EP2280778B1 - Titer plate and method for detecting an analyte - Google Patents

Titer plate and method for detecting an analyte Download PDF

Info

Publication number
EP2280778B1
EP2280778B1 EP09753828.4A EP09753828A EP2280778B1 EP 2280778 B1 EP2280778 B1 EP 2280778B1 EP 09753828 A EP09753828 A EP 09753828A EP 2280778 B1 EP2280778 B1 EP 2280778B1
Authority
EP
European Patent Office
Prior art keywords
biochip
titer plate
pipette tip
recesses
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09753828.4A
Other languages
German (de)
French (fr)
Other versions
EP2280778A2 (en
Inventor
Walter Gumbrecht
Peter Paulicka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Vetmedica GmbH
Original Assignee
Boehringer Ingelheim Vetmedica GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Vetmedica GmbH filed Critical Boehringer Ingelheim Vetmedica GmbH
Publication of EP2280778A2 publication Critical patent/EP2280778A2/en
Application granted granted Critical
Publication of EP2280778B1 publication Critical patent/EP2280778B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/025Align devices or objects to ensure defined positions relative to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0689Sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples

Definitions

  • the present invention relates to a titer plate for detecting an analyte according to claim 1. Furthermore, the invention relates to a method for detecting an analyte according to claim 12.
  • the WO 03/087410 A1 discloses an apparatus and method for directly performing biochemical processes on a substrate.
  • the substrate comprises a card which is detachably connected to the substrate, wherein a reaction element is also detachably arranged on the upper side of the substrate.
  • the WO 2007/076023 A1 relates to a multiwell analysis plate having a plate body and a plurality of wells defined therein, the wells having a binding surface with a capture reagent immobilized thereon and a dry reagent.
  • the WO 2007/111347 A1 discloses a device for treating a multi-well plate, the device having at least one nozzle head for dispensing and receiving within the respective wells of received fluids.
  • molecular diagnostic analyzes e.g. viral loads of HI viruses, hepatitis C and hepatitis B viruses.
  • the reaction vessels used are microtiter plates, in particular so-called 96-well plates with, for example, 8 rows of 12 wells each. These recesses are arranged at standardized intervals of about 0.9 cm from each other.
  • Sample material and reagents are pipetted by the pipetting robot in a programmable manner by means of pipette tips made of plastic or washable, reusable tips into predetermined wells or wells of the titer plates.
  • some operations such as incubation at a certain temperature, mixing processes or, for example, magnetic separation processes are carried out in the pipetting robot system.
  • An almost indispensable method of molecular diagnostics is an amplification of a so-called target - the analyte - by a thermocyclization reaction such as a so-called polymerase chain reaction - short PCR.
  • a thermocyclization reaction such as a so-called polymerase chain reaction - short PCR.
  • Manipulating samples to be amplified or amplified is extremely critical. Smallest contamination, for example Aerosol formation, with possibly even single molecules, would lead to sample material with false positive or increased quantitative results. Therefore, it is common in molecular diagnostics to perform sample preparation and amplification in separate rooms. However, this is very expensive and requires the processing of the samples by laboratory staff.
  • a product of the hybridization reaction with the amplified analyte can be detected electrically.
  • the exemplary named quicklab® is for example in the DE 102 33 212 A1 disclosed.
  • Another arrangement for a biochip is from the DE 100 58 397 A1 known.
  • the DE 101 26 341 A1 teaches a biochip that changes an electrically detectable property by hybridization with an analyte. It is an object of the present invention to provide a titer plate which allows for improved automated handling of the amplified samples.
  • the invention particularly comprises a first embodiment of a titer plate according to claim 1.
  • the titer plate according to the invention preferably has depressions which are arranged at intervals which correspond to the distances in a standard microtiter plate, so that the titer plate according to the invention can be operated by a pipetting robot.
  • This standard distance is e.g. 9mm.
  • the titer plate preferably has the length and width of a standard titer plate, e.g. it preferably conforms to the standard titer plate format with 12x8 wells.
  • the thickness of the titer plate of the invention is preferably greater to accommodate the wall surrounding each one biochip and a plurality of wells, as described in more detail below.
  • Biochip is understood to mean a chip which is suitable for detecting an analyte, for example a specific DNA, and in particular in the presence thereof the analyte generates an electrical signal.
  • the biochip has one or more sensitive surfaces with capture molecules that each bind specifically to an analyte. It can be arranged on a biochip several sensitive surfaces with different capture molecules, eg 8 to 400, more preferably 64 or 128 sensitive surfaces or "spots”.
  • the biochip is, for example, a CMOS chip with universal zip-code catchers.
  • a plurality of biochips, in particular 6 to 24, preferably 12 biochips are present on a titer plate, so that, for example, 12 random access multiplex assays can be performed.
  • analyte molecules bind to the capture molecules, e.g. hybridize with them, e.g. causes a change in the capacitance on the sensitive surface, which can be read out electrically.
  • the analyte or the target is biotinylated.
  • a label enzyme such as e.g. Streptavidin or AG phosphatase added. This enzyme binds to the biotin of the target.
  • a substrate is subsequently added, a reaction product is produced which generates an electrical signal that can be read by the biochip.
  • the biochip is designed for the detection of DNA by means of hybridization to suitable capture molecules.
  • the sensitive surface (s) of the biochip is / are preferably arranged on one side, in particular the upper side of the biochip, while the contacts on which the electrical signal can be read out are arranged on a side of the biochip opposite thereto.
  • the biochip is preferably embedded in the titer plate, e.g. the biochip is embedded in a plastic ring, which in turn is inserted into a suitable depression of the titer plate, so that sample or reaction material can be brought into contact with the preferably upward-facing sensitive surfaces of the biochip.
  • the biochip is on the side of the sensitive areas - e.g. towards the top - provided with a seal, which prevents impurities can penetrate the catcher molecules.
  • the seal is e.g. a cover of an elastomeric and / or thermoplastic material.
  • the biochip preferably extends over a region on which a standard titer plate has a fixed number, e.g. 2, 4, 6 or 8 wells are arranged.
  • a pipetting robot can stop and suck in or discharge material. This allows the biochip of pipetting robots to be filled with sample material, reaction material or with label enzymes and substrate.
  • each DNA chip in which e.g. an amplification of the target e.g. can be performed by a PCR reaction or other reagents are provided.
  • an amplification of the target e.g. can be performed by a PCR reaction or other reagents are provided.
  • one biochip and several of the wells each form a unit within which a particular analysis is performed. This unit is surrounded by a wall. All necessary steps for detection can be carried out in the unit.
  • the spatial separation of the units allows many units to be accommodated in a very small area without risking contamination of the individual samples. A massively parallel examination of very many samples is possible quickly and inexpensively.
  • a unit surrounded by a wall includes 2, 4, 6, 8, or 10 wells and one, two, or three biochips.
  • 4 wells and 1 biochip form one Unit, where the biochip occupies an area that is also taken up by 4 wells in a standard titer plate.
  • a preferred unit thus corresponds to 8 wells and thus has 8 positions in which a pipetting robot can handle a pipette tip.
  • a titer plate in standard 12x8 format thus has 12 units, each separated by a wall from each other.
  • the titer plate according to the invention is, for example, a block of about 20-70 mm, preferably of 45 ⁇ 10 mm height, wherein the wall between the individual units is formed by each unit being arranged in a kind of recess in the block.
  • the depressions and the biochip are arranged at the bottom of the recess.
  • the pipetting robot can move a pipette tip from one depression to the next depression or to the biochip within the recess.
  • the wall surrounding the biochip and a plurality of depressions is the wall of the recess and is preferably about as high as the height of the titer plate, ie preferably about 20-70 mm, preferably 45 ⁇ 10 mm high. This effectively prevents individual droplets from being able to pass from one unit to an adjacent unit during pipetting.
  • the titer plate preferably has as many recesses as units from a plurality of wells and a biochip.
  • Such a recess is preferably only open to a first side, in particular the upper side of the titer plate.
  • a pipette can be introduced via the recess and remains during the transfer of the sample, for example from a recess to the biochip within the enclosed space of the unit.
  • the first side opposite side, preferably the bottom, the titer plate provides a receptacle for the biochip and is provided with bulges, each corresponding to a depression.
  • the recesses are each formed in the form of a slot and have, for example, approximately an "E" shape for each unit.
  • the recesses are adapted to the movement of a pipetting robot.
  • the slot extends over all four recesses and at least one position above the biochip. It virtually forms a single connecting line between the depressions and the biochip. This has the advantage that not only between the individual units, but also partially between the individual wells within a unit walls are arranged. Once a pipette tip comes into contact with sample material, the tip can be left inside this unit. In contrast to known titer plates, the smallest droplets can not get into other analysis units and contaminate them, as a used pipette tip is not led out over other depressions or chips.
  • the recess is designed according to a development so that one or more pipette tips can remain therein.
  • the titer plate is preferably made of plastic. Since it is preferably equipped with recesses which are open to one side, it is possible to produce the titer plate (without biochips) by injection molding. Preferably, the walls or recesses and the recesses are made as a one-piece plastic injection-molded part, in which later the biochips are embedded. Alternatively, the titer plate can also be formed as a flat plate with recesses and receptacles for the biochips, are placed on the wall elements between the individual units. Since in this case, a seal between wall elements and plate must be taken care of, this embodiment is not preferred.
  • the biochip is preferably embedded in the titer plate such that each corner of the biochip is located at the corresponding position of a well on the standard format microtiter plate. At least one of these positions is a Einphilllport in an elastomeric cover or seal the biochip present.
  • the elastomeric seal serves to protect the sensitive surfaces of the biochip from contamination. It can be integrated into the titer plate in a two-component injection molding process, for example. Alternatively, the seal or cover is clamped by a plastic ring, in which the biochip is embedded. More preferably, the elastomeric seal is slightly spaced from the sensitive surface of the biochip thereby forming therebetween a biochip chamber in fluid communication with the sensitive surfaces of the biochip.
  • liquid can preferably be injected into the biochip chamber, which then comes into contact with the catcher molecules and is thus analyzed by the biochip. Since the filling port of the biochip is, as it were, "aligned" with one of the standard positions of the wells of a titer plate, a pipette can automatically transfer a sample to the biochip by means of the pipetting robot.
  • At least one and preferably two deposition positions for a pipette tip are provided above the elastomeric seal of the biochip, on one or preferably two of the e.g. 4 positions, each corresponding to a well on a standard titer plate and thus accessible by a pipetting robot.
  • a pipette that has come into contact with sample material can be deposited at this point and thus remain inside the unit, even if fresh pipette tips are used in the unit if necessary.
  • another 4 pipette tips may remain at the 4 well locations.
  • an overflow reservoir is preferably provided for each unit to receive excess fluid.
  • the overflow reservoir is connected or connectable directly to the biochip chamber. Consequently If liquid that is filled into the biochip chamber runs directly into the overflow reservoir. Since the biochip is preferably embedded in the bottom of the titer plate, the overflow reservoir is preferably located above the biochip chamber. Therefore, the overflow reservoir is preferably provided with a wick or other absorbent material which draws the liquid from the chip chamber. In this way, all the fluid that is pressed through the chip chamber is received by the overflow reservoir.
  • the overflow reservoir preferably holds 0.5 ml to 5 ml, more preferably 1-2 ml.
  • the overflow reservoir is preferably equipped with an overflow wall, which prevents a backflow of liquid into the biochip chamber.
  • the overflow reservoir could also be filled, for example, through an inlet at one of the standard positions corresponding to the wells on a Stardard titer plate.
  • the invention comprises a titer plate for detecting an analyte, with at least one biochip, wherein the at least one biochip is designed for detecting an analyte and is surrounded by a wall, wherein a seal, preferably an elastomeric seal, on the at least one Biochip (14) is applied, which defines a Biochiphunt together with the biochip and connected to an overflow reservoir directly to the Biochiphunt or connectable.
  • a seal preferably an elastomeric seal
  • the overflow reservoir is preferably provided with a wick or other absorbent material which draws the liquid from the chip chamber. In this way, all the fluid that is pressed through the chip chamber is received by the overflow reservoir. According to this alternative embodiment, no further recesses in the titer plate are necessary, so that the entire base area of the titer plate can be completely covered with biochips. All further preferred features of the invention, which are mentioned in connection with the first embodiment of the invention according to claim 1, can also be provided in the alternative embodiment of the titer plate according to the invention.
  • the titer plate according to the invention may be penetrated by at least one bore.
  • This bore extends transversely to the carrier material of the titer plate and preferably opens between the depressions and the biochip.
  • a negative pressure can be applied by means of this, in order to suck off possible droplet impurities from the space above the titer plate.
  • each unit or recess is equipped with its own bore.
  • the disclosure is directed to a reading device for a titer plate, which is designed to ensure a further improvement of the automatic handling of the samples.
  • the reading device provides at least one electrical contact or read-out area for the biochip.
  • the readout surface is heated, since the readout result of the biochip is usually readable only after appropriate heat treatment.
  • the reading device also includes trays for the wells, which are preferably designed as heatable recordings (thermoblocks).
  • thermo-cycle unit in each case as many wells as depressions are formed in one unit, form an independent thermo-cycle unit, hereinafter also called thermoblock.
  • a PCR By suitable heating of the wells, for example, a PCR can be carried out in the wells.
  • a reading device has mutually independent units each having four trays and a contact surface.
  • a so-called "liquid handling” can take place by means of a pipetting robot.
  • the method preferably comprises an amplification of the analyte and offers the advantage of a spatial integration of a hybridization region of the biochip in a common space. Contamination of other sample materials is effectively avoided as the pipette tip remains in this space.
  • a plurality of pipette tips may be used by the pipetting robot for each unit, which remain within each unit after use. This has the advantage that neighboring units can not be contaminated with amplified material when the pipette tip is transported away over them. Particularly preferably used pipette tips are placed on the storage positions on the cover or seal of the biochip.
  • the reaction mixtures from the different wells with different pipette tips can successively be transferred into the biochip chamber and the biochip read out.
  • the pipette tip is thereby completely emptied over the biochip chamber, wherein excess liquid flows into the overflow reservoir.
  • the pipette tip is preferably deposited on the same well from which the PCR reaction mixture was transferred.
  • a fresh pipette tip is used, which in turn remains in the unit or recess.
  • a further liquid in particular a label liquid
  • a pipette tip onto the biochip or into the biochip chamber.
  • the label is e.g. Streptavidin or AG phosphatase, which binds to the biotinylated analyte.
  • the pipette tip used to transfer the label has not yet been emptied, as it may be reused for further samples, and is therefore parked in one of the storage or parking locations.
  • a substrate is preferably pipetted into the biochip chamber with another pipette tip.
  • This forms a reaction product which triggers an electrical signal on the biochip.
  • the pipette tip with which the substrate has been transferred is not yet emptied, as it may be used again for further samples, and is therefore parked in a second storage or parking position.
  • the preferred method is that multiple pipette tips, e.g. remain on different storage positions or in the recesses within the recess.
  • thermocyclization reaction For the amplification of the analyte, a thermocyclization reaction is preferably used.
  • a temperature-controlled hybridization by means of the biochip is also provided here.
  • An improved detection of the analyte is also achieved by a temperature-controlled electrical, in particular electrochemical, detection.
  • an analyzer consisting of a combination of reader and titer plate is provided. This combination is adapted to standard pipetting robots.
  • FIG. 1 1 shows a titer plate 10 for detecting an analyte from the underside 22.
  • the titer plate 10 has a plurality of recesses 12 arranged in rows, which are visible from the underside 22 as bulges 12 '.
  • the depressions 12 are spaced apart and aligned in such a way that a pipetting robot with a pipette tip can introduce necessary reagents, solvents and / or a sample to be tested for the analyte into the depressions 12.
  • biochips 14 In addition to two rows of wells 12 a number of biochips 14 is arranged.
  • the biochips 14 are also positioned relative to the wells 12 so that the robot can automatically program the pipette tip thereto.
  • These biochips 14 are designed, e.g. to detect a DNA by hybridization, wherein at least one electrical property of the biochip 14 changes.
  • Such biochips 14 may possibly also include a chip card laboratory.
  • the titer plate 10 is modular, it comprises a block, for example an injection molded part, made of plastic, in which the depressions 12 or bulges 12 'are formed, and the biochips 14. These are accommodated in receptacles 14' in the block.
  • a seal made of a thermoplastic elastomer is preferably arranged, which supports the receptacle 14 'to the top of the titer plate (in FIG Fig. 1 at the bottom).
  • the seal preferably funnel-shaped openings are arranged, which form an inlet port, an outlet and possibly storage positions.
  • the biochips 14 may each be held in a plastic ring, which is fixed in the receptacle 14 ', eg glued or welded.
  • a plurality of-in this case four-wells 12, each with a biochip 14 are combined to form a unit 21, which in FIG Fig. 1 is surrounded by a dash-dotted line. At least along this line 21 extends a wall 16 which encloses four recesses 12 and a biochip 14 and protects against contamination.
  • the injection-molded part has a thickness d - ie a wall height - of about 50mm to about 60mm.
  • the titer plate 10 has 16 such units 21.
  • FIG. 2 shows an example of a reading device 26 for a titer plate 10.
  • a series of trays 13 are arranged, which serve as heatable receptacles for the wells 12 of the titer plate.
  • the four troughs 13 of a unit 21 are each combined into a thermoblock 11 and preferably independently of each other and in particular heated by the other thermoblocks 11.
  • the illustrated reading device 26 thus comprises 12 independent 4 thermoblocks 11. With a thermoblock 11, an analyte in the wells 12 can be amplified by means of an amplification reaction to a well detectable amount.
  • the reading device 26 further provides some electrical readout or contact surfaces 15 for the biochips 14.
  • a biochip 14 rests on a readout surface 15, so that the corresponding contacts on the biochip 14 are contacted and read out.
  • the temperature of the readout surfaces 15 can be controlled.
  • 8 electrical contacts are arranged on a readout surface 15, for example.
  • the contact surfaces 15 and trays 13 are surrounded by a border 17, which has a in FIG. 1 Align the titer plate 10 shown on the reading device 26 and can hold.
  • the footprint and height of the reading device 26 is preferably compatible with the known STARlet® system, ie the dimensions are for example 150x110x110 mm 3 and fit into a 7-track carrier.
  • the reading device 26 preferably comprises 12 independent 4 thermoblocks or thermal cycler 11, with which an arbitrarily programmable PCR can be performed, as well as 12 independent temperature-controlled electrical biochip read-out blocks.
  • the integrated electronics preferably have a communication interface, 24 independent temperature control units and 12 independent digital interfaces for biochip reading.
  • Fig. 3 is the titer plate 10 of the Fig. 1 shown from the top, as directed to a reading device 26 according to Fig. 2 is attached.
  • the titer plate 10 is supported by the border 17.
  • recesses 18 can be seen, each having the shape of an approximately E-shaped elongated hole.
  • the recesses 18 go through to the bottom of the titer plate 10, so they are "milled" as in a block.
  • Each recess 18 is therefore bounded by relatively thick walls 16 which extend to the recesses 12 in the titer plate 10.
  • the walls 16 provide a fencing of the individual units of recesses 12 and the biochip 14 ready. These are arranged on the base 19 of the recess 18 and can be reached by means of a pipetting robot.
  • the pipetting robot moves a pipette tip 40 for transferring an amplified sample mixture from the depression 12 into the biochip 14 along the slot 18.
  • FIG. 4 schematically is a plan view of a single unit 21 - comprising a biochip and four wells - a titer plate 10 from the top 20 shown.
  • a recess 18 is introduced in the titer plate 10.
  • the recess 18 is formed as a slot and enclosed by the walls 16.
  • To the top 20 towards the recess 18 is open.
  • the biochip 14 is e.g. covered by a seal 30 in which at 32, a filling port is inserted, can be brought by means of a pipette tip, a sample in contact with the biochip 14.
  • the seal 30 on the biochip 14 is not permeable, but provided with a small receptacle for a pipette tip. This shot may e.g. a small recess in the seal 30, in which a pipette tip can be accommodated. However, such depressions are not absolutely necessary.
  • a pipette tip can be deposited at positions 33 and 35. Therefore, these positions 33, 35 are connected to the slot 18.
  • the opening of the pipette tip is sealed by the elastomeric material of the seal 30, so that the pipette tip is still filled with e.g. Substrate or label enzyme can be filled when it is parked at one of these storage positions 33 or 35.
  • an opening of an overflow reservoir is arranged. This position is not connected to the slot 18, since it is not necessary to move to this position a pipette tip.
  • the recess 18 is designed in the form of a multi-membered elongated hole, which makes, inter alia, the four wells "accessible from above”. That is, pipette tips 40 can be inserted and displaced via the slot 18 by means of a pipetting robot. The inserted pipette tip reaches all the depressions 12 and the biochip 14 without having to leave the recess 18. An amplified sample containing the target can be taken up by the pipette from one of the depressions 12 and transferred via the filling port 32 into the biochip 14. The fill port 32 penetrates the elastomeric seal or coating 30 that is applied to the biochip 14 for protection.
  • the liquid sample passes from a pipette tip 40 into a biochip chamber 36, which is arranged adjacent to the sensitive surfaces of the biochip 14 and in particular runs between the biochip 14 and the seal 30.
  • a biochip chamber 36 From the biochip chamber 36 goes from an overflow reservoir 24, which is open to the top.
  • a wicking element 31 is arranged, in this case a cylindrical piece of absorbent material, e.g. Foam or cotton wool. From the biochip chamber 34, the liquid sample from a pipette tip 40 thus continues to run into the overflow reservoir 24.
  • a pipette tip may remain in 6 different positions within the recess 18 after use: if the pipette spit is still filled, e.g. With label or substrate, in particular with a liquid that will be needed again later, it can be parked on one of the two storage positions 33, 35, where its opening is closed by the seal 30.
  • An empty, used pipette tip e.g. after pipetting PCR product from one of the depressions 12 via the filling port 32 into the biochip chamber 36, it is possible to deposit in the respective depression 12. After the transfer of PCR product into the biochip chamber 36, the pipette tip can be completely emptied, since the biochip chamber 36 is connected directly to the overflow reservoir 24, into which all excess liquid is sucked off.
  • FIG. 5 shows a combination of a titer plate 10 with a reading device 26 in longitudinal section, wherein again only one unit 21 is shown.
  • the titer plate 10 comprises a plurality of depressions 12, the bulges 12 'of which are introduced into troughs 13 of a thermoblock 11.
  • the introduced sample material is copied several times by means of a thermocyclization reaction, such as a PCR.
  • a barrier medium 28 - here a mineral oil film - is provided in one of the wells 12.
  • To the wells 12 close to walls 16, which are open to the first side 20.
  • pipette tips 40 introduced by a pipetting robot can reach the recesses 12.
  • the wall 14 is not cut, but recognizable in plan view.
  • the biochip 14 is surrounded by a plastic ring 41, which preferably has a sealing lip and seals the biochip 14 against the titer plate 10 or the seal 30.
  • the biochip 14 has as a contamination protection a seal 30, e.g. made of polypropylene.
  • a biochip chamber 36 is formed, into which a sample can be taken.
  • the amplified sample can be transferred with the pipette tip 40 via a filling port 32 into the biochip chamber 36, wherein the bounded recess 18 is not left.
  • a bore 38 is arranged between the recesses 12 and the filling port 32.
  • This bore 38 penetrates the entire titer plate 10.
  • a vacuum or vacuum By applying a vacuum or vacuum, a steady stream of air can be generated which further reduces the likelihood of contamination with sample material.
  • the air flow enters the titer plate 10 via the first side 20.
  • An aerosol, droplets or the like is then removed with the air flow through the bore 38.
  • the bore 38 may also be covered with a filter material 39.
  • the sample enters the chip chamber 36 via the filling port 32 via the biochip 14. If too much liquid is filled into the biochip chamber 36, it passes through the outlet 34 in the seal 30 into an overflow reservoir 24.
  • an intermediate wall 37 is as overflow protection provided as in FIG. 5 shown.
  • a Saugdocht which can absorb excess sample liquid and conducts it by means of capillary forces in the overflow reservoir 24, which can accommodate about 1.3ml liquid.
  • the overflow reservoir 24 is located directly above the outlet 34, but separated from the biochip chamber 36 by a gap.
  • the overflow reservoir 24 is almost completely filled with a wicking element, as in FIG Fig. 4 shown, which can hold about 1-2ml of liquid. Liquid occurring at the outlet 34 is absorbed by the wick. Due to the gap, the liquid flow breaks off immediately, if no liquid is replenished. In this way, no return flow, not even by capillary forces.
  • the method according to the invention for the detection of an analyte by means of a biochip 14 can be performed.
  • the biochip 14 is integrated into a titer plate 10 as described above.
  • the method comprises the following steps: introduction of a sample into one of the wells 12 of the titer plate 10 and introduction of reagents into the wells 12. Subsequently, an amplification reaction is carried out with the reagent-containing sample, a PCR reaction, an ASPE reaction being carried out. and / or an ARMS reaction. Thereafter, the transfer of the resulting reaction mixture to the biochip 14, and readout of the biochip 14, which changes by hybridization with the analyte at least one electrically detectable property.
  • the inventive method is characterized in that the liquids are transferred by means of a pipetting robot with the pipette tip 40 and the pipette tip 40 remains within the enclosed space 18. For this purpose, it is stored in one of the recesses 12 or on one of the storage positions 33, 35.
  • FIG. 6 An inventive method for detecting an analyte by means of biochips 14 is in FIG. 6 shown as a flowchart. It first comprises the introduction 102 of one or more sample (s) to be examined into one or more of the wells 12 of a titer plate 10.
  • This titer plate 10 is preferably a titer plate 10 according to the invention as described above.
  • the pipette tip 40 brought into contact with the sample may then be disposed of by a pipetting robot in the usual way.
  • a further pipette tip 40 is introduced by the pipetting robot into the recess 18 and preferably thereafter disposed of in the usual way outside the recess.
  • the sample may be overcoated with mineral oil prior to the amplification reaction.
  • a temperature program 106 is performed to run a PCR reaction. The reaction mixture then contains the analyte in bulk copied form for better detection.
  • the pipetting robot then picks up a new, clean pipette tip 40, step 108.
  • the reaction mixture with the amplified sample is transferred from a first of the depressions 12 into the biochip 14 in step 110.
  • the reaction mixture is introduced into the biochip chamber 36.
  • Eventually too much received reaction mixture passes through the outlet 34 into the overflow reservoir 24.
  • the used pipette tip is after complete emptying placed on the first recess 12, step 114, ie it remains within the recess 18th
  • the pipetting robot first receives another new, clean pipette tip 40, step 116.
  • This pipette tip is used to pick up a label enzyme from a reservoir located outside of the recess 18 and transfer it into the biochip 14 in step 118.
  • the pipette tip 40 is not yet empty thereafter and is therefore deposited at the first deposition position 33, step 120, i. it remains within the recess 18.
  • the pipetting robot receives another new, clean pipette tip 40, step 122.
  • This pipette tip is used to pick up a substrate from a reservoir located outside of the recess 18 and transfer it into the biochip 14 in step 124.
  • the pipette tip 40 is not yet empty thereafter and is therefore deposited at the second deposition position 35, step 126, i. it remains within the recess 18.
  • biochip 14 may be read out, step 128.
  • Steps 110 to 128 may be repeated several more times, with the other reaction mixtures from the other wells 12.
  • the pipette tip used to pipette the reaction mixture from the well 12 is returned to the respective well 12 and remains there until it is disposed of together with the titer plate 10.
  • the pipette tips with which label enzyme and substrate were transferred are reused and then parked again at storage locations 33, 35.
  • the invention thus does not allow disposing of used pipette tips over other recesses 18 in which other samples are being examined, thus reducing the risk of contamination.

