EP2275342B1 - Method for reducing a vertical movement of a water vehicle - Google Patents

Method for reducing a vertical movement of a water vehicle Download PDF

Info

Publication number
EP2275342B1
EP2275342B1 EP10004837.0A EP10004837A EP2275342B1 EP 2275342 B1 EP2275342 B1 EP 2275342B1 EP 10004837 A EP10004837 A EP 10004837A EP 2275342 B1 EP2275342 B1 EP 2275342B1
Authority
EP
European Patent Office
Prior art keywords
vessel
vertical movement
movement
resonance region
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10004837.0A
Other languages
German (de)
French (fr)
Other versions
EP2275342A1 (en
Inventor
Luitpold Miller
Qinghua Zheng
Florian Dignath
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Marine Systems GmbH
Original Assignee
ThyssenKrupp Marine Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Marine Systems GmbH filed Critical ThyssenKrupp Marine Systems GmbH
Priority to PL10004837T priority Critical patent/PL2275342T3/en
Publication of EP2275342A1 publication Critical patent/EP2275342A1/en
Application granted granted Critical
Publication of EP2275342B1 publication Critical patent/EP2275342B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude

Definitions

  • the invention relates to a method for reducing a vertical movement of a watercraft.
  • the method according to the invention serves to reduce a vertical movement of a watercraft.
  • a vertical motion resonance range for motion states of the watercraft is first determined. Then, during the drive, the state of motion of the watercraft is at least partially detected and determined whether this is in the vertical motion resonance range.
  • a determination of the vertical motion resonance range in the sense of this invention is to be understood as meaning, in particular repeated or continuous, determination of the vertical motion resonance range during travel.
  • the vertical-motion resonance range can also be determined implicitly by determining whether the vertical movement unfolds, ie it is determined by observing the movement of the watercraft, whether the state of motion of the vessel coincides with a state of motion in the vertical motion resonance area.
  • the rolling motion of the watercraft forms the vertical movement and a rolling motion resonance area forms the vertical motion resonance area.
  • straight rolling movements are reduced which endanger driving safety and ride comfort particularly frequently.
  • the traveling speed and / or the heading of the vessel is changed until the vertical motion resonance area is exited.
  • the reduced vertical movement increases driving safety enormously.
  • capsizing of the vessel and possibly slipping or loss of cargo is safely avoided.
  • the originally intended course and the originally intended speed for the watercraft are preferably assumed again. In this way, it is only necessary to deviate from the planned course of the journey for a short time, so that when the method according to the invention is used, the envisaged total journey time also changes at best negligibly.
  • each rotation or. To understand displacement movement about or along a main axis of inertia of the vessel, which is a vertical motion component having. For example, the lifting and pitching movements fall under the vertical movement.
  • the course and / or the travel speed of the watercraft are preferably changed or changed as a function of the previously determined propagation speed and / or the propagation direction of the water waves. In this way, for example, certain encounter frequencies of water waves can be avoided with the vessel, in which a large proportion of the kinetic energy of the sea state can couple into the vertical movement.
  • the method at least by determining the frequency of encounter of the water waves with the vessel, it is determined whether the state of motion of the vessel is in the vertical motion resonance range.
  • water waves can excite vertical movements in the vertical motion resonance range, in particular, when the frequency of encounter of the water waves with the watercraft is close to a resonance frequency of a vertical motion resonance.
  • the frequency of encounter of the water waves with the vessel can be measured, for example, by detecting periodic movements of the vessel itself, such as by measuring the pitching motion of the vessel.
  • the vertical motion resonance range is preferably determined by determining at least one resonance frequency of the vertical movement.
  • the vertical motion resonance range represents a frequency interval including the resonance frequency.
  • the vertical motion resonance range can be determined by an integer fraction, for example half, or by an integer multiple of the resonance frequency of the vertical movement.
  • the vertical motion resonance area formed in preferred embodiments of the method by one or more frequencies, which are in a rational relationship with at least one resonance frequency of the vertical movement.
  • the phase of the water waves impinging on the vessel is changed relative to the vibration-like vertical movements of the vessel by course or travel speed changes of the vessel.
  • vibration-like vertical movements of the vessel can be damped at a suitable phase by the sea.
  • the state of motion of the vessel is at least partially detected, by determining at least one component of the location and / or orientation of the watercraft and / or their - in particular first - time derivation.
  • at least one further, in particular the second, time derivative of the component is determined.
  • the determination of the aforementioned variables may be understood, on the one hand, as a computational determination, for example in such a way that a time derivation of the variables to be determined is integrated over time.
  • An alternative mathematical determination can be made such that the variable to be determined itself represents a time derivative of a detected variable and is calculated from the time course of this detected variable.
  • determination can also be understood to mean a measurement, for example by means of sensors such as acceleration sensors or roll rate meters.
  • the state of motion of the watercraft is detected by relating at least two of the above-mentioned components to one another.
  • the course of the roll angle and the vertical position of the vessel are linked to each other.
  • the acquired data on the state of motion of the vessel or the movement of the water waves can be transformed, for example, into the earth-fixed coordinate system.
  • this data can then be filtered with a high-pass filter whose time constant is not limited by time scales on which rate changes occur.
  • a filtering be appropriate on long time scales to achieve the most accurate determination of the propagation direction of the water waves.
  • the change of course and / or travel speed of the watercraft by means of at least one machine and / or at least one actuator of the watercraft is expediently carried out automatically.
  • these actuators are the rudder (s), especially in cruise ships and yachts, for laterally mounted fins for roll stabilization, as well as submarines additionally or alternatively to the or the rudder.
  • all available actuators and / or the machine of the watercraft are used for this purpose.
  • the vertical motion damping is increased, provided that the state of motion of the vessel is located within the vertical motion resonance range.
  • the vertical motion damping is increased via a subordinate control method, which counteracts the vertical movement.
  • the vertical motion damping is increased by means of at least one or more devices from the group of machines, side fins, rudders, ailerons, for example divided, oppositely-moving ailerons and / or optionally further actuators.
  • these actuators need not be available solely for damping the vertical movement, but at the same time they can also be used to change the course and / or travel speed of the watercraft as described above.
  • the controls of the machine or the actuators for example, for adjusting rudder / fin angles, engine power, etc. - for the purpose of changing course or speed of the vessel and for the purpose of vertical motion damping suitable superimposed.
  • the damping can be taken into account by the machine or by the actuators in control circuits, which are designed to change the course or speed of the watercraft.
  • the controls for changing course or speed can also be done in subordinate control loops for damping the vertical movement by means of the machine or the actuators.
  • the respective drives can be added in a corresponding control.
  • the strength of the excitation of the vertical movement in a state of motion of the vessel within the vertical motion resonance range is reduced by the change of the pitch amplitude of the vessel, preferably by a subordinate control method, which counteracts the pitching movement.
  • a subordinate control method which counteracts the pitching movement.
  • the vertical motion resonance region is formed by a rolling motion resonance region. Just pitching movement and rolling motion often couple strongly with each other, so that pitching movements at a corresponding frequency can drive roll motions resonantly.
  • the intensity of the excitation of the vertical motion is reduced by the change of the yaw angle of the vessel, preferably by a subordinate control.
  • the ramming amplitude is influenced by means of at least one depth rudder of the watercraft.
  • the state of motion of the vessel is determined via an inertial platform.
  • the inventive method for reducing the vertical movement of a submarine is performed.
  • particularly parameter-excited rolling vibrations can occur in an intensified form during navigation, since their hull is not regularly optimized to avoid rolling movements. Rather, submarines for roll behavior on unfavorable mass geometric conditions. These unfavorable circumstances are suitably compensated by the method according to the invention.
  • the basis for the invention forming method reduces the rolling motion of a ship.
  • it is a cruise ship, a cargo ship or a submarine.
  • the method described can be used in a corresponding manner to reduce the pitching movement.
  • the state of motion of the ship is first detected.
  • sensors are provided which measure the state of motion of the ship in terms of its six degrees of freedom, d. H.
  • the position of the ship in the three spatial directions as well as the orientation of the ship are determined by means of the sensors.
  • the time derivatives of the aforementioned sizes are determined, d. H.
  • the speed of the ship along the three spatial directions and the angular velocities of the ship's rotational movements around its main axes of inertia are determined.
  • the determination of these time derivations is done either by a direct measurement via specially provided for this purpose sensors or mathematically from each time sequentially measured values of position and / or orientation of the ship.
  • the input data for the position or orientation of the ship can also be obtained from the temporal integration of the time derivatives of position and orientation of the ship.
  • the second time derivatives of the position and the orientation of the ship are also measured, so that the acceleration of the ship along the three spatial directions and the angular acceleration about the main axes of inertia of the ship are part of the input data.
  • the aforementioned set of input data forms a state vector x which describes the state of motion of the ship.
  • the method determines position data from the data of a satellite-based navigation system, such as the Global Positioning System (GPS).
  • GPS Global Positioning System
  • This position data forms another set of input data, which is summarized in a vector GPS .
  • the two aforementioned sets of input data x and GPS are fed to a filter device 1.
  • the data sets x and GPS are appropriately filtered and thus freed from interference.
  • redundant data for the input data x and GPS are available to the filter device 1 via further sensors, with which the filter device 1 carries out averaging of the input data.
  • the input data thus cleaned by filtering or averaging are available as data sets x and G p s for further processing.
  • predetermined set values for actuators of the ship are adjusted in a second filter device 2 by further subordinate control devices.
  • These target variables include, inter alia, the setpoint speed of a machine n , the desired angle of a rudder surface ⁇ 1 , in the case of a submarine the desired angle of the depth rudder ⁇ 2 and target values of other actuators.
  • the filter device 2 provides the adjusted nominal values ⁇ , ⁇ 1 and ⁇ 2 for further processing.
  • the proximity of the adjusted movement state x to the state of a parameter-excited rolling oscillation is determined on the basis of one or more defined criteria.
  • the proximity of the state of motion to the roll resonance state is characterized by a data set called resonant level RL .
  • a second evaluation device 4 the propagation direction of the water waves relative to the ship, the wave propagation speed and other characteristic magnitudes of the wave excitation are determined from the adjusted movement state x .
  • wave excitation q w a dataset, here referred to as wave excitation q w .
  • the evaluation device 4 is provided with the adjusted GPS data GPS , on the basis of which the wave excitation q w is transformed into an earth-fixed coordinate system, so that the influence of course and speed of the ship is calculated out.
  • the wave excitation q w is filtered. In particular, this filtering allows increased accuracy in determining the propagation direction of the water waves.
  • the resonant level RL, the cleared state of motion of the vessel x and the wave excitation q w are passed to a controller 6 which checks the resonant level RL to see if the state of motion of the vessel x is critically close to parameter-excited roll vibration, ie if the state of motion is within a roll resonance range is. If the state of motion of the watercraft is in the roll resonance range, the speed and the yaw angle of the ship are changed by means of a control law such that the distance of the movement state x to the state of the parameter-excited rolling vibration increases.
  • a suitable specification for changing the yaw angle depends essentially on the wave excitation q w , in particular on the propagation direction of the water waves.
  • the manipulated variables for speed and yaw angle change are formed by nominal variables O1 for the machine and nominal variables O2 for a rudder, which the existing on board, subordinate Aktorreglern 7 and 8 for the operation of these actuators be supplied. Also, the other actuators 6 setpoints O5 are specified by the control device.
  • Resonance level RL and adjusted movement state x are also transmitted to another control device 5.
  • the control device 5 first determines on the basis of the resonance level RL whether the movement state of the ship x is so close to a state of a parameter-excited rolling vibration that the ship's movement must be damped. If this is the case, set values for actuators of the ship are based on the movement state x according to a control law calculated, which are used for damping. In the embodiment shown, these are z. B. Nominal O3 for the side fins.
  • the controller determines 5 setpoints O4 for more directly acting on the roll and ramming behavior of the ship actuators, for example, the submarines in the case of submarines.
  • Aktorsoll sizes ⁇ , ⁇ 1 , ⁇ 2 are in the in Fig. 1 Embodiment considered internally in the controllers 5 and 6.
  • the setpoint variables O1 , O2 , ..., O5 for the actuators in the subordinate Aktorregiern 7, 8 and 9 are added, the filtering of the Aktorsoll variables ⁇ , ⁇ 1 , ⁇ 2 can be done completely separately via the filter device 2 ,

