EP2270922A1 - Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna - Google Patents

Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna Download PDF

Info

Publication number
EP2270922A1
EP2270922A1 EP10164320A EP10164320A EP2270922A1 EP 2270922 A1 EP2270922 A1 EP 2270922A1 EP 10164320 A EP10164320 A EP 10164320A EP 10164320 A EP10164320 A EP 10164320A EP 2270922 A1 EP2270922 A1 EP 2270922A1
Authority
EP
European Patent Office
Prior art keywords
reflector
source
antenna
sources
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10164320A
Other languages
German (de)
French (fr)
Other versions
EP2270922B1 (en
Inventor
Pierre Bosshard
Philippe Lepeltier
Serge Depeyre
Gilles Navarre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2270922A1 publication Critical patent/EP2270922A1/en
Application granted granted Critical
Publication of EP2270922B1 publication Critical patent/EP2270922B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/20Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device

Definitions

  • the present invention relates to an antenna with mission flexibility and in particular pointing, polarization and frequency. It also relates to a satellite comprising such an antenna and a method for controlling the change of mission of such an antenna.
  • Satellite dish antennas typically have geometrically formed, single-source illuminated reflectors to cover wide coverage areas pointed at the Earth.
  • An antenna subsystem generally includes a transmitting and receiving antenna, or a transmitting antenna and receiving antenna, per coverage area.
  • the geometric shape of the reflector may optionally be defined to be optimized for several orbital positions of the satellite.
  • the change of the orientation of the linear polarization of a satellite antenna or the change from a linear polarization to a circular polarization can be achieved by using two sources, for example two horns, respectively supplied with linear and circular polarization and placed in front of an oversized reflector.
  • the two sources are positioned closer to the focus of the reflector to reduce the losses due to the defocusing of the sources and the resulting directivity losses of the antenna.
  • Another possibility is to use a single source connected to a complex electrical architecture combining two radiofrequency channels, the first operating in circular polarization, the second in linear polarization. This architecture induces reliability problems, an increase in non-negligible ohmic losses related to the complexity of the RF chain and a significant cost of implementation.
  • the object of the invention is to provide an optimal antenna to meet the need for flexibility in pointing, polarization and frequency and to either eliminate the losses due to defocusing when the covers are fixed, or to limit the aberrations and losses due to defocusing when the antenna must operate on covers that may change, the corresponding spots being called mobile spots.
  • Another object of the invention is to provide a simple antenna to implement, and having a geometry that does not result from a compromise related to flexibility and to reduce the ohmic losses compared to previous solutions.
  • the invention relates to a mission flexibility antenna comprising a single reflector and at least a first source and a second source of radiofrequency signals arranged in front of the reflector, the reflector having a focus and each source having a phase center, characterized in that the sources are independent, fixed, and connected to separate radio-frequency power supply chains defining different and predefined polarization and / or operating frequency characteristics, and in that it further comprises means for moving and orientation of the reflector of a first position in which the focus of the reflector is placed in the center of phase of the first source to a second position in which the focus of the reflector is placed in the center of phase of the second source.
  • the means for moving and orienting the reflector comprise means for actuating the reflector in a translation, without rotation, from the first position to the second position, the reflector being oriented in a fixed pointing direction.
  • the phase centers of the two sources are spaced by a predetermined distance and the translation of the reflector is performed over a distance equal to the distance between the phase centers of the two sources.
  • the means of displacement and orientation of the reflector comprise means for actuating the reflector in a translation combined with one or more rotations, the reflector in the second position being oriented in a pointing direction different from that of the reflector in the first position.
  • the displacement and orientation means of the reflector comprise at least one motor connected to the reflector via at least one lever arm.
  • the displacement and orientation means of the reflector comprise three motors connected together by lever arms.
  • the lever arms are three parts of an articulated deployment arm of the reflector.
  • the invention also relates to a telecommunication satellite, characterized in that it comprises at least one mission flexibility antenna.
  • the invention also relates to a method for controlling the mission change of a mission flexibility antenna, the antenna comprising a reflector and at least a first source and a second source of radiofrequency signals arranged in front of the reflector, the reflector having a focal point and each source having a phase center, characterized in that it consists in using independent, fixed sources connected to separate radiofrequency power supply chains defining different and predefined polarization and / or operating frequency characteristics, selecting a source according to the desired mission type and then moving and / or orienting the reflector so that the phase center of the selected source is positioned at the focus of the reflector and the reflector illuminates a selected coverage area.
  • the displacement of the reflector is a translation, without rotation, of a first position in which the focus of the reflector is placed in the center of phase of the first source to a second position according to which the focus of the reflector is placed in the center of phase of the second source, the translation being carried out over a distance strictly equal to the distance which separates the phase centers of the two sources.
  • the displacement of the reflector is a translation combined with one or more rotations of a first position according to which the focal point of the reflector is placed in the center of phase of the first source towards a second position according to which the focus of the reflector is placed in the center of phase of the second source,.
  • the flexibility of polarization and / or frequency and / or pointing plane is provided by mechanisms of movement and orientation of the reflector, for example mounted on the deployment arm, which allow the placement of the focus of the reflector at phase center of one of the sources.
  • the movement of the reflector which allows the passage of the phase center of the first source S1 to the phase center of the second source S2 consists in translating the reflector without rotation by a distance which is rigorously equal to that separating the phase centers from the two sources.
  • the relative movement of the reflector consists of a translation associated with one or more rotations.
  • the antenna comprises a reflector 10 mounted on the platform 11 of a satellite via an articulated deployment arm 13, 14, 15 and at least two independent sources S1, S2, ..., Sn radiofrequency signals arranged in front of the reflector.
  • the sources for example cone type, are fixed on a supporting structure 12 arranged on the platform 11 and are arranged in a predetermined fixed configuration, for example next to each other.
  • the sources S1 to Sn may in some cases be placed one above the other or in any other configuration.
  • the antenna further comprises at least one mechanism for moving and orienting the reflector 10 which makes it possible to place the focus of the reflector at the phase center of one of the sources.
  • the movement mechanism and orientation of the reflector mounted for example on the deployment arm 13, 14, 15 of the reflector 10, may for example comprise one or more stepper motors M1, M2, M3 associated with lever arms corresponding or a stepper motor connected to a gimbal.
  • the number of engines and the number of sources depends on the types of missions that the satellite must carry out. For example three engines M1, M2, M3 and three sources S1, S2, Sn are represented on the figure 1 .
  • the motor M1 is secured to the platform 11 and connected to the motor M2 by a first lever arm 13, the M2 and M3 engines are interconnected by a second lever arm 14, the motor M3 is connected to the reflector 10 by a third lever arm 15.
  • the first, second and third lever arm constitute three articulated portions of the deployment arm.
  • the geometric shape of the reflective surface of the reflector 10 is approximately parabolic in shape and differs only slightly. This shape is optimized to illuminate a ground coverage area having predetermined dimensions when only one source is placed in its focus.
  • the motors mounted on the deployment arm allow both to move and orient the reflector 10 according to the mission to be performed by the antenna, but also to fold the reflector in a storage position against the platform 11 in case of prolonged use of the antenna.
  • the sources S1 to Sn can be aligned as shown, for reasons of simplification, in the different figures or placed in two-dimensional configurations, such as for example in a triangle.
  • the polarization and / or frequency flexibility is only possible in one plane and the coverage areas, obtained with the different sources, are aligned.
  • the sources are placed in two-dimensional configurations, it is possible to have polarization flexibility in several planes.
  • the invention consists in using several sources fed via different channels RF1, RF2, ... RFn radiofrequency signal supply.
  • Each radio frequency channel being dedicated to telecommunication functions corresponding to a predetermined polarization, it is optimal which allows a very significant reduction in ohmic losses compared to electrical architectures that use combinations of two radio frequency channels.
  • the different sources S1 to Sn can be fed in different polarizations and / or in different frequency planes.
  • the invention then consists in selecting a source as a function of the desired type of polarization and frequency and then moving and orienting the reflector so that the center of the phase of the selected source is positioned at the focus of the reflector and that the reflector illuminates the selected coverage area.
  • the invention consists in translating, without rotation, the reflector of a first position 10a according to which the focal point of the reflector is placed at the center of phase 5 of the first source S1 towards a second position 10b according to which the focus of the reflector is placed at the center of phase 6 of the second source S2.
  • the displacement distance of the reflector in translation is strictly equal to the distance D1 which separates the phase centers 5, 6 of the two sources S1, S2.
  • the movement of the reflector is a translation combined with one or more rotations.
  • S1 can be fed in a linear polarization and operate in the Ku frequency band
  • S2 can be fed in a circular polarization and operate in the Ku frequency band
  • S3 can be fed in a linear polarization shifted by 7.5 ° and operate in the Ku + frequency band.
  • the center of phase 5 of the source S1 is positioned at the focus of the reflector 10 which points in a pointing direction 16 located for example on the Earth's equator.
  • the source S1 is for example supplied by a linearly polarized signal via a first radiofrequency channel RF1 and the source S2 is for example connected to a second radiofrequency ring RF2 allowing a circular polarization, to go from the linear polarization to the circular polarization without changing the pointing of the antenna
  • the invention consists in switching the power supply from the source S1 to the source S2 and moving the reflector in translation, over a distance D1, from the source S1 to the source S2 to position the focus of the reflector 10 at the center of phase 6 of the source S2, as shown in FIG.
  • the invention consists in actuating the motors M1, M2, M3 in rotation.
  • the three motors may for example have axes of rotation substantially parallel to each other and perpendicular to the plane of movement of the reflector. Actuating the motor M1 in rotation in the counterclockwise direction causes the first arm 13 to rotate in the same direction, which has the effect of moving the motor M2, the motor M3 and the reflector 10 away from the machine. platform 11 of the satellite and thus move the reflector 10 of the source S1 to the source S2.
  • the rotation of the motors M2 and / or M3 in a clockwise direction then makes it possible to tilt the reflector 10 in rotation until it is in a position parallel to its initial position and that the center phase 6 of the source S2 is thus positioned at the focus of the reflector 10 and illuminates the same coverage area on the Earth.
  • Successive rotations of the various motors M1, M2 and / or M3 thus make a translation to the reflector 10 such that its focus passes from the source S1 to the source S2.
  • the same operations can be reproduced with another source such as the source S3, for example to change operating frequency plan if the source S3 is connected to a third radio frequency channel RF3 optimized for another frequency plane than that of the sources S1 and S2.
  • the three engines also make it possible to obtain a pointing flexibility and to be able to change coverage areas by changing sources, as represented on the figures 3a , 3b, 3c and the figure 4b .
  • the center of phase 5 of the source S1 is placed at the focus of the reflector 10 which points in a first direction 20 on a first zone 23 for example located on the equator.
  • the reflector has been translated and rotated relative to its initial position of the figure 3a and is therefore not parallel to this initial position.
  • the same operations on the motors M1, M2, M3 can be performed to move the reflector 10 to the third source S3 so that that the phase center 7 of the source S3 is placed at the focus of the reflector and orienting it in a third pointing direction 22 corresponding to a third coverage area 25 on the equator.
  • the figure 4b shows the three different positions 10a, 10b, 10c of the reflector 10 when the different sources S1, S2, S3 are placed at home and for three different pointing directions 20, 21, 22 on the equator.
  • the coverage areas 23, 24, 25 represented in the example of the figure 4b correspond to successive pointing differences spaced by an angle of 3 ° and to a configuration in which the three sources S1, S2, S3 are aligned.
  • the spacing D between the phase centers of the first source S1 and the last source S3 directly depends on the focal length of the reflector 10 and the angular separation between the covers.
  • FIG. 5 shows an example of areas of contiguous covers on the equator obtained with three sources S1, S2, S3.
  • the two zones 26, 27 located between the zones 23 and 24 can be obtained with the same source S1 placed at the focus of the reflector 10, and only changing the orientation of the reflector 10 to change the pointing direction. In this case, only the motors M2 and / or M3 are actuated in rotation, the motor M1 does not move.
  • the three M1, M2, M3 engines provide pointing flexibility in the East-West direction.
  • a fourth motor not shown, with an axis perpendicular to the axes of the motors M1, M2, M3, it becomes possible to modify the orientation angle of the reflector 10 in the North-South direction.

