. 2 or Fig. 3 be adapted to adjust the hydraulic medium in the hydraulic circuit, regardless of the cooling of the cooling liquid of the internal combustion engine M depending on hydraulic load situations and the ambient climate to a hydraulic medium operating temperature of at least about 60 ° C and in a hydraulic medium operating temperature range of about about 60 ° C, preferably between 75 ° C and 80 ° C, in order to optimize the response in the hydraulic circuit, to reduce the viscosity of the hydraulic medium, and to reduce the fuel consumption of the internal combustion engine, which drive the feeder more efficiently and the hydraulic working and functional components more efficiently can operate.

Claims (15)

Selbstfahrende Maschine (F) zum Verarbeiten von bituminösem oder Beton-Einbaumaterial, insbesondere Straßenfertiger oder Beschicker, mit einem flüssigkeitsgekühlten Verbrennungsmotor (M) als Primärantriebsquelle und wenigstens einem Pumpen (6), Hydromotoren oder hydrostatische Antriebseinheiten (7 bis 10) für Funktions- und Arbeitskomponenten zumindest der Maschine (F), und wenigstens ein Hydraulikmedium-Reservoir (12) umfassenden Hydraulikkreis (H), einer gebläseunterstützten Kühlvorrichtung (K) mit Kühlbereichen (1 b, 1 c) für zumindest die Kühlflüssigkeit des Verbrennungsmotors (M) und das Hydraulikmedium des Hydraulikkreises (H), und einem Kühlregelsystem (S) für zumindest den Kühlbereich (1 b) der Kühlvorrichtung (K), dadurch gekennzeichnet, dass für den Hydraulikmedium-Kühlbereich (1c) eine Hydraulik-Medium-Betriebstemperatur-Einstell- und - Regelvorrichtung (R) vorgesehen ist, mit der das Hydraulikmedium abhängig vom hydraulischen Belastungszustand im Hydraulikkreis (H) und vom Umgebungsklima auf eine Betriebstemperatur (T) oberhalb von mindestens etwa 60°C bringbar und in einem Betriebstemperaturbereich mindestens etwa oberhalb 60°C haltbar ist.Self-propelled machine (F) for processing bituminous or concrete paving material, in particular road paver or feeder, with a liquid-cooled internal combustion engine (M) as a primary drive source and at least one pump (6), hydraulic motors or hydrostatic drive units (7 to 10) for functional and working components at least the machine (F), and at least one hydraulic medium reservoir (12) comprising hydraulic circuit (H), a fan-assisted cooling device (K) with cooling areas (1 b, 1 c) for at least the cooling liquid of the internal combustion engine (M) and the hydraulic medium of the Hydraulic circuit (H), and a cooling control system (S) for at least the cooling area (1b) of the cooling device (K), characterized in that for the hydraulic medium cooling area (1c) a hydraulic medium operating temperature setting and - regulating device ( R) is provided, with the hydraulic medium depending on the hydraulic load condition in the hydraulic and ambient temperature to an operating temperature (T) above at least about 60 ° C can be brought and in an operating temperature range at least about above 60 ° C durable. Selbstfahrende Maschine nach Anspruch 1, dadurch gekennzeichnet, dass die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) vom Kühlregelsystem (S) für die Kühlflüssigkeit des Verbrennungsmotors (M) unabhängig und an wenigstens einen Hydraulikmedium-Temperatursensor (22) und/oder Informationsgeber (23, CU) für den hydraulischen Belastungszustand im Hydraulikkreis (H) und das Umgebungsklima angeschlossen ist.Self-propelled machine according to claim 1, characterized in that the hydraulic medium operating temperature setting and control device (R) from the cooling control system (S) for the cooling liquid of the internal combustion engine (M) independently and at least one hydraulic medium temperature sensor (22) and / or Information transmitter (23, CU) for the hydraulic load state in the hydraulic circuit (H) and the ambient air is connected. Selbstfahrende Maschine nach Anspruch 1, dadurch gekennzeichnet, dass die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) eine Programmier-und/oder Setzsektion (P) für die Hydraulikmedium-Betriebstemperatur aufweist.Self-propelled machine according to claim 1, characterized in that the hydraulic medium operating temperature adjusting and regulating device (R) has a programming and / or setting section (P) for the hydraulic medium operating temperature. Selbstfahrende Maschine nach Anspruch 3, dadurch gekennzeichnet, dass, vorzugsweise in der Programmier- oder/oder Setzsektion (P), eine Auswahlvorrichtung (W) für eine für das aufzuwärmende Hydraulikmedium einzustellende Betriebstemperatur von