EP3675278B1 - Multibeam antenna with adjustable pointing - Google Patents

Multibeam antenna with adjustable pointing Download PDF

Info

Publication number
EP3675278B1
EP3675278B1 EP19219746.5A EP19219746A EP3675278B1 EP 3675278 B1 EP3675278 B1 EP 3675278B1 EP 19219746 A EP19219746 A EP 19219746A EP 3675278 B1 EP3675278 B1 EP 3675278B1
Authority
EP
European Patent Office
Prior art keywords
rotation
antenna
arm
movable
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19219746.5A
Other languages
German (de)
French (fr)
Other versions
EP3675278A1 (en
Inventor
Jérôme Brossier
Laurent Martin
Jean-Marc Bassaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3675278A1 publication Critical patent/EP3675278A1/en
Application granted granted Critical
Publication of EP3675278B1 publication Critical patent/EP3675278B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1264Adjusting different parts or elements of an aerial unit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/18Reflecting surfaces; Equivalent structures comprising plurality of mutually inclined plane surfaces, e.g. corner reflector
    • H01Q15/20Collapsible reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • H01Q3/18Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is movable and the reflecting device is fixed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/245Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching in the focal plane of a focussing device

Definitions

  • the present invention relates to a multibeam antenna with adjustable pointing.
  • the invention applies particularly to reflector antennas in the space domain and in particular to satellite missions requiring independent repointing of radioelectric beams. Mention will be made in particular of so-called “gateway” antennas on geostationary satellites.
  • These antennas generally aim at several points on the earth's surface, the positions of which can evolve during the mission of the satellite independently of one another. In this case, it is necessary to repoint, that is to say to reorient, the beam of the antenna corresponding to the point whose position has changed. It may also be a new position of the satellite which in this case requires a repointing of the points targeted on earth.
  • the radiating sources of active antennas form a network and are associated with a system for distributing radio signals in amplitude and/or phase between these sources and with a system for controlling this distribution in according to predetermined laws.
  • Active antennas thus make it possible to carry out so-called “electronic” repointing, that is to say without mechanical action exerted on the antenna.
  • Active antennas therefore provide great flexibility in reorienting the beams associated with the various target points. This flexibility implies in return a high complexity of these antennas, an increase in mass, consumption and dissipation, which are critical on satellites.
  • the object of the present invention is to propose a multibeam antenna making it possible to repoint its beams independently while being compact, relatively light and of simple structure.
  • the invention relates to a multibeam antenna with adjustable pointing according to claim 1.
  • the antenna comprises one or more of the characteristics of claims 2 to 13.
  • the antenna 10 of the figure 1 is a multi-beam antenna with adjustable pointing.
  • this antenna 10 is on board a satellite and more particularly, is mounted on an outer surface of the latter oriented for example towards the Earth.
  • the satellite is for example a geostationary satellite carrying out a telecommunications mission and requiring so-called “gateway” antennas.
  • a telecommunications mission In a manner known per se, such a mission must allow the antenna 10 of the satellite to exchange radio signals with several antennas arranged on the ground.
  • the antenna 10 makes it possible to repoint its beams independently of each other to follow these developments on the ground, as will be explained later.
  • the antenna 10 comprises a single reflection device 12, a plurality of mobile assemblies 14A to 14D, a base 16, a processing module 18 and a piloting module 20.
  • the reflection device 12 has a reflector of any known shape or several reflectors, preferably two, also of known shapes.
  • the reflection device 12 has a single reflector of the centered or simple offset type.
  • the reflection device 12 has two reflectors and is for example of the SFOCA (Side Fed Offset Cassegrain Antenna) type, Gregorian, Cassegrain, splash plate, etc.
  • SFOCA Segmented Fed Offset Cassegrain Antenna
  • the reflection device 12 defines by its geometry a center on its surface and a focus situated outside this surface. This reflection device 12 further defines a focal plane corresponding to the plane containing the focus and perpendicular to the line connecting the focus and the center.
  • the mobile assemblies 14A to 14D are, for example, four in number and make it possible to send and/or receive beams of radioelectric signals coming from different points aimed at on the ground or intended for these points.
  • the base 16 makes it possible to fix the reflection device 12 and the mobile assemblies 14A to 14D to the structure of the satellite and is thus presented in any form suitable for doing so.
  • the base 16 is in the form of a plurality of fixing lugs, each lug being adapted to fix one of the mobile assemblies 14A to 14D or the reflection device 12 to the structure of the satellite.
  • the structure comprises two perpendicular surfaces so that at least some of the fixing lugs are fixed to one of these surfaces and some others to the other surface.
  • the fixing lugs of the mobile assemblies 14A to 14D comprise transmission means necessary in order to transmit radioelectric signals and electric current between these assemblies 14A to 14D and the processing module 18 and the control module 20.
  • the processing module 18 makes it possible to acquire radioelectric signals received by the mobile assemblies 14A to 14D and/or to generate radioelectric signals intended to be transmitted by these assemblies.
  • the processing module 18 comprises electronic components such as amplifiers, a splitter, etc. These components are known per se and will not be described in detail.
  • the control module 20 makes it possible to modify the positions of the mobile assemblies in order to reorient the beams of the antenna 10 according to the points targeted. To do this, the control module 20 is able to control the position of each of the mobile assemblies 14A to 14D and to modify it independently of the other assemblies by transmitting for example a command adapted to this assembly.
  • the control module 20 is, for example, at least partially in the form of a programmable logic circuit or in the form of software. In the latter case, it is implemented by a suitable processor.
  • the mobile assemblies 14A to 14D are substantially identical.
  • FIG. 2 and 3 illustrate such a mobile assembly 14A according to a first embodiment thereof.
  • the mobile assembly 14A comprises a radiating source 22 and a support 24 fixing this source 22 movably to the base 16.
  • the radiating source 22 is for example in the form of a horn for transmitting and/or receiving radioelectric signals elongated along a source axis C.
  • This source axis C is oriented towards the reflection device 12 and in the first embodiment of the assembly 14A, is perpendicular to the focal plane PF in any position of this assembly 14A.
  • the support 24 allows the radiating source 22 to move in a scanning surface coinciding with the focal plane of the reflection device 12.
  • This focal plane is visible on the picture 3 and denoted by the reference "PF" on this picture 3 .
  • the support 24 allows the radiating source 22 to move in the focal plane PF according to two degrees of freedom comprising in the example of the picture 2 two rotations around parallel axes which are perpendicular to the focal plane PF.
  • the primary axis of rotation X 1 is called the primary axis of rotation X 1 and the other is called the secondary axis of rotation X 2 .
  • the primary axis of rotation X 1 is fixed in translation relative to the base 16.
  • the support 24 comprises a forearm 26 which is rotatable with respect to the primary axis of rotation X 1 in a plane of rotation, called plane of lower rotation PI, and a rotating arm 28 with respect to the secondary axis of rotation X 2 in a rotation surface, called upper rotation surface SS.
  • the upper rotation surface SS is disposed between the focal plane PF and the lower rotation plane PI.
  • this upper rotation surface SS has a plane.
  • the forearm 26 is elongated and thus has two ends. One of these ends is rotatably fixed around the primary axis of rotation X 1 on a stator 30 in rigid connection with the base 16. The other end is rotatably fixed around the secondary axis of rotation X 2 at arm 28.
  • the arm 28 is elongated and thus has two ends. One of these ends is rotatably fixed around the axis secondary rotation X 2 to the forearm 26 and the other receives the radiating source 22 in a fixed manner.
  • the longitudinal extents of the arm 28 and the forearm 26 are for example substantially identical as can be seen on the picture 3 . According to another exemplary embodiment, these extents are different and are adapted according to the arrangement of the other mobile assemblies to ensure greater sweeping of the sweeping surface.
  • the support 24 advantageously comprises two motors, one being integrated in the junction between the forearm 26 and the stator 30 and the other in the junction between arm 28 and forearm 26.
  • These motors have, for example, stepper type motors that can be controlled by the control module 20.
  • the commands transmitted by the control module 20 to the assembly 14A correspond to electric currents of suitable voltage.
  • the control module 20 is thus able to supply these motors in an appropriate manner via electric current transmission means, integrated in the stator 30 and the forearm 26.