Abstract

The antenna has sources (S1-Sn) i.e. horn type sources, arranged in a front part of a reflector (10) having a focal point. The sources have a phase center, and are independent, fixed and connected to separate radio frequency feed systems (RF1-RFn) defining different and predefined polarization and/or operating frequency characteristics. An orientation part displaces and orients the reflector from a position in which the focal point is placed at the phase center of one of the sources to another position in which the focal point is placed at the phase center of the other sources. An independent claim is also included for a method for controlling change of mission of a mission-flexibility antenna.

Description

La présente invention concerne une antenne à flexibilité de mission et en particulier de pointage, de polarisation et de fréquence. Elle concerne également un satellite comportant une telle antenne et un procédé de commande du changement de mission d'une telle antenne.The present invention relates to an antenna with mission flexibility and in particular pointing, polarization and frequency. It also relates to a satellite comprising such an antenna and a method for controlling the change of mission of such an antenna.

Elle s'applique notamment au domaine des antennes de télécommunication par satellite.It applies in particular to the field of satellite telecommunication antennas.

La durée de vie croissante des satellites de télécommunications et l'évolution des exigences associées aux différentes missions qui peuvent leur être confiées, impose que les charges utiles, et en particulier les antennes, des futures générations de satellites soient flexibles. Cette flexibilité peut être réalisée au niveau de la zone de couverture géographique de l'antenne et/ou au niveau de la polarisation et/ou au niveau de la bande de fréquences de fonctionnement. Cette flexibilité permet d'avoir le choix entre plusieurs configurations de fonctionnement de l'antenne et de pouvoir modifier, en orbite, la mission du satellite.The increasing lifespan of telecommunications satellites and the evolution of the requirements associated with the various missions that may be entrusted to them, requires that the payloads, and in particular the antennas, of future generations of satellites be flexible. This flexibility can be achieved at the geographical coverage area of the antenna and / or at the level of the polarization and / or at the level of the frequency band of operation. This flexibility makes it possible to have the choice between several configurations of operation of the antenna and to be able to modify, in orbit, the mission of the satellite.

Les antennes placées à bord des satellites comportent typiquement des réflecteurs, géométriquement formés, éclairés par une source unique pour couvrir des zones de couverture larges pointées sur la Terre. Un sous-système antenne comporte généralement une antenne d'émission et de réception, ou une antenne d'émission et une antenne de réception, par zone de couverture. La forme géométrique du réflecteur peut éventuellement être définie de façon à être optimisée pour plusieurs positions orbitales du satellite.Satellite dish antennas typically have geometrically formed, single-source illuminated reflectors to cover wide coverage areas pointed at the Earth. An antenna subsystem generally includes a transmitting and receiving antenna, or a transmitting antenna and receiving antenna, per coverage area. The geometric shape of the reflector may optionally be defined to be optimized for several orbital positions of the satellite.

Lorsque les directions de pointage visées sont différentes, mais les formes de couvertures voisines, il est possible de placer deux sources côte à côte au foyer du réflecteur et de former géométriquement le réflecteur de façon à obtenir un compromis de performances entre les deux zones de couvertures. Le découplage spatial des faisceaux rayonnés entre les deux zones de couvertures est alors réalisé par la distance angulaire séparant les deux spots illuminés par les deux sources. L'optimisation d'une antenne sur plusieurs zones de couverture dégrade la performance de directivité, cette dégradation pouvant dépasser 1dB lorsque les sources sont fortement défocalisées, ce qui se traduit pour une architecture classique et à amplificateurs donnés, par une réduction, de la même valeur, de la PIRE (puissance isotropique rayonnée équivalente).Where the aiming directions are different, but the shapes of neighboring covers, it is possible to place two sources side by side at the focus of the reflector and geometrically form the reflector so as to obtain a compromise of performance between the two areas of covers . The spatial decoupling of the beams radiated between the two zones of covers is then achieved by the angular distance separating the two spots illuminated by the two sources. Optimizing an antenna on several coverage areas degrades the directivity performance, this degradation can exceed 1 dB when the sources are strongly defocused, which translates for a classical architecture and given amplifiers, by a reduction, of the same value, of the EIRP (isotropic power radiated equivalent).