etwa 75°C und einen zu haltenden Betriebstemperaturbereich von etwa 75°C bis 80°C, vorzugsweise bis knapp 90°C, vorgesehen ist.Self-propelled machine according to claim 3, characterized in that , preferably in the programming or / and setting section (P), a selection device (W) for an adjusted for the hydraulic fluid to be heated operating temperature of about 75 ° C and a holding operating temperature range of about 75th ° C to 80 ° C, preferably up to almost 90 ° C, is provided. Selbstfahrende Maschine nach Anspruch 1, dadurch gekennzeichnet, dass im Hydraulikkreis (H) wenigstens eine an die Hydraulikmedium-Betriebstemperatur-Einstell- und - Regelvorrichtung (R) angeschlossene Hydraulikmedium-Heizeinrichtung (20) vorgesehen ist. Self-propelled machine according to claim 1, characterized in that in the hydraulic circuit (H) at least one of the hydraulic medium operating temperature setting and - Regulating device (R) connected hydraulic medium heating device (20) is provided. Selbstfahrende Maschine nach Anspruch 5, dadurch gekennzeichnet, dass die Hydraulikmedium-Heizeinrichtung (20) am oder im Reservoir (12) angeordnet ist.Self-propelled machine according to claim 5, characterized in that the hydraulic medium heating device (20) is arranged on or in the reservoir (12). Selbstfahrende Maschine nach Anspruch 5, dadurch gekennzeichnet, dass die Hydraulikmedium-Heizeinrichtung (20) mit der Kühlflüssigkeit des Verbrennungsmotors (M) und/oder elektrisch über einen Verbrennungsmotor (M) getriebenen Generator (G) und/oder mit Abwärme zumindest des Verbrennungsmotors (M) betreibbar ist.Self-propelled machine according to claim 5, characterized in that the hydraulic medium heating device (20) with the cooling liquid of the internal combustion engine (M) and / or electrically via an internal combustion engine (M) driven generator (G) and / or waste heat at least the internal combustion engine (M ) is operable. Selbstfahrende Maschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kühlvorrichtung (K) einen Kombinationskühler (1) mit zumindest den Kühlflüssigkeits- und Hydraulikmedium-Kühlbereichen (1 b, 1 c) oder mehrere separate Kühler (1, 24) zumindest als die Kühlflüssigkeits- und Hydraulikmedium-Kühlbereiche (1 b, 1c) in Parallelanordnung und wenigstens ein gemeinsames, vorzugsweise proportional zur Drehzahl des Verbrennungsmotors (M) antreibbares, Gebläse (2, 3, 4) aufweist, und dass im Luftströmungsweg vom Gebläse (2, 3, 4) zu dem Hydraulikmedium-Kühlbereich (1 c) eine verstellbare Luftstrom-Abschirm- oder -Umlenkeinrichtung (30) vorgesehen ist, die, vorzugsweise, mit der Hydraulikmedium-Betriebstemperatur-Einstell- und - Regelvorrichtung (R) in Verstellverbindung steht. Self-propelled machine according to at least one of the preceding claims, characterized in that the cooling device (K) a combination cooler (1) with at least the cooling liquid and hydraulic medium cooling areas (1 b, 1 c) or more separate cooler (1, 24) at least as the cooling liquid and hydraulic medium cooling regions (1 b, 1 c) in parallel arrangement and at least one common, preferably proportional to the rotational speed of the internal combustion engine (M) drivable, blower (2, 3, 4), and that in the air flow path from the fan (2, 3, 4) to the hydraulic medium cooling region (1 c) is provided an adjustable Luftstrom-Abschirm- or deflection device (30), which, preferably, with the hydraulic medium operating temperature setting and - Regulating device (R) is in adjusting connection. Selbstfahrende Maschine nach Anspruch 8, dadurch gekennzeichnet, dass der Hydraulikmedium-Kühlbereich (1c) ein separates und unabhängig vom Gebläse (2, 3, 4) für den Kühlwasser-Kühlbereich (1 b) regelbares Gebläse (2a, 3a, 4a) aufweist.Self-propelled machine according to claim 8, characterized in that the hydraulic medium-cooling region (1c) has a separate and independently of the blower (2, 3, 4) for the cooling water cooling region (1 b) controllable blower (2a, 3a, 4a). Selbstfahrende Maschine nach Anspruch 1, dadurch gekennzeichnet, dass als Hydraulikmedium-Kühlbereich (1c) wenigstens ein vom Kühlflüssigkeits-Kühlbereich (1b) baulich separierter Hydraulikmedium-Kühler (24) mit einem drehzahlregelbaren und/oder ein- und ausschaltbaren Gebläse (2a, 3a, 4a) vorgesehen ist, das, vorzugsweise, mit der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) verbunden ist.Self-propelled machine according to claim 1, characterized in that as a hydraulic medium cooling region (1c) at least one of the cooling liquid cooling region (1b) structurally separated