  • these transmission means have flexible cables in this junction or then comprise an electric rotating joint making it possible to avoid transmission by cable between these components.
  • the support 24 comprises means for transmitting radio signals.
  • These means include, for example, waveguides integrated in the arm 28 and the forearm 26 as well as two radio frequency rotary joints.
  • One of these radio frequency rotary joints is integrated in the junction between the arm 28 and the forearm 26 and the other in the junction between the forearm 26 and the stator 30.
  • each of these radiofrequency rotary joints has a rotary joint of the "groove gap" type, that is to say a rotary joint comprising at least one radioelectric signal transmission channel which is delimited by studs spaced from each other according to a predetermined distance.
  • each of the rotating joints used for the transmission of the radioelectric signals or at least the rotating joint integrated in the junction between the arm 28 and the forearm 26 is configured to allow rotation around the axis corresponding to 360°.
  • a mobile assembly 14A according to a second exemplary embodiment is illustrated in detail on the figure 4 in its different positions A) to D).
  • the mobile assembly 14A according to this embodiment is substantially similar to that described previously.
  • the secondary axis of rotation X 2 is inclined with respect to the primary axis of rotation X 1 , the primary axis of rotation X 1 located at the focus of the reflection device and always remaining perpendicular to the focal plane PF.
  • the angle of inclination of the secondary axis of rotation X 2 is chosen such that in any position of the assembly 14A, the radiating source 22 is oriented towards the center of the reflection device 12. In other words, this angle is chosen so that the source axis C is oriented towards the center of the reflector 12.
  • the radiating source 22 is mobile in a scanning surface tangent to the focal plane at the focus.
  • This scanning surface therefore has a convex surface extending from a single side of the focal plane close to the latter, between the reflection device 12 and this focal plane.
  • the angle of inclination of the secondary axis of rotation X 2 is substantially equal to 4.5°. This value depends on the geometry of the antenna.
  • the forearm 26 comprising the rotatable end around the primary axis of rotation remains rotatable in the lower plane of rotation PI as described above then the upper surface of rotation is different from a plane and corresponds to a conical surface.
  • the upper rotation surface SS is between the scanning surface and the lower rotation plane PI. This then allows arm 28 to rotate independently of forearm 26.
  • the arm 28 and the forearm 26 extend in the same direction and the source axis C coincides with the primary axis of rotation X 1 .
  • arm 28 and forearm 26 extend in perpendicular directions.
  • the source axis C is inclined with respect to the primary axis of rotation X 1 in the plane of the figure and with respect to the secondary axis of rotation X 2 in a plane perpendicular to the figure plane.
  • the source axis C is inclined with respect to the primary axis of rotation X 1 in the plane of the figure and the primary axis of rotation X 1 is inclined with respect to the secondary axis of rotation X 2 in the plane perpendicular to the plane of the figure.
  • the arm 28 and the forearm 26 both extend in the plane of the figure and the source axis C and the secondary axis of rotation X 2 are therefore inclined with respect to the primary axis of rotation X 1 in this plane, the angle of inclination of the source axis C being twice the angle of inclination of the secondary axis of rotation X 2 .
  • a variant of the second embodiment of the mobile assembly 14A is illustrated in the figure 5 .
  • the primary axis of rotation X 1 of the forearm 26 is close to the focus F and therefore does not pass through this focus.
  • the primary axis of rotation X 1 is inclined to aim at the center of the reflector 12.
  • the arrangement of the arm 28 with respect to the forearm 26 remains as has been described in relation to the figure 4 .
  • This variant is particularly advantageous when the primary axis of rotation X 1 of each of the mobile assemblies 14A to 14D is arranged close to the focus, as will be explained later.
  • the two mobile assemblies 14A and 14B are visible. According to this figure, it is clear that the scanning surface described by the sources of these assemblies 14A and 14B presents part of a sphere. Moreover, in the example of this figure 5 , the arm 28 of each of the assemblies 14A, 14B has a length less than that of the corresponding forearm 26 and only the end of the forearm 26 adjacent to the arm 28 is bent. In this case, at least in one position, the arm 28 extends along the bent part of the forearm 26. The arm 28 is therefore rotatable in a plane intersecting the plane of rotation of the forearm 26.
  • each of the assemblies 14A to 14D is constructed in such a way that whatever its position and its axes of rotation, the axis of the source aims at the center of the device reflection.
  • the axis of each source aims at the center of the reflection device 12.
  • N mobile assemblies analogous to the mobile assemblies 14A and 14B of the figure 5 , so that their radiating sources aim at the center of the reflection device and advantageously describe the same scanning surface having part of a sphere.
  • the primary axis of rotation X 1 of this assembly 14A as well as similar assemblies 14B to 14D is disposed far from the focus F.
  • each of these assemblies 14A to 14D and in particular their axes X 1 and X 2 are configured such that the corresponding source axes aim at the center or at a point close to the center of the reflection device.
  • the sources are then mobile over part of a sphere as described above.
  • FIG. 6 and 7 show a possible arrangement of the mobile assemblies 14A to 14D on the base 16 with an eccentric focus.
  • the circle T represents for example on the figure 6 and 7 the image of the earth seen from the focus of the reflecting device. It is thus understood that the eccentricity of the focus F advantageously makes it possible to be able to sweep the whole of the earth.
  • FIG. 8 Another possible arrangement of the movable assemblies 14A to 14D on the base 16 is illustrated in the figure 8 and 9 .
  • the mobile assemblies 14A to 14D are arranged symmetrically around the focus F of the reflection device 12. Furthermore, advantageously, the primary axes of rotation X 1 of these assemblies are arranged as close as possible to this focus. and aim at the center of the reflector.
  • these assemblies 14A to 14D are arranged so that the lower planes of rotation PI of their forearm 26 coincide with each other.
  • the arm 28 of each assembly 14A to 14D is above of the forearm 26 of each assembly 14A to 14D. This then makes it possible to facilitate the respective movements of the corresponding radiating sources 22 in order to scan a greater part of the scanning surface.
  • the figure 8 illustrates the initial positions of these mobile assemblies 14A to 14D during the launch of the satellite, for example.
  • the figure 9 illustrates operational positions of these assemblies. These positions can be changed during the satellite mission. It can then be seen that the present invention has a certain number of advantages.
  • the invention proposes an antenna comprising mobile radiating sources in the focal plane or close to it.
  • the invention makes it possible to modify the positions of these radiating sources independently of one another, thus modifying the pointing of the antenna mechanically.
  • This also makes it possible to use a single reflection device, which makes it possible to considerably reduce the mass and the size of the antenna in the case of passive antennas implementing mechanical pointing.
  • the antenna according to the invention therefore makes it possible to implement flexible pointing without adding heavy and complex components.
  • a multibeam antenna according to a second embodiment will now be described with reference to the figure 10 .
  • This antenna according to the second embodiment is substantially similar to the antenna 10 described previously with the exception of the mobile assemblies.
  • the antenna according to the second embodiment comprises four mobile assemblies 114A to 114D, at least one of which differs from the other assemblies.
  • the assemblies 114B to 114D are identical to the assemblies 14B to 14D described previously and are therefore identical to each other.
  • the assembly 114A differs from each of these assemblies by an end 129 of the arm 128 carrying the radiating source 122.
  • this end has an elongated shape with an extent equal for example to the sum of the transverse extents of the arm and of the forearm, for example of the assembly 114B.
  • the arm 128 and the forearm 126 of the assembly 114A are arranged below the arm and the forearm of each other movable assembly 114B through 114D.
  • the upper rotation surfaces SS and the lower rotation planes PI of the supports of the assemblies 114B to 114D are included between the scanning surface and the upper rotation surface SS and the lower rotation plane PI of the support of the movable assembly 114A.
  • the arm and the forearm of the support of the mobile assembly 114A are arranged below the arms and the forearms of the other mobile assemblies 114B to 114D.
  • the arm 128 of at least one support is placed at the level of the forearm 126 of at least one other support.
  • the reflection device 12 It is for example possible to make the reflection device 12 movable at least according to one degree of freedom. This will make the pointing of the antenna according to the first or the second embodiment even more flexible.
  • At least one radiating source immobile for example at the focal point of the antenna, and to arrange the other mobile radiating sources, for example around this immobile source.