Description

Die Erfindung betrifft ein Verfahren zur Verminderung einer Vertikalbewegung eines Wasserfahrzeugs.The invention relates to a method for reducing a vertical movement of a watercraft.

Bei Wasserfahrzeugen, beispielsweise bei Frachtschiffen, aber auch bei Unterseebooten, ist es erforderlich, die Schiffsstabilität während der Fahrt zu gewährleisten. Es ist bekannt, dass bei bestimmten Seegangsbedingungen Schwingungsbewegungen des Wasserfahrzeugs mit vertikalem Bewegungsanteil angeregt werden können, insbesondere Rollschwingungen. Derartige Vertikalbewegungen führen im Resonanzfall zu stark erhöhten Abweichungen von der Solllage des Wasserfahrzeugs. So treten beispielsweise bei parametererregten Rollschwingungen bisweilen Rollwinkel größer als 20° auf. Insbesondere bei Unterseebooten können aufgrund der massengeometrischen Eigenschaften des Schiffrumpfes starke parametererregte Rollbewegungen auftreten. So sind bei Unterseebooten sogar Rollwinkel von mehr als 40° bekannt geworden.For vessels, such as cargo ships, but also for submarines, it is necessary to ensure the ship's stability while driving. It is known that in certain sea conditions vibration movements of the vessel can be excited with a vertical component of motion, in particular rolling vibrations. Such vertical movements lead in the case of resonance to greatly increased deviations from the desired position of the vessel. For example, in the case of parameter-excited rolling vibrations, roll angles greater than 20 ° sometimes occur. In submarines in particular, strong parameter-excited rolling movements can occur due to the mass geometric properties of the hull. Thus, in submarines even roll angle of more than 40 ° have become known.

Aus den "Richtlinien für die Überwachung der Schiffsstabilität" des Bundesministeriums für Verkehr, Bau und Stadtentwicklung und der See-Berufsgenossenschaft der Bundesrepublik Deutschland vom 31. März 2004 ist ein Verfahren zur Verminderung der Gefährdung durch parametrische Rollresonanz bekannt, bei welchem durch vorherige Abschätzung der Rollzeit des Schiffes und der Kenntnis seiner Rolleigenperiode ein Resonanzbereich für gefährliche Begegnungsperioden mit dem einkommenden Seegang bestimmt werden kann. Befindet sich das Wasserfahrzeug innerhalb des Resonanzbereichs, so kann als Gegenmaßnahme entweder die Fahrgeschwindigkeit oder der Kurs angepasst werden, bis der Resonanzbereich verlassen ist. Die Begegnungsperiode mit dem einkommenden Seegang kann dabei beispielsweise mit Hilfe der Stampfbewegungen des Wasserfahrzeugs gemessen werden. Dabei ist nachteilig, dass der ermittelte Resonanzbereich derart groß ist, dass teils unnötige Steuer- und Antriebseingriffe durchgeführt werden.From the "Guidelines for monitoring ship stability" of the Federal Ministry of Transport, Building and Urban Development and the Maritime Trade Association of the Federal Republic of Germany of 31 March 2004, a method for reducing the risk of parametric roll resonance is known in which by prior estimation of the roll time of the ship and the knowledge of its Rolleigenperiode a resonance range for dangerous meeting periods with the incoming swell can be determined. Is located the vessel within the range of resonance, either the driving speed or the course can be adjusted as a countermeasure until the resonance area is left. The encounter period with the incoming sea state can be measured, for example, with the help of the pitching movements of the watercraft. It is disadvantageous that the determined resonance range is so great that partly unnecessary control and drive operations are performed.

Es ist daher Aufgabe der Erfindung, ein Verfahren bereitzustellen, mit welchem die Vertikalbewegung eines Wasserfahrzeugs mit wenigen Steuer- und Antriebseingriffen vermindert werden kann.It is therefore an object of the invention to provide a method by which the vertical movement of a watercraft can be reduced with few control and drive operations.

Diese Aufgabe wird durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen, der nachfolgenden Beschreibung und der Zeichnung angegeben.This object is achieved by a method having the features specified in claim 1. Advantageous embodiments are specified in the subclaims, the following description and the drawing.

Das erfindungsgemäße Verfahren dient der Verminderung einer Vertikalbewegung eines Wasserfahrzeugs. Hierzu wird zunächst ein Vertikalbewegungsresonanzbereich für Bewegungszustände des Wasserfahrzeugs bestimmt. Dann wird während der Fahrt der Bewegungszustand des Wasserfahrzeugs zumindest teilweise erfasst und ermittelt, ob dieser im Vertikalbewegungsresonanzbereich liegt.The method according to the invention serves to reduce a vertical movement of a watercraft. For this purpose, a vertical motion resonance range for motion states of the watercraft is first determined. Then, during the drive, the state of motion of the watercraft is at least partially detected and determined whether this is in the vertical motion resonance range.

Unter einer Bestimmung des Vertikalbewegungsresonanzbereichs im Sinne dieser Erfindung ist eine, insbesondere wiederholte bzw. kontinuierliche, Bestimmung des Vertikalbewegungsresonanzbereichs während der Fahrt zu verstehen. Der Vertikalbewegungsresonanzbereich kann erfindungsgemäß allerdings auch implizit bestimmt werden, indem festgestellt wird, ob ein Aufklingen der Vertikalbewegung erfolgt, d. h. es wird durch Beobachtung der Bewegung des Wasserfahrzeugs festgestellt, ob der Bewegungszustand des Wasserfahrzeugs mit einem Bewegungszustand im Vertikalbewegungsresonanzbereich übereinstimmt.A determination of the vertical motion resonance range in the sense of this invention is to be understood as meaning, in particular repeated or continuous, determination of the vertical motion resonance range during travel. However, according to the invention, the vertical-motion resonance range can also be determined implicitly by determining whether the vertical movement unfolds, ie it is determined by observing the movement of the watercraft, whether the state of motion of the vessel coincides with a state of motion in the vertical motion resonance area.

Erfindungsgemäß bildet die Rollbewegung des Wasserfahrzeugs die Vertikalbewegung und ein Rollbewegungsresonanzbereich den Vertikalbewegungsresonanzbereich. Auf diese Weise werden gerade Rollbewegungen vermindert, die Fahrsicherheit und Fahrkomfort besonders häufig gefährden.According to the invention, the rolling motion of the watercraft forms the vertical movement and a rolling motion resonance area forms the vertical motion resonance area. In this way, straight rolling movements are reduced which endanger driving safety and ride comfort particularly frequently.

Wenn festgestellt wird, dass der Bewegungszustand des Wasserfahrzeugs im Vertikalbewegungsresonanzbereich liegt, wird gemäß der Erfindung die Fahrgeschwindigkeit und/oder der Kurs des Wasserfahrzeugs geändert, bis der Vertikalbewegungsresonanzbereich verlassen ist. Auf diese Weise können Vertikalbewegungen vermindert bzw. ihr Anwachsen vermieden werden. Die verminderte Vertikalbewegung erhöht die Fahrsicherheit enorm. So wird ein Kentern des Wasserfahrzeugs sowie ggf. das Verrutschen bzw. der Verlust von Ladung sicher vermieden. Zudem erhöht sich bei verminderter Vertikalbewegung der Fahrkomfort für die Besatzung.When it is determined that the traveling state of the vessel is in the vertical motion resonance area, according to the invention, the traveling speed and / or the heading of the vessel is changed until the vertical motion resonance area is exited. In this way, vertical movements can be reduced or their growth can be avoided. The reduced vertical movement increases driving safety enormously. Thus, capsizing of the vessel and possibly slipping or loss of cargo is safely avoided. In addition, increases the ride comfort for the crew with reduced vertical movement.

Ist der Vertikalbewegungsresonanzbereich verlassen, so werden bevorzugt der ursprünglich vorgesehene Kurs und die ursprünglich vorgesehene Geschwindigkeit für das Wasserfahrzeug wieder eingenommen. Auf diese Weise muss von dem geplanten Fahrtverlauf nur kurzzeitig abgewichen werden, so dass sich bei der Anwendung des erfindungsgemäßen Verfahrens auch die vorgesehene Gesamtfahrtdauer allenfalls unwesentlich ändert.If the vertical motion resonance range is left, the originally intended course and the originally intended speed for the watercraft are preferably assumed again. In this way, it is only necessary to deviate from the planned course of the journey for a short time, so that when the method according to the invention is used, the envisaged total journey time also changes at best negligibly.

Unter einer Vertikalbewegung im Sinne dieser Erfindung ist jede Dreh-bzw. Versatzbewegung um bzw. entlang einer Hauptträgheitsachse des Wasserfahrzeugs zu verstehen, die einen vertikalen Bewegungsanteil aufweist. So fallen beispielsweise die Hub- sowie die Stampfbewegung unter die Vertikalbewegung.Under a vertical movement in the sense of this invention, each rotation or. To understand displacement movement about or along a main axis of inertia of the vessel, which is a vertical motion component having. For example, the lifting and pitching movements fall under the vertical movement.

Bevorzugt wird bzw. werden bei dem Verfahren der Kurs und/oder die Fahrgeschwindigkeit des Wasserfahrzeugs abhängig von der zuvor ermittelten Ausbreitungsgeschwindigkeit und/oder der Ausbreitungsrichtung der Wasserwellen geändert. Auf diese Weise können beispielsweise bestimmte Begegnungsfrequenzen der Wasserwellen mit dem Wasserfahrzeug vermieden werden, bei welchen ein großer Anteil der Bewegungsenergie des Seegangs in die Vertikalbewegung einkoppeln kann.In the method, the course and / or the travel speed of the watercraft are preferably changed or changed as a function of the previously determined propagation speed and / or the propagation direction of the water waves. In this way, for example, certain encounter frequencies of water waves can be avoided with the vessel, in which a large proportion of the kinetic energy of the sea state can couple into the vertical movement.

Vorzugsweise wird bei dem Verfahren zumindest durch Ermittlung der Begegnungsfrequenz der Wasserwellen mit dem Wasserfahrzeug festgestellt, ob der Bewegungszustand des Wasserfahrzeugs im Vertikalbewegungsresonanzbereich liegt. So können Wasserwellen insbesondere dann Vertikalbewegungen im Vertikalbewegungsresonanzbereich anregen, wenn die Begegnungsfrequenz der Wasserwellen mit dem Wasserfahrzeug nahe einer Resonanzfrequenz einer Vertikalbewegungsresonanz liegt. Die Begegnungsfrequenz der Wasserwellen mit dem Wasserfahrzeug kann beispielsweise gemessen werden, indem periodische Bewegungen des Wasserfahrzeugs selbst erfasst werden, etwa durch Messung der Stampfbewegung des Wasserfahrzeugs.Preferably, in the method, at least by determining the frequency of encounter of the water waves with the vessel, it is determined whether the state of motion of the vessel is in the vertical motion resonance range. Thus, water waves can excite vertical movements in the vertical motion resonance range, in particular, when the frequency of encounter of the water waves with the watercraft is close to a resonance frequency of a vertical motion resonance. The frequency of encounter of the water waves with the vessel can be measured, for example, by detecting periodic movements of the vessel itself, such as by measuring the pitching motion of the vessel.

Bevorzugt wird bei dem Verfahren der Vertikalbewegungsresonanzbereichs durch Ermittlung zumindest einer Resonanzfrequenz der Vertikalbewegung bestimmt. Insbesondere stellt der Vertikalbewegungsresonanzbereich ein Frequenzintervall dar, welches die Resonanzfrequenz einschließt. Alternativ oder zusätzlich kann der Vertikalbewegungsresonanzbereich durch einen ganzzahligen Bruchteil, beispielsweise der Hälfte, bzw. durch ein ganzzahliges Vielfaches der Resonanzfrequenz der Vertikalbewegung bestimmt sein. Ferner ist der Vertikalbewegungsresonanzbereich in bevorzugten Weiterbildungen des Verfahrens durch eine oder mehrere Frequenzen gebildet, welche mit zumindest einer Resonanzfrequenz der Vertikalbewegung in einem rationalen Verhältnis stehen.In the method, the vertical motion resonance range is preferably determined by determining at least one resonance frequency of the vertical movement. In particular, the vertical motion resonance range represents a frequency interval including the resonance frequency. Alternatively or additionally, the vertical motion resonance range can be determined by an integer fraction, for example half, or by an integer multiple of the resonance frequency of the vertical movement. Further, the vertical motion resonance area formed in preferred embodiments of the method by one or more frequencies, which are in a rational relationship with at least one resonance frequency of the vertical movement.

In einer bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens wird ggf. die Phase der dem Wasserfahrzeug begegnenden Wasserwellen relativ zu schwingungsartigen Vertikalbewegungen des Wasserfahrzeugs durch Kurs- bzw. Fahrgeschwindigkeitsänderungen des Wasserfahrzeugs geändert. Beispielsweise können schwingungsartige Vertikalbewegungen des Wasserfahrzeugs bei geeigneter Phase durch den Seegang gedämpft werden.In a preferred embodiment of the method according to the invention, if appropriate, the phase of the water waves impinging on the vessel is changed relative to the vibration-like vertical movements of the vessel by course or travel speed changes of the vessel. For example, vibration-like vertical movements of the vessel can be damped at a suitable phase by the sea.

Erfindungsgemäß wird bei dem Verfahren der Bewegungszustand des Wasserfahrzeugs zumindest teilweise erfasst, indem zumindest eine Komponente des Ortes und/oder der Orientierung des Wasserfahrzeugs und/oder ihre - insbesondere erste - zeitliche Ableitung bestimmt wird. In bevorzugten Weiterbildungen der Erfindung wird alternativ oder zusätzlich zumindest eine weitere, insbesondere die zweite, zeitliche Ableitung der Komponente bestimmt. Unter der Bestimmung der vorgenannten Größen kann erfindungsgemäß zum einen eine rechnerische Bestimmung zu verstehen sein, etwa derart, dass eine zeitliche Ableitung der zu bestimmenden Größen zeitlich integriert wird. Eine alternative rechnerische Bestimmung kann derart erfolgen, dass die zu bestimmende Größe selbst eine zeitliche Ableitung einer erfassten Größe darstellt und aus dem zeitlichen Verlauf dieser erfassten Größe errechnet wird. Zum anderen kann unter Bestimmung auch eine Messung zu verstehen sein, beispielsweise mittels Sensoren wie Beschleunigungssensoren oder Rollratenmessern. Besonders bevorzugt wird der Bewegungszustand des Wasserfahrzeugs erfasst, indem zumindest zwei der oben genannten Komponenten zueinander in Beziehung gesetzt werden. Idealerweise werden dazu der Verlauf des Rollwinkels und die Vertikalposition des Wasserfahrzeugs miteinander verknüpft.According to the invention, in the method, the state of motion of the vessel is at least partially detected, by determining at least one component of the location and / or orientation of the watercraft and / or their - in particular first - time derivation. In preferred developments of the invention, alternatively or additionally, at least one further, in particular the second, time derivative of the component is determined. In accordance with the invention, the determination of the aforementioned variables may be understood, on the one hand, as a computational determination, for example in such a way that a time derivation of the variables to be determined is integrated over time. An alternative mathematical determination can be made such that the variable to be determined itself represents a time derivative of a detected variable and is calculated from the time course of this detected variable. On the other hand, determination can also be understood to mean a measurement, for example by means of sensors such as acceleration sensors or roll rate meters. Particularly preferably, the state of motion of the watercraft is detected by relating at least two of the above-mentioned components to one another. Ideally, the course of the roll angle and the vertical position of the vessel are linked to each other.

Bevorzugt werden zur zumindest teilweisen Erfassung des Bewegungszustandes des Wasserfahrzeugs und/oder der Ausbreitungsrichtung und/oder -geschwindigkeit der Wasserwellen Daten eines satellitengestützten Navigationssystems herangezogen. Somit können die erfassten Daten zum Bewegungszustand des Wasserfahrzeugs bzw. der Bewegung der Wasserwellen beispielsweise ins erdfeste Koordinatensystem transformiert werden. Auf diese Weise kann der Einfluss von Kurs- und/oder Geschwindigkeitsönderungen des Wasserfahrzeugs aus den Daten zum Bewegungszustand des Wasserfahrzeugs bzw. zur Bewegung der Wasserwellen herausgerechnet werden. Beispielsweise können dann diese Daten mit einem Hochpassfilter gefiltert werden, dessen Zeitkonstante nicht durch Zeitskalen, auf welchen Kursänderungen geschehen, nach oben begrenzt ist. Beispielsweise kann eine Filterung auf langen Zeitskalen zweckmäßig sein, um eine möglichst genaue Bestimmung der Ausbreitungsrichtung der Wasserwellen zu erreichen.Preferably, for the at least partial detection of the state of motion of the watercraft and / or the propagation direction and / or speed of the water waves, data of a satellite-supported navigation system is used. Thus, the acquired data on the state of motion of the vessel or the movement of the water waves can be transformed, for example, into the earth-fixed coordinate system. In this way, the influence of course and / or speed ratings of the vessel from the data on the state of motion of the vessel or the movement of the water waves can be deducted. For example, this data can then be filtered with a high-pass filter whose time constant is not limited by time scales on which rate changes occur. For example, a filtering be appropriate on long time scales to achieve the most accurate determination of the propagation direction of the water waves.

Zweckmäßigerweise erfolgt bei dem Verfahren die Änderung von Kurs und/oder Fahrgeschwindigkeit des Wasserfahrzeugs mittels zumindest einer Maschine und/oder zumindest eines Aktors des Wasserfahrzeugs selbsttätig. Beispielsweise handelt es sich bei diesen Aktoren um das oder die Seitenruder, insbesondere bei Kreuzfahrtschiffen und Yachten um seitlich angebrachte Flossen zur Rollstabilisierung, sowie bei Unterseebooten zusätzlich oder alternativ um das bzw. die Tiefenruder. Bevorzugt werden sämtliche verfügbaren Aktoren und/oder die Maschine des Wasserfahrzeugs zu diesem Zweck eingesetzt.In the method, the change of course and / or travel speed of the watercraft by means of at least one machine and / or at least one actuator of the watercraft is expediently carried out automatically. For example, these actuators are the rudder (s), especially in cruise ships and yachts, for laterally mounted fins for roll stabilization, as well as submarines additionally or alternatively to the or the rudder. Preferably, all available actuators and / or the machine of the watercraft are used for this purpose.

In einer vorteilhaften Weiterbildung wird bei dem Verfahren die Vertikalbewegungsdämpfung erhöht, sofern der Bewegungszustand des Wasserfahrzeugs innerhalb des Vertikalbewegungsresonanzbereichs gelegen ist. Beispielsweise wird die Vertikalbewegungsdämpfung über ein unterlagertes Regelungsverfahren erhöht, welches der Vertikalbewegung entgegenwirkt.In an advantageous development, the method, the vertical motion damping is increased, provided that the state of motion of the vessel is located within the vertical motion resonance range. For example, the vertical motion damping is increased via a subordinate control method, which counteracts the vertical movement.

Zweckmäßigerweise wird die Vertikalbewegungsdämpfung mittels zumindest einer oder mehrerer Einrichtungen aus der Gruppe Maschine, Seitenflossen, Seitenruder, Tiefenruder beispielsweise geteilte, gegenläufig bewegte Tiefenruder und/oder ggf. weitere Aktoren erhöht. Diese Aktoren müssen bei dem erfindungsgemäßen Verfahren nicht allein zur Dämpfung der Vertikalbewegung zur Verfügung stehen, sondern können zugleich auch zur Änderung von Kurs und/oder Fahrgeschwindigkeit des Wasserfahrzeugs wie oben beschrieben eingesetzt werden. Dazu werden ggf. die Ansteuerungen der Maschine bzw. der Aktoren - beispielsweise zur Einstellungen von Ruder-/Flossenwinkeln, Maschinenleistung, etc. - zwecks Änderung von Kurs bzw. Fahrgeschwindigkeit des Wasserfahrzeugs sowie zwecks Vertikalbewegungsdämpfung geeignet überlagert. Beispielsweise kann die Dämpfung durch die Maschine bzw. durch die Aktoren in Regelkreisen berücksichtigt werden, welche zur Änderung von Kurs bzw. Fahrgeschwindigkeit des Wasserfahrzeugs ausgebildet sind. Umgekehrt können die Ansteuerungen zur Änderung von Kurs bzw. Fahrgeschwindigkeit auch in unterlagerten Regelkreisen zur Dämpfung der Vertikalbewegung mittels der Maschine bzw. der Aktoren erfolgen. Beispielsweise können die jeweiligen Ansteuerungen in einer entsprechenden Regelung addiert werden.Expediently, the vertical motion damping is increased by means of at least one or more devices from the group of machines, side fins, rudders, ailerons, for example divided, oppositely-moving ailerons and / or optionally further actuators. In the method according to the invention, these actuators need not be available solely for damping the vertical movement, but at the same time they can also be used to change the course and / or travel speed of the watercraft as described above. For this purpose, if necessary, the controls of the machine or the actuators - for example, for adjusting rudder / fin angles, engine power, etc. - for the purpose of changing course or speed of the vessel and for the purpose of vertical motion damping suitable superimposed. For example, the damping can be taken into account by the machine or by the actuators in control circuits, which are designed to change the course or speed of the watercraft. Conversely, the controls for changing course or speed can also be done in subordinate control loops for damping the vertical movement by means of the machine or the actuators. For example, the respective drives can be added in a corresponding control.

Vorteilhafterweise wird bei dem Verfahren die Stärke der Erregung der Vertikalbewegung bei einem Bewegungszustand des Wasserfahrzeugs innerhalb des Vertikalbewegungsresonanzbereichs durch die Änderung der Stampfamplitude des Wasserfahrzeugs verringert, vorzugsweise durch ein unterlagertes Regelungsverfahren, welches der Stampfbewegung entgegenwirkt. Relevant ist dies insbesondere in dem Fall, in welchem der Vertikalbewegungsresonanzbereich durch einen Rollbewegungsresonanzbereich gebildet ist. Gerade Stampfbewegung und Rollbewegung koppeln untereinander häufig stark, so dass Stampfbewegungen bei entsprechender Frequenz Rollbewegungen resonant treiben können. Ferner bevorzugt wird bei einem Bewegungszustand des Wasserfahrzeugs innerhalb des Vertikalbewegungsresonanzbereichs die Stärke der Erregung der Vertikalbewegung durch die Änderung des Gierwinkels des Wasserfahrzeugs verringert, vorzugsweise durch eine unterlagerte Regelung.Advantageously, in the method, the strength of the excitation of the vertical movement in a state of motion of the vessel within the vertical motion resonance range is reduced by the change of the pitch amplitude of the vessel, preferably by a subordinate control method, which counteracts the pitching movement. This is particularly relevant in the case where the vertical motion resonance region is formed by a rolling motion resonance region. Just pitching movement and rolling motion often couple strongly with each other, so that pitching movements at a corresponding frequency can drive roll motions resonantly. Further preferably, in a state of motion of the vessel within the vertical motion resonance area, the intensity of the excitation of the vertical motion is reduced by the change of the yaw angle of the vessel, preferably by a subordinate control.

Zweckmäßigerweise wird die Stampfamplitude mittels zumindest eines Tiefenruders des Wasserfahrzeugs beeinflusst.Conveniently, the ramming amplitude is influenced by means of at least one depth rudder of the watercraft.

Geeigneterweise wird bei dem erfindungsgemäßen Verfahren der Bewegungszustand des Wasserfahrzeuges über eine Trägheitsplattform ermittelt.Suitably, in the method according to the invention, the state of motion of the vessel is determined via an inertial platform.

Vorzugsweise wird das erfindungsgemäße Verfahren zur Verminderung der Vertikalbewegung eines Unterseebootes ausgeführt. Gerade bei Unterseebooten können bei Überwasserfahrt insbesondere parametererregte Rollschwingungen in verstärkter Form auftreten, da ihr Schiffsrumpf regelmäßig nicht zur Vermeidung von Rollbewegungen optimiert ist. Vielmehr weisen Unterseeboote für das Rollverhalten ungünstige massengeometrische Verhältnisse auf. Diese ungünstigen Umstände werden durch das erfindungsgemäße Verfahren geeignet kompensiert.Preferably, the inventive method for reducing the vertical movement of a submarine is performed. Particularly in the case of submarines, particularly parameter-excited rolling vibrations can occur in an intensified form during navigation, since their hull is not regularly optimized to avoid rolling movements. Rather, submarines for roll behavior on unfavorable mass geometric conditions. These unfavorable circumstances are suitably compensated by the method according to the invention.

Die Erfindung ist nachfolgend anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen:

Fig. 1
schematisch ein Signalschaltbild einer Regelung zur Ausführung eines eine Grundlage für die Erfindung bildenden Verfahrens und
Fig. 2
schematisch ein Signalschaltbild einer alternativen Regelung.
The invention is explained in more detail with reference to embodiments shown in the drawing. Show it:
Fig. 1
schematically a signal diagram of a control for carrying out a basis for the invention forming method and
Fig. 2
schematically a signal diagram of an alternative control.

Das in den Signalschaltbildern dargestellte, die Grundlage für die Erfindung bildende Verfahren vermindert die Rollbewegung eines Schiffes. Beispielsweise handelt es sich dabei um ein Kreuzfahrtschiff, ein Frachtschiff oder ein Unterseeboot. Ferner kann das beschriebene Verfahren in entsprechender Weise auch zur Verminderung der Stampfbewegung eingesetzt werden.The illustrated in the signal diagrams, the basis for the invention forming method reduces the rolling motion of a ship. For example, it is a cruise ship, a cargo ship or a submarine. Furthermore, can the method described can be used in a corresponding manner to reduce the pitching movement.

Bei dem Verfahren wird zunächst der Bewegungszustand des Schiffes erfasst. Hierzu sind Sensoren vorgesehen, welche den Bewegungszustand des Schiffes hinsichtlich seiner sechs Freiheitsgrade vermessen, d. h. die Lage des Schiffes in den drei Raumrichtungen sowie die Orientierung des Schiffes werden mittels der Sensoren bestimmt. Darüber hinaus werden die zeitlichen Ableitungen der vorgenannten Größen ermittelt, d. h. es werden die Geschwindigkeit des Schiffes entlang der drei Raumrichtungen sowie die Winkelgeschwindigkeiten der Drehbewegungen des Schiffes um seine Hauptträgheitsachsen bestimmt. Die Bestimmung dieser zeitlichen Ableitungen geschieht entweder durch eine direkte Messung über eigens zu diesem Zweck vorgesehene Sensoren oder aber rechnerisch aus jeweils zeitlich aufeinander folgend gemessenen Werten von Position und/oder Orientierung des Schiffes. Beispielsweise können die Eingangsdaten zur Position bzw. zur Orientierung des Schiffes auch aus der zeitlichen Integration der zeitlichen Ableitungen von Position und Orientierung des Schiffes gewonnen werden. Über Beschleunigungssensoren werden ferner die zweiten zeitlichen Ableitungen der Position und der Orientierung des Schiffes gemessen, so dass die Beschleunigung des Schiffes entlang der drei Raumrichtungen sowie die Winkelbeschleunigungen um die Hauptträgheitsachsen des Schiffes Bestandteil der Eingangsdaten sind.In the method, the state of motion of the ship is first detected. For this purpose, sensors are provided which measure the state of motion of the ship in terms of its six degrees of freedom, d. H. the position of the ship in the three spatial directions as well as the orientation of the ship are determined by means of the sensors. In addition, the time derivatives of the aforementioned sizes are determined, d. H. The speed of the ship along the three spatial directions and the angular velocities of the ship's rotational movements around its main axes of inertia are determined. The determination of these time derivations is done either by a direct measurement via specially provided for this purpose sensors or mathematically from each time sequentially measured values of position and / or orientation of the ship. For example, the input data for the position or orientation of the ship can also be obtained from the temporal integration of the time derivatives of position and orientation of the ship. Via acceleration sensors, the second time derivatives of the position and the orientation of the ship are also measured, so that the acceleration of the ship along the three spatial directions and the angular acceleration about the main axes of inertia of the ship are part of the input data.

Der vorgenannte Satz von Eingangsdaten bildet einen Zustandsvektor x, der den Bewegungszustand des Schiffs beschreibt. Zusätzlich werden bei dem Verfahren Positionsdaten aus den Daten eines satellitengestützten Navigationssystems, wie beispielsweise dem Global Positioning System (GPS), bestimmt. Diese Positionsdaten bilden einen weiteren Satz von Eingangsdaten, der in einem Vektor GPS zusammengefasst ist. Die beiden vorgenannten Sätze von Eingangsdaten x und GPS werden einer Filtereinrichtung 1 zugeführt. In der Filtereinrichtung 1 werden die Datensätze x und GPS geeignet gefiltert und somit von Störungen befreit. Ferner stehen der Filtereinrichtung 1 über weitere Sensoren ermittelte, redundante Daten zu den Eingangsdaten x und GPS zur Verfügung, mit welchen die Filtereinrichtung 1 Mittelwertbildungen zu den Eingangsdaten vornimmt. Die derart durch Filterung bzw. Mittelung bereinigten Eingangsdaten stehen als Datensätze und GS zur weiteren Verarbeitung zur Verfügung.The aforementioned set of input data forms a state vector x which describes the state of motion of the ship. In addition, the method determines position data from the data of a satellite-based navigation system, such as the Global Positioning System (GPS). This position data forms another set of input data, which is summarized in a vector GPS . The two aforementioned sets of input data x and GPS are fed to a filter device 1. In the filter device 1, the data sets x and GPS are appropriately filtered and thus freed from interference. Furthermore, redundant data for the input data x and GPS are available to the filter device 1 via further sensors, with which the filter device 1 carries out averaging of the input data. The input data thus cleaned by filtering or averaging are available as data sets x and G p s for further processing.

Auf ähnliche Weise werden in einer zweiten Filtereinrichtung 2 von weiteren, unterlagerten Regeleinrichtungen vorgegebene Sollgrößen für Aktoren des Schiffes bereinigt. Diese Sollgrößen umfassen u. a. die Solldrehzahl einer Maschine n, den Sollwinkel einer Seitenruderfläche δ 1 , im Falle eines Unterseebootes den Sollwinkel des Tiefenruders δ 2 sowie Sollgrößen weiterer Aktoren. Die Filtereinrichtung 2 stellt die bereinigten Sollgrößen ñ, δ̃1 und δ̃2 zur weiteren Verarbeitung zur Verfügung.In a similar manner, predetermined set values for actuators of the ship are adjusted in a second filter device 2 by further subordinate control devices. These target variables include, inter alia, the setpoint speed of a machine n , the desired angle of a rudder surface δ 1 , in the case of a submarine the desired angle of the depth rudder δ 2 and target values of other actuators. The filter device 2 provides the adjusted nominal values ñ , δ 1 and δ 2 for further processing.

In der Auswerteinrichtung 3 wird anhand eines oder mehrerer definierter Kriterien die Nähe des bereinigten Bewegungszustands zum Zustand einer parametererregten Rollschwingung ermittelt. Die Nähe des Bewegungszustands zum Rollresonanzzustand wird durch einen als Resonanzlevel RL bezeichneten Datensatz gekennzeichnet.In the evaluation device 3, the proximity of the adjusted movement state x to the state of a parameter-excited rolling oscillation is determined on the basis of one or more defined criteria. The proximity of the state of motion to the roll resonance state is characterized by a data set called resonant level RL .

In einer zweiten Auswerteinrichtung 4 werden aus dem bereinigten Bewegungszustand die Ausbreitungsrichtung der Wasserwellen relativ zum Schiff, die Wellenausbreitungsgeschwindigkeit sowie weitere charakteristische Größen der Wellenanregung bestimmt. Diese Parameter werden in einem Datensatz zusammengefasst, der hier als Wellenanregung qw bezeichnet ist. Ferner werden der Auswerteinrichtung 4 die bereinigten GPS-Daten GP̃S übergeben, auf deren Basis die Wellenanregung qw in ein erdfestes Koordinatensystem transformiert wird, so dass der Einfluss von Kurs und Geschwindigkeit des Schiffes herausgerechnet wird. In diesem erdfesten Koordinatensystem wird die Wellenanregung qw gefiltert. Insbesondere erlaubt diese Filterung eine erhöhte Genauigkeit bei der Bestimmung der Ausbreitungsrichtung der Wasserwellen.In a second evaluation device 4, the propagation direction of the water waves relative to the ship, the wave propagation speed and other characteristic magnitudes of the wave excitation are determined from the adjusted movement state x . These parameters are summarized in a dataset, here referred to as wave excitation q w . Furthermore, the evaluation device 4 is provided with the adjusted GPS data GPS , on the basis of which the wave excitation q w is transformed into an earth-fixed coordinate system, so that the influence of course and speed of the ship is calculated out. In this earth-fixed coordinate system, the wave excitation q w is filtered. In particular, this filtering allows increased accuracy in determining the propagation direction of the water waves.

Der Resonanzlevel RL, der bereinigte Bewegungszustand des Schiffes sowie die Wellenanregung qw werden einer Regeleinrichtung 6 übergeben, die den Resonanzlevel RL daraufhin überprüft, ob der Bewegungszustand des Wasserfahrzeugs eine kritische Nähe zur parametererregten Rollschwingung aufweist, d. h. ob der Bewegungszustand innerhalb eines Rollresonanzbereichs gelegen ist. Falls der Bewegungszustand des Wasserfahrzeugs im Rollresonanzbereich liegt, wird mittels eines Regelgesetzes die Geschwindigkeit sowie der Gierwinkel des Schiffes derart geändert, dass der Abstand des Bewegungszustands zum Zustand der parametererregten Rollschwingung wächst. Eine geeignete Vorgabe zur Änderung des Gierwinkels hängt dabei wesentlich von der Wellenanregung qw ab, insbesondere von der Ausbreitungsrichtung der Wasserwellen. Bei dem Regelgesetz stellt damit der Bewegungszustand die Regelgröße dar. Die Stellgrößen zur Geschwindigkeits- und Gierwinkeländerung sind durch Sollgrößen O1 für die Maschine sowie Sollgrößen O2 für ein Seitenruder gebildet, welche den bereits an Bord vorhandenen, unterlagerten Aktorreglern 7 und 8 zur Bedienung dieser Aktoren zugeführt werden. Auch den weiteren Aktoren werden durch die Regeleinrichtung 6 Sollgrößen O5 vorgegeben.The resonant level RL, the cleared state of motion of the vessel x and the wave excitation q w are passed to a controller 6 which checks the resonant level RL to see if the state of motion of the vessel x is critically close to parameter-excited roll vibration, ie if the state of motion is within a roll resonance range is. If the state of motion of the watercraft is in the roll resonance range, the speed and the yaw angle of the ship are changed by means of a control law such that the distance of the movement state x to the state of the parameter-excited rolling vibration increases. A suitable specification for changing the yaw angle depends essentially on the wave excitation q w , in particular on the propagation direction of the water waves. In the control law thus represents the state of motion x the control variable. The manipulated variables for speed and yaw angle change are formed by nominal variables O1 for the machine and nominal variables O2 for a rudder, which the existing on board, subordinate Aktorreglern 7 and 8 for the operation of these actuators be supplied. Also, the other actuators 6 setpoints O5 are specified by the control device.

Resonanzlevel RL und bereinigter Bewegungszustand werden zudem einer weiteren Regeleinrichtung 5 übermittelt. Die Regeleinrichtung 5 ermittelt zunächst anhand des Resonanzlevels RL, ob der Bewegungszustand des Schiffes derart nah an einem Zustand einer parametererregten Rollschwingung liegt, dass die Schiffsbewegung gedämpft werden muss. Sofern dies der Fall ist, werden auf Basis des Bewegungszustandes gemäß einem Regelgesetz Sollwerte für Aktoren des Schiffes berechnet, welche zur Dämpfung eingesetzt werden. In dem gezeigten Ausführungsbeispiel sind dies z. B. Sollgrößen O3 für die Seitenflossen. Zudem ermittelt die Regeleinrichtung 5 Sollgrößen O4 für weitere direkt auf das Roll- und Stampfverhalten des Schiffes wirkende Aktoren, im Falle von Unterseebooten beispielsweise die Tiefenruder.Resonance level RL and adjusted movement state x are also transmitted to another control device 5. The control device 5 first determines on the basis of the resonance level RL whether the movement state of the ship x is so close to a state of a parameter-excited rolling vibration that the ship's movement must be damped. If this is the case, set values for actuators of the ship are based on the movement state x according to a control law calculated, which are used for damping. In the embodiment shown, these are z. B. Nominal O3 for the side fins. In addition, the controller determines 5 setpoints O4 for more directly acting on the roll and ramming behavior of the ship actuators, for example, the submarines in the case of submarines.

Die zuvor beschriebenen Aktorsollgrößen , δ̃1, δ̃2 werden in dem in Fig. 1 gezeigten Ausführungsbeispiel intern in den Reglern 5 und 6 berücksichtigt. Alternativ (Fig. 2) können die Sollgrößen O1, O2, ..., O5 für die Aktoren auch in den unterlagerten Aktorregiern 7, 8 und 9 hinzu addiert werden, wobei die Filterung der Aktorsollgrößen ñ, δ̃1, δ̃2 über die Filtereinrichtung 2 vollständig separat erfolgen kann.The previously described Aktorsoll sizes ñ , δ 1 , δ 2 are in the in Fig. 1 Embodiment considered internally in the controllers 5 and 6. Alternatively ( Fig. 2 ), the setpoint variables O1 , O2 , ..., O5 for the actuators in the subordinate Aktorregiern 7, 8 and 9 are added, the filtering of the Aktorsoll variables ñ, δ 1 , δ 2 can be done completely separately via the filter device 2 ,

BezugszeichenlisteLIST OF REFERENCE NUMBERS

xx
- gemessener Bewegungszustand des Schiffes- measured state of movement of the ship
x
- bereinigter Bewegungszustand des Wasserfahrzeugs- Adjusted state of motion of the vessel
GPSGPS
- GPS-Daten- GPS data
GP̃SGPS
- bereinigte GPS-Daten - adjusted GPS data
RLRL
- Resonanzlevel- Resonance level
qw q w
- Wellenanregung- Wave excitation
nn
- Solldrehzahl Maschine- Target speed machine
δ1 δ 1
- Sollwinkel Seitenruder- desired angle rudder
δ2 δ 2
- Sollwinkel Tiefenruder- Sollwinkel depth rudder
ññ
- bereinigte Solldrehzahl Maschine- adjusted setpoint speed machine
δ̃1 δ 1
- bereinigter Sollwinkel Seitenruder- adjusted target angle rudder
δ̃2 δ 2
- bereinigter Sollwinkel Tiefenruder- adjusted target angle rudder
O1O1
- Sollgrößen Maschine- nominal machine sizes
O2O2
- Sollgrößen Seitenruder - Nominal rudder
O3O3
- Sollgrößen Seitenflossen- Nominal sizes of side fins
O4O4
- Sollgrößen Tiefenruder- Nominal depth rudder
O5O5
- Sollgrößen - nominal values
11
- Filtereinrichtung- Filter device
22
- Filtereinrichtung- Filter device
33
- Auswerteinrichtung- Evaluation device
44
- Auswerteinrichtung- Evaluation device
55
- Regeleinrichtung- Control device
66
- Regeleinrichtung- Control device
77
- Unterlagerter Aktorregler- Subordinate actuator controller
88th
- Unterlagerter Aktorregler- Subordinate actuator controller
99
- Unterlagerter Aktorregler- Subordinate actuator controller

Claims (11)

  1. A method for reducing a vertical movement of a vessel, with which firstly a vertical movement resonance region for movement conditions (x) of the vessel is determined afresh during the travel of the vessel, with which the movement condition (x) of the vessel is then at least partly detected during the travel by way of at least one component of the location and/or of orientation of the vessel, and/or its temporal derivative being determined, and determining whether this movement condition (x) lies in the vertical movement resonance region, whereupon if one ascertains that this movement condition (x) lies in the vertical movement resonance region, the travel speed of the vessel and/or the course is changed until the vertical movement resonance region has been left, wherein a roll movement forms the vertical movement, and the vertical movement resonance region is formed by the roll movement resonance region.
  2. A method according to claim 1, with which the vertical movement resonance region is determined by way of evaluating at least one resonance frequency of the vertical movement.
  3. A method according to one of the preceding claims, with which the first temporal derivative of a component of the location and/or of the orientation of the vessel is determined for the at least partial detection of the movement condition (x) of the vessel.
  4. A method according to one of the preceding claims, with which data (GPS) of a satellite-supported navigation system is used for the at least partial detection of the movement condition (x) of the vessel.
  5. A method according to one of the preceding claims, with which the change of the course and/or of the travel speed of the vessel is effected automatically by way of at least one engine and/or at least one actuator of the vessel.
  6. A method according to one of the preceding claims, with which, with a movement condition (x) of the vessel within the vertical movement resonance region, the vertical movement damping is increased, preferably via a secondary closed-loop control method, which counteracts the vertical movement.
  7. A method according to claim 6, with which the vertical movement damping is increased by way of at least one or more of the following devices: engine, side fins, side rudder, depth rudder and/or further actuators of the vessel.
  8. A method according to claim 5 and 7, with which, with a movement condition (x) of the vessel within the vertical movement resonance region, one or more actuators and/or one or more engines of the vessel together are applied for changing the course and/or travel speed of the vessel as well as for increasing the vertical movement damping.
  9. A method according to one of the preceding claims, with which, with a movement condition (x) of the vessel within the vertical movement resonance region, the strength of the excitation of the vertical movement is reduced by way of changing the pitch amplitude of the vessel, preferably by way of a secondary closed-loop control method, which counteracts the pitch movement.
  10. A method according to claim 9, with which the pitch amplitude is influenced by way of at least one depth rudder of the vessel.
  11. A method according to one of the preceding claims, with which the movement condition (x) of the vessel is determined by way of an inertia platform.
EP10004837.0A 2009-07-10 2010-05-07 Method for reducing a vertical movement of a water vehicle Active EP2275342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL10004837T PL2275342T3 (en) 2009-07-10 2010-05-07 Method for reducing a vertical movement of a water vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009032577A DE102009032577A1 (en) 2009-07-10 2009-07-10 Method for reducing a vertical movement of a watercraft

Publications (2)

Publication Number Publication Date
EP2275342A1 EP2275342A1 (en) 2011-01-19
EP2275342B1 true EP2275342B1 (en) 2014-10-22

Family

ID=43066522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10004837.0A Active EP2275342B1 (en) 2009-07-10 2010-05-07 Method for reducing a vertical movement of a water vehicle

Country Status (5)

Country Link
EP (1) EP2275342B1 (en)
KR (1) KR101310247B1 (en)
DE (1) DE102009032577A1 (en)
ES (1) ES2528054T3 (en)
PL (1) PL2275342T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013010573B4 (en) * 2013-06-25 2017-09-28 Dirk Sobotka Method for the cyclic manipulation of manipulated variables for the thrust control of vessels in limited water depths
CN107589728B (en) * 2017-09-04 2020-02-14 重庆浦仁达科技有限公司 Intelligent car clock control system and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004020924A1 (en) * 2003-11-11 2005-07-07 Tuhh-Technologie-Gmbh Ship has an automatic pilot linked via a roll motion sensor system to a main upper rudder and a secondary lower rudder
KR100827396B1 (en) * 2006-11-14 2008-05-07 삼성중공업 주식회사 Parametric roll preventing apparatus and method for vessel

Also Published As

Publication number Publication date
ES2528054T3 (en) 2015-02-03
KR20120065461A (en) 2012-06-21
PL2275342T3 (en) 2015-03-31
DE102009032577A1 (en) 2011-01-20
EP2275342A1 (en) 2011-01-19
KR101310247B1 (en) 2013-09-24

Similar Documents

Publication Publication Date Title
WO2010136490A1 (en) Method for the computer-supported control of a ship
EP1880971B1 (en) Method for controlling the orientation of a crane load
DE102007017462B4 (en) Method for determining focal points in large structures
DE102018000467A1 (en) Robot system comprising a force-controlled pusher
DE112007002946B4 (en) Vehicle control device
EP3409636B1 (en) Method for damping torsional vibrations of a load-bearing element of a lifting device
DE102018005068A1 (en) Crane and method for controlling such a crane
WO2004106215A1 (en) Crane or excavator for handling a cable-suspended load provided with optimised motion guidance
EP1722197B1 (en) Method and device for representing the location and the movement state of a load capable of oscillating
DE10008550A1 (en) Detecting motor vehicle movement parameters, involves computing position, speed vector from data from difference position satellite navigation system and sensors
EP2275342B1 (en) Method for reducing a vertical movement of a water vehicle
WO2011131375A1 (en) Operation of a coordinate measuring machine or a machine tool
EP3446147A1 (en) Apparatus and method for ascertaining object kinematics of a movable object
EP2947035A1 (en) Method for determining the load on a working machine and working machine, in particular a crane
DE19803078B4 (en) Method and device for automatic web guidance of a ship with integrated web regulator
DE102016114366A1 (en) FAILSAFE IMU SYSTEM REDUCED ORDER FOR ACTIVE SAFETY APPLICATION
DE19807525B4 (en) Device for trajectory control for a towed by a watercraft to a towed, in its horizontal movement is not self-controllable or controlled towed
EP2377756B9 (en) Evaluation of ship dynamics
DE102019200117A1 (en) robot control
EP2052888A2 (en) Method and system for affecting the movement of a vehicle structure on a powered vehicle and vehicle controlled or regulated by its movement processes
DE19813005A1 (en) Method and equipment for guiding and automatically steering ships or floating structures
EP3321163B1 (en) Method for damping the roll movement of a watercraft
DE10354650A1 (en) Lane course determination device for a motor vehicle cruise control, has means for measuring and calculating the course of a lane of a vehicle in front of the car for which a lane course is to be determined
DE102005002192B4 (en) Method for operating a crane installation, in particular a container crane, and crane installation, in particular a container crane
CH716801B1 (en) Apparatus to assist in preventing a ship from colliding with a mooring facility.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110715

17Q First examination report despatched

Effective date: 20120120

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140513

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MILLER, LUITPOLD

Inventor name: DIGNATH, FLORIAN

Inventor name: ZHENG, QINGHUA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 692491

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008090

Country of ref document: DE

Effective date: 20141204

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2528054

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010008090

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010008090

Country of ref document: DE

Effective date: 20150206

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008090

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150723

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150507

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 692491

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100507

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010008090

Country of ref document: DE

Owner name: THYSSENKRUPP MARINE SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THYSSENKRUPP MARINE SYSTEMS GMBH, 24143 KIEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20200424

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230523

Year of fee payment: 14

Ref country code: NL

Payment date: 20230519

Year of fee payment: 14

Ref country code: IT

Payment date: 20230526

Year of fee payment: 14

Ref country code: FR

Payment date: 20230526

Year of fee payment: 14

Ref country code: DE

Payment date: 20220801

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230505

Year of fee payment: 14

Ref country code: SE

Payment date: 20230519

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 14

Ref country code: ES

Payment date: 20230724

Year of fee payment: 14