hydraulic medium cooler (24) with a variable speed and / or on and off blower (2a, 3a, 4a) which, preferably, is connected to the hydraulic medium operating temperature adjusting and regulating device (R). Selbstfahrende Maschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gebläse (2a, 3a, 4a) für den Hydraulikmedium-Kühlbereich (1c) einen hydraulischen oder elektrischen Antriebsmotor (3a) aufweist.Self-propelled machine according to at least one of the preceding claims, characterized in that the blower (2a, 3a, 4a) for the hydraulic medium cooling region (1c) has a hydraulic or electric drive motor (3a). Selbstfahrende Maschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Hydraulikkreis (H) in einem den Hydraulikmedium-Kühlbereich (1 c) umgehenden Bypass (15) ein Thermostatventil oder ein von der Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) betätigbares Ventil (16) angeordnet ist.Self-propelled machine according to at least one of the preceding claims, characterized in that in the hydraulic circuit (H) in a bypass of the hydraulic medium-cooling region (1 c) (15), a thermostatic valve or one of the hydraulic medium operating temperature setting and -Regelvorrichtung (R ) operable valve (16) is arranged. Selbstfahrende Maschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Hydraulikmedium-Kühlbereich (1c) eine durch die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) steuerbare Zirkulationspumpe (29) zugeordnet ist, vorzugsweise in einem zwischen dem Reservoir (12) und dem Hydraulikmedium-Kühlbereich (1c) vorgesehenen Kurzschlusskreis (28) des Hydraulikkreises (H).Self-propelled machine according to at least one of the preceding claims, characterized in that a circulation pump (29) which can be controlled by the hydraulic medium operating temperature setting and regulating device (R) is assigned to the hydraulic medium cooling region (1c), preferably in one between the reservoir (1). 12) and the hydraulic medium cooling region (1c) provided short circuit (28) of the hydraulic circuit (H). Selbstfahrende Maschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest einer ausgewählten Pumpe (6) und/oder einem ausgewählten Hydromotor oder einer hydrostatischen Antriebseinheit (7 bis 10) wenigstens ein Signalgeber (22) für die Hydraulikmedium-Isttemperatur und/oder hydraulische und/oder thermische Lastkonditionen zugeordnet und als Regelführungsgrößengeber an die Hydraulikmedium-Betriebstemperatur-Einstell- und -Regelvorrichtung (R) angeschlossen ist.Self-propelled machine according to at least one of the preceding claims, characterized in that at least one selected pump (6) and / or a selected hydraulic motor or a hydrostatic drive unit (7 to 10) at least one signal generator (22) for the actual hydraulic medium temperature and / or hydraulic and / or associated with thermal load conditions and connected as a control variable generator to the hydraulic medium operating temperature setting and -Regelvorrichtung (R). Selbstfahrende Maschine nach Anspruch 2, dadurch gekennzeichnet, dass eine computerisierte Hauptsteuerung (CU) der Maschine (F) als Signalgeber für zumindest die hydraulischen und/oder thermischen Lastkonditionen für eine ausgewählte Pumpe (6) und/oder einen ausgewählten Hydromotor oder eine hydrostatische Antriebseinheit (7 bis 10) ausgebildet und signalübertragend mit der Hydraulikmedium-Betriebstemperatur-Einstell- und - Regelvorrichtung (R) verbunden ist. Self-propelled machine according to claim 2, characterized in that a computerized main control (CU) of the machine (F) as a signal generator for at least the hydraulic and / or thermal load conditions for a selected pump (6) and / or a selected hydraulic motor or a hydrostatic drive unit ( 7 to 10) and signal transmitting with the hydraulic medium operating temperature setting and - Regulating device (R) is connected.
EP09008470.8A 2009-06-29 2009-06-29 Self-propelled machine Active EP2282029B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE502009000490T DE502009000490D1 (en) 2009-06-29 2009-06-29 Self-propelled machine
EP09008470.8A EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine
AT09008470T ATE503092T1 (en) 2009-06-29 2009-06-29 SELF-PROPELLED MACHINE
US12/821,925 US20100326067A1 (en) 2009-06-29 2010-06-23 Self-propelled machine
CN2010102202512A CN101936211B (en) 2009-06-29 2010-06-29 Self-propelled machine
CN2010202491912U CN201794654U (en) 2009-06-29 2010-06-29 Self-driving machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09008470.8A EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine

Publications (3)

Publication Number Publication Date
EP2282029A1 true EP2282029A1 (en) 2011-02-09
EP2282029B1 EP2282029B1 (en) 2011-03-23
EP2282029B2 EP2282029B2 (en) 2022-04-20

Family

ID=41697972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09008470.8A Active EP2282029B2 (en) 2009-06-29 2009-06-29 Self-propelled machine

Country Status (5)

Country Link
US (1) US20100326067A1 (en)
EP (1) EP2282029B2 (en)
CN (2) CN201794654U (en)
AT (1) ATE503092T1 (en)
DE (1) DE502009000490D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022111963A1 (en) 2022-05-12 2023-11-16 Dynapac Gmbh Road construction machine

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE503092T1 (en) * 2009-06-29 2011-04-15 Voegele Ag J SELF-PROPELLED MACHINE
PL2530273T3 (en) * 2011-06-01 2020-11-16 Joseph Vögele AG Construction machine with automatic ventilator rotation speed regulator
EP2578888B1 (en) 2011-10-07 2018-12-05 Joseph Vögele AG Construction machine with automatic ventilator rotation speed regulator
CN103233947A (en) * 2012-01-08 2013-08-07 钱荣华 Method for cooling hydraulic oil of underground coal mine loader digger and other equipment
EP2672008B1 (en) * 2012-06-05 2018-01-10 Joseph Vögele AG Road finisher and method for incorporating mixed goods with a road finisher
JP6009480B2 (en) * 2014-03-06 2016-10-19 日立建機株式会社 Cooling fan control device for construction machinery
US9382675B2 (en) 2014-06-16 2016-07-05 Caterpillar Paving Products Inc. Electric powered systems for paving machines
WO2016056603A1 (en) * 2014-10-10 2016-04-14 住友建機株式会社 Asphalt finisher
CN104500716A (en) * 2014-12-30 2015-04-08 戴纳派克(中国)压实摊铺设备有限公司 Gear oil cooling system and pavement construction machine with same
EP3075909B1 (en) * 2015-03-30 2017-09-06 Joseph Vögele AG Road construction machine with network for data transmission and use of a portion of a power line
EP3091125B1 (en) 2015-05-06 2017-07-12 Joseph Vögele AG Construction machine with a lifting device for a feeding process and method of adjusting a tailgate
CN107407304B (en) * 2015-05-26 2019-02-19 日立建机株式会社 The engineering machinery and its pre-heating mean for having preheating unit
CN110725741A (en) * 2019-10-15 2020-01-24 吉林大学 Vehicle dual-cycle cooling system combined in parallel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785915A (en) 1987-06-19 1988-11-22 Westinghouse Electric Corp. Elevator system monitoring cold oil
DE4439454A1 (en) 1994-11-04 1996-05-09 Man Takraf Foerdertechnik Gmbh System for preheating of hydraulic circuits
US6076488A (en) 1997-03-17 2000-06-20 Shin Caterpillar Mitsubishi Ltd. Cooling device for a construction machine
WO2006046902A1 (en) 2004-10-27 2006-05-04 Atlas Copco Rock Drills Ab A drill rig and a method for controlling a fan therei
EP1741893A1 (en) 2005-07-06 2007-01-10 Kobelco Construction Machinery Co., Ltd. Controlling system for cooling fan
EP1870576A1 (en) 2005-04-07 2007-12-26 Hitachi Construction Machinery Co., Ltd. Cooling device for construction machine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2306379A (en) * 1930-03-12 1942-12-29 Oscar Christianson Hydraulic power system
FR1295419A (en) 1961-04-21 1962-06-08 Richier Sa Self-regulating cooler
GB988177A (en) * 1962-03-09 1965-04-07 Council Scient Ind Res Improvements in hydraulic power transmission systems
DE2150710A1 (en) 1971-10-12 1973-04-19 Gewerk Eisenhuette Westfalia DEVICE FOR HEATING THE PRESSURE FLUID, IN PARTICULAR FLAME RESISTANT HYDRAULIC FLUIDS, FOR HYDRAULIC OPERATING SYSTEMS ETC.
GB1396778A (en) 1972-03-28 1975-06-04 Af Hydraulics Fluid supply systems
DE2502792C2 (en) 1975-01-24 1986-01-02 Robert Bosch Gmbh, 7000 Stuttgart Device for heating the hydraulic fluid of a hydrostatic circuit
US4811561A (en) * 1986-04-08 1989-03-14 Vickers, Incorporated Power transmission
DE19634503B4 (en) 1996-08-26 2006-01-19 Joseph Voegele Ag pavers
US6378951B1 (en) 1997-07-23 2002-04-30 Hydroacoustics, Inc. Vibratory pavement breaker
SE509903C2 (en) 1998-02-27 1999-03-22 Volvo Wheel Loaders Ab Cooling and heating systems
US6195989B1 (en) 1999-05-04 2001-03-06 Caterpillar Inc. Power control system for a machine
US6463891B2 (en) 1999-12-17 2002-10-15 Caterpillar Inc. Twin fan control system and method
US6354089B1 (en) 2000-03-08 2002-03-12 Case Corporation Apparatus and method for cooling multiple fluids on a work vehicle
US6314950B1 (en) * 2000-12-01 2001-11-13 Caterpillar Inc. Intake air temperature control system
US6845614B2 (en) * 2001-01-05 2005-01-25 Ingersoll-Rand Company Hydraulic valve system
US6772714B2 (en) * 2001-08-16 2004-08-10 Deere & Company Electronic fan control
JP3952972B2 (en) 2003-03-07 2007-08-01 コベルコ建機株式会社 Construction machine cooling system
CA2501917A1 (en) * 2004-03-23 2005-09-23 Hydra-Fab Fluid Power Inc. Electro-hydraulic fan drive cooling and steering system for vehicle
DE102004038896A1 (en) 2004-08-11 2006-02-23 Keller Grundbau Gmbh Base plate pre-arrangement method, involves passing base plate through drill hole having smaller diameter, where deep floor plastering with larger diameter takes place under base plate
KR101021252B1 (en) * 2005-12-27 2011-03-11 히다치 겡키 가부시키 가이샤 Pump control device for hydraulic working machine, pump control method, and construction machine
DE202007005860U1 (en) 2007-04-21 2008-08-21 Liebherr-Werk Bischofshofen Ges.M.B.H. cooler system
ATE503092T1 (en) * 2009-06-29 2011-04-15 Voegele Ag J SELF-PROPELLED MACHINE

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4785915A (en) 1987-06-19 1988-11-22 Westinghouse Electric Corp. Elevator system monitoring cold oil
DE4439454A1 (en) 1994-11-04 1996-05-09 Man Takraf Foerdertechnik Gmbh System for preheating of hydraulic circuits
US6076488A (en) 1997-03-17 2000-06-20 Shin Caterpillar Mitsubishi Ltd. Cooling device for a construction machine
WO2006046902A1 (en) 2004-10-27 2006-05-04 Atlas Copco Rock Drills Ab A drill rig and a method for controlling a fan therei
EP1870576A1 (en) 2005-04-07 2007-12-26 Hitachi Construction Machinery Co., Ltd. Cooling device for construction machine
EP1741893A1 (en) 2005-07-06 2007-01-10 Kobelco Construction Machinery Co., Ltd. Controlling system for cooling fan

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022111963A1 (en) 2022-05-12 2023-11-16 Dynapac Gmbh Road construction machine

Also Published As

Publication number Publication date
US20100326067A1 (en) 2010-12-30
EP2282029B2 (en) 2022-04-20
CN101936211B (en) 2013-03-13
ATE503092T1 (en) 2011-04-15
EP2282029B1 (en) 2011-03-23
CN201794654U (en) 2011-04-13
DE502009000490D1 (en) 2011-05-05
CN101936211A (en) 2011-01-05

Similar Documents

Publication Publication Date Title
EP2282029B1 (en) Self-propelled machine
EP2256248B2 (en) Road finisher
DE4327261C1 (en) Coolant circuit
EP2333157B1 (en) Method for regulating the output of a road finisher or feeder and road finisher or feeder
DE69834891T2 (en) Cooling system for the internal combustion engine of a locomotive
EP2420621B1 (en) Paver and method for operating a paver
DE3024209A1 (en) Liq. cooling system for automobile engine with electronic control - regulating circulation pump or variable selective blocking element and by=pass line
DE102007005391A1 (en) Radiator arrangement for a drive train of a motor vehicle
DE10334501A1 (en) Vehicle internal combustion engine cooling system with variable speed water pump
DE60025722T2 (en) CONSTRUCTION MACHINE
DE102014008749A1 (en) BOTTOM MILLING MACHINE WITH COOLING SYSTEM, COOLING SYSTEM AND METHOD FOR COOLING A FLOOR MILLING MACHINE
DE102005035121A1 (en) Heating and air conditioning device operating method for e.g. passenger car, involves temporarily throttling coolant flow-rate in heating path, so that minimum heating criterion characterizing minimum heat potential is fulfillable
EP2565334B1 (en) Construction machine with oil-cooled generator
DE102008011235A1 (en) Temperature control system for fuel cells and method for controlling the temperature of fuel cells
CN105556134A (en) Implement carrier with improved control of hydraulic fluid supply
EP0931209B1 (en) Drive unit with a thermally regulated water pump
EP2821551B1 (en) Construction machine with heatable bearing structures
DE102010051663A1 (en) implement
EP2333158B2 (en) Road finisher
DE102014106253A1 (en) Heat exchanger assembly for a drive unit of a agricultural machine
EP3418451B1 (en) Tool with hydraulic drive for civil engineering work
EP2774789A1 (en) Heating device for a mobile working machine
AT397375B (en) SYSTEM FOR WARMING AN AIRCRAFT DEFROSTING LIQUID AND MOVING A DEFROSTING DEVICE
DE102016015674A1 (en) Paver. Control unit and method for operating a road paver
DE3813669A1 (en) Heat-pump installation

Legal Events

Date Code Title Description
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JOSEPH VOEGELE AG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502009000490

Country of ref document: DE

Date of ref document: 20110505

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009000490

Country of ref document: DE

Effective date: 20110505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009000490

Country of ref document: DE

Owner name: JOSEPH VOEGELE AG, DE

Free format text: FORMER OWNER: JOSEPH VOEGELE AG, 68163 MANNHEIM, DE

Effective date: 20110329

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110624

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110623

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: JOSEPH VOEGELE AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110723

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

BERE Be: lapsed

Owner name: JOSEPH VOGELE A.G.

Effective date: 20110630

26 Opposition filed

Opponent name: BOMAC GMBH

Effective date: 20111219

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

R26 Opposition filed (corrected)

Opponent name: BOMAG GMBH

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502009000490

Country of ref document: DE

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110323

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 503092

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140629

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: BOMAG GMBH

Effective date: 20111219

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220420

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502009000490

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230620

Year of fee payment: 15

Ref country code: DE

Payment date: 20230629

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230629

Year of fee payment: 15

Ref country code: GB

Payment date: 20230619

Year of fee payment: 15