Description

La présente invention concerne une antenne multifaisceaux à pointage réglable.The present invention relates to a multibeam antenna with adjustable pointing.

On connait de EP 1 437 796 , CN 106 785 444 , JP H02 33202 et EP 2 065 968 de telles antennes multifaisceaux.We know of EP 1 437 796 , CN 106 785 444 , JP H02 33202 and EP 2 065 968 such multibeam antennas.

L'invention s'applique particulièrement pour les antennes à réflecteur dans le domaine spatial et notamment, aux missions satellitaires nécessitant du repointage indépendant de faisceaux radioélectriques. On citera en particulier les antennes dites « gateway » sur les satellites géostationnaires.The invention applies particularly to reflector antennas in the space domain and in particular to satellite missions requiring independent repointing of radioelectric beams. Mention will be made in particular of so-called “gateway” antennas on geostationary satellites.

Ces antennes visent généralement plusieurs points sur la surface terrestre dont les positions peuvent évoluer au cours de la mission du satellite indépendamment l'une de l'autre. Dans ce cas, il est nécessaire de repointer, c'est-à-dire de réorienter, le faisceau de l'antenne correspondant au point dont la position a évolué. Il peut s'agir également d'une nouvelle position du satellite qui dans ce cas nécessite un repointage des points visés sur terre.These antennas generally aim at several points on the earth's surface, the positions of which can evolve during the mission of the satellite independently of one another. In this case, it is necessary to repoint, that is to say to reorient, the beam of the antenna corresponding to the point whose position has changed. It may also be a new position of the satellite which in this case requires a repointing of the points targeted on earth.

Pour ce faire, il est connu dans l'état de la technique d'utiliser différentes méthodes de repointage choisies en fonction du type de l'antenne utilisée.To do this, it is known in the state of the art to use different repointing methods chosen according to the type of antenna used.

En particulier, pour repointer une antenne passive à réflecteur, il est possible soit de faire bouger entièrement le corps de l'antenne soit de ne faire bouger que le ou les réflecteurs dans la limite de l'évolution des performances des signaux radioélectriques. Dans les deux cas, la réorientation s'effectue donc de manière mécanique.In particular, to repoint a passive reflector antenna, it is possible either to move the body of the antenna entirely or to move only the reflector(s) within the limit of the evolution of the performance of the radioelectric signals. In both cases, the reorientation therefore takes place mechanically.