Description

Die vorliegende Erfindung bezieht sich auf eine Titerplatte zur Detektion eines Analyten gemäß Anspruch 1. Weiterhin bezieht sich die Erfindung auf ein Verfahren zur Detektion eines Analyten gemäß Anspruch 12.The present invention relates to a titer plate for detecting an analyte according to claim 1. Furthermore, the invention relates to a method for detecting an analyte according to claim 12.

Die WO 03/087410 A1 offenbart eine Vorrichtung und ein Verfahren zur direkten Durchführung biochemischer Prozesse auf einem Substrat. Das Substrat umfasst eine Karte, die lösbar mit dem Substrat verbunden ist, wobei ein Reaktionselement ebenfalls lösbar auf der Oberseite des Substrats angeordnet ist.The WO 03/087410 A1 discloses an apparatus and method for directly performing biochemical processes on a substrate. The substrate comprises a card which is detachably connected to the substrate, wherein a reaction element is also detachably arranged on the upper side of the substrate.

Die WO 2007/076023 A1 betrifft eine Multi-Well-Analyseplatte mit einem Plattenkörper und einer Vielzahl darin definierter Wells, wobei die Wells eine Bindungsfläche mit einem darauf immobilisierten Abfangreagenz und ein Trockenreagenz aufweisen.The WO 2007/076023 A1 relates to a multiwell analysis plate having a plate body and a plurality of wells defined therein, the wells having a binding surface with a capture reagent immobilized thereon and a dry reagent.

Die WO 2007/111347 A1 offenbart eine Vorrichtung zur Behandlung einer Multi-Well-Platte, wobei die Vorrichtung mindestens einen Düsenkopf zur Abgabe und Aufnahme innerhalb der jeweiligen Wells aufgenommener Flüssigkeiten aufweist.The WO 2007/111347 A1 discloses a device for treating a multi-well plate, the device having at least one nozzle head for dispensing and receiving within the respective wells of received fluids.

Mittels molekulardiagnostischer Analysen werden z.B. virale Belastungen von HI Viren, Hepatitis C und Hepatitis B Viren bestimmt. In einem Zentral-Labor werden heute derartige Analysen häufig auf Pipettier-Roboter-Anlagen durchgeführt. Als Reaktionsgefäße werden Mikrotiterplatten, insbesondere sogenannte 96er Platten mit beispielsweise 8 Reihen zu je 12 Vertiefungen, eingesetzt. Diese Vertiefungen sind in standardisierten Abständen von etwa 0,9 cm voneinander angeordnet. Probenmaterial und Reagenzien werden vom Pipettier-Roboter frei programmierbar mittels Pipettenspitzen aus Plastik oder waschbaren, wieder verwendbaren Spitzen in vorbestimmte Vertiefungen bzw. Wells der Titerplatten pipettiert. Außerdem werden in der Pipettier-Roboter-Anlage einige Arbeitsschritte wie Inkubation bei bestimmter Temperatur, Misch-Vorgänge oder zum Beispiel magnetische Trennvorgänge durchgeführt.By means of molecular diagnostic analyzes, e.g. viral loads of HI viruses, hepatitis C and hepatitis B viruses. In a central laboratory today such analyzes are often performed on pipetting robot systems. The reaction vessels used are microtiter plates, in particular so-called 96-well plates with, for example, 8 rows of 12 wells each. These recesses are arranged at standardized intervals of about 0.9 cm from each other. Sample material and reagents are pipetted by the pipetting robot in a programmable manner by means of pipette tips made of plastic or washable, reusable tips into predetermined wells or wells of the titer plates. In addition, some operations such as incubation at a certain temperature, mixing processes or, for example, magnetic separation processes are carried out in the pipetting robot system.

Ein nahezu unverzichtbares Verfahren der Molekulardiagnostik ist eine Amplifikation eines sogenannten Targets - des Analyten - durch eine Thermozyklisierungsreaktion wie z.B. einer sogenannten Polymerase-Chain-Reaktion - kurz PCR. Dabei werden kleinste, nicht direkt nachweisbare Mengen an Analyt-Molekülen exponentiell auf nachweisbare Mengen vervielfältigt.An almost indispensable method of molecular diagnostics is an amplification of a so-called target - the analyte - by a thermocyclization reaction such as a so-called polymerase chain reaction - short PCR. there smallest, not directly detectable amounts of analyte molecules are multiplied exponentially to detectable levels.

Ein Manipulieren von zu amplifizierenden bzw. amplifizierten Proben ist äußerst kritisch. Kleinste Kontaminationen, zum Beispiel über eine Aerosolbildung, mit ggf. sogar nur einzelnen Molekülen würden zu Probenmaterial mit falsch positiven oder erhöhten quantitativen Ergebnissen führen. Deshalb ist es in der Molekulardiagnostik üblich, Probenvorbereitung und Amplifikation in getrennten Räumen durchzuführen. Dies ist jedoch sehr aufwendig und benötigt die Bearbeitung der Proben durch Labormitarbeiter.Manipulating samples to be amplified or amplified is extremely critical. Smallest contamination, for example Aerosol formation, with possibly even single molecules, would lead to sample material with false positive or increased quantitative results. Therefore, it is common in molecular diagnostics to perform sample preparation and amplification in separate rooms. However, this is very expensive and requires the processing of the samples by laboratory staff.

Ein Lösungsweg besteht in einem hermetischen Versiegeln der Titerplatte mit Laminierfolie vor Durchführung der PCR wie in der DE 10 2005 059 535 A1 beschrieben. Die Titerplatte darf anschließend im gleichen Raum nicht mehr geöffnet werden. Diese Maßnahme der getrennten Räume steht dem Trend entgegen, Analysenprozesse zu integrieren und zu automatisieren.One approach is to hermetically seal the titer plate with laminating film prior to performing the PCR as in DE 10 2005 059 535 A1 described. The titer plate may then no longer be opened in the same room. This measure of the separated rooms contradicts the trend to integrate and automate analysis processes.

Um das entstandene PCR-Produkt mitsamt dem amplifizierten Analyten zu analysieren, kommen beispielsweise optische Verfahren auf Basis von sogenannten Real-Time-PCR in Frage. Es gibt jedoch Messverfahren in der Molekulardiagnostik zur elektrischen Detektion, bei welchen Hybridisierungsreaktionen durchgeführt werden. Ein gattungsgemäßes Verfahren ist aus der WO 99/07879 A1 bekannt. Dazu wird das entstandene PCR-Produkt aus dem Reaktionsgefäß in ein weiteres Gefäß für die Hybridisierung überführt. Eine Lösung für einen kontaminationsfreien Transfer liegt in einer hermetischen Integration der Gefäße für die PCR und die Hybridisierung in einer geschlossenen Kassette, wie z.B. in einer sogenannten quicklab® Point of Care-Kassette. Diese Lösung ist jedoch für eine routinemäßige, vielfältige Anwendung oft zu teuer und erlaubt nur vergleichsweise geringe Durchsätze.To analyze the resulting PCR product together with the amplified analyte, for example, optical methods based on so-called real-time PCR come into question. However, there are measurement methods in molecular diagnostics for electrical detection in which hybridization reactions are performed. A generic method is from the WO 99/07879 A1 known. For this purpose, the resulting PCR product from the reaction vessel is transferred to another vessel for hybridization. A solution for a contamination-free transfer lies in a hermetic integration of the vessels for PCR and hybridization in a closed cassette, such as in a so-called quicklab® point of care cassette. However, this solution is often too expensive for a routine, diverse application and allows only comparatively low throughputs.

Für eine effiziente Detektion kann ein Produkt der Hybridisierungsreaktion mit dem amplifizierten Analyten elektrisch erfasst werden. Das exemplarisch genannte quicklab® ist zum Beispiel in der DE 102 33 212 A1 offenbart. Eine weitere Anordnung für einen Biochip ist aus der DE 100 58 397 A1 bekannt. Die DE 101 26 341 A1 lehrt einen Biochip, der durch Hybridisierung mit einem Analyten eine elektrisch erfassbare Eigenschaft ändert. Es ist eine Aufgabe der vorliegenden Erfindung, eine Titerplatte anzugeben, die eine verbesserte automatisierte Handhabung der amplifizierten Proben ermöglicht.For efficient detection, a product of the hybridization reaction with the amplified analyte can be detected electrically. The exemplary named quicklab® is for example in the DE 102 33 212 A1 disclosed. Another arrangement for a biochip is from the DE 100 58 397 A1 known. The DE 101 26 341 A1 teaches a biochip that changes an electrically detectable property by hybridization with an analyte. It is an object of the present invention to provide a titer plate which allows for improved automated handling of the amplified samples.

Diese Aufgabe wird mit technisch einfachen Mitteln gemäß Anspruch 1 gelöst.This object is achieved by technically simple means according to claim 1.

Die Erfindung umfasst insbesondere eine erste Ausführungsform einer Titerplatte gemäß Anspruch 1.The invention particularly comprises a first embodiment of a titer plate according to claim 1.

Die erfindungsgemäße Titerplatte weist vorzugsweise Vertiefungen auf, die in Abständen angeordnet sind, die den Abständen bei einer Standard-Mikrotiterplatte entsprechen, damit die erfindungsgemäße Titerplatte von einem Pipettier-Roboter bedient werden kann. Dieser Standard-Abstand beträgt z.B. 9mm. Darüber hinaus weist die Titerplatte vorzugsweise die Länge und die Breite einer Standard-Titerplatte auf, z.B. entspricht sie bevorzugt dem Standard-Titerplattenformat mit 12x8 Vertiefungen. Die Dicke der erfindungsgemäßen Titerplatte ist bevorzugt größer, um die Wand zu beherbergen, die jeweils einen Biochip und mehrere Vertiefungen umgibt, wie weiter unten noch genauer beschrieben.The titer plate according to the invention preferably has depressions which are arranged at intervals which correspond to the distances in a standard microtiter plate, so that the titer plate according to the invention can be operated by a pipetting robot. This standard distance is e.g. 9mm. In addition, the titer plate preferably has the length and width of a standard titer plate, e.g. it preferably conforms to the standard titer plate format with 12x8 wells. The thickness of the titer plate of the invention is preferably greater to accommodate the wall surrounding each one biochip and a plurality of wells, as described in more detail below.

Die erfindungsgemäße Titerplatte kann bevorzugt durch einen Pipettier-Roboter bedient werden, der über einen Vorrat an frischen Pipettenspitzen verfügt. Diese kann er greifen, an eine beliebige der z.B. 12x8=96 Positionen der Vertiefungen auf einer Standard-Titerplatte verfahren, sie dort absenken und aus der Vertiefung Flüssigkeit absaugen oder einspritzen. Darüber hinaus kann er eine gebrauchte Pipettenspitze in einem Abfallbehälter ablegen, eine neue, saubere Pipettenspitze greifen und mit dieser weiterarbeiten.The titer plate according to the invention can preferably be operated by a pipetting robot which has a supply of fresh pipette tips. He can grab these, to any of the e.g. 12x8 = 96 positions of the wells on a standard titer plate, lower them there and aspirate or inject liquid from the well. In addition, he can put a used pipette tip in a waste container, grab a new, clean pipette tip and continue working with it.

Zur Detektion des Analyten ist erfindungsgemäß zumindest ein Biochip auf der Titerplatte angeordnet. Unter "Biochip" wird ein Chip verstanden, der zur Detektion eines Analyten, z.B. einer bestimmten DNA, geeignet ist und insbesondere bei Anwesenheit des Analyten ein elektrisches Signal erzeugt. Typischerweise weist der Biochip eine oder mehrere sensitive Flächen mit Fängermolekülen auf, die jeweils spezifisch an einen Analyten binden. Es können an einem Biochip mehrere sensitive Flächen mit verschiedenen Fängermolekülen angeordnet sein, z.B. 8 bis 400, besonders bevorzugt 64 oder 128 sensitive Flächen bzw. "Spots". Bei dem Biochip handelt es sich z.B. um einen CMOS Chip mit universellen Zip-Code Fängern. Bevorzugt sind mehrere Biochips, insbesondere 6 bis 24, vorzugsweise 12 Biochips auf einer Titerplatte vorhanden, so dass z.B. 12 Random Access Multiplex Assays durchgeführt werden können.For the detection of the analyte, at least one biochip is arranged on the titer plate according to the invention. "Biochip" is understood to mean a chip which is suitable for detecting an analyte, for example a specific DNA, and in particular in the presence thereof the analyte generates an electrical signal. Typically, the biochip has one or more sensitive surfaces with capture molecules that each bind specifically to an analyte. It can be arranged on a biochip several sensitive surfaces with different capture molecules, eg 8 to 400, more preferably 64 or 128 sensitive surfaces or "spots". The biochip is, for example, a CMOS chip with universal zip-code catchers. Preferably, a plurality of biochips, in particular 6 to 24, preferably 12 biochips, are present on a titer plate, so that, for example, 12 random access multiplex assays can be performed.

Wenn Analytmoleküle an die Fängermoleküle anbinden, z.B. mit ihnen hybridisieren, wird z.B. eine Änderung der Kapazität an der sensitiven Fläche bewirkt, die elektrisch ausgelesen werden kann. Dies geschieht vorzugsweise wie folgt: Die Analyt bzw. das Target ist biotinyliert. Nachdem Analytmoleküle an die Fängermoleküle gebunden haben, wird ein Label-Enzym wie z.B. Streptavidin oder AG Phosphatase beigefügt. Dieses Enzym bindet an das Biotin des Targets. Wenn daraufhin ein Substrat beigefügt wird, entsteht ein Reaktionsprodukt, welches ein elektrisches Signal erzeugt, das vom Biochip ausgelesen werden kann. Besonders bevorzugt ist der Biochip zur Detektion von DNA mittels Hybridisierung an geeignete Fängermoleküle ausgelegt.When analyte molecules bind to the capture molecules, e.g. hybridize with them, e.g. causes a change in the capacitance on the sensitive surface, which can be read out electrically. This is preferably done as follows: The analyte or the target is biotinylated. After analyte molecules bind to the capture molecules, a label enzyme such as e.g. Streptavidin or AG phosphatase added. This enzyme binds to the biotin of the target. When a substrate is subsequently added, a reaction product is produced which generates an electrical signal that can be read by the biochip. Particularly preferably, the biochip is designed for the detection of DNA by means of hybridization to suitable capture molecules.

Vorzugsweise ist/sind die sensitiven Fläche(n) des Biochips auf einer Seite, insbesondere der Oberseite des Biochips angeordnet, während die Kontakte, an denen das elektrische Signal ausgelesen werden kann, auf einer hierzu gegenüberliegenden Seite des Biochips angeordnet sind. Vorzugsweise sind 5 bis 100, insbesondere 8 bis 12 sensitive Flächen und entsprechend viele Kontakte an einem Biochip angeordnet, so dass gleichzeitig auf mehrere verschiedene Analyten getestet werden kann.The sensitive surface (s) of the biochip is / are preferably arranged on one side, in particular the upper side of the biochip, while the contacts on which the electrical signal can be read out are arranged on a side of the biochip opposite thereto. Preferably, 5 to 100, in particular 8 to 12 sensitive surfaces and correspondingly many contacts are arranged on a biochip, so that it is possible to test simultaneously on a plurality of different analytes.

Der Biochip ist vorzugsweise in die Titerplatte eingebettet, z.B. ist der Biochip in einen Kunststoffring eingelassen, der wiederum in eine geeignete Vertiefung der Titerplatte eingesetzt ist, so dass Proben- oder Reaktionsmaterial in Kontakt mit den bevorzugt nach oben weisenden sensitiven Flächen des Biochips gebracht werden kann. Bevorzugt ist der Biochip auf der Seite der sensitiven Flächen - z.B. nach oben hin - mit einer Dichtung versehen, welche verhindert, dass Verunreinigungen an die Fängermoleküle dringen können. Die Dichtung ist z.B. eine Abdeckung aus einem elastomeren und/oder thermoplastischen Material.The biochip is preferably embedded in the titer plate, e.g. the biochip is embedded in a plastic ring, which in turn is inserted into a suitable depression of the titer plate, so that sample or reaction material can be brought into contact with the preferably upward-facing sensitive surfaces of the biochip. Preferably, the biochip is on the side of the sensitive areas - e.g. towards the top - provided with a seal, which prevents impurities can penetrate the catcher molecules. The seal is e.g. a cover of an elastomeric and / or thermoplastic material.

Der Biochip erstreckt sich dabei vorzugsweise über einen Bereich, auf dem bei einer Standard-Titerplatte eine feste Anzahl wie z.B. 2, 4, 6 oder 8 Vertiefungen angeordnet sind. An der Standard-Position einer Vertiefung kann ein Pipettier-Roboter anhalten und Material ansaugen oder abgeben. Dadurch kann der Biochip von Pipettier-Robotern mit Probenmaterial, Reaktionsmaterial oder mit Label-Enzymen und Substrat befüllt werden.The biochip preferably extends over a region on which a standard titer plate has a fixed number, e.g. 2, 4, 6 or 8 wells are arranged. At the standard position of a well, a pipetting robot can stop and suck in or discharge material. This allows the biochip of pipetting robots to be filled with sample material, reaction material or with label enzymes and substrate.

Neben jedem DNA-Chip sind jeweils mehrere Vertiefungen bzw. Löcher angeordnet, in denen z.B. eine Amplifikation des Targets z.B. mittels einer PCR Reaktion durchgeführt werden kann oder andere Reagenzien bereitgestellt werden. Somit bilden ein Biochip und mehrere der Vertiefungen jeweils eine Einheit, innerhalb derer eine bestimmte Analyse durchgeführt wird. Diese Einheit ist von einer Wand umfriedet. In der Einheit können alle notwendigen Schritte zur Detektion durchgeführt werden. Durch die räumliche Abtrennung der Einheiten können viele Einheiten auf sehr kleiner Fläche untergebracht werden, ohne das Kontaminieren der einzelnen Proben zu riskieren. Eine massiv parallele Untersuchung von sehr vielen Proben ist schnell und kostengünstig möglich.In each case a plurality of depressions or holes are arranged next to each DNA chip, in which e.g. an amplification of the target e.g. can be performed by a PCR reaction or other reagents are provided. Thus, one biochip and several of the wells each form a unit within which a particular analysis is performed. This unit is surrounded by a wall. All necessary steps for detection can be carried out in the unit. The spatial separation of the units allows many units to be accommodated in a very small area without risking contamination of the individual samples. A massively parallel examination of very many samples is possible quickly and inexpensively.

Zu einer von einer Wand umgebenen Einheit gehören z.B. 2, 4, 6, 8, oder 10 Vertiefungen und ein, zwei oder drei Biochips. Besonders bevorzugt bilden 4 Vertiefungen und 1 Biochip eine Einheit, wobei der Biochip eine Fläche belegt, die bei einer Standard-Titerplatte ebenfalls von 4 Vertiefungen eingenommen wird. Eine bevorzugte Einheit entspricht somit 8 Vertiefungen und weist somit 8 Positionen auf, in denen ein Pipettier-Roboter eine Pipettenspitze handhaben kann. Eine Titerplatte im Standard 12x8 Format weist somit 12 Einheiten auf, die jeweils durch eine Wandung voneinander abgetrennt sind.For example, a unit surrounded by a wall includes 2, 4, 6, 8, or 10 wells and one, two, or three biochips. Particularly preferably, 4 wells and 1 biochip form one Unit, where the biochip occupies an area that is also taken up by 4 wells in a standard titer plate. A preferred unit thus corresponds to 8 wells and thus has 8 positions in which a pipetting robot can handle a pipette tip. A titer plate in standard 12x8 format thus has 12 units, each separated by a wall from each other.

Die erfindungsgemäße Titerplatte ist beispielsweise ein Block von ca. 20-70mm, vorzugsweise von 45±10mm Höhe, wobei die Wandung zwischen den einzelnen Einheiten dadurch gebildet wird, dass jede Einheit in einer Art Ausnehmung in dem Block angeordnet ist. Die Vertiefungen und der Biochip sind am Grund der Ausnehmung angeordnet. Der Pipettier-Roboter kann innerhalb der Ausnehmung eine Pipettenspitze von einer Vertiefung zur nächsten Vertiefung bzw. zu dem Biochip verschieben. Die Wand, die den Biochip und mehrere Vertiefungen umgibt, ist die Wand der Ausnehmung und ist bevorzugt etwa so hoch wie die Höhe der Titerplatte also bevorzugt ca. 20-70mm, vorzugsweise 45±10mm hoch. Dadurch wird wirkungsvoll verhindert, dass beim Pipettieren einzelne Tröpfchen von einer Einheit in eine daneben liegende Einheit gelangen können. Somit weist die Titerplatte vorzugsweise so viele Ausnehmungen auf wie Einheiten aus jeweils mehreren Vertiefungen und einem Biochip.The titer plate according to the invention is, for example, a block of about 20-70 mm, preferably of 45 ± 10 mm height, wherein the wall between the individual units is formed by each unit being arranged in a kind of recess in the block. The depressions and the biochip are arranged at the bottom of the recess. The pipetting robot can move a pipette tip from one depression to the next depression or to the biochip within the recess. The wall surrounding the biochip and a plurality of depressions is the wall of the recess and is preferably about as high as the height of the titer plate, ie preferably about 20-70 mm, preferably 45 ± 10 mm high. This effectively prevents individual droplets from being able to pass from one unit to an adjacent unit during pipetting. Thus, the titer plate preferably has as many recesses as units from a plurality of wells and a biochip.

Eine derartige Ausnehmung ist bevorzugt lediglich zu einer ersten Seite, insbesondere der Oberseite der Titerplatte, hin offen. In jede Einheit kann eine Pipette über die Ausnehmung eingebracht werden und verbleibt während des Transfers der Probe z.B. von einer Vertiefung zum Biochip innerhalb des umfriedeten Raumes der Einheit. Die der ersten Seite gegenüberliegende Seite, vorzugsweise die Unterseite, der Titerplatte stellt eine Aufnahme für den Biochip bereit und ist mit Auswölbungen versehen, welche jeweils einer Vertiefung entsprechen.Such a recess is preferably only open to a first side, in particular the upper side of the titer plate. In each unit, a pipette can be introduced via the recess and remains during the transfer of the sample, for example from a recess to the biochip within the enclosed space of the unit. The first side opposite side, preferably the bottom, the titer plate provides a receptacle for the biochip and is provided with bulges, each corresponding to a depression.

Besonders bevorzugt sind die Ausnehmungen jeweils in Form eines Langlochs ausgebildet und weisen für jede Einheit beispielsweise in etwa eine "E" Form auf. Dabei sind die Ausnehmungen dem Bewegungsablauf eines Pipettier-Roboters angepasst. Das Langloch erstreckt sich über alle vier Vertiefungen und zumindest eine Position über dem Biochip. Es bildet quasi eine einzige Verbindungslinie zwischen den Vertiefungen und dem Biochip. Dies hat den Vorteil, dass nicht nur zwischen den einzelnen Einheiten, sonders teilweise auch zwischen den einzelnen Vertiefungen innerhalb einer Einheit Wandungen angeordnet sind. Kommt eine Pipettenspitze einmal mit Probenmaterial in Kontakt, kann die Spitze innerhalb dieser Einheit belassen werden. Anders als bei bekannten Titerplatten können kleinste Tröpfchen nicht in andere Analyseeinheiten geraten und diese kontaminieren, da eine benutzte Pipettenspitze nicht über andere Vertiefungen, bzw. Chips herausgeführt wird. Die Ausnehmung ist nach einer Weiterbildung so ausgebildet, dass eine oder mehrere Pipettenspitzen hierin verbleiben können.Particularly preferably, the recesses are each formed in the form of a slot and have, for example, approximately an "E" shape for each unit. The recesses are adapted to the movement of a pipetting robot. The slot extends over all four recesses and at least one position above the biochip. It virtually forms a single connecting line between the depressions and the biochip. This has the advantage that not only between the individual units, but also partially between the individual wells within a unit walls are arranged. Once a pipette tip comes into contact with sample material, the tip can be left inside this unit. In contrast to known titer plates, the smallest droplets can not get into other analysis units and contaminate them, as a used pipette tip is not led out over other depressions or chips. The recess is designed according to a development so that one or more pipette tips can remain therein.

Die Titerplatte ist bevorzugt aus Kunststoff hergestellt. Da sie bevorzugt mit Ausnehmungen ausgestattet ist, die zu einer Seite hin offen sind, ist es möglich, die Titerplatte (ohne Biochips) im Spritzguss-Verfahren herzustellen. Vorzugsweise sind die Wände bzw. Ausnehmungen und die Vertiefungen als ein einstückiges Kunststoff-Spritzgussteil gefertigt, in dass später die Biochips eingebettet werden. Alternativ kann die Titerplatte auch als eine flache Platte mit Vertiefungen und Aufnahmen für die Biochips ausgebildet werden, auf die Wandelemente zwischen den einzelnen Einheiten aufgesetzt werden. Da in diesem Fall für eine Dichtung zwischen Wandelemente und platte gesorgt werden muss, ist diese Ausführungsform jedoch nicht bevorzugt.The titer plate is preferably made of plastic. Since it is preferably equipped with recesses which are open to one side, it is possible to produce the titer plate (without biochips) by injection molding. Preferably, the walls or recesses and the recesses are made as a one-piece plastic injection-molded part, in which later the biochips are embedded. Alternatively, the titer plate can also be formed as a flat plate with recesses and receptacles for the biochips, are placed on the wall elements between the individual units. Since in this case, a seal between wall elements and plate must be taken care of, this embodiment is not preferred.

Der Biochip ist bevorzugt derart in die Titerplatte eingebettet, dass jede Ecke des Biochips an der entsprechenden Position einer Vertiefung auf der Mikrotiterplatte im Standardformat liegt. An zumindest einer dieser Positionen ist ein Einfüllport in einer elastomeren Abdeckung oder Dichtung des Biochips vorhanden. Die elastomere Dichtung dient dazu, die sensitiven Flächen des Biochips vor Kontamination zu schützen. Sie kann z.B. in einem Zweikomponenten-Spritzguss-verfahren bei der Herstellung der Titerplatte in diese integriert werden. Alternativ ist die Dichtung bzw. Abdeckung durch einen Kunststoffring aufgespannt, in den der Biochip eingelassen ist. Besonders bevorzugt ist die elastomere Dichtung leicht von der sensitiven Fläche des Biochips beabstandet, wodurch dazwischen eine Biochipkammer gebildet wird, welche in einer Flüssigkeitsverbindung mit den sensitiven Flächen des Biochips steht.The biochip is preferably embedded in the titer plate such that each corner of the biochip is located at the corresponding position of a well on the standard format microtiter plate. At least one of these positions is a Einfüllport in an elastomeric cover or seal the biochip present. The elastomeric seal serves to protect the sensitive surfaces of the biochip from contamination. It can be integrated into the titer plate in a two-component injection molding process, for example. Alternatively, the seal or cover is clamped by a plastic ring, in which the biochip is embedded. More preferably, the elastomeric seal is slightly spaced from the sensitive surface of the biochip thereby forming therebetween a biochip chamber in fluid communication with the sensitive surfaces of the biochip.

Über den Einfüllport kann bevorzugt Flüssigkeit in die Biochipkammer eingespritzt werden, die dann in Kontakt mit den Fängermolekülen gelangt und somit vom Biochip analysiert wird. Da der Einfüllport des Biochips quasi mit einer der Standard-Positionen der Vertiefungen einer Titerplatte "fluchtet", kann eine Pipette mittels des Pipettier-Roboters automatisch eine Probe auf den Biochip transferieren.Via the filling port, liquid can preferably be injected into the biochip chamber, which then comes into contact with the catcher molecules and is thus analyzed by the biochip. Since the filling port of the biochip is, as it were, "aligned" with one of the standard positions of the wells of a titer plate, a pipette can automatically transfer a sample to the biochip by means of the pipetting robot.

Besonders bevorzugt sind oberhalb der elastomeren Dichtung des Biochips zumindest eine und bevorzugt zwei Ablagepositionen für eine Pipettenspitze vorgesehen, und zwar an einer oder bevorzugt zwei der z.B. 4 Positionen, die jeweils einer Vertiefung auf einer Standard-Titerplatte entsprechen und somit durch einen Pipettier-Roboter erreichbar sind. Eine mit Probenmaterial in Kontakt gekommene Pipette kann an dieser Stelle abgelegt werden und somit innerhalb der Einheit verbleiben, auch wenn ggf. frische Pipettenspitzen in der Einheit verwendet werden. Darüber hinaus können weitere 4 Pipettenspitzen an den Positionen der 4 Vertiefungen verbleiben.Particularly preferably, at least one and preferably two deposition positions for a pipette tip are provided above the elastomeric seal of the biochip, on one or preferably two of the e.g. 4 positions, each corresponding to a well on a standard titer plate and thus accessible by a pipetting robot. A pipette that has come into contact with sample material can be deposited at this point and thus remain inside the unit, even if fresh pipette tips are used in the unit if necessary. In addition, another 4 pipette tips may remain at the 4 well locations.

Ferner ist bevorzugt ein Überlaufreservoir für jede Einheit vorgesehen, um überschüssige Flüssigkeit aufzunehmen. In einer bevorzugten Ausführungsform ist das Überlaufreservoir direkt mit der Biochipkammer verbunden bzw. verbindbar. Somit läuft Flüssigkeit, die in die Biochipkammer eingefüllt wird, direkt weiter in das Überlaufreservoir. Da der Biochip bevorzugt in den Boden der Titerplatte eingelassen ist, befindet sich das Überlaufreservoir bevorzugt oberhalb der Biochipkammer. Daher ist das Überlaufreservoir vorzugsweise mit einem Docht oder einem anderen saugfähigen Material ausgestattet, das die Flüssigkeit aus der Chipkammer zieht. Auf diese Weise wird sämtliche Flüssigkeit, die durch die Chipkammer gedrückt wird, von dem Überlaufreservoir aufgenommen. Das Überlaufreservoir fasst bevorzugt 0,5 ml bis 5 ml, besonders bevorzugt 1-2 ml. Ferner ist das Überlaufreservoir vorzugsweise mit einer Überlaufwand ausgestattet, die ein Zurückfließen von Flüssigkeit in die Biochipkammer verhindert. Alternativ könnte das Überlaufreservoir auch z.B. durch einen Einlass an einer der Standard-Positionen befüllt werden, die den Vertiefungen auf einer Stardard-Titerplatte entsprechen.Further, an overflow reservoir is preferably provided for each unit to receive excess fluid. In a preferred embodiment, the overflow reservoir is connected or connectable directly to the biochip chamber. Consequently If liquid that is filled into the biochip chamber runs directly into the overflow reservoir. Since the biochip is preferably embedded in the bottom of the titer plate, the overflow reservoir is preferably located above the biochip chamber. Therefore, the overflow reservoir is preferably provided with a wick or other absorbent material which draws the liquid from the chip chamber. In this way, all the fluid that is pressed through the chip chamber is received by the overflow reservoir. The overflow reservoir preferably holds 0.5 ml to 5 ml, more preferably 1-2 ml. Furthermore, the overflow reservoir is preferably equipped with an overflow wall, which prevents a backflow of liquid into the biochip chamber. Alternatively, the overflow reservoir could also be filled, for example, through an inlet at one of the standard positions corresponding to the wells on a Stardard titer plate.

Gemäß einer alternativen Ausführungsform umfasst die Erfindung eine Titerplatte zur Detektion eines Analyten, mit zumindest einem Biochip, wobei der zumindest eine Biochip zur Detektion eines Analyten ausgelegt ist und von einer Wand umgeben ist, wobei eine Dichtung, bevorzugt eine elastomere Dichtung, auf dem zumindest einen Biochip (14) aufgebracht ist, welche gemeinsam mit dem Biochip eine Biochipkammer definiert und mit einem Überlaufreservoir direkt mit der Biochipkammer verbunden bzw. verbindbar ist. Somit läuft Flüssigkeit, die in die Biochipkammer eingefüllt wird, direkt weiter in das Überlaufreservoir. Da der Biochip bevorzugt in den Boden der Titerplatte eingelassen ist, befindet sich das Überlaufreservoir bevorzugt oberhalb der Biochipkammer. Daher ist das Überlaufreservoir vorzugsweise mit einem Docht oder einem anderen saugfähigen Material ausgestattet, das die Flüssigkeit aus der Chipkammer zieht. Auf diese Weise wird sämtliche Flüssigkeit, die durch die Chipkammer gedrückt wird, von dem Überlaufreservoir aufgenommen. Gemäß dieser Alternativen Ausführungsform sind keine weiteren Vertiefungen in der Titerplatte notwendig, so dass die gesamte Grundfläche der Titerplatte komplett mit Biochips belegt werden kann. Sämtliche weitere bevorzugten Erfindungsmerkmale, die in Zusammenhang mit der ersten Ausführungsform der Erfindung gemäß Anspruch 1 genannt sind, können auch bei der alternativen Ausführungsform der erfindungsgemäßen Titerplatte vorgesehen werden.According to an alternative embodiment, the invention comprises a titer plate for detecting an analyte, with at least one biochip, wherein the at least one biochip is designed for detecting an analyte and is surrounded by a wall, wherein a seal, preferably an elastomeric seal, on the at least one Biochip (14) is applied, which defines a Biochipkammer together with the biochip and connected to an overflow reservoir directly to the Biochipkammer or connectable. Thus, liquid that is filled into the biochip chamber continues directly into the overflow reservoir. Since the biochip is preferably embedded in the bottom of the titer plate, the overflow reservoir is preferably located above the biochip chamber. Therefore, the overflow reservoir is preferably provided with a wick or other absorbent material which draws the liquid from the chip chamber. In this way, all the fluid that is pressed through the chip chamber is received by the overflow reservoir. According to this alternative embodiment, no further recesses in the titer plate are necessary, so that the entire base area of the titer plate can be completely covered with biochips. All further preferred features of the invention, which are mentioned in connection with the first embodiment of the invention according to claim 1, can also be provided in the alternative embodiment of the titer plate according to the invention.

Optional kann die erfindungsgemäße Titerplatte von zumindest einer Bohrung durchdrungen sein. Diese Bohrung verläuft quer zum Trägermaterial der Titerplatte und mündet vorzugsweise zwischen den Vertiefungen und dem Biochip. Darüber kann ein Unterdruck angelegt werden, um eventuelle Tröpfchenverunreinigungen aus dem Raum über der Titerplatte abzusaugen. Vorzugsweise ist jede Einheit bzw. Ausnehmung mit einer eigenen Bohrung ausgestattet.Optionally, the titer plate according to the invention may be penetrated by at least one bore. This bore extends transversely to the carrier material of the titer plate and preferably opens between the depressions and the biochip. A negative pressure can be applied by means of this, in order to suck off possible droplet impurities from the space above the titer plate. Preferably, each unit or recess is equipped with its own bore.

Des Weiteren ist die Offenbarung auf eine Leseeinrichtung für eine Titerplatte angegeben, die dazu ausgelegt ist, eine weitere Verbesserung der automatischen Handhabung der Proben zu gewährleisten. Die Leseeinrichtung stellt mindestens eine elektrische Kontakt- bzw. Auslesefläche für den Biochip bereit. Bevorzugt ist die Auslesefläche beheizbar, da das Ausleseergebnis des Biochips in der Regel erst nach geeigneter Wärmebehandlung auslesbar ist.
Die Leseeinrichtung umfasst zudem Wannen für die Vertiefungen, die vorzugsweise als beheizbare Aufnahmen (Thermoblöcke) konzipiert sind. Beim Aufsetzen der Titerplatte auf die Leseeinrichtung wird jeweils eine Vertiefung in einer Wanne aufgenommen, vorzugsweise ist die Vertiefung möglichst eng von der Wanne umschlossen, um einen guten Wärmetransfer zu gewährleisten. Vorzugsweise bilden jeweils so viele Wannen, wie Vertiefungen in einer Einheit ausgebildet sind, eine unabhängige Thermozyklus-Einheit, im Folgenden auch Thermoblock genannt. Durch geeignetes Beheizen der Wannen kann in den Vertiefungen z.B. eine PCR durchgeführt werden.
Bevorzugt weist eine Leseeinrichtung voneinander unabhängigen Einheiten zu je vier Wannen und einer Kontaktfläche auf.
Furthermore, the disclosure is directed to a reading device for a titer plate, which is designed to ensure a further improvement of the automatic handling of the samples. The reading device provides at least one electrical contact or read-out area for the biochip. Preferably, the readout surface is heated, since the readout result of the biochip is usually readable only after appropriate heat treatment.
The reading device also includes trays for the wells, which are preferably designed as heatable recordings (thermoblocks). When placing the titer plate on the reading device in each case a depression is received in a tub, preferably the recess is as closely as possible enclosed by the tub in order to ensure a good heat transfer. Preferably, in each case as many wells as depressions are formed in one unit, form an independent thermo-cycle unit, hereinafter also called thermoblock. By suitable heating of the wells, for example, a PCR can be carried out in the wells.
Preferably, a reading device has mutually independent units each having four trays and a contact surface.

Es ist eine weitere Aufgabe der vorliegenden Erfindung, ein verbessertes Verfahren zur Detektion eines Analyten mittels eines Biochips anzugeben. Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 12 gelöst. Durch den Einsatz einer erfindungsgemäßen Titerplatte kann ein sogenanntes "Liquid Handling" mittels Pipettier-Roboter erfolgen.It is a further object of the present invention to provide an improved method for detecting an analyte by means of a biochip. This object is achieved by a method according to claim 12. By using a titer plate according to the invention, a so-called "liquid handling" can take place by means of a pipetting robot.

Das Verfahren umfasst neben einem Einbringen der Probe in eine der Vertiefungen der Titerplatte bevorzugt eine Amplifikation des Analyten und bietet den Vorteil einer räumlichen Integration eines Hybridisierungsbereichs des Biochips in einem gemeinsamen Raum. Eine Kontamination von anderen Probenmaterialien wird wirksam vermieden, da die Pipettenspitze in diesem Raum verbleibt.In addition to introducing the sample into one of the wells of the titer plate, the method preferably comprises an amplification of the analyte and offers the advantage of a spatial integration of a hybridization region of the biochip in a common space. Contamination of other sample materials is effectively avoided as the pipette tip remains in this space.

Gemäß einer bevorzugten Ausführungsform des Verfahrens können für jede Einheit mehrere Pipettenspitzen durch den Pipettier-Roboter verwendet werden, die nach der Verwendung jeweils innerhalb der Einheit verbleiben. Dies hat den Vorteil, dass benachbarte Einheiten nicht mit amplifiziertem Material kon- taminiert werden können, wenn die Pipettenspitze über sie hinweg abtransportiert wird. Besonders bevorzugt werden gebrauchte Pipettenspitzen auf den Ablagepositionen auf der Abdeckung oder Dichtung des Biochips abgelegt.According to a preferred embodiment of the method, a plurality of pipette tips may be used by the pipetting robot for each unit, which remain within each unit after use. This has the advantage that neighboring units can not be contaminated with amplified material when the pipette tip is transported away over them. Particularly preferably used pipette tips are placed on the storage positions on the cover or seal of the biochip.

Beispielsweise werden nicht nur eine, sonders mehrere Proben, z.B. von verschiedenen Geweben des gleichen Patienten, in die verschiedenen Vertiefungen einer Einheit eingebracht. Nach einer PCR können nacheinander die Reaktionsgemische aus den verschiedenen Vertiefungen mit verschiedenen Pipettenspitzen in die Biochipkammer transferiert und der Biochip ausgelesen werden. Die Pipettenspitze wird dabei über der Biochipkammer vollständig entleert, wobei überschüssige Flüssigkeit in das Überlaufreservoir fließt. Danach wird die Pipettenspitze vorzugsweise auf derselben Vertiefung abgelegt, von der das PCR- Reaktionsgemisch transferiert wurde. Für weitere Manipulationen wird eine frische Pipettenspitze verwendet, die wiederum in der Einheit bzw. Ausnehmung verbleibt.For example, not only one, but more than one sample, eg of different tissues of the same patient, are introduced into the different wells of a unit. After a PCR, the reaction mixtures from the different wells with different pipette tips can successively be transferred into the biochip chamber and the biochip read out. The pipette tip is thereby completely emptied over the biochip chamber, wherein excess liquid flows into the overflow reservoir. Thereafter, the pipette tip is preferably deposited on the same well from which the PCR reaction mixture was transferred. For further manipulations, a fresh pipette tip is used, which in turn remains in the unit or recess.

Vorzugsweise wird nach dem Transferieren das PCR-Reaktionsproduktes eine weitere Flüssigkeit insbesondere eine Label-Flüssigkeit, mit eine Pipettenspitze auf den Biochip bzw. in die Biochipkammer transferiert. Der Label ist z.B. Streptavidin oder AG Phosphatase, welche an den biotinlylierten Analyten bindet. Die Pipettenspitze, mit der der Label transferiert wurde, ist noch nicht entleert, da sie ggf. für weitere Proben nochmals verwendet wird, und wird daher auf einer der Ablage- oder Parkpositionen geparkt.Preferably, after transferring the PCR reaction product, a further liquid, in particular a label liquid, is transferred with a pipette tip onto the biochip or into the biochip chamber. The label is e.g. Streptavidin or AG phosphatase, which binds to the biotinylated analyte. The pipette tip used to transfer the label has not yet been emptied, as it may be reused for further samples, and is therefore parked in one of the storage or parking locations.

Daraufhin wird mit einer weiteren Pipettenspitze bevorzugt ein Substrat in die Biochipkammer pipettiert. Dieses bildet ein Reaktionsprodukt, welches auf dem Biochip ein elektrisches Signal auslöst. Die Pipettenspitze, mit der das Substrat transferiert wurde, ist noch nicht entleert, da sie ggf. für weitere Proben nochmals verwendet wird, und wird daher auf einer zweiten Ablage- oder Parkpositionen geparkt.Then a substrate is preferably pipetted into the biochip chamber with another pipette tip. This forms a reaction product which triggers an electrical signal on the biochip. The pipette tip with which the substrate has been transferred is not yet emptied, as it may be used again for further samples, and is therefore parked in a second storage or parking position.

Somit zeichnet sich das bevorzugte Verfahren darin aus, dass mehrere Pipettenspitzen z.B. auf verschiedenen Ablagepositionen oder in den Vertiefungen innerhalb der Ausnehmung verbleiben.Thus, the preferred method is that multiple pipette tips, e.g. remain on different storage positions or in the recesses within the recess.

Zur Amplifikation des Analyten wird vorzugsweise eine Thermozyklisierungsreaktion eingesetzt. Dabei kommen nach einer Weiterbildung des erfindungsgemäßen Verfahrens eine Polymerase-Kettenreaktion - kurz PCR -, eine allelspezifische Primer Expression - kurz ASPE - und/oder ein sogenanntes Amplification Refractory Mutation System - kurz ARMS in Betracht.For the amplification of the analyte, a thermocyclization reaction is preferably used. According to a development of the method according to the invention, a polymerase chain reaction - in short PCR -, an allele-specific primer expression - abbreviated to ASPE - and / or a so-called Amplification Refractory Mutation System - ARMS for short.

Neben einer temperaturgesteuerten Amplifizierung des Analyten ist hierbei auch eine temperaturgesteuerte Hybridisierung mittels des Biochips vorgesehen.In addition to a temperature-controlled amplification of the analyte, a temperature-controlled hybridization by means of the biochip is also provided here.

Eine verbesserte Detektion des Analyten wird zudem durch eine temperaturgesteuerte elektrische, insbesondere elektrochemische, Detektion erreicht.An improved detection of the analyte is also achieved by a temperature-controlled electrical, in particular electrochemical, detection.

Des Weiteren wird zur Verbesserung der automatischen Handhabung der Proben eine Analysegerät aus einer Kombination aus Leseeinrichtung und Titerplatte angegeben. Diese Kombination ist an handelsübliche Pipettier-Roboter angepasst.Furthermore, to improve the automatic handling of the samples, an analyzer consisting of a combination of reader and titer plate is provided. This combination is adapted to standard pipetting robots.

Ein weiterer Aspekt der vorliegenden Offenbarung betrifft die Verwendung der erfindungsgemäßen Titerplatte. Die Vertiefungen einer Einheit können mit vier verschiedenen Vergleichskonzentrationen für quantitative Bestimmungen eingesetzt werden. Dies ist für Expressionsexperimente in der integrierten DNA Technik oder multiples Multiplexing bei sogenannten Single Nukleotide Polymorphism - kurz SNP - denkbar.
Mit Bezug auf die beiliegenden Zeichnungen werden nunmehr bevorzugte Ausführungsbeispiele beschrieben.
In den Zeichnungen zeigen:

Fig. 1
eine perspektivische Ansicht eines Ausführungsbeispiels einer erfindungsgemäßen Titerplatte;
Fig.2
eine perspektivische Ansicht eines Beispiels einer Leseeinrichtung für eine Titerplatte;
Fig. 3
eine perspektivische Ansicht einer Kombination einer Titerplatte gemäß Fig. 1 mit einer Leseeinrichtung gemäß Fig. 2;
Fig.4
eine Draufsicht auf einen Ausschnitt der Oberseite der erfindungsgemäßen Titerplatte;
Fig.5
einen Längsschnitt durch einen Ausschnitt einer Titerplatte und eines Lesegeräts gemäß einer zweiten Ausführungsform;
Fig.6
einen Ablaufplan eines erfindungsgemäßen Verfahrens.
Another aspect of the present disclosure relates to the use of the titer plate of the invention. The wells of one unit can be used with four different reference concentrations for quantitative determinations. This is conceivable for expression experiments in the integrated DNA technique or multiple multiplexing in so-called single nucleotide polymorphism (SNP for short).
With reference to the accompanying drawings, preferred embodiments will now be described.
In the drawings show:
Fig. 1
a perspective view of an embodiment of a titer plate according to the invention;
Fig.2
a perspective view of an example of a reading device for a titer plate;
Fig. 3
a perspective view of a combination of a titer plate according to Fig. 1 with a reading device according to Fig. 2 ;
Figure 4
a plan view of a section of the top of the titer plate according to the invention;
Figure 5
a longitudinal section through a section of a titer plate and a reading device according to a second embodiment;
Figure 6
a flowchart of a method according to the invention.

Im Folgenden werden die Ausführungsbeispiele der vorliegenden Erfindung unter Bezugnahme auf die Zeichnungen beschrieben.Hereinafter, the embodiments of the present invention will be described with reference to the drawings.

Figur 1 zeigt eine Titerplatte 10 zur Detektion eines Analyten von der Unterseite 22. Die Titerplatte 10 weist mehrere in Reihen angeordnete Vertiefungen 12 auf, die von der Unterseite 22 als Auswölbungen 12' sichtbar sind. Dabei sind die Vertiefungen 12 derart voneinander beabstandet und ausgerichtet, dass ein Pipettier-Roboter mit einer Pipettenspitze erforderliche Reagenzien, Lösungsmittel und/oder eine auf den Analyten zu prüfende Probe in die Vertiefungen 12 einbringen kann. FIG. 1 1 shows a titer plate 10 for detecting an analyte from the underside 22. The titer plate 10 has a plurality of recesses 12 arranged in rows, which are visible from the underside 22 as bulges 12 '. In this case, the depressions 12 are spaced apart and aligned in such a way that a pipetting robot with a pipette tip can introduce necessary reagents, solvents and / or a sample to be tested for the analyte into the depressions 12.

Neben je zwei Reihen von Vertiefungen 12 ist eine Reihe von Biochips 14 angeordnet. Die Biochips 14 sind ebenfalls in Bezug auf die Vertiefungen 12 derart positioniert, dass der Roboter die Pipettenspitze dorthin automatisch programmgesteuert verfahren kann. Diese Biochips 14 sind dazu ausgelegt, z.B. eine DNA mittels Hybridisierung zu detektieren, wobei sich mindestens eine elektrische Eigenschaft des Biochips 14 verändert. Derartige Biochips 14 können ggf. auch ein Chipkartenlabor beinhalten.In addition to two rows of wells 12 a number of biochips 14 is arranged. The biochips 14 are also positioned relative to the wells 12 so that the robot can automatically program the pipette tip thereto. These biochips 14 are designed, e.g. to detect a DNA by hybridization, wherein at least one electrical property of the biochip 14 changes. Such biochips 14 may possibly also include a chip card laboratory.

Die Titerplatte 10 ist modular aufgebaut, sie umfasst einen Block, z.B. ein Spritzgussteil, aus Kunststoff, in den die Vertiefungen 12 bzw. Auswölbungen 12' ausgeformt sind, und die Biochips 14. Diese sind in Aufnahmen 14' in dem Block aufgenommen. Unter den Biochips 14 ist bevorzugt eine Dichtung aus einem thermoplastischen Elastomer angeordnet, die die Aufnahme 14' zur Oberseite der Titerplatte (in Fig. 1 unten liegend) hin abdichtet. In der Dichtung sind vorzugsweise trichterförmige Öffnungen angeordnet, die einen Einlassport, einen Auslass und ggf. Ablagepositionen bilden. Ferner können die Biochips 14 jeweils in einen Kunststoffring gefasst sein, der in der Aufnahme 14' befestigt ist, z.B. aufgeklebt oder geschweißt.The titer plate 10 is modular, it comprises a block, for example an injection molded part, made of plastic, in which the depressions 12 or bulges 12 'are formed, and the biochips 14. These are accommodated in receptacles 14' in the block. Among the biochips 14, a seal made of a thermoplastic elastomer is preferably arranged, which supports the receptacle 14 'to the top of the titer plate (in FIG Fig. 1 at the bottom). In the seal preferably funnel-shaped openings are arranged, which form an inlet port, an outlet and possibly storage positions. Furthermore, the biochips 14 may each be held in a plastic ring, which is fixed in the receptacle 14 ', eg glued or welded.

Um mehrere Proben auf einer Titerplatte 10 untersuchen zu können, sind jeweils mehrere - hier vier - Vertiefungen 12 mit je einem Biochip 14 zu einer Einheit 21 zusammengefasst, die in Fig. 1 durch eine strichpunktierte Linie umrandet ist. Zumindest entlang dieser Linie 21 verläuft eine Wand 16, die vier Vertiefungen 12 und einen Biochip 14 umfriedet und vor Kontaminationen schützt. Hierzu weist das Spitzgussteil eine Dicke d - also eine Wandhöhe - von etwa 50mm bis etwa 60mm auf. Die Titerplatte 10 weist 16 derartige Einheiten 21 auf.In order to be able to examine a plurality of samples on a titer plate 10, a plurality of-in this case four-wells 12, each with a biochip 14, are combined to form a unit 21, which in FIG Fig. 1 is surrounded by a dash-dotted line. At least along this line 21 extends a wall 16 which encloses four recesses 12 and a biochip 14 and protects against contamination. For this purpose, the injection-molded part has a thickness d - ie a wall height - of about 50mm to about 60mm. The titer plate 10 has 16 such units 21.

Figur 2 zeigt ein Beispiel einer Leseeinrichtung 26 für eine Titerplatte 10. Auf der Leseeinrichtung 26 sind zum einen eine Reihe von Wannen 13 angeordnet, die als beheizbare Aufnahmen für die Vertiefungen 12 der Titerplatte dienen. Insbesondere passen die in Figur 1 gezeigten Auswölbungen 12' in die Wannen 13. Die vier Wannen 13 einer Einheit 21 sind jeweils zu einem Thermoblock 11 zusammengefasst und bevorzugt unabhängig von einander und insbesondere von den anderen Thermoblöcken 11 beheizbar. Die dargestellte Leseeinrichtung 26 umfasst somit 12 unabhängige 4er Thermoblöcke 11. Mit einem Thermoblock 11 kann ein Analyt in den Vertiefungen 12 mittels einer Amplifizierungsreaktion auf eine gut zu detektierende Menge vervielfältigt werden.
Die Leseeinrichtung 26 stellt weiterhin einige elektrische Auslese- bzw. Kontaktflächen 15 für die Biochips 14 bereit. Jeweils ein Biochip 14 liegt auf einer Auslesefläche 15 auf, so dass die entsprechenden Kontakte am Biochip 14 kontaktiert und ausgelesen werden. Vorzugsweise kann die Temperatur der Ausleseflächen 15 kontrolliert werden. Auf einer Auslesefläche 15 sind z.B. 8 elektrische Kontakte angeordnet.
Die Kontaktflächen 15 und Wannen 13 sind von einer Umrandung 17 umgeben, die eine in Figur 1 gezeigte Titerplatte 10 auf der Leseeinrichtung 26 ausrichten und halten kann.
FIG. 2 shows an example of a reading device 26 for a titer plate 10. On the reading device 26, on the one hand a series of trays 13 are arranged, which serve as heatable receptacles for the wells 12 of the titer plate. In particular, the fit in FIG. 1 The four troughs 13 of a unit 21 are each combined into a thermoblock 11 and preferably independently of each other and in particular heated by the other thermoblocks 11. The illustrated reading device 26 thus comprises 12 independent 4 thermoblocks 11. With a thermoblock 11, an analyte in the wells 12 can be amplified by means of an amplification reaction to a well detectable amount.
The reading device 26 further provides some electrical readout or contact surfaces 15 for the biochips 14. In each case a biochip 14 rests on a readout surface 15, so that the corresponding contacts on the biochip 14 are contacted and read out. Preferably, the temperature of the readout surfaces 15 can be controlled. On a readout surface 15, for example, 8 electrical contacts are arranged.
The contact surfaces 15 and trays 13 are surrounded by a border 17, which has a in FIG. 1 Align the titer plate 10 shown on the reading device 26 and can hold.

Die Grundfläche und Höhe der Leseeinrichtung 26 ist vorzugsweise kompatibel mit dem bekannten STARlet® System, die Maße betragen also z.B. 150x110x110 mm3 und passen in einen 7-track Träger. Die Leseeinrichtung 26 umfasst bevorzugt 12 unabhängige 4er Thermoblöcke bzw. Thermocycler 11, mit denen eine beliebig programmierbare PCR durchgeführt werden kann, sowie 12 unabhängige Temperaturkontrollierte elektrische Biochip-Ausleseblöcke. Die integrierte Elektronik weist vorzugsweise ein Kommunikations-Interface, 24 unabhängige Temperaturkontrolleinheiten sowie 12 unabhängige digitale Schnittstellen für die Biochip-Auslesung auf.The footprint and height of the reading device 26 is preferably compatible with the known STARlet® system, ie the dimensions are for example 150x110x110 mm 3 and fit into a 7-track carrier. The reading device 26 preferably comprises 12 independent 4 thermoblocks or thermal cycler 11, with which an arbitrarily programmable PCR can be performed, as well as 12 independent temperature-controlled electrical biochip read-out blocks. The integrated electronics preferably have a communication interface, 24 independent temperature control units and 12 independent digital interfaces for biochip reading.

In Fig. 3 ist die Titerplatte 10 der Fig. 1 von der Oberseite gezeigt, wie sie auf eine Leseeinrichtung 26 gemäß Fig. 2 aufgesetzt ist. Dabei ist die Titerplatte 10 von der Umrandung 17 abgestützt. In der Oberseite 20 der Titerplatte 10 sind 16 Ausnehmungen 18 erkennbar, die jeweils die Form eines etwa E-förmigen Langlochs aufweisen. Die Ausnehmungen 18 gehen bis auf den Boden der Titerplatte 10 durch, sind also wie in einen Block "eingefräst". Jede Ausnehmung 18 ist daher von relativ dicken Wänden 16 begrenzt, die bis zu den Vertiefungen 12 in der Titerplatte 10 reichen. Die Wände 16 stellen eine Umfriedung der einzelnen Einheiten aus Vertiefungen 12 und dem Biochip 14 bereit. Diese sind am Grund 19 der Ausnehmung 18 angeordnet und sind mittels Pipettier-Roboter erreichbar. Der Pipettier-Roboter bewegt eine Pipettenspitze 40 zum Umfüllen einer amplifizierten Probenmischung von der Vertiefung 12 in den Biochip 14 entlang des Langlochs 18.In Fig. 3 is the titer plate 10 of the Fig. 1 shown from the top, as directed to a reading device 26 according to Fig. 2 is attached. In this case, the titer plate 10 is supported by the border 17. In the top 20 of the titer plate 10 16 recesses 18 can be seen, each having the shape of an approximately E-shaped elongated hole. The recesses 18 go through to the bottom of the titer plate 10, so they are "milled" as in a block. Each recess 18 is therefore bounded by relatively thick walls 16 which extend to the recesses 12 in the titer plate 10. The walls 16 provide a fencing of the individual units of recesses 12 and the biochip 14 ready. These are arranged on the base 19 of the recess 18 and can be reached by means of a pipetting robot. The pipetting robot moves a pipette tip 40 for transferring an amplified sample mixture from the depression 12 into the biochip 14 along the slot 18.

In Figur 4 ist schematisch eine Draufsicht auf eine einzelne Einheit 21 - umfassend einen Biochip und vier Vertiefungen - einer Titerplatte 10 von der Oberseite 20 dargestellt. In die Titerplatte 10 ist eine Ausnehmung 18 eingebracht. Die Ausnehmung 18 ist als Langloch ausgebildet und von den Wänden 16 umschlossen. Zur Oberseite 20 hin ist die Ausnehmung 18 offen.In FIG. 4 schematically is a plan view of a single unit 21 - comprising a biochip and four wells - a titer plate 10 from the top 20 shown. In the titer plate 10, a recess 18 is introduced. The recess 18 is formed as a slot and enclosed by the walls 16. To the top 20 towards the recess 18 is open.

Durch die Ausnehmung 18 sieht man auf den Grund 19 der Titerplatte 10, in dem vier rechts gezeigte Vertiefungen 12 eingelassen sind. Auf der linken Seite liegt der Biochip 14 unterhalb der gestrichelten Linie. Der Biochip 14 ist z.B. von einer Dichtung 30 bedeckt, in der bei 32 ein Einfüllport eingelassen ist, durch den mittels einer Pipettenspitze eine Probe in Kontakt mit dem Biochip 14 gebracht werden kann. An den Positionen 33 und 35 ist die Dichtung 30 auf dem Biochip 14 nicht durchlässig, jedoch mit einer kleinen Aufnahme für eine Pipettenspitze versehen. Diese Aufnahme kann z.B. eine kleine Vertiefung in der Dichtung 30 sein, in der eine Pipettenspitze aufgenommen werden kann. Derartige Vertiefungen sind jedoch nicht unbedingt notwendig. Jedenfalls kann an den Positionen 33 und 35 eine Pipettenspitze abgelegt werden. Deshalb sind auch diese Positionen 33, 35 mit dem Langloch 18 verbunden. Dabei wird die Öffnung der Pipettenspitze durch das elastomere Material der Dichtung 30 abgedichtet, so dass die Pipettenspitze noch mit z.B. Substrat oder Label-Enzym gefüllt sein kann, wenn sie an einer dieser Ablagepositionen 33 oder 35 geparkt wird. An der Position 34 ist eine Öffnung eines Überlaufreservoirs angeordnet. Diese Position ist nicht mit dem Langloch 18 verbunden, da es nicht notwendig ist, an diese Position eine Pipettenspitze zu verfahren.Through the recess 18 can be seen on the bottom 19 of the titer plate 10, in which four depressions 12 shown on the right are embedded. On the left side of the biochip 14 is below the dashed line. The biochip 14 is e.g. covered by a seal 30 in which at 32, a filling port is inserted, can be brought by means of a pipette tip, a sample in contact with the biochip 14. At positions 33 and 35, the seal 30 on the biochip 14 is not permeable, but provided with a small receptacle for a pipette tip. This shot may e.g. a small recess in the seal 30, in which a pipette tip can be accommodated. However, such depressions are not absolutely necessary. In any case, a pipette tip can be deposited at positions 33 and 35. Therefore, these positions 33, 35 are connected to the slot 18. In this case, the opening of the pipette tip is sealed by the elastomeric material of the seal 30, so that the pipette tip is still filled with e.g. Substrate or label enzyme can be filled when it is parked at one of these storage positions 33 or 35. At the position 34, an opening of an overflow reservoir is arranged. This position is not connected to the slot 18, since it is not necessary to move to this position a pipette tip.

Zur Handhabung einer Probe in den Vertiefungen 12 ist die Ausnehmung 18 in Form eines mehrgliedrigen Langlochs ausgelegt, das unter anderem die vier Vertiefungen quasi "von oben" zugänglich macht. Das heißt, dass Pipettenspitzen 40 mittels eines Pipettier-Roboters über das Langloch 18 eingebracht und verschoben werden können. Die eingeführte Pipettenspitze erreicht, ohne die Ausnehmung 18 verlassen zu müssen sowohl alle Vertiefungen 12 als auch den Biochip 14. Eine das Target enthaltende amplifizierte Probe kann von der Pipette aus einer der Vertiefungen 12 aufgenommen und über den Einfüllport 32 in den Biochip 14 transferiert werden. Der Einfüllport 32 durchdringt die elastomere Dichtung oder Beschichtung 30, die zum Schutz auf dem Biochip 14 aufgebracht ist.To handle a sample in the recesses 12, the recess 18 is designed in the form of a multi-membered elongated hole, which makes, inter alia, the four wells "accessible from above". That is, pipette tips 40 can be inserted and displaced via the slot 18 by means of a pipetting robot. The inserted pipette tip reaches all the depressions 12 and the biochip 14 without having to leave the recess 18. An amplified sample containing the target can be taken up by the pipette from one of the depressions 12 and transferred via the filling port 32 into the biochip 14. The fill port 32 penetrates the elastomeric seal or coating 30 that is applied to the biochip 14 for protection.

Über den Einfüllport 32 läuft die flüssige Probe aus einer Pipettenspitze 40 in eine Biochipkammer 36, die angrenzend an die sensitiven Flächen des Biochips 14 angeordnet ist und insbesondere zwischen Biochip 14 und Dichtung 30 verläuft. Von der Biochipkammer 36 geht ein Überlaufreservoir 24 ab, welches zur Oberseite hin offen ist. In dem Überlaufreservoir 24 ist ein Dochtelement 31 angeordnet, in diesem Fall ein zylinderförmiges Stück aus absorbierenden Material, z.B. Schaumstoff oder Watte. Aus der Biochipkammer 34 läuft die flüssige Probe aus einer Pipettenspitze 40 somit weiter in das Überlaufreservoir 24.Via the filling port 32, the liquid sample passes from a pipette tip 40 into a biochip chamber 36, which is arranged adjacent to the sensitive surfaces of the biochip 14 and in particular runs between the biochip 14 and the seal 30. From the biochip chamber 36 goes from an overflow reservoir 24, which is open to the top. In the overflow reservoir 24, a wicking element 31 is arranged, in this case a cylindrical piece of absorbent material, e.g. Foam or cotton wool. From the biochip chamber 34, the liquid sample from a pipette tip 40 thus continues to run into the overflow reservoir 24.

Eine Pipettenspitze kann nach Benutzung innerhalb der Ausnehmung 18 an 6 verschiedenen Positionen verbleiben: Ist die Pipettenspite noch gefüllt, z.B. mit Label oder Substrat, insbesondere mit einer Flüssigkeit, die später nochmals benötigt werden wird, kann sie auf einer der beiden Ablagepositionen 33, 35 geparkt werden, wo ihre Öffnung durch die Dichtung 30 verschlossen wird. Eine leere, gebrauchte Pipettenspitze, z.B. nach dem Pipettieren von PCR-Produkt von einer der Vertiefungen 12 über den Einfüllport 32 in die Biochipkammer 36, kann in der jeweiligen Vertiefung 12 abgelegt werden. Nach dem Transfer von PCR-Product in die Biochipkammer 36 kann die Pipettenspitze völlig entleert werden, da die Biochipkammer 36 direkt mit dem Überlaufreservoir 24 verbundne ist, in das alle überschüssige Flüssigkeit abgesogen wird.A pipette tip may remain in 6 different positions within the recess 18 after use: if the pipette spit is still filled, e.g. With label or substrate, in particular with a liquid that will be needed again later, it can be parked on one of the two storage positions 33, 35, where its opening is closed by the seal 30. An empty, used pipette tip, e.g. after pipetting PCR product from one of the depressions 12 via the filling port 32 into the biochip chamber 36, it is possible to deposit in the respective depression 12. After the transfer of PCR product into the biochip chamber 36, the pipette tip can be completely emptied, since the biochip chamber 36 is connected directly to the overflow reservoir 24, into which all excess liquid is sucked off.

Die Figur 5 zeigt eine Kombination von einer Titerplatte 10 mit einer Leseeinrichtung 26 im Längsschnitt, wobei wiederum nur eine Einheit 21 dargestellt ist. Die Titerplatte 10 umfasst mehrere Vertiefungen 12, deren Auswölbungen 12' in Wannen 13 eines Thermoblocks 11 eingebracht sind. Das eingebrachte Probenmaterial wird mittels einer Thermozyklisierungsreaktion wie einer PCR mehrfach kopiert. Um eine Kontamination von Probenmaterial aus anderen Vertiefungen 12 zu vermeiden, ist ein Sperrmedium 28 - hier ein Mineralölfilm - in einer der Vertiefungen 12 vorgesehen. An die Vertiefungen 12 schließen sich Wände 16 an, die zur ersten Seite 20 offen sind. Somit können Pipettenspitzen 40 von einem Pipettier-Roboter eingebracht die Vertiefungen 12 erreichen. Jeweils zwischen den beiden Vertiefungen 12 und der linken Vertiefung 12 und der Biochip 14 ist die Wand 14 nicht geschnitten, sondern in Draufsicht erkennbar.The FIG. 5 shows a combination of a titer plate 10 with a reading device 26 in longitudinal section, wherein again only one unit 21 is shown. The titer plate 10 comprises a plurality of depressions 12, the bulges 12 'of which are introduced into troughs 13 of a thermoblock 11. The introduced sample material is copied several times by means of a thermocyclization reaction, such as a PCR. In order to avoid contamination of sample material from other wells 12, a barrier medium 28 - here a mineral oil film - is provided in one of the wells 12. To the wells 12 close to walls 16, which are open to the first side 20. Thus, pipette tips 40 introduced by a pipetting robot can reach the recesses 12. In each case between the two recesses 12 and the left recess 12 and the biochip 14, the wall 14 is not cut, but recognizable in plan view.

Der Biochip 14 ist von einem Kunststoffring 41 umrandet, der vorzugsweise eine Dichtlippe aufweist und den Biochip 14 gegen die Titerplatte 10 bzw. die Dichtung 30 abdichtet. Nach oben weist der Biochip 14 als Kontaminationsschutz eine Dichtung 30 z.B. aus Polypropylen auf. Zwischen der Dichtung 30 und der Fläche mit Fängermolekülen für den Analyten auf dem Biochip 14 ist eine Biochipkammer 36 gebildet, in die eine Probe aufgenommen werden kann. Die amplifizierte Probe kann mit der Pipettenspitze 40 über einen Einfüllport 32 in die Biochipkammer 36 übertragen werden, wobei die umgrenzte Ausnehmung 18 nicht verlassen wird.The biochip 14 is surrounded by a plastic ring 41, which preferably has a sealing lip and seals the biochip 14 against the titer plate 10 or the seal 30. At the top, the biochip 14 has as a contamination protection a seal 30, e.g. made of polypropylene. Between the seal 30 and the surface with capture molecules for the analyte on the biochip 14, a biochip chamber 36 is formed, into which a sample can be taken. The amplified sample can be transferred with the pipette tip 40 via a filling port 32 into the biochip chamber 36, wherein the bounded recess 18 is not left.

Zwischen den Vertiefungen 12 und dem Einfüllport 32 ist eine Bohrung 38 angeordnet. Diese Bohrung 38 durchdringt die gesamte Titerplatte 10. Durch Applizieren eines Unterdrucks oder Vakuums kann ein stetiger Luftstrom erzeugt werden, der die Wahrscheinlichkeit einer Kontamination mit Probenmaterial weiter verringert. Der Luftstrom tritt hierbei über die erste Seite 20 in die Titerplatte 10 ein. Ein Aerosol, Tröpfchen oder dergleichen wird sodann mit dem Luftstrom über die Bohrung 38 abgeführt. Es steht somit ein sogenanntes Extraktionssystem für die erfindungsgemäße Titerplatte 10 zur Verfügung. Die Bohrung 38 kann zudem mit einem Filtermaterial 39 belegt sein.Between the recesses 12 and the filling port 32, a bore 38 is arranged. This bore 38 penetrates the entire titer plate 10. By applying a vacuum or vacuum, a steady stream of air can be generated which further reduces the likelihood of contamination with sample material. In this case, the air flow enters the titer plate 10 via the first side 20. An aerosol, droplets or the like is then removed with the air flow through the bore 38. There is thus a so-called extraction system for the titer plate 10 according to the invention. The bore 38 may also be covered with a filter material 39.

Die Probe tritt über den Einfüllport 32 in die Chipkammer 36 über den Biochip 14 ein. Falls zuviel Flüssigkeit in die Biochipkammer 36 eingefüllt wird, läuft dieses über den Auslass 34 in der Dichtung 30 in ein Überlaufreservoir 24. Damit einmal in dem Überlaufreservoir 24 befindliche Flüssigkeit nicht zurücklaufen kann, ist eine Zwischenwand 37 als Überlaufschutz vorgesehen wie in Figur 5 gezeigt. Im Zwischenraum zwischen der Zwischenwand 37 und der Wandung 16 befindet sich beispielsweise ein Saugdocht, der überschüssige Probenflüssigkeit aufnehmen kann und diese mittels Kapillarkräften in das Überlaufreservoir 24 leitet, welches ca. 1,3ml Flüssigkeit aufnehmen kann.The sample enters the chip chamber 36 via the filling port 32 via the biochip 14. If too much liquid is filled into the biochip chamber 36, it passes through the outlet 34 in the seal 30 into an overflow reservoir 24. For once in the overflow reservoir 24 liquid located can not run back, an intermediate wall 37 is as overflow protection provided as in FIG. 5 shown. In the intermediate space between the intermediate wall 37 and the wall 16 is, for example, a Saugdocht, which can absorb excess sample liquid and conducts it by means of capillary forces in the overflow reservoir 24, which can accommodate about 1.3ml liquid.

Gemäß einer anderen, nicht dargestellten Ausführungsform ist das Überlaufreservoir 24 direkt oberhalb des Auslasses 34 angeordnet, jedoch über einen Spalt von der Biochipkammer 36 getrennt. Das Überlaufreservoir 24 ist fast vollständig mit einem Dochtelement ausgefüllt, wie in Fig. 4 dargestellt, der etwa 1-2ml Flüssigkeit halten kann. Am Auslass 34 auftretende Flüssigkeit wird vom Docht aufgenommen. Aufgrund des Spaltes reißt der Flüssigkeitsstrom sofort ab, wenn keine Flüssigkeit mehr nachgeliefert wird. Auf diese Weise entsteht kein Rücklaufstrom, auch nicht durch Kapillarkräfte.According to another embodiment, not shown, the overflow reservoir 24 is located directly above the outlet 34, but separated from the biochip chamber 36 by a gap. The overflow reservoir 24 is almost completely filled with a wicking element, as in FIG Fig. 4 shown, which can hold about 1-2ml of liquid. Liquid occurring at the outlet 34 is absorbed by the wick. Due to the gap, the liquid flow breaks off immediately, if no liquid is replenished. In this way, no return flow, not even by capillary forces.

Mit der Titerplatte 10 kann das erfindungsgemäße Verfahren zur Detektion eines Analyten mittels eines Biochips 14 durchgeführt werden. Der Biochip 14 ist in eine Titerplatte 10 integriert wie vorstehend beschrieben. Das Verfahren umfasst folgende Schritte: Ein Einbringen einer Probe in eine der Vertiefungen 12 der Titerplatte 10 und ein Einbringen von Reagenzien in die Vertiefungen 12. Anschließend erfolgt ein Durchführen einer Amplifizierungsreaktion mit der mit Reagenzien versetzten Probe, wobei eine PCR-Reaktion, eine ASPE- und/oder eine ARMS-Reaktion in Betracht kommen. Danach erfolgt das Transferieren des entstandenen Reaktionsgemisches auf den Biochip 14, und Auslesen des Biochips 14, der durch Hybridisierung mit dem Analyten mindestens eine elektrisch erfassbare Eigenschaft verändert. Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass das Flüssigkeiten mittels eines Pipettier-Roboters mit der Pipettenspitze 40 transferiert werden und die Pipettenspitze 40 innerhalb des umfriedeten Raums 18 verbleibt. Hierzu wird sie in einer der Vertiefungen 12 oder auf einer der Ablagepositionen 33, 35 abgelegt.With the titer plate 10, the method according to the invention for the detection of an analyte by means of a biochip 14 can be performed. The biochip 14 is integrated into a titer plate 10 as described above. The method comprises the following steps: introduction of a sample into one of the wells 12 of the titer plate 10 and introduction of reagents into the wells 12. Subsequently, an amplification reaction is carried out with the reagent-containing sample, a PCR reaction, an ASPE reaction being carried out. and / or an ARMS reaction. Thereafter, the transfer of the resulting reaction mixture to the biochip 14, and readout of the biochip 14, which changes by hybridization with the analyte at least one electrically detectable property. The inventive method is characterized in that the liquids are transferred by means of a pipetting robot with the pipette tip 40 and the pipette tip 40 remains within the enclosed space 18. For this purpose, it is stored in one of the recesses 12 or on one of the storage positions 33, 35.

Durch den Einsatz von Pipettier-Robotern wird das Analyseverfahren erheblich beschleunigt, ist weniger fehlerbehaftet und zudem kostengünstiger. Insbesondere wird die Verwendung für quantitative Bestimmungen, eine integrierte DNA Technik - kurz IDT oder ein multiples Multiplexing im Rahmen von SNP möglich.The use of pipetting robots considerably speeds up the analysis process, is less error-prone and more cost-effective. In particular, the use for quantitative determinations, an integrated DNA technique - IDT short or a multiple multiplexing in the context of SNP possible.

Ein erfindungsgemäßes Verfahren zur Detektion eines Analyten mittels Biochips 14 ist in Figur 6 als Ablaufplan dargestellt. Es umfasst zunächst das Einbringen 102 einer oder mehrerer zu untersuchenden Probe(n) in eine oder mehrere der Vertiefungen 12 einer Titerplatte 10. Diese Titerplatte 10 ist vorzugsweise eine erfindungsgemäße Titerplatte 10 wie vorstehend beschrieben. Die mit der Probe in Kontakt gebrachte Pipettenspitze 40 kann danach von einem Pipettier-Roboter auf gewöhnliche Art entsorgt werden.An inventive method for detecting an analyte by means of biochips 14 is in FIG. 6 shown as a flowchart. It first comprises the introduction 102 of one or more sample (s) to be examined into one or more of the wells 12 of a titer plate 10. This titer plate 10 is preferably a titer plate 10 according to the invention as described above. The pipette tip 40 brought into contact with the sample may then be disposed of by a pipetting robot in the usual way.

In einem weiteren Verfahrensschritt 104 werden die für eine Amplifizierungsreaktion des Analyten benötigten Reagenzien in die Vertiefungen 12 eingebracht. Hierzu wird eine weitere Pipettenspitze 40 vom Pipettier-Roboter in die Ausnehmung 18 eingebracht und bevorzugt danach auf die übliche Weise außerhalb der Ausnehmung entsorgt. Optional kann die Probe vor der Amplifizierungsreaktion mit Mineralöl überschichtet werden. Nach Zusammenführen der Reagenzien und der Probe wird ein Temperaturprogramm 106 durchgeführt, um eine PCR Reaktion ablaufen zu lassen. Das Reaktionsgemisch enthält anschließend den Analyten in massenweise kopierter Form zur besseren Detektion.In a further method step 104, the reagents required for an amplification reaction of the analyte are introduced into the recesses 12. For this purpose, a further pipette tip 40 is introduced by the pipetting robot into the recess 18 and preferably thereafter disposed of in the usual way outside the recess. Optionally, the sample may be overcoated with mineral oil prior to the amplification reaction. After merging the reagents and the sample, a temperature program 106 is performed to run a PCR reaction. The reaction mixture then contains the analyte in bulk copied form for better detection.

Der Pipettier-Roboter nimmt daraufhin eine neue, saubere Pipettenspitze 40 auf, Schritt 108. Mit dieser Pipettenspitze wird in Schritt 110 das Reaktionsgemisch mit der amplifizierten Probe von einer ersten der Vertiefungen 12 in den Biochip 14 transferiert. Das Reaktionsgemisch wird in die Biochipkammer 36 eingelassen. Eventuell zuviel aufgenommenes Reaktionsgemisch läuft durch den Auslass 34 in das Überlaufreservoir 24. Die benutzte Pipettenspitze wird nach vollständiger Entleerung an der ersten Vertiefung 12 abgelegt, Schritt 114, d.h. sie verbleibt innerhalb der Ausnehmung 18.The pipetting robot then picks up a new, clean pipette tip 40, step 108. With this pipette tip, the reaction mixture with the amplified sample is transferred from a first of the depressions 12 into the biochip 14 in step 110. The reaction mixture is introduced into the biochip chamber 36. Eventually too much received reaction mixture passes through the outlet 34 into the overflow reservoir 24. The used pipette tip is after complete emptying placed on the first recess 12, step 114, ie it remains within the recess 18th

Daraufhin nimmt der Pipettier-Roboter zunächst eine weitere neue, saubere Pipettenspitze 40 auf, Schritt 116. Mit dieser Pipettenspitze wird in Schritt 118 ein Label-Enzym aus einem außerhalb der Ausnehmung 18 befindlichem Vorratsbehälter aufgenommen und in den Biochip 14 transferiert. Die Pipettenspitze 40 ist danach noch nicht leer und wird daher an der ersten Ablageposition 33 abgelegt, Schritt 120, d.h. sie verbleibt innerhalb der Ausnehmung 18.Thereafter, the pipetting robot first receives another new, clean pipette tip 40, step 116. This pipette tip is used to pick up a label enzyme from a reservoir located outside of the recess 18 and transfer it into the biochip 14 in step 118. The pipette tip 40 is not yet empty thereafter and is therefore deposited at the first deposition position 33, step 120, i. it remains within the recess 18.

Danach nimmt der Pipettier-Roboter eine weitere neue, saubere Pipettenspitze 40 auf, Schritt 122. Mit dieser Pipettenspitze wird in Schritt 124 ein Substrat aus einem außerhalb der Ausnehmung 18 befindlichem Vorratsbehälter aufgenommen und in den Biochip 14 transferiert. Die Pipettenspitze 40 ist danach noch nicht leer und wird daher an der zweiten Ablageposition 35 abgelegt, Schritt 126, d.h. sie verbleibt innerhalb der Ausnehmung 18.Thereafter, the pipetting robot receives another new, clean pipette tip 40, step 122. This pipette tip is used to pick up a substrate from a reservoir located outside of the recess 18 and transfer it into the biochip 14 in step 124. The pipette tip 40 is not yet empty thereafter and is therefore deposited at the second deposition position 35, step 126, i. it remains within the recess 18.

Danach kann der Biochip 14 ausgelesen werden, Schritt 128.Thereafter, the biochip 14 may be read out, step 128.

Die Schritte 110 bis 128 können noch mehrmals wiederholt werden, und zwar mit den anderen Reaktionsgemischen aus den anderen Vertiefungen 12. Die Pipettenspitze, die zum Pipettieren des Reaktionsgemisches aus der Vertiefung 12 benutzt wird, wird in die jeweilige Vertiefung 12 zurückgestellt und verbleibt dort, bis sie gemeinsam mit der Titerplatte 10 entsorgt wird. Die Pipettenspitzen, mit denen Label-Enzym und Substrat transferiert wurden, werden wieder verwendet und danach wieder an den Ablagepositionen 33, 35 geparkt.Steps 110 to 128 may be repeated several more times, with the other reaction mixtures from the other wells 12. The pipette tip used to pipette the reaction mixture from the well 12 is returned to the respective well 12 and remains there until it is disposed of together with the titer plate 10. The pipette tips with which label enzyme and substrate were transferred are reused and then parked again at storage locations 33, 35.

Die Erfindung erlaubt es somit, benutzte Pipettenspitzen nicht über andere Ausnehmungen 18, in denen andere Proben untersucht werden, hinweg entsorgen zu müssen und vermindert damit das Kontaminationsrisiko.The invention thus does not allow disposing of used pipette tips over other recesses 18 in which other samples are being examined, thus reducing the risk of contamination.

Claims (18)

  1. Titer plate (10) for detecting an analyte, having multiple recesses (12) and having at least one biochip (14),
    characterized in
    that the at least one biochip (14) is designed for detecting an analyte and is arranged next to the recesses (12), wherein, respectively, multiple recesses (12) and one biochip (14) form a unit (21) and are arranged at the base (19) of a clearance (18) of the titer plate (10), which is surrounded by a wall (16).
  2. Titer plate (10) according to claim 1, characterized in that it has multiple clearances (18).
  3. Titer plate (10) according to claim 1 or 2, characterized in that the at least one clearance (18) is open toward a first side (20) of the titer plate (10), wherein the opposite side (22) is provided with a receptacle (14') for the biochip (14) and with a bulge (12') of the recess (12).
  4. Titer plate (10) according to any one of claims 1 to 3, characterized in that the at least one clearance (18) is formed as an elongated hole (24) which extends over all recesses (12) and the biochip (14), which are surrounded by the wall (16).
  5. Titer plate (10) according to any one of the preceding claims, characterized in that one elastomeric seal (30) is applied on the at least one biochip (14) and has one filling port (32).
  6. Titer plate (10) according to any one of the prceeding claims, characterized in that, on the elastomeric seal (30) of the biochip (14), at least one deposit position is provided for a pipette tip (40).
  7. Titer plate (10) according to any one of the preceding claims, characterized in that one biochip chamber (36) is in fluid communication with a sensitive surface of the biochip (14).
  8. Titer plate (10) according to claim 7, characterized in that the biochip chamber (36) is connectable with an overflow reservoir (24) in order to collect a liquid from the biochip chamber (36).
  9. Titer plate (10) according to claim 8, characterized in that a wick element (31) for soaking up liquid from the biochip chamber (36) is arranged in the overflow reservoir (24).
  10. Titer plate (10) according to any one of claims 1 to 9, characterized in that a hole (38) penetrating the titer plate (10) is present within the clearance (18).
  11. Titer plate (10) according to any one of claims 1 to 10, characterized in that the biochip (14) is designed for detecting DNA by means of hybridization.
  12. Method for detecting an analyte by means of a biochip (14) which is integrated into a titer plate (10) according to any one of claims 1 to 11, having the following steps:
    - transferring (110) a substance, in particular a liquid, from one of the recesses (12) onto the biochip (14),
    characterized in
    that the substance is transferred onto the biochip (14) by means of a pipetting robot with a pipette tip (40) and the pipette tip (40) remains within the clearance (18) after the transfer of the substance.
  13. Method according to claim 12, characterized by the following steps:
    a) introducing (102) a sample into one of the recesses (12);
    b) introducing reagents into at least one of the recesses (12);
    c) carrying out an amplification reaction with the sample with reagents added;
    d) transferring (110) the resulting reaction mix onto the biochip (14); and
    e) reading the biochip (14), which changes at least one electrically recordable property owing to hybridization with the analyte;
    wherein the reaction mix and/or the sample is introduced, and/or transferred onto the biochip (14), by means of a pipetting robot with a pipette tip (40) and that the pipette tip (40) remains within the clearance (18).
  14. Method according to claim 13, characterized in that, after step d), a liquid, in particular a labeling liquid, is transferred onto the biochip (14) with a pipette tip (40).
  15. Method according to claim 13 or 14, characterized in that steps a) to e) are carried out with a further sample.
  16. Method according to any one of claims 12 to 15, characterized in that multiple pipette tips (40) remain within the clearance (18).
  17. Method according to any one of claims 12 to 16, characterized in that, after pipetting, in particular after transferring (110) the resulting reaction mix from one of the recesses (12) onto the biochip (14), a pipette tip (40) is placed down in the respective recess (12) from which liquid was transferred.
  18. Method according to any one of claims 12 to 17, characterized in that after pipetting, in particular after transferring labeling liquid onto the biochip (14), a pipette tip (40) is placed down on a deposit position (33, 35) within the clearance (18), said deposit position sealing the pipette tip (40) to the bottom so that no liquid can escape from the pipette tip (40).
EP09753828.4A 2008-05-30 2009-05-22 Titer plate and method for detecting an analyte Active EP2280778B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008025992A DE102008025992B4 (en) 2008-05-30 2008-05-30 Titer plate and method for detecting an analyte
PCT/EP2009/056231 WO2009144173A2 (en) 2008-05-30 2009-05-22 Titer plate, reading device therefor and method for detecting an analyte, and use thereof

Publications (2)

Publication Number Publication Date
EP2280778A2 EP2280778A2 (en) 2011-02-09
EP2280778B1 true EP2280778B1 (en) 2018-07-25

Family

ID=40958038

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09753828.4A Active EP2280778B1 (en) 2008-05-30 2009-05-22 Titer plate and method for detecting an analyte

Country Status (6)

Country Link
US (1) US8383393B2 (en)
EP (1) EP2280778B1 (en)
JP (1) JP5675592B2 (en)
CN (1) CN102046290B (en)
DE (1) DE102008025992B4 (en)
WO (1) WO2009144173A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009057223B4 (en) * 2009-12-05 2016-03-24 Chemagen Biopolymer-Technologie Aktiengesellschaft Sample vessel matrix and its production process
JP5623888B2 (en) * 2009-12-10 2014-11-12 エフ.ホフマン−ラ ロシュアーゲーF.Hoffmann−La Roche Aktiengesellschaft Method for separating and detecting analytes
US11560585B2 (en) 2011-01-31 2023-01-24 Roche Sequencing Solutions, Inc. Methods of identifying multiple epitopes in cells
WO2012106385A2 (en) 2011-01-31 2012-08-09 Apprise Bio, Inc. Methods of identifying multiple epitopes in cells
DE102012100824A1 (en) * 2012-02-01 2013-09-05 Albert-Ludwigs-Universität Freiburg Multiplexed Digital PCR
CN104307584B (en) * 2014-09-25 2015-09-16 瑞安市富日包装机械有限公司 Dropper unit mahine
US10775401B2 (en) * 2016-03-15 2020-09-15 Abbott Molecular Inc. Systems and methods for automated analysis
US10591502B2 (en) 2017-04-03 2020-03-17 Hewlett-Packard Development Company, L.P. Cassettes including overflow reservoirs
EP3684510A1 (en) 2017-09-21 2020-07-29 University of Cincinnati Discrete volume dispensing system flow rate and analyte sensor
US11213228B2 (en) 2018-06-29 2022-01-04 Siemens Healthcare Diagnostics Inc. Stacked sensor assembly for fluid analyzer
CN211420183U (en) * 2019-11-13 2020-09-04 中国人民解放军军事科学院军事医学研究院 Nucleic acid amplification reaction tube
DE102020128003A1 (en) * 2020-10-23 2020-12-31 Bmg Labtech Gmbh Microplate reader
CN113083388B (en) * 2021-04-26 2022-10-25 苏州德运康瑞生物科技有限公司 Automatic interfacing apparatus of chip of dyeing appearance is caught to blood cell
KR102594644B1 (en) * 2021-05-28 2023-10-30 (주)에프피에이 Automatic System for Urine Analysis
KR102579228B1 (en) * 2021-05-28 2023-09-19 (주)에프피에이 Automatic System for Urine Analysis

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1292176C (en) 1985-09-18 1991-11-19 Joel M. Blatt Volume metering capillary gap device for applying a liquid sample onto a reactive surface
JPH07119769B2 (en) * 1986-10-01 1995-12-20 株式会社日立製作所 Automatic analyzer
US5244630A (en) * 1988-04-22 1993-09-14 Abbott Laboratories Device for performing solid-phase diagnostic assay
DE19646505A1 (en) * 1996-11-12 1998-05-14 Itt Ind Gmbh Deutsche Device for carrying out tests on cell samples and the like
WO1999007879A1 (en) 1997-08-12 1999-02-18 University Of Southern California Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures
US6780617B2 (en) * 2000-12-29 2004-08-24 Chen & Chen, Llc Sample processing device and method
DE19916867A1 (en) * 1999-04-14 2000-10-19 Fraunhofer Ges Forschung Making a molecular array on which molecules are immobilized, using micro-compartments or microcapillary reactors on planar substrates with sensor elements employs microelectronic production techniques
US6225109B1 (en) * 1999-05-27 2001-05-01 Orchid Biosciences, Inc. Genetic analysis device
US7070740B1 (en) * 2000-09-28 2006-07-04 Beckman Coulter, Inc. Method and apparatus for processing biomolecule arrays
US6699665B1 (en) * 2000-11-08 2004-03-02 Surface Logix, Inc. Multiple array system for integrating bioarrays
DE10058397A1 (en) 2000-11-24 2002-06-06 Siemens Ag Arrangement for an electrochemical analysis method and its use
US7833701B2 (en) * 2001-05-11 2010-11-16 Panasonic Corporation Biomolecule substrate, and test and diagnosis methods and apparatuses using the same
DE10126341A1 (en) 2001-05-30 2002-12-12 Siemens Ag Electrochemical DNA sensor, method for producing and operating such a DNA sensor
US7201833B2 (en) * 2001-06-04 2007-04-10 Epocal Inc. Integrated solid-phase hydrophilic matrix circuits and micro-arrays
US20030049866A1 (en) * 2001-09-05 2003-03-13 Genicon Sciences Corporation Sample device preservation
US7854896B2 (en) * 2001-09-25 2010-12-21 Becton, Dickinson And Company Closed system storage plates
JP3892743B2 (en) * 2002-03-01 2007-03-14 日本碍子株式会社 Reaction cell and method of use thereof
WO2003087410A1 (en) * 2002-04-11 2003-10-23 Sequenom, Inc. Methods and devices for performing chemical reactions on a solid support
CA2484058A1 (en) * 2002-04-24 2003-11-06 Surface Logix, Inc. Device and method for monitoring leukocyte migration
DE10233212B4 (en) * 2002-07-22 2006-07-06 Siemens Ag Measuring device with a biochip arrangement and use of the device for a high-throughput analysis method
CA2522543A1 (en) * 2003-04-14 2004-10-28 Surface Logix, Inc. Devices and assays for monitoring/measuring cellular dynamics to create subject profiles from primary cells
JP2005077308A (en) * 2003-09-02 2005-03-24 Corona Giken Kogyo Kk Specimen tray and using method of specimen tray
DE102005051850A1 (en) * 2005-10-28 2007-05-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for duplication and detection of nucleic acids
DE102005059535B4 (en) * 2005-12-13 2010-01-14 Siemens Ag Device and method for carrying out a nucleic acid test, and method for producing such a device
US7807448B2 (en) * 2005-12-21 2010-10-05 Glezer Eli N Assay modules having assay reagents and methods of making and using same
CN101416064B (en) 2006-03-28 2012-08-22 环球生物研究株式会社 Micro plate treating device and micro plate treating method
WO2008061165A2 (en) * 2006-11-14 2008-05-22 Handylab, Inc. Microfluidic cartridge and method of making same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102046290A (en) 2011-05-04
DE102008025992A1 (en) 2009-12-03
US20110076690A1 (en) 2011-03-31
CN102046290B (en) 2014-08-06
US8383393B2 (en) 2013-02-26
DE102008025992B4 (en) 2011-01-27
WO2009144173A3 (en) 2010-01-21
JP5675592B2 (en) 2015-02-25
JP2011524004A (en) 2011-08-25
WO2009144173A2 (en) 2009-12-03
EP2280778A2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
EP2280778B1 (en) Titer plate and method for detecting an analyte
DE60016415T2 (en) GENETIC EXPERIMENTAL SYSTEM
EP1001845B1 (en) System for providing biological materials
WO2018086901A1 (en) Device and method for the inclined processing of microfluidic cartridges
EP1081233B1 (en) Sample chamber for liquid treatment of biological samples
EP0676643B1 (en) System for contamination-free reaction processes
DE10218988C1 (en) Device and method for wetting objects
DE69532953T2 (en) MOLECULAR ANALYZER AND METHOD FOR ITS USE
EP1110609B1 (en) System for sample processing in a multi-chamber device
EP2755033B1 (en) Sample processing system having a dosing device and thermal cycler
DE102010053913A1 (en) Method for separating and detecting an analyte
DE102018111822B4 (en) Fluidic system for receiving, dispensing and moving liquids, method for processing fluids in a fluidic system
DE602004009775T2 (en) Device for reliable analysis
EP2269028B1 (en) Dispensing head
EP1304166A1 (en) Flow through reaction chamber with sensor chip
DE102005049976A1 (en) Cartridge card for automated DNA or protein analysis has a geometric array of micro-channels with dry reagents
DE10118905A1 (en) Apparatus useful for cell culture comprises wells of microtiter plate with cover which has chamber with inlet and outlet and which is filled with culture medium, all or part of which is replaced during culture
EP0907414B1 (en) Method for achieving chemical, in particular biochemical reactions and pipette tip with reaction vessel
DE112020007358T5 (en) BIOCHEMICAL ANALYZER, REACTION UNIT AND CASSETTE GUIDE
DE10339996A1 (en) Analysis of different reagents, e.g. for the amplification of DNA sequences, has reagents bonded to spots on a chip each to be covered by a sample droplet for reactions to be analyzed by PCR
EP1510254A2 (en) Method and device for detecting an analyte in a fluid
WO2003106032A1 (en) Hybridization chamber
DE102004006428B4 (en) Device for carrying out investigations on biocomponents
DE10251337A1 (en) Apparatus for color and hybridizing reactions has a cover plate, with a recess, forming a reservoir when the sample carrier and biological sample are in place, useful in the analysis of gene expression patterns
DE202018006869U1 (en) Microfluidic system for digital polymerase chain reaction (dPCR) of a biological sample

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101026

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHRINGER INGELHEIM VETMEDICA GMBH

17Q First examination report despatched

Effective date: 20160623

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1021177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009015126

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009015126

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1021177

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220520

Year of fee payment: 14

Ref country code: FR

Payment date: 20220523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230522