Par ailleurs, il est également possible de modifier et d'orienter le pointage d'un spot sur la Terre en utilisant des petites antennes à pointage mécanique. Cependant cela nécessite d'entraîner mécaniquement tous les éléments de la structure de l'antenne et notamment le réflecteur et les sources, ce qui est complexe à mettre en oeuvre et impose l'utilisation de guides d'ondes souples.In addition, it is also possible to modify and direct the pointing of a spot on the Earth by using small antennas with mechanical pointing. However, this requires mechanically driving all the elements of the antenna structure and in particular the reflector and the sources, which is complex to implement and requires the use of flexible waveguides.

Le changement de l'orientation de la polarisation linéaire d'une antenne de satellite ou le changement d'une polarisation linéaire à une polarisation circulaire peut être réalisé en utilisant deux sources, par exemple deux cornets, alimentées respectivement en polarisation linéaire et circulaire et placées devant un réflecteur surdimensionné. Les deux sources sont positionnées au plus près du foyer du réflecteur pour réduire les pertes dues à la défocalisation des sources et les pertes en directivité de l'antenne qui en résultent. Une autre possibilité consiste à utiliser une seule source reliée à une architecture électrique complexe combinant deux chaînes radiofréquence, la première fonctionnant en polarisation circulaire, la seconde en polarisation linéaire. Cette architecture induit des problèmes de fiabilité, une augmentation des pertes ohmiques non négligeables liées à la complexité de la chaîne RF et un coût de réalisation important.The change of the orientation of the linear polarization of a satellite antenna or the change from a linear polarization to a circular polarization can be achieved by using two sources, for example two horns, respectively supplied with linear and circular polarization and placed in front of an oversized reflector. The two sources are positioned closer to the focus of the reflector to reduce the losses due to the defocusing of the sources and the resulting directivity losses of the antenna. Another possibility is to use a single source connected to a complex electrical architecture combining two radiofrequency channels, the first operating in circular polarization, the second in linear polarization. This architecture induces reliability problems, an increase in non-negligible ohmic losses related to the complexity of the RF chain and a significant cost of implementation.

Le but de l'invention est de réaliser une antenne optimale permettant de répondre aux besoins de flexibilité en pointage, en polarisation et en fréquence et permettant soit de supprimer les pertes dues à la défocalisation lorsque les couvertures sont fixes, soit de limiter les aberrations et les pertes dues à la défocalisation lorsque l'antenne doit fonctionner sur des couvertures pouvant changer, les spots correspondants étant appelés spots mobiles.The object of the invention is to provide an optimal antenna to meet the need for flexibility in pointing, polarization and frequency and to either eliminate the losses due to defocusing when the covers are fixed, or to limit the aberrations and losses due to defocusing when the antenna must operate on covers that may change, the corresponding spots being called mobile spots.

Un autre but de l'invention est de réaliser une antenne simple à mettre en oeuvre, et ayant une géométrie qui ne résulte pas d'un compromis lié aux besoins de flexibilité et permettant de réduire les pertes ohmiques par rapport aux solutions antérieures.Another object of the invention is to provide a simple antenna to implement, and having a geometry that does not result from a compromise related to flexibility and to reduce the ohmic losses compared to previous solutions.

Pour cela, l'invention concerne une antenne à flexibilité de mission comportant un unique réflecteur et au moins une première source et une deuxième source de signaux radiofréquence disposées devant le réflecteur, le réflecteur ayant un foyer et chaque source ayant un centre de phase, caractérisée en ce que les sources sont indépendantes, fixes, et reliées à des chaînes d'alimentation radiofréquence distinctes définissant des caractéristiques de polarisation et/ou de fréquence de fonctionnement différentes et prédéfinies, et en ce qu'elle comporte en outre des moyens de déplacement et d'orientation du réflecteur d'une première position selon laquelle le foyer du réflecteur est placé au centre de phase de la première source vers une deuxième position selon laquelle le foyer du réflecteur est placé au centre de phase de la deuxième source.For this, the invention relates to a mission flexibility antenna comprising a single reflector and at least a first source and a second source of radiofrequency signals arranged in front of the reflector, the reflector having a focus and each source having a phase center, characterized in that the sources are independent, fixed, and connected to separate radio-frequency power supply chains defining different and predefined polarization and / or operating frequency characteristics, and in that it further comprises means for moving and orientation of the reflector of a first position in which the focus of the reflector is placed in the center of phase of the first source to a second position in which the focus of the reflector is placed in the center of phase of the second source.

Avantageusement, si la flexibilité concerne le plan de fréquence et/ou la polarisation sur une même couverture, les moyens de déplacement et d'orientation du réflecteur comportent des moyens d'actionnement du réflecteur suivant une translation, sans rotation, de la première position à la deuxième position, le réflecteur étant orienté dans une direction de pointage fixe. Dans ce cas, les centres de phase des deux sources sont espacés d'une distance prédéterminée et la translation du réflecteur est réalisée sur une distance égale à la distance qui sépare les centres de phase des deux sources.Advantageously, if the flexibility concerns the frequency plane and / or the polarization on the same cover, the means for moving and orienting the reflector comprise means for actuating the reflector in a translation, without rotation, from the first position to the second position, the reflector being oriented in a fixed pointing direction. In this case, the phase centers of the two sources are spaced by a predetermined distance and the translation of the reflector is performed over a distance equal to the distance between the phase centers of the two sources.

Avantageusement, si la flexibilité concerne le plan de fréquence et/ou la polarisation sur des couvertures différentes mais fixes, les moyens de déplacement et d'orientation du réflecteur comportent des moyens d'actionnement du réflecteur suivant une translation combinée à une ou plusieurs rotations, le réflecteur dans la deuxième position étant orienté dans une direction de pointage différente de celle du réflecteur dans la première position.Advantageously, if the flexibility concerns the frequency plane and / or the polarization on different but fixed covers, the means of displacement and orientation of the reflector comprise means for actuating the reflector in a translation combined with one or more rotations, the reflector in the second position being oriented in a pointing direction different from that of the reflector in the first position.

Avantageusement, les moyens de déplacement et d'orientation du réflecteur comportent au moins un moteur relié au réflecteur par l'intermédiaire d'au moins un bras de levier.Advantageously, the displacement and orientation means of the reflector comprise at least one motor connected to the reflector via at least one lever arm.

Selon un mode de réalisation de l'invention, les moyens de déplacement et d'orientation du réflecteur comportent trois moteurs reliés entre eux par des bras de levier. Avantageusement, les bras de levier sont trois parties d'un bras de déploiement articulé du réflecteur.According to one embodiment of the invention, the displacement and orientation means of the reflector comprise three motors connected together by lever arms. Advantageously, the lever arms are three parts of an articulated deployment arm of the reflector.

L'invention concerne aussi un satellite de télécommunication, caractérisé en ce qu'il comporte au moins une antenne à flexibilité de mission.The invention also relates to a telecommunication satellite, characterized in that it comprises at least one mission flexibility antenna.

L'invention concerne également un procédé de commande du changement de mission d'une antenne à flexibilité de mission, l'antenne comportant un réflecteur et au moins une première source et une deuxième source de signaux radiofréquence disposées devant le réflecteur, le réflecteur ayant un foyer et chaque source ayant un centre de phase, caractérisé en ce qu'il consiste à utiliser des sources indépendantes, fixes et reliées à des chaînes d'alimentation radiofréquence distinctes définissant des caractéristiques de polarisation et/ou de fréquence de fonctionnement différentes et prédéfinies, à sélectionner une source en fonction du type de mission souhaitée puis à déplacer et/ou orienter le réflecteur de façon que le centre de phase de la source sélectionnée soit positionné au foyer du réflecteur et que le réflecteur illumine une zone de couverture sélectionnée.The invention also relates to a method for controlling the mission change of a mission flexibility antenna, the antenna comprising a reflector and at least a first source and a second source of radiofrequency signals arranged in front of the reflector, the reflector having a focal point and each source having a phase center, characterized in that it consists in using independent, fixed sources connected to separate radiofrequency power supply chains defining different and predefined polarization and / or operating frequency characteristics, selecting a source according to the desired mission type and then moving and / or orienting the reflector so that the phase center of the selected source is positioned at the focus of the reflector and the reflector illuminates a selected coverage area.