Il est clair ainsi que pour pouvoir effectuer une réorientation mécanique pour chaque point visé indépendamment des autres points, il est nécessaire de prévoir une source rayonnante et un ou des réflecteurs pour chaque point visé.It is thus clear that in order to be able to perform a mechanical reorientation for each target point independently of the other points, it is necessary to provide a radiating source and one or more reflectors for each target point.

On conçoit alors que cela engendre l'encombrement important sur la surface extérieure du satellite et augmente considérablement sa masse.It is then conceivable that this generates significant bulk on the outer surface of the satellite and considerably increases its mass.

Dans le cas des antennes actives, un repointage peut être obtenu plus facilement.In the case of active antennas, a repointing can be obtained more easily.

En effet, à la différence des antennes passives, les sources rayonnantes des antennes actives forment un réseau et sont associées à un système de répartition des signaux radioélectriques en amplitude et/ou en phase entre ces sources et à un système de pilotage de cette répartition en fonction des lois prédéterminées.Indeed, unlike passive antennas, the radiating sources of active antennas form a network and are associated with a system for distributing radio signals in amplitude and/or phase between these sources and with a system for controlling this distribution in according to predetermined laws.

Les antennes actives permettent ainsi d'effectuer un repointage dit « électronique », c'est-à-dire sans action mécanique exercée sur l'antenne.Active antennas thus make it possible to carry out so-called “electronic” repointing, that is to say without mechanical action exerted on the antenna.

Les antennes actives donnent donc une grande flexibilité de réorientation des faisceaux associés à des différents points visés. Cette flexibilité implique en contrepartie une forte complexité de ces antennes, une augmentation de la masse, de la consommation et de la dissipation, lesquelles sont critiques sur des satellites.Active antennas therefore provide great flexibility in reorienting the beams associated with the various target points. This flexibility implies in return a high complexity of these antennas, an increase in mass, consumption and dissipation, which are critical on satellites.

La présente invention a pour but de proposer une antenne multifaisceaux permettant de repointer ses faisceaux de manière indépendante tout en étant peu encombrante, relativement légère et de structure simple.The object of the present invention is to propose a multibeam antenna making it possible to repoint its beams independently while being compact, relatively light and of simple structure.

À cet effet, l'invention a pour objet une antenne multifaisceaux à pointage réglable selon la revendication 1.To this end, the invention relates to a multibeam antenna with adjustable pointing according to claim 1.

Suivant d'autres aspects avantageux de l'invention, l'antenne comprend une ou plusieurs des caractéristiques des revendications 2 à 13.According to other advantageous aspects of the invention, the antenna comprises one or more of the characteristics of claims 2 to 13.

Ces caractéristiques et avantages de l'invention apparaitront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :

  • [Fig. 1] la figure 1 est une vue schématique en perspective d'une antenne multifaisceaux selon un premier mode de réalisation de l'invention, l'antenne comprenant notamment une pluralité d'assemblages mobiles ;
  • [Fig. 2] la figure 2 est une vue schématique en perspective de l'un des assemblages mobiles de la figure 1 selon un premier exemple de réalisation de celui-ci ;
  • [Fig. 3] la figure 3 est une vue schématique de côté de l'assemblage mobile de la figure 2 dans une position différente de celle de la figure 2 ;
  • [Fig. 4] la figure 4 est une vue schématique de côté de différentes positions de l'un des assemblages mobiles de la figure 1 selon un deuxième exemple de réalisation de celui-ci ;
  • [Fig. 5] la figure 5 est une vue schématique d'une variante de réalisation de l'un des assemblages mobiles de la figure 1 selon le deuxième exemple de réalisation ;
  • [Fig. 6] [Fig. 7] les figures 6 et 7 sont des vues schématiques d'autres variantes de réalisation de l'un des assemblages mobiles de la figure 1 selon le deuxième exemple de réalisation ;
  • [Fig. 8] [Fig. 9] les figures 8 et 9 sont des vues schématiques en perspective de différentes positions respectives des assemblages mobiles de la figure 1 ; et
  • [Fig. 10] la figure 10 est une vue schématique en perspective d'une pluralité d'assemblages mobiles selon un deuxième mode de réalisation de l'invention.
These characteristics and advantages of the invention will appear on reading the following description, given solely by way of non-limiting example, and made with reference to the appended drawings, in which:
  • [ Fig. 1 ] the figure 1 is a schematic perspective view of a multibeam antenna according to a first embodiment of the invention, the antenna comprising in particular a plurality of mobile assemblies;
  • [ Fig. 2 ] the figure 2 is a schematic perspective view of one of the mobile assemblies of the figure 1 according to a first embodiment thereof;
  • [ Fig. 3 ] the picture 3 is a schematic side view of the mobile assembly of the figure 2 in a position different from that of the figure 2 ;
  • [ Fig. 4 ] the figure 4 is a schematic side view of various positions of one of the movable assemblies of the figure 1 according to a second embodiment thereof;
  • [ Fig. 5 ] the figure 5 is a schematic view of an alternative embodiment of one of the mobile assemblies of the figure 1 according to the second embodiment;
  • [ Fig. 6 ] [ Fig. 7 ] them figure 6 and 7 are schematic views of other alternative embodiments of one of the mobile assemblies of the figure 1 according to the second embodiment;
  • [ Fig. 8 ] [ Fig. 9 ] them figure 8 and 9 are schematic perspective views of various respective positions of the movable assemblies of the figure 1 ; and
  • [ Fig. 10 ] the figure 10 is a schematic perspective view of a plurality of movable assemblies according to a second embodiment of the invention.

L'antenne 10 de la figure 1 est une antenne multifaisceaux à pointage réglable.The antenna 10 of the figure 1 is a multi-beam antenna with adjustable pointing.

Selon un exemple de réalisation de l'invention, cette antenne 10 est embarquée sur un satellite et plus particulièrement, est montée sur une surface extérieure de celui-ci orientée par exemple vers la Terre.According to an exemplary embodiment of the invention, this antenna 10 is on board a satellite and more particularly, is mounted on an outer surface of the latter oriented for example towards the Earth.

Le satellite est par exemple un satellite géostationnaire effectuant une mission de télécommunication et nécessitant des antennes dites « gateway ». De manière connue en soi, une telle mission doit permettre à l'antenne 10 du satellite d'échanger des signaux radioélectriques avec plusieurs antennes disposées au sol.The satellite is for example a geostationary satellite carrying out a telecommunications mission and requiring so-called “gateway” antennas. In a manner known per se, such a mission must allow the antenna 10 of the satellite to exchange radio signals with several antennas arranged on the ground.

Les positions ainsi que le nombre de ces antennes au sol sont susceptibles d'évoluer dans le temps, tout au long de la mission du satellite.The positions as well as the number of these antennas on the ground are likely to change over time, throughout the satellite's mission.

L'antenne 10 permet de repointer ses faisceaux indépendamment l'un de l'autre pour suivre ces évolutions au sol, comme cela sera expliqué par la suite.The antenna 10 makes it possible to repoint its beams independently of each other to follow these developments on the ground, as will be explained later.

En référence à la figure 1, l'antenne 10 comprend un dispositif de réflexion unique 12, une pluralité d'assemblages mobiles 14A à 14D, une embase 16, un module de traitement 18 et un module de pilotage 20.With reference to the figure 1 , the antenna 10 comprises a single reflection device 12, a plurality of mobile assemblies 14A to 14D, a base 16, a processing module 18 and a piloting module 20.

Le dispositif de réflexion 12 présente un réflecteur de toute forme connue ou plusieurs réflecteurs, de préférence deux, également de formes connues.The reflection device 12 has a reflector of any known shape or several reflectors, preferably two, also of known shapes.

Ainsi, selon un exemple de réalisation, le dispositif de réflexion 12 présente un seul réflecteur de type centré ou simple offset.Thus, according to an exemplary embodiment, the reflection device 12 has a single reflector of the centered or simple offset type.

Selon un autre exemple de réalisation, le dispositif de réflexion 12 présente deux réflecteurs et est par exemple de type SFOCA (de l'anglais « Side Fed Offset Cassegrain Antenna »), grégorien, Cassegrain, splash plate, etc.According to another exemplary embodiment, the reflection device 12 has two reflectors and is for example of the SFOCA (Side Fed Offset Cassegrain Antenna) type, Gregorian, Cassegrain, splash plate, etc.

Également de manière connue en soi, le dispositif de réflexion 12 définit par sa géométrie un centre sur sa surface et un foyer situé à l'extérieur de cette surface. Ce dispositif de réflexion 12 définit en outre un plan focal correspondant au plan contenant le foyer et perpendiculaire à la droite raccordant le foyer et le centre.Also in a manner known per se, the reflection device 12 defines by its geometry a center on its surface and a focus situated outside this surface. This reflection device 12 further defines a focal plane corresponding to the plane containing the focus and perpendicular to the line connecting the focus and the center.

Les assemblages mobiles 14A à 14D sont par exemple au nombre de quatre et permettent d'envoyer et/ou de recevoir des faisceaux de signaux radioélectriques issus de différents points visés au sol ou destinés à ces points.The mobile assemblies 14A to 14D are, for example, four in number and make it possible to send and/or receive beams of radioelectric signals coming from different points aimed at on the ground or intended for these points.

En cas de changement des positions de ces points et/ou de leur nombre, des modifications des positions des assemblages mobiles 14A à 14D permettent de réorienter l'antenne 10, comme cela sera expliqué en détail par la suite.In the event of a change in the positions of these points and/or in their number, modifications of the positions of the mobile assemblies 14A to 14D make it possible to reorient the antenna 10, as will be explained in detail subsequently.

L'embase 16 permet de fixer le dispositif de réflexion 12 et les assemblages mobiles 14A à 14D à la structure du satellite et se présente ainsi sous toute forme convenable pour le faire.The base 16 makes it possible to fix the reflection device 12 and the mobile assemblies 14A to 14D to the structure of the satellite and is thus presented in any form suitable for doing so.

Ainsi, dans l'exemple illustré sur la figure 1, l'embase 16 se présente sous la forme d'une pluralité de pattes de fixation, chaque patte étant adaptée pour fixer l'un des assemblages mobiles 14A à 14D ou le dispositif de réflexion 12 à la structure du satellite.Thus, in the example shown in the figure 1 , the base 16 is in the form of a plurality of fixing lugs, each lug being adapted to fix one of the mobile assemblies 14A to 14D or the reflection device 12 to the structure of the satellite.

Ces pattes de fixation sont donc agencées en fonction de la structure correspondante du satellite. Sur la figure 1, la structure comprend deux surfaces perpendiculaires de sorte qu'au moins certaines des pattes de fixation sont fixées sur l'une de ces surfaces et certaines autres sur l'autre surface.These fixing lugs are therefore arranged according to the corresponding structure of the satellite. On the figure 1 , the structure comprises two perpendicular surfaces so that at least some of the fixing lugs are fixed to one of these surfaces and some others to the other surface.

Par ailleurs, les pattes de fixation des assemblages mobiles 14A à 14D comprennent des moyens de transmission nécessaires afin de transmettre des signaux radioélectriques et du courant électrique entre ces assemblages 14A à 14D et le module de traitement 18 et le module de pilotage 20.Furthermore, the fixing lugs of the mobile assemblies 14A to 14D comprise transmission means necessary in order to transmit radioelectric signals and electric current between these assemblies 14A to 14D and the processing module 18 and the control module 20.

Le module de traitement 18 permet d'acquérir des signaux radioélectriques reçus par les assemblages mobiles 14A à 14D et/ou de générer des signaux radioélectriques destinés pour être émis par ces assemblages.The processing module 18 makes it possible to acquire radioelectric signals received by the mobile assemblies 14A to 14D and/or to generate radioelectric signals intended to be transmitted by these assemblies.

À cet effet, le module de traitement 18 comprend des composantes électroniques telles que des amplificateurs, un répartiteur, etc. Ces composantes sont connues en soi et ne seront pas décrites en détail.To this end, the processing module 18 comprises electronic components such as amplifiers, a splitter, etc. These components are known per se and will not be described in detail.