Avantageusement, lorsque le changement de mission concerne une même zone de couverture, le déplacement du réflecteur est une translation, sans rotation, d'une première position selon laquelle le foyer du réflecteur est placé au centre de phase de la première source vers une deuxième position selon laquelle le foyer du réflecteur est placé au centre de phase de la deuxième source, la translation étant réalisée sur une distance rigoureusement égale à la distance qui sépare les centres de phase des deux sources.Advantageously, when the change of mission concerns the same coverage area, the displacement of the reflector is a translation, without rotation, of a first position in which the focus of the reflector is placed in the center of phase of the first source to a second position according to which the focus of the reflector is placed in the center of phase of the second source, the translation being carried out over a distance strictly equal to the distance which separates the phase centers of the two sources.

Avantageusement, lorsque le changement de mission concerne des zones de couvertures différentes, le déplacement du réflecteur est une translation combinée à une ou plusieurs rotations d'une première position selon laquelle le foyer du réflecteur est placé au centre de phase de la première source vers une deuxième position selon laquelle le foyer du réflecteur est placé au centre de phase de la deuxième source, .Advantageously, when the change of mission concerns areas of different covers, the displacement of the reflector is a translation combined with one or more rotations of a first position according to which the focal point of the reflector is placed in the center of phase of the first source towards a second position according to which the focus of the reflector is placed in the center of phase of the second source,.

Ainsi, la flexibilité de polarisation et/ou de plan de fréquence et/ou de pointage est assurée par des mécanismes de déplacement et d'orientation du réflecteur, par exemple montés sur le bras de déploiement, qui permettent le placement du foyer du réflecteur au centre de phase de l'une des sources.Thus, the flexibility of polarization and / or frequency and / or pointing plane is provided by mechanisms of movement and orientation of the reflector, for example mounted on the deployment arm, which allow the placement of the focus of the reflector at phase center of one of the sources.

Si la flexibilité de pointage concerne la même couverture, le mouvement du réflecteur qui permet le passage du centre de phase de la première source S1 au centre de phase de la deuxième source S2, consiste à translater le réflecteur sans rotation d'une distance qui est rigoureusement égale à celle qui sépare les centres de phase des deux sources.If the pointing flexibility relates to the same coverage, the movement of the reflector which allows the passage of the phase center of the first source S1 to the phase center of the second source S2 consists in translating the reflector without rotation by a distance which is rigorously equal to that separating the phase centers from the two sources.

Si le besoin de flexibilité concerne des couvertures différentes, le mouvement relatif du réflecteur consiste en une translation associée à une ou plusieurs rotations.If the need for flexibility concerns different covers, the relative movement of the reflector consists of a translation associated with one or more rotations.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1 : un schéma d'un exemple d'antenne montée sur la plate-forme d'un satellite, dans une première position selon laquelle la source S1 est au foyer du réflecteur, selon l'invention ;
  • figures 2a, 2b: deux schémas de la même antenne dans une deuxième position, respectivement dans une troisième position, selon laquelle la source S2, respectivement la source S3, est au foyer du réflecteur pour une même direction de pointage, selon l'invention ;
  • figures 3a, 3b, 3c : des schémas de la même antenne pour trois directions de pointage différentes, selon l'invention ;
  • figure 4a : un schéma montrant un exemple de directions de pointage identiques obtenues avec deux sources différentes, selon !'invention ;
  • figure 4b : un schéma montrant un exemple de zones de couverture au sol pour trois directions différentes de pointage sur l'équateur, obtenues avec trois sources différentes placées successivement au foyer du réflecteur, selon l'invention ;
  • figure 5: un schéma montrant un exemple de couverture totale de l'équateur avec trois sources placées successivement au foyer du réflecteur, selon l'invention ;
  • figure 6 : un schéma d'un exemple de couverture totale de la Terre obtenue avec trois sources placées successivement au foyer du réflecteur, selon l'invention.
Other features and advantages of the invention will become clear in the following description given by way of purely illustrative and non-limiting example, with reference to the attached schematic drawings which represent:
  • figure 1 : a diagram of an example of antenna mounted on the platform of a satellite, in a first position according to which the source S1 is at the focus of the reflector, according to the invention;
  • Figures 2a , 2b : two diagrams of the same antenna in a second position, respectively in a third position, according to which the source S2, respectively the source S3, is at the focus of the reflector for the same pointing direction, according to the invention;
  • figures 3a , 3b, 3c : diagrams of the same antenna for three different pointing directions, according to the invention;
  • figure 4a a diagram showing an example of identical pointing directions obtained with two different sources, according to the invention;
  • figure 4b a diagram showing an example of ground coverage areas for three different pointing directions on the equator, obtained with three different sources successively placed at the focus of the reflector, according to the invention;
  • figure 5 : a diagram showing an example of total coverage of the equator with three sources placed successively at the focus of the reflector, according to the invention;
  • figure 6 : a diagram of an example of total coverage of the Earth obtained with three sources successively placed at the focus of the reflector, according to the invention.

Sur l'exemple représenté sur la figure 1, l'antenne comporte un réflecteur 10 monté sur la plate-forme 11 d'un satellite par l'intermédiaire d'un bras de déploiement articulé 13, 14, 15 et au moins deux sources indépendantes S1, S2, ..., Sn de signaux radiofréquence disposées devant le réflecteur. Les sources, par exemple de type cornets, sont fixées sur une structure portante 12 aménagé sur la plate-forme 11 et sont disposées selon une configuration fixe prédéterminée, par exemple les unes à côté des autres. Les sources S1 à Sn peuvent dans certains cas être placées les unes au dessus des autres ou dans toute autre configuration.In the example shown on the figure 1 , the antenna comprises a reflector 10 mounted on the platform 11 of a satellite via an articulated deployment arm 13, 14, 15 and at least two independent sources S1, S2, ..., Sn radiofrequency signals arranged in front of the reflector. The sources, for example cone type, are fixed on a supporting structure 12 arranged on the platform 11 and are arranged in a predetermined fixed configuration, for example next to each other. The sources S1 to Sn may in some cases be placed one above the other or in any other configuration.

L'antenne comporte en outre au moins un mécanisme de déplacement et d'orientation du réflecteur 10 qui permet de placer le foyer du réflecteur au centre de phase de l'une des sources. Le mécanisme de déplacement et d'orientation du réflecteur, monté par exemple sur le bras de déploiement 13, 14, 15 du réflecteur 10, peut par exemple comporter un ou plusieurs moteurs pas à pas M1, M2, M3 associés à des bras de levier correspondants ou un moteur pas à pas relié à un cardan. Le nombre de moteurs et le nombre de sources dépend des types de mission que le satellite doit réaliser. Par exemple trois moteurs M1, M2, M3 et trois sources S1, S2, Sn sont représentés sur la figure 1. Le moteur M1 est solidaire de la plate-forme 11 et relié au moteur M2 par un premier bras de levier 13, les moteurs M2 et M3 sont reliés entre eux par un deuxième bras de levier 14, le moteur M3 est relié au réflecteur 10 par un troisième bras de levier 15. Les premier, deuxième et troisième bras de levier constituent trois parties articulées du bras de déploiement. La forme géométrique de la surface réfléchissante du réflecteur 10 a approximativement l'allure d'une parabole et n'en diffère que légèrement. Cette forme est optimisée pour illuminer une zone de couverture au sol ayant des dimensions prédéterminées lorsqu'une seule source est placée à son foyer. Les moteurs montés sur le bras de déploiement permettent à la fois de déplacer et d'orienter le réflecteur 10 en fonction de la mission à réaliser par l'antenne, mais aussi de replier le réflecteur dans une position de stockage contre la plate-forme 11 en cas d'inutilisation prolongée de l'antenne.The antenna further comprises at least one mechanism for moving and orienting the reflector 10 which makes it possible to place the focus of the reflector at the phase center of one of the sources. The movement mechanism and orientation of the reflector, mounted for example on the deployment arm 13, 14, 15 of the reflector 10, may for example comprise one or more stepper motors M1, M2, M3 associated with lever arms corresponding or a stepper motor connected to a gimbal. The number of engines and the number of sources depends on the types of missions that the satellite must carry out. For example three engines M1, M2, M3 and three sources S1, S2, Sn are represented on the figure 1 . The motor M1 is secured to the platform 11 and connected to the motor M2 by a first lever arm 13, the M2 and M3 engines are interconnected by a second lever arm 14, the motor M3 is connected to the reflector 10 by a third lever arm 15. The first, second and third lever arm constitute three articulated portions of the deployment arm. The geometric shape of the reflective surface of the reflector 10 is approximately parabolic in shape and differs only slightly. This shape is optimized to illuminate a ground coverage area having predetermined dimensions when only one source is placed in its focus. The motors mounted on the deployment arm allow both to move and orient the reflector 10 according to the mission to be performed by the antenna, but also to fold the reflector in a storage position against the platform 11 in case of prolonged use of the antenna.

Les sources S1 à Sn peuvent être alignées comme représenté, pour des raisons de simplification, sur les différentes figures ou placées dans des configurations à deux dimensions, tel que par exemple en triangle. Lorsque les sources sont alignées, la flexibilité de polarisation et/ou de fréquence n'est possible que dans un plan et les zones de couverture, obtenues avec les différentes sources, sont alignées. Lorsque les sources sont placées dans des configurations à deux dimensions, il est possible d'avoir une flexibilité de polarisation dans plusieurs plans.The sources S1 to Sn can be aligned as shown, for reasons of simplification, in the different figures or placed in two-dimensional configurations, such as for example in a triangle. When the sources are aligned, the polarization and / or frequency flexibility is only possible in one plane and the coverage areas, obtained with the different sources, are aligned. When the sources are placed in two-dimensional configurations, it is possible to have polarization flexibility in several planes.

Pour obtenir une flexibilité de polarisation et/ou de fréquence sur une même zone de couverture, sans pertes ni aberrations dues à une défocalisation, l'invention consiste à utiliser plusieurs sources alimentées par l'intermédiaire de différentes chaînes RF1, RF2,..., RFn d'alimentation en signaux radiofréquence. Chaque chaîne radiofréquence étant dédiée à des fonctions de télécommunication correspondant à une polarisation prédéterminée, elle est optimale ce qui permet une réduction très importante des pertes ohmiques par rapport à des architectures électriques qui utilisent des combinaisons de deux chaines radiofréquence. Ainsi, les différentes sources S1 à Sn peuvent être alimentées dans des polarisations différentes et/ou dans des plans de fréquences différents. L'invention consiste ensuite à sélectionner une source en fonction du type de polarisation et de fréquence souhaitée puis à déplacer et orienter le réflecteur de façon que le centre de phase de la source sélectionnée soit positionné au foyer du réflecteur et que le réflecteur illumine la zone de couverture sélectionnée.In order to obtain polarization and / or frequency flexibility over the same coverage area, without losses or aberrations due to defocusing, the invention consists in using several sources fed via different channels RF1, RF2, ... RFn radiofrequency signal supply. Each radio frequency channel being dedicated to telecommunication functions corresponding to a predetermined polarization, it is optimal which allows a very significant reduction in ohmic losses compared to electrical architectures that use combinations of two radio frequency channels. Thus, the different sources S1 to Sn can be fed in different polarizations and / or in different frequency planes. The invention then consists in selecting a source as a function of the desired type of polarization and frequency and then moving and orienting the reflector so that the center of the phase of the selected source is positioned at the focus of the reflector and that the reflector illuminates the selected coverage area.

Si le besoin de flexibilité concerne la même zone de couverture comme représenté sur la figure 4a, pour changer de mission, l'invention consiste à translater, sans rotation, le réflecteur d'une première position 10a selon laquelle le foyer du réflecteur est placé au centre de phase 5 de la première source S1 vers une deuxième position 10b selon laquelle le foyer du réflecteur est placé au centre de phase 6 de la deuxième source S2. La distance de déplacement du réflecteur en translation est rigoureusement égale à la distance D1 qui sépare les centres de phase 5, 6 des 2 sources S1, S2.If the need for flexibility concerns the same coverage area as represented on the figure 4a , to change the mission, the invention consists in translating, without rotation, the reflector of a first position 10a according to which the focal point of the reflector is placed at the center of phase 5 of the first source S1 towards a second position 10b according to which the focus of the reflector is placed at the center of phase 6 of the second source S2. The displacement distance of the reflector in translation is strictly equal to the distance D1 which separates the phase centers 5, 6 of the two sources S1, S2.

Si le besoin de flexibilité concerne des zones de couvertures différentes comme représenté sur la figure 4b, pour changer de mission, le mouvement du réflecteur est une translation combinée à une ou plusieurs rotations.If the need for flexibility concerns different areas of coverage as represented on the figure 4b , to change mission, the movement of the reflector is a translation combined with one or more rotations.

A titre d'exemple, S1 peut être alimentée dans une polarisation linéaire et fonctionner dans la bande de fréquences Ku, S2 peut être alimentée dans une polarisation circulaire et fonctionner dans la bande de fréquences Ku, S3 peut être alimentée dans une polarisation linéaire décalée de 7,5° et fonctionner dans la bande de fréquences Ku+.By way of example, S1 can be fed in a linear polarization and operate in the Ku frequency band, S2 can be fed in a circular polarization and operate in the Ku frequency band, S3 can be fed in a linear polarization shifted by 7.5 ° and operate in the Ku + frequency band.

Dans la configuration initiale représentée sur la figure 1, le centre de phase 5 de la source S1 est positionné au foyer du réflecteur 10 qui pointe dans une direction de pointage 16 située par exemple sur l'équateur terrestre. Si la source S1 est par exemple alimentée par un signal polarisé linéairement par l'intermédiaire d'une première chaîne radiofréquence RF1 et la source S2 est par exemple reliée à une deuxième chaîne radiofréquence RF2 permettant une polarisation circulaire, pour passer de la polarisation linéaire à la polarisation circulaire sans changer le pointage de l'antenne, l'invention consiste à commuter l'alimentation de la source S1 à la source S2 et à déplacer le réflecteur en translation, sur une distance D1, de la source S1 vers la source S2 pour positionner le foyer du réflecteur 10 au centre de phase 6 de la source S2, comme représenté sur la figure 2a. Pour amener le réflecteur devant la source S2 sans changer la direction de pointage 16 de l'antenne, l'invention consiste à actionner les moteurs M1, M2, M3 en rotation. Pour cela, comme représenté sur les figures, lorsque les sources sont alignées, les trois moteurs peuvent par exemple avoir des axes de rotation quasiment parallèles entre eux et perpendiculaires au plan de déplacement du réflecteur. L'actionnement du moteur M1 en rotation dans le sens inverse des aiguilles d'une montre entraîne le premier bras 13 en rotation dans le même sens ce qui a pour effet d'éloigner le moteur M2, le moteur M3 et le réflecteur 10 de la plate-forme 11 du satellite et de déplacer ainsi le réflecteur 10 de la source S1 vers la source S2. L'actionnement en rotation des moteurs M2 et/ou M3 dans le sens des aiguilles d'une montre permet ensuite de basculer le réflecteur 10 en rotation jusqu'à ce qu'il soit dans une position parallèle à sa position initiale et que le centre de phase 6 de la source S2 soit ainsi positionné au foyer du réflecteur 10 et illumine la même zone de couverture sur la Terre. Les rotations successives des différents moteurs M1, M2 et/ou M3 font ainsi subir une translation au réflecteur 10 telle que son foyer passe de la source S1 à la source S2. Comme représenté sur la figure 2b, les mêmes opérations peuvent être reproduites avec une autre source telle que la source S3, par exemple pour changer de plan de fréquence de fonctionnement si la source S3 est reliée à une troisième chaîne radiofréquence RF3 optimisée pour un autre plan de fréquence que celui des sources S1 et S2.In the initial configuration shown on the figure 1 , the center of phase 5 of the source S1 is positioned at the focus of the reflector 10 which points in a pointing direction 16 located for example on the Earth's equator. If the source S1 is for example supplied by a linearly polarized signal via a first radiofrequency channel RF1 and the source S2 is for example connected to a second radiofrequency ring RF2 allowing a circular polarization, to go from the linear polarization to the circular polarization without changing the pointing of the antenna, the invention consists in switching the power supply from the source S1 to the source S2 and moving the reflector in translation, over a distance D1, from the source S1 to the source S2 to position the focus of the reflector 10 at the center of phase 6 of the source S2, as shown in FIG. figure 2a . To bring the reflector in front of the source S2 without changing the pointing direction 16 of the antenna, the invention consists in actuating the motors M1, M2, M3 in rotation. For this, as shown in the figures, when the sources are aligned, the three motors may for example have axes of rotation substantially parallel to each other and perpendicular to the plane of movement of the reflector. Actuating the motor M1 in rotation in the counterclockwise direction causes the first arm 13 to rotate in the same direction, which has the effect of moving the motor M2, the motor M3 and the reflector 10 away from the machine. platform 11 of the satellite and thus move the reflector 10 of the source S1 to the source S2. The rotation of the motors M2 and / or M3 in a clockwise direction then makes it possible to tilt the reflector 10 in rotation until it is in a position parallel to its initial position and that the center phase 6 of the source S2 is thus positioned at the focus of the reflector 10 and illuminates the same coverage area on the Earth. Successive rotations of the various motors M1, M2 and / or M3 thus make a translation to the reflector 10 such that its focus passes from the source S1 to the source S2. As shown on the figure 2b , the same operations can be reproduced with another source such as the source S3, for example to change operating frequency plan if the source S3 is connected to a third radio frequency channel RF3 optimized for another frequency plane than that of the sources S1 and S2.

De même, les trois moteurs permettent également d'obtenir une flexibilité de pointage et de pouvoir changer de zone de couverture en changeant de sources, comme représenté sur les figures 3a, 3b, 3c et la figure 4b. Sur la figure 3a, le centre de phase 5 de la source S1 est placé au foyer du réflecteur 10 qui pointe dans une première direction 20 sur une première zone 23 par exemple située sur l'équateur. Pour changer de zone de couverture, il suffit d'actionner le moteur M1 en rotation pour éloigner le réflecteur de la plate-forme 11 de façon que le centre de phase 6 de la source S2 soit placé au foyer du réflecteur puis les moteurs M2 et M3 pour orienter le réflecteur dans une deuxième direction de pointage 21 sur une deuxième zone 24 de couverture, comme représenté sur la figure 3b. Dans ce cas, le réflecteur a subi une translation et une rotation par rapport à sa position initiale de la figure 3a et n'est donc pas parallèle à cette position initiale. Les mêmes opérations sur les moteurs M1, M2, M3 peuvent être réalisées pour déplacer le réflecteur 10 vers la troisième source S3 de façon que le centre de phase 7 de la source S3 soit placé au foyer du réflecteur et l'orienter dans une troisième direction de pointage 22 correspondant à une troisième zone de couverture 25 sur l'équateur. La figure 4b montre les trois positions différentes 10a, 10b, 10c du réflecteur 10 lorsque les différentes sources S1, S2, S3 sont placées à son foyer et pour trois directions différentes de pointage 20, 21, 22 sur l'équateur. Les zones de couverture 23, 24, 25 représentées dans l'exemple de la figure 4b correspondent à des écarts de pointage successifs espacés d'un angle de 3° et à une configuration dans laquelle les trois sources S1, S2, S3 sont alignées. L'espacement D entre les centres de phase de la première source S1 et de la dernière source S3 dépend directement de la focale du réflecteur 10 et de la séparation angulaire entre les couvertures.Likewise, the three engines also make it possible to obtain a pointing flexibility and to be able to change coverage areas by changing sources, as represented on the figures 3a , 3b, 3c and the figure 4b . On the figure 3a the center of phase 5 of the source S1 is placed at the focus of the reflector 10 which points in a first direction 20 on a first zone 23 for example located on the equator. To change the coverage area, it is sufficient to actuate the motor M1 in rotation to move the reflector away from the platform 11 so that the phase center 6 of the source S2 is placed at the focus of the reflector, then the motors M2 and M3 to orient the reflector in a second pointing direction 21 on a second zone 24 of coverage, as shown in FIG. figure 3b . In this case, the reflector has been translated and rotated relative to its initial position of the figure 3a and is therefore not parallel to this initial position. The same operations on the motors M1, M2, M3 can be performed to move the reflector 10 to the third source S3 so that that the phase center 7 of the source S3 is placed at the focus of the reflector and orienting it in a third pointing direction 22 corresponding to a third coverage area 25 on the equator. The figure 4b shows the three different positions 10a, 10b, 10c of the reflector 10 when the different sources S1, S2, S3 are placed at home and for three different pointing directions 20, 21, 22 on the equator. The coverage areas 23, 24, 25 represented in the example of the figure 4b correspond to successive pointing differences spaced by an angle of 3 ° and to a configuration in which the three sources S1, S2, S3 are aligned. The spacing D between the phase centers of the first source S1 and the last source S3 directly depends on the focal length of the reflector 10 and the angular separation between the covers.

Les trois zones de couvertures 23, 24, 25 représentées sur la figure 4b ne sont pas jointives. Des zones de couvertures additionnelles situées entre les zones non jointives peuvent être obtenues en utilisant les mêmes sources S1, S2, S3 placées successivement au foyer du réflecteur 10. La figure 5 montre un exemple de zones de couvertures jointives sur l'équateur obtenue avec trois sources S1, S2, S3. Par exemple, sur la figure 5, les deux zones 26, 27 situées entre les zones 23 et 24 peuvent être obtenues avec la même source S1 placée au foyer du réflecteur 10, et en modifiant seulement l'orientation du réflecteur 10 pour changer la direction de pointage. Dans ce cas, seuls les moteurs M2 et/ou M3 sont actionnés en rotation, le moteur M1 ne bougeant pas.The three areas of covers 23, 24, 25 represented on the figure 4b are not joined. Additional coverage areas located between the non-contiguous zones can be obtained by using the same sources S1, S2, S3 successively placed at the focus of the reflector 10. figure 5 shows an example of areas of contiguous covers on the equator obtained with three sources S1, S2, S3. For example, on the figure 5 the two zones 26, 27 located between the zones 23 and 24 can be obtained with the same source S1 placed at the focus of the reflector 10, and only changing the orientation of the reflector 10 to change the pointing direction. In this case, only the motors M2 and / or M3 are actuated in rotation, the motor M1 does not move.

Les trois moteurs M1, M2, M3 permettent de réaliser une flexibilité de pointage selon la direction Est-Ouest. En ajoutant un quatrième moteur, non représenté, d'axe perpendiculaire aux axes des moteurs M1, M2, M3, il devient possible de modifier l'angle d'orientation du réflecteur 10 selon la direction Nord-Sud. En plaçant le foyer du réflecteur 10 successivement au centre de phase de chacune des trois sources S1, S2, S3, il est alors possible d'assurer des pointages successifs dans différentes zones localisées dans la direction Nord-Sud et de réaliser ainsi une couverture complète de la Terre comme représenté par exemple sur la figure 6.The three M1, M2, M3 engines provide pointing flexibility in the East-West direction. By adding a fourth motor, not shown, with an axis perpendicular to the axes of the motors M1, M2, M3, it becomes possible to modify the orientation angle of the reflector 10 in the North-South direction. By placing the focus of the reflector 10 successively in the center of phase of each of the three sources S1, S2, S3, it is then possible to ensure successive pointing in different areas located in the North-South direction and thus achieve complete coverage of the Earth as represented for example on the figure 6 .

Bien que l'invention ait été décrite en liaison avec des modes de réalisation particuliers, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention. Ainsi, par exemple, pour actionner le réflecteur, il est possible de remplacer les trois moteurs M1, M2, M3 par un seul moteur associé à un cardan.Although the invention has been described in connection with particular embodiments, it is obvious that it is in no way limited and it includes all the technical equivalents of the means described and their combinations if they fall within the scope of the invention. Thus, for example, to actuate the reflector, it is possible to replace the three motors M1, M2, M3 by a single motor associated with a gimbal.

Claims (11)

Antenne à flexibilité de mission comportant un unique réflecteur et au moins une première source (S1) et une deuxième source (S2) de signaux radiofréquence disposées devant le réflecteur, le réflecteur (10) ayant un foyer et chaque source ayant un centre de phase, caractérisée en ce que les sources (S1, S2) sont indépendantes, fixes et reliées à des chaînes d'alimentation radiofréquence (RF1, RF2) distinctes définissant des caractéristiques de polarisation et/ou de fréquence de fonctionnement différentes et prédéfinies, et en ce qu'elle comporte en outre des moyens de déplacement (M1, M2, M3) et d'orientation du réflecteur (10) d'une première position (10a) selon laquelle le foyer du réflecteur (10) est placé au centre de phase (5) de la première source (S1) vers une deuxième position (10b) selon laquelle le foyer du réflecteur (10) est placé au centre de phase (6) de la deuxième source (S2).A mission flexibility antenna having a single reflector and at least a first source (S1) and a second source (S2) of radiofrequency signals disposed in front of the reflector, the reflector (10) having a focus and each source having a phase center, characterized in that the sources (S1, S2) are independent, fixed and connected to separate RF power supply chains (RF1, RF2) defining different and predefined polarization and / or operating frequency characteristics, and in that it further comprises movement means (M1, M2, M3) and the orientation reflector (10) from a first position (10a) that the focus of the reflector (10) is placed at the phase center (5 ) from the first source (S1) to a second position (10b) in which the focal point of the reflector (10) is placed at the phase center (6) of the second source (S2). Antenne selon la revendication 1, caractérisée en ce que les moyens de déplacement et d'orientation (M1, M2, M3) du réflecteur (10) comportent des moyens d'actionnement en translation du réflecteur de la première position (10a) à la deuxième position (10b), le réflecteur (10) étant orienté dans une direction de pointage (16) fixe.Antenna according to Claim 1, characterized in that the displacement and orientation means (M1, M2, M3) of the reflector (10) comprise means for actuating the reflector in translation from the first position (10a) to the second position position (10b), the reflector (10) being oriented in a pointing direction (16) fixed. Antenne selon l'une des revendications 2, caractérisée en ce que les centres de phase (5, 6) des deux sources (S1, S2) sont espacés d'une distance (D1) prédéterminée et en ce que la translation du réflecteur (10) est réalisée sur une distance égale à la distance D1 qui sépare les centres de phase des deux sources (S1, S2).Antenna according to one of claims 2, characterized in that the phase centers (5, 6) of the two sources (S1, S2) are spaced by a predetermined distance (D1) and that the translation of the reflector (10 ) is carried out over a distance equal to the distance D1 which separates the phase centers of the two sources (S1, S2). Antenne selon la revendication 1, caractérisée en ce que les moyens de déplacement et d'orientation du réflecteur (M1, M2, M3) comportent des moyens d'actionnement en translation combinée à une ou plusieurs rotations du réflecteur (10), le réflecteur (10) dans la deuxième position (10b) étant orienté dans une deuxième direction de pointage (21) différente d'une première direction de pointage (20) du réflecteur (10) dans la première position (10a).Antenna according to Claim 1, characterized in that the means for moving and orienting the reflector (M1, M2, M3) comprise means for actuating in translation combined with one or more rotations of the reflector (10), the reflector ( 10) in the second position (10b) being oriented in a second pointing direction (21) different from a first pointing direction (20) of the reflector (10) in the first position (10a). Antenne selon l'une des revendications précédentes, caractérisée en ce que les moyens de déplacement et d'orientation (M1, M2, M3) du réflecteur (10) comportent au moins un moteur (M1) relié au réflecteur par l'intermédiaire d'au moins un bras de levier (13).Antenna according to one of the preceding claims, characterized in that the displacement and orientation means (M1, M2, M3) of the reflector (10) comprise at least one motor (M1) connected to the reflector via at least one lever arm (13). Antenne selon l'une des revendications 4 ou 5, caractérisée en ce que les moyens de déplacement et d'orientation (M1, M2, M3) du réflecteur (10) comportent trois moteurs reliés entre eux par des bras de levier (13, 14, 15).Antenna according to one of claims 4 or 5, characterized in that the displacement and orientation means (M1, M2, M3) of the reflector (10) comprise three motors connected together by lever arms (13, 14 , 15). Antenne selon l'une des revendication 5 ou 6, caractérisée en ce que les bras de levier (13, 14, 15) sont trois parties d'un bras de déploiement articulé du réflecteur (10).Antenna according to one of claims 5 or 6, characterized in that the lever arms (13, 14, 15) are three parts of an articulated deployment arm of the reflector (10). Satellite de télécommunication, caractérisé en ce qu'il comporte au moins une antenne selon l'une quelconque des revendications précédentes.Telecommunication satellite, characterized in that it comprises at least one antenna according to any one of the preceding claims. Procédé de commande du changement de mission d'une antenne à flexibilité de mission selon l'une quelconque des revendications 1 à 7, l'antenne comportant un réflecteur et au moins une première source (S1) et une deuxième source (S2) de signaux radiofréquence disposées devant le réflecteur, le réflecteur ayant un foyer et chaque source ayant un centre de phase, caractérisé en ce qu'il consiste à utiliser des sources indépendantes (S1, S2) fixes, et reliées à des chaînes d'alimentation radiofréquence (RF1, RF2) distinctes définissant des caractéristiques de polarisation et/ou de fréquence de fonctionnement différentes et prédéfinies, à sélectionner une source (S1, S2) en fonction du type de mission souhaitée puis à déplacer et/ou orienter le réflecteur (10) de façon que le centre de phase (5, 6) de la source sélectionnée (S1, S2) soit positionné au foyer du réflecteur (10) et que le réflecteur (10) soit orienté dans une direction de pointage (16, 21) choisie et illumine une zone de couverture correspondante (23, 24).A method of controlling mission change of a mission flexibility antenna according to any one of claims 1 to 7, the antenna having a reflector and at least a first source (S1) and a second signal source (S2) radio frequency arranged in front of the reflector, the reflector having a focus and each source having a phase center, characterized in that it consists of using independent sources (S1, S2) fixed, and connected to RF power supply chains (RF1 , RF2) defining different characteristics of polarization and / or operating frequency and predefined, to select a source (S1, S2) depending on the type of mission desired and then to move and / or orient the reflector (10) so that the phase center (5, 6) of the selected source (S1, S2) is positioned at the focus of the reflector (10) and that the reflector (10) is oriented in a selected pointing direction (16, 21) and illuminates a corresponding coverage area (23, 24). Procédé selon la revendication 9, caractérisé en ce que lorsque le changement de mission concerne une même zone de couverture, le déplacement du réflecteur (10) est une translation, sans rotation, d'une première position selon laquelle le foyer du réflecteur (10) est placé au centre de phase (5) de la première source (S1) vers une deuxième position selon laquelle le foyer du réflecteur (10) est placé au centre de phase (6) de la deuxième source (S2), la translation étant réalisée sur une distance rigoureusement égale à la distance (D1) qui sépare les centres de phase (5, 6) des deux sources (S1, S2).Method according to claim 9, characterized in that when the change of mission concerns the same coverage area, the displacement of the reflector (10) is a translation, without rotation, of a first position in which the focus of the reflector (10) is placed at the phase center (5) of the first source (S1) to a second position in which the focal point of the reflector (10) is placed at the phase center (6) of the second source (S2), the translation being carried out a distance strictly equal to the distance (D1) between the phase centers (5, 6) of the two sources (S1, S2). Procédé selon la revendication 9, caractérisé en ce que lorsque le changement de mission concerne des zones de couvertures différentes, le déplacement du réflecteur (10) est une translation combinée à une ou plusieurs rotations d'une première position selon laquelle le foyer du réflecteur est placé au centre de phase (5) de la première source (S1) vers une deuxième position selon laquelle le foyer du réflecteur (10) est placé au centre de phase (6) de la deuxième source (S2).Method according to claim 9, characterized in that when the change of mission relates to different areas of coverage, the displacement of the reflector (10) is a translation combined with one or more rotations of a first position according to which the focus of the reflector is placed in the center of phase (5) of the first source (S1) to a second position in which the focus of the reflector (10) is placed in the center of phase (6) of the second source (S2).
EP10164320.3A 2009-06-19 2010-05-28 Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna Active EP2270922B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0902996A FR2947103B1 (en) 2009-06-19 2009-06-19 MISSION FLEXIBILITY ANTENNA, SATELLITE COMPRISING SUCH ANTENNA, AND METHOD FOR CONTROLLING THE MISSION CHANGE OF SUCH ANTENNA

Publications (2)

Publication Number Publication Date
EP2270922A1 true EP2270922A1 (en) 2011-01-05
EP2270922B1 EP2270922B1 (en) 2017-01-18

Family

ID=41582185

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10164320.3A Active EP2270922B1 (en) 2009-06-19 2010-05-28 Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna

Country Status (5)

Country Link
US (1) US8659493B2 (en)
EP (1) EP2270922B1 (en)
CA (1) CA2706764C (en)
ES (1) ES2622128T3 (en)
FR (1) FR2947103B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094685A (en) * 2013-01-25 2013-05-08 西安电子科技大学 Large scale radome electrical performance compensation method based on axial defocusing
WO2014022312A1 (en) 2012-07-30 2014-02-06 Lockheed Martin Corporation Low cost, high-performance, switched multi-feed steerable antenna system

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10012361B2 (en) * 2010-11-15 2018-07-03 Adl, Inc. Multi-spectral variable focus illuminator
US20120274507A1 (en) * 2011-04-28 2012-11-01 Jaafar Cherkaoui Architecture and method for optimal tracking of multiple broadband satellite terminals in support of in theatre and rapid deployment applications
FR3024128B1 (en) * 2014-07-25 2016-07-22 Thales Sa METHOD OF POSTING A SATELLITE AND TESTING ORBIT OF ITS USEFUL LOAD
US10122085B2 (en) * 2014-12-15 2018-11-06 The Boeing Company Feed re-pointing technique for multiple shaped beams reflector antennas
CN105826689B (en) * 2016-05-24 2018-04-27 西安恒达微波技术开发有限公司 A kind of ultra wide band combined antenna and its antenna system of application
US10516216B2 (en) 2018-01-12 2019-12-24 Eagle Technology, Llc Deployable reflector antenna system
GB201811459D0 (en) 2018-07-12 2018-08-29 Airbus Defence & Space Ltd Reconfigurable active array-fed reflector antenna
US10707552B2 (en) 2018-08-21 2020-07-07 Eagle Technology, Llc Folded rib truss structure for reflector antenna with zero over stretch
FR3086927B1 (en) * 2018-10-04 2020-09-18 Thales Sa DEPLOYMENT DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534375A (en) * 1968-07-09 1970-10-13 T O Paine Multi-feed cone cassegrain antenna
FR2648278A1 (en) * 1989-06-13 1990-12-14 Europ Agence Spatiale Antenna with switchable beams
EP0845833A2 (en) * 1996-11-27 1998-06-03 HE HOLDINGS, INC. dba HUGHES ELECTRONICS On-orbit reconfigurability of a shaped reflector with feed/reflector defocusing and reflector gimballing
US6441794B1 (en) * 2001-08-13 2002-08-27 Space Systems/Loral, Inc. Dual function subreflector for communication satellite antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638322A (en) * 1984-02-14 1987-01-20 The Boeing Company Multiple feed antenna
US6239763B1 (en) * 1999-06-29 2001-05-29 Lockheed Martin Corporation Apparatus and method for reconfiguring antenna contoured beams by switching between shaped-surface subreflectors
EP1735213B1 (en) * 2004-04-08 2015-03-11 Astrium Limited Deployable boom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3534375A (en) * 1968-07-09 1970-10-13 T O Paine Multi-feed cone cassegrain antenna
FR2648278A1 (en) * 1989-06-13 1990-12-14 Europ Agence Spatiale Antenna with switchable beams
EP0845833A2 (en) * 1996-11-27 1998-06-03 HE HOLDINGS, INC. dba HUGHES ELECTRONICS On-orbit reconfigurability of a shaped reflector with feed/reflector defocusing and reflector gimballing
US6441794B1 (en) * 2001-08-13 2002-08-27 Space Systems/Loral, Inc. Dual function subreflector for communication satellite antenna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022312A1 (en) 2012-07-30 2014-02-06 Lockheed Martin Corporation Low cost, high-performance, switched multi-feed steerable antenna system
EP2880713A4 (en) * 2012-07-30 2015-12-16 Lockheed Corp Low cost, high-performance, switched multi-feed steerable antenna system
US9337535B2 (en) 2012-07-30 2016-05-10 Lockheed Martin Corporation Low cost, high-performance, switched multi-feed steerable antenna system
CN103094685A (en) * 2013-01-25 2013-05-08 西安电子科技大学 Large scale radome electrical performance compensation method based on axial defocusing
CN103094685B (en) * 2013-01-25 2014-12-03 西安电子科技大学 Large scale radome electrical performance compensation method based on axial defocusing

Also Published As

Publication number Publication date
CA2706764C (en) 2016-08-16
CA2706764A1 (en) 2010-12-19
ES2622128T3 (en) 2017-07-05
FR2947103B1 (en) 2012-05-18
US8659493B2 (en) 2014-02-25
EP2270922B1 (en) 2017-01-18
FR2947103A1 (en) 2010-12-24
US20100321263A1 (en) 2010-12-23

Similar Documents

Publication Publication Date Title
EP2270922B1 (en) Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP2654126B1 (en) Directive mobile antenna with polarisation switching by moving radiant panels
EP2532050B1 (en) On-board directional flat-plate antenna, vehicle comprising such an antenna, and satellite telecommunication system comprising such a vehicle
EP1790032B1 (en) Reflector network antenna with an area of coverage, the form of which can be reconfigured with or without a charger
FR2868881A1 (en) TITLE IN ENGLISH
FR2863111A1 (en) Multi-band aerial with double polarization includes three sets of radiating elements including crossed dipoles for maximum polarization decoupling
FR2993716A1 (en) MULTIFUNCTIONAL MULTI-SOURCE SENDING AND RECEIVING ANTENNA BY BEAM, ANTENNA SYSTEM AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA
EP3176875B1 (en) Active antenna architecture with reconfigurable hybrid beam formation
EP0548876B1 (en) An active offset antenna having two reflectors
FR2861897A1 (en) MULTI-BEAM HIGH-FREQUENCY ANTENNA SYSTEM
EP3457489B1 (en) Rotary joint for a rotating antenna and rotating antenna comprising such a joint
FR3029018A1 (en) COMPACT RADIOFREQUENCY EXCITATION MODULE WITH INTEGRATED CINEMATIC AND COMPACT BIAXE ANTENNA COMPRISING LESS SUCH COMPACT MODULE
EP3457490B1 (en) Biaxial antenna comprising a first fixed portion, a second rotary portion and a rotating joint
CA2706761C (en) Multi-frequency flexible coverage reflector antenna and satellite equipped with such an antenna
CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
FR2518828A1 (en) Frequency spatial filter for two frequency microwave antenna - comprising double sandwich of metallic grids and dielectric sheets
WO2011054669A1 (en) Mobile-beam antenna mounting
EP3675278B1 (en) Multibeam antenna with adjustable pointing
EP3220181A1 (en) Hybrid optical system with reduced size for imaging array antenna
EP0088681B1 (en) Dual-reflector antenna with incorporated polarizer
EP3157094A1 (en) Compact antenna with modular beam aperture
FR2956777A1 (en) ANTENNA TO REFLECTORS
FR2596208A1 (en) Two-frequency antenna with independent steerable beams

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110621

17Q First examination report despatched

Effective date: 20150617

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 863385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010039635

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170118

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 863385

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2622128

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20170705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010039635

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

26N No opposition filed

Effective date: 20171019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170528

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170528

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200601

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200512

Year of fee payment: 11

Ref country code: IT

Payment date: 20200428

Year of fee payment: 11

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230421

Year of fee payment: 14

Ref country code: DE

Payment date: 20230418

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230413

Year of fee payment: 14