Le module de pilotage 20 permet de modifier les positions des assemblages mobiles afin de réorienter les faisceaux l'antenne 10 en fonction des points visés. Pour ce faire, le module de pilotage 20 est apte à contrôler la position de chacun des assemblages mobiles 14A à 14D et à la modifier indépendamment des autres assemblages en transmettant par exemple une commande adaptée à cet assemblage.The control module 20 makes it possible to modify the positions of the mobile assemblies in order to reorient the beams of the antenna 10 according to the points targeted. To do this, the control module 20 is able to control the position of each of the mobile assemblies 14A to 14D and to modify it independently of the other assemblies by transmitting for example a command adapted to this assembly.

Le module de pilotage 20 se présente par exemple au moins partiellement sous la forme d'un circuit logique programmable ou sous la forme d'un logiciel. Dans ce dernier cas, il est mis en œuvre par un processeur adapté.The control module 20 is, for example, at least partially in the form of a programmable logic circuit or in the form of software. In the latter case, it is implemented by a suitable processor.

Selon le premier mode de réalisation de l'antenne 10, les assemblages mobiles 14A à 14D sont sensiblement identiques.According to the first embodiment of the antenna 10, the mobile assemblies 14A to 14D are substantially identical.

Ainsi, par la suite, seul l'assemblage mobile 14A sera expliqué en détail en référence aux figures 2 à 4.Thus, hereafter, only the movable assembly 14A will be explained in detail with reference to the figures 2 to 4 .

En particulier, les figures 2 et 3 illustrent un tel assemblage mobile 14A selon un premier exemple de réalisation de celui-ci.In particular, the figure 2 and 3 illustrate such a mobile assembly 14A according to a first embodiment thereof.

En référence à la figure 2, l'assemblage mobile 14A comprend une source rayonnante 22 et un support 24 fixant cette source 22 de façon mobile à l'embase 16.With reference to the figure 2 , the mobile assembly 14A comprises a radiating source 22 and a support 24 fixing this source 22 movably to the base 16.

La source rayonnante 22 se présente par exemple sous la forme d'un cornet d'émission et/ou de réception des signaux radioélectriques allongé selon un axe de source C.The radiating source 22 is for example in the form of a horn for transmitting and/or receiving radioelectric signals elongated along a source axis C.

Cet axe de source C est orienté vers le dispositif de réflexion 12 et dans le premier exemple de réalisation de l'assemblage 14A, est perpendiculaire au plan focal PF en toute position de cet assemblage 14A.This source axis C is oriented towards the reflection device 12 and in the first embodiment of the assembly 14A, is perpendicular to the focal plane PF in any position of this assembly 14A.

Par ailleurs, dans le premier exemple de réalisation de l'assemblage 14A, le support 24 permet à la source rayonnante 22 de se déplacer dans une surface de balayage coïncidant avec le plan focal du dispositif de réflexion 12.Furthermore, in the first embodiment of the assembly 14A, the support 24 allows the radiating source 22 to move in a scanning surface coinciding with the focal plane of the reflection device 12.

Ce plan focal est visible sur la figure 3 et dénoté par la référence « PF » sur cette figure 3.This focal plane is visible on the picture 3 and denoted by the reference "PF" on this picture 3 .

En particulier, le support 24 permet à la source rayonnante 22 de se déplacer dans le plan focal PF selon deux dégrées de liberté comprenant dans l'exemple de la figure 2 deux rotations autour des axes parallèles qui sont perpendiculaires au plan focal PF.In particular, the support 24 allows the radiating source 22 to move in the focal plane PF according to two degrees of freedom comprising in the example of the picture 2 two rotations around parallel axes which are perpendicular to the focal plane PF.

L'un de ces axes est dit axe primaire de rotation X1 et l'autre est dit l'axe secondaire de rotation X2. En outre, l'axe primaire de rotation X1 est fixé en translation par rapport à l'embase 16.One of these axes is called the primary axis of rotation X 1 and the other is called the secondary axis of rotation X 2 . In addition, the primary axis of rotation X 1 is fixed in translation relative to the base 16.

Pour assurer le déplacement de la source rayonnante 22 dans le plan focal PF selon deux degrés de liberté, le support 24 comprend un avant-bras 26 rotatif par rapport à l'axe primaire de rotation X1 dans un plan de rotation, dit plan de rotation inférieur PI, et un bras 28 rotatif par rapport à l'axe secondaire de rotation X2 dans une surface de rotation, dite surface de rotation supérieure SS.To ensure the movement of the radiating source 22 in the focal plane PF according to two degrees of freedom, the support 24 comprises a forearm 26 which is rotatable with respect to the primary axis of rotation X 1 in a plane of rotation, called plane of lower rotation PI, and a rotating arm 28 with respect to the secondary axis of rotation X 2 in a rotation surface, called upper rotation surface SS.

Comme cela est visible sur la figure 3, la surface de rotation supérieure SS est disposée entre le plan focal PF et le plan de rotation inférieur PI.As can be seen on the picture 3 , the upper rotation surface SS is disposed between the focal plane PF and the lower rotation plane PI.

Par ailleurs, dans le premier exemple de réalisation de l'assemblage 14A, cette surface de rotation supérieure SS présente un plan.Furthermore, in the first embodiment of the assembly 14A, this upper rotation surface SS has a plane.

L'avant-bras 26 est de forme allongée et présente ainsi deux extrémités. L'une de ces extrémités est fixée rotative autour de l'axe primaire de rotation X1 sur un stator 30 en lien rigide avec l'embase 16. L'autre extrémité est fixée de manière rotative autour de l'axe secondaire de rotation X2 au bras 28.The forearm 26 is elongated and thus has two ends. One of these ends is rotatably fixed around the primary axis of rotation X 1 on a stator 30 in rigid connection with the base 16. The other end is rotatably fixed around the secondary axis of rotation X 2 at arm 28.

De manière analogue, le bras 28 est de forme allongée et présente ainsi deux extrémités. L'une de ces extrémités est fixée de manière rotative autour de l'axe secondaire de rotation X2 à l'avant-bras 26 et l'autre reçoit de manière fixe la source rayonnante 22.Similarly, the arm 28 is elongated and thus has two ends. One of these ends is rotatably fixed around the axis secondary rotation X 2 to the forearm 26 and the other receives the radiating source 22 in a fixed manner.

Les étendues longitudinales du bras 28 et de l'avant-bras 26 sont par exemple sensiblement identiques comme cela peut se voir sur la figure 3. Selon un autre exemple de réalisation, ces étendues sont différentes et sont adaptées en fonction de l'agencement des autres assemblages mobiles pour assurer un balayage plus important de la surface de balayage.The longitudinal extents of the arm 28 and the forearm 26 are for example substantially identical as can be seen on the picture 3 . According to another exemplary embodiment, these extents are different and are adapted according to the arrangement of the other mobile assemblies to ensure greater sweeping of the sweeping surface.

Pour mettre en œuvre la rotation autour des axes X1 et X2, le support 24 comprend avantageusement deux moteurs, l'un étant intégré dans la jonction entre l'avant-bras 26 et le stator 30 et l'autre dans la jonction entre le bras 28 et l'avant-bras 26.To implement the rotation around the axes X 1 and X 2 , the support 24 advantageously comprises two motors, one being integrated in the junction between the forearm 26 and the stator 30 and the other in the junction between arm 28 and forearm 26.

Ces moteurs présentent par exemple des moteurs de type pas à pas pilotables par le module de pilotage 20. Dans ce cas, les commandes transmises par le module de pilotage 20 à l'assemblage 14A correspondent à des courants électriques de tension adaptée.These motors have, for example, stepper type motors that can be controlled by the control module 20. In this case, the commands transmitted by the control module 20 to the assembly 14A correspond to electric currents of suitable voltage.

Le module de pilotage 20 est ainsi apte à alimenter ces moteurs de façon adaptée via des moyens de transmission de courant électrique, intégrés dans le stator 30 et l'avant-bras 26.The control module 20 is thus able to supply these motors in an appropriate manner via electric current transmission means, integrated in the stator 30 and the forearm 26.

Pour assurer la jonction de ces moyens entre le stator 30 et l'avant-bras 26, ces moyens de transmission présentent des câbles flexibles dans cette jonction ou comprennent alors un joint tournant électrique permettant d'éviter la transmission par câble entre ces composantes.To ensure the junction of these means between the stator 30 and the forearm 26, these transmission means have flexible cables in this junction or then comprise an electric rotating joint making it possible to avoid transmission by cable between these components.

Pour assurer la transmission des signaux radioélectriques entre la source rayonnante 22 et le module de traitement 18, le support 24 comprend des moyens de transmission des signaux radioélectriques. Ces moyens comprennent par exemple des guides d'ondes intégrés dans le bras 28 et l'avant-bras 26 ainsi que deux joints tournants radiofréquence. L'un de ces joints tournants radiofréquence est intégré dans la jonction entre le bras 28 et l'avant-bras 26 et l'autre dans la jonction entre l'avant-bras 26 et le stator 30.To ensure the transmission of radio signals between the radiating source 22 and the processing module 18, the support 24 comprises means for transmitting radio signals. These means include, for example, waveguides integrated in the arm 28 and the forearm 26 as well as two radio frequency rotary joints. One of these radio frequency rotary joints is integrated in the junction between the arm 28 and the forearm 26 and the other in the junction between the forearm 26 and the stator 30.

Avantageusement, chacun de ces joints tournants radiofréquence présente un joint tournant de type « groove gap », c'est-à-dire un joint tournant comprenant au moins un canal de transmission de signaux radioélectriques qui est délimités par des plots espacés entre eux selon une distance prédéterminée.Advantageously, each of these radiofrequency rotary joints has a rotary joint of the "groove gap" type, that is to say a rotary joint comprising at least one radioelectric signal transmission channel which is delimited by studs spaced from each other according to a predetermined distance.

Plus avantageusement, chacun des joints tournants utilisés pour la transmission des signaux radioélectriques ou au moins le joint tournant intégré dans la jonction entre le bras 28 et l'avant-bras 26 est configuré pour permettre la rotation autour de l'axe correspondant à 360°.More advantageously, each of the rotating joints used for the transmission of the radioelectric signals or at least the rotating joint integrated in the junction between the arm 28 and the forearm 26 is configured to allow rotation around the axis corresponding to 360°.

Un assemblage mobile 14A selon un deuxième exemple de réalisation est illustré en détail sur la figure 4 dans ses différentes positions A) à D).A mobile assembly 14A according to a second exemplary embodiment is illustrated in detail on the figure 4 in its different positions A) to D).

L'assemblage mobile 14A selon cet exemple de réalisation est sensiblement analogue à celui décrit précédemment.The mobile assembly 14A according to this embodiment is substantially similar to that described previously.

À la différence de l'assemblage 14A décrit précédemment, dans l'assemblage mobile selon ce deuxième exemple de réalisation, l'axe secondaire de rotation X2 est incliné par rapport à l'axe primaire de rotation X1, l'axe primaire de rotation X1 situé au foyer du dispositif de réflexion et restant toujours perpendiculaire au plan focal PF.Unlike the assembly 14A described previously, in the mobile assembly according to this second embodiment, the secondary axis of rotation X 2 is inclined with respect to the primary axis of rotation X 1 , the primary axis of rotation X 1 located at the focus of the reflection device and always remaining perpendicular to the focal plane PF.

L'angle d'inclinaison de l'axe secondaire de rotation X2 est choisi de telle sorte qu'en toute position de l'assemblage 14A, la source rayonnante 22 soit orientée vers le centre du dispositif de réflexion 12. Autrement dit, cet angle est choisi de sorte que l'axe de source C soit orienté vers le centre du dispositif de réflexion 12.The angle of inclination of the secondary axis of rotation X 2 is chosen such that in any position of the assembly 14A, the radiating source 22 is oriented towards the center of the reflection device 12. In other words, this angle is chosen so that the source axis C is oriented towards the center of the reflector 12.

Ainsi, selon cet exemple de réalisation, la source rayonnante 22 est mobile dans une surface de balayage tangente au plan focal au foyer. Cette surface de balayage présente donc une surface convexe s'étendant d'un seul côté du plan focal à proximité de celui-ci, entre le dispositif de réflexion 12 et ce plan focal.Thus, according to this exemplary embodiment, the radiating source 22 is mobile in a scanning surface tangent to the focal plane at the focus. This scanning surface therefore has a convex surface extending from a single side of the focal plane close to the latter, between the reflection device 12 and this focal plane.

Dans l'exemple de réalisation de la figure 4, l'angle d'inclinaison de l'axe secondaire de rotation X2 est égal sensiblement à 4,5°. Cette valeur dépend de la géométrie de l'antenne.In the embodiment of the figure 4 , the angle of inclination of the secondary axis of rotation X 2 is substantially equal to 4.5°. This value depends on the geometry of the antenna.

Par ailleurs, dans l'exemple de cette figure 4, pour former une inclinaison de l'axe secondaire de rotation X2, les extrémités adjacentes de l'avant-bras 26 et du bras 28 sont coudées d'un même angle.Moreover, in the example of this figure 4 , to form an inclination of the secondary axis of rotation X 2 , the adjacent ends of the forearm 26 and of the arm 28 are bent at the same angle.

Ainsi, dans ce cas, au moins une partie de l'avant-bras 26 comprenant l'extrémité rotative autour de l'axe primaire de rotation reste rotatif dans le plan de rotation inférieur PI tel que décrit précédemment alors la surface de rotation supérieure est différente d'un plan et correspond à une surface conique.Thus, in this case, at least a part of the forearm 26 comprising the rotatable end around the primary axis of rotation remains rotatable in the lower plane of rotation PI as described above then the upper surface of rotation is different from a plane and corresponds to a conical surface.

La surface de rotation supérieure SS est comprise entre la surface de balayage et le plan de rotation inférieur PI. Cela permet alors au bras 28 de tourner indépendamment de l'avant-bras 26.The upper rotation surface SS is between the scanning surface and the lower rotation plane PI. This then allows arm 28 to rotate independently of forearm 26.

Sur la figure 4, dans la position A), le bras 28 et l'avant-bras 26 s'étendent selon la même direction et l'axe de source C coïncident avec l'axe primaire de rotation X1.On the figure 4 , in position A), the arm 28 and the forearm 26 extend in the same direction and the source axis C coincides with the primary axis of rotation X 1 .

Dans les positions B) et C), le bras 28 et l'avant-bras 26 s'étendent selon des directions perpendiculaires.In positions B) and C), arm 28 and forearm 26 extend in perpendicular directions.

Ainsi, dans la position B), l'axe de source C est incliné par rapport à l'axe primaire de rotation X1 dans le plan de la figure et par rapport à l'axe secondaire de rotation X2 dans un plan perpendiculaire au plan de la figure.Thus, in position B), the source axis C is inclined with respect to the primary axis of rotation X 1 in the plane of the figure and with respect to the secondary axis of rotation X 2 in a plane perpendicular to the figure plane.

Dans la position C), l'axe de source C est incliné par rapport à l'axe primaire de rotation X1 dans le plan de la figure et l'axe primaire de rotation X1 est incliné par rapport à l'axe secondaire de rotation X2 dans le plan perpendiculaire au plan de la figure.In position C), the source axis C is inclined with respect to the primary axis of rotation X 1 in the plane of the figure and the primary axis of rotation X 1 is inclined with respect to the secondary axis of rotation X 2 in the plane perpendicular to the plane of the figure.

Dans la position D), le bras 28 et l'avant-bras 26 s'étendent tous les deux dans le plan de la figure et l'axe de source C et l'axe secondaire de rotation X2 sont donc inclinés par rapport à l'axe primaire de rotation X1 dans ce plan, l'angle d'inclinaison de l'axe de source C étant le double de l'angle d'inclinaison de l'axe secondaire de rotation X2.In position D), the arm 28 and the forearm 26 both extend in the plane of the figure and the source axis C and the secondary axis of rotation X 2 are therefore inclined with respect to the primary axis of rotation X 1 in this plane, the angle of inclination of the source axis C being twice the angle of inclination of the secondary axis of rotation X 2 .

Une variante du deuxième exemple de réalisation de l'assemblage mobile 14A est illustrée sur la figure 5. Dans cette variante, l'axe primaire de rotation X1 de l'avant-bras 26 est proche du foyer F et ne passe donc pas par ce foyer.A variant of the second embodiment of the mobile assembly 14A is illustrated in the figure 5 . In this variant, the primary axis of rotation X 1 of the forearm 26 is close to the focus F and therefore does not pass through this focus.

Ainsi, dans cette variante de réalisation, l'axe primaire de rotation X1 est incliné pour viser le centre du réflecteur 12. La disposition du bras 28 par rapport à l'avant-bras 26 reste comme cela a été décrit en relation avec la figure 4.Thus, in this variant embodiment, the primary axis of rotation X 1 is inclined to aim at the center of the reflector 12. The arrangement of the arm 28 with respect to the forearm 26 remains as has been described in relation to the figure 4 .

Cette variante est particulièrement avantageuse, lorsque l'axe primaire de rotation X1 de chacun des assemblages mobiles 14A à 14D est disposé proche du foyer, comme cela sera expliqué par la suite.This variant is particularly advantageous when the primary axis of rotation X 1 of each of the mobile assemblies 14A to 14D is arranged close to the focus, as will be explained later.

Sur la figure 5, les deux assemblages mobiles 14A et 14B sont visibles. Selon cette figure, il est clair que la surface de balayage décrite par les sources de ces assemblages 14A et 14B présente une partie d'une sphère. Par ailleurs, dans l'exemple de cette figure 5, le bras 28 de chacun des assemblages 14A, 14B présente une longueur inférieure à celle de l'avant-bras 26 correspondant et seule l'extrémité de l'avant-bras 26 adjacente au bras 28 est coudée. Dans ce cas, au moins dans une position, le bras 28 s'étend le long de la partie coudée de l'avant-bras 26. Le bras 28 est donc rotatif dans un plan intersectant le plan de rotation de l'avant-bras 26.On the figure 5 , the two mobile assemblies 14A and 14B are visible. According to this figure, it is clear that the scanning surface described by the sources of these assemblies 14A and 14B presents part of a sphere. Moreover, in the example of this figure 5 , the arm 28 of each of the assemblies 14A, 14B has a length less than that of the corresponding forearm 26 and only the end of the forearm 26 adjacent to the arm 28 is bent. In this case, at least in one position, the arm 28 extends along the bent part of the forearm 26. The arm 28 is therefore rotatable in a plane intersecting the plane of rotation of the forearm 26.

Bien entendu, cette variante de dispositions du bras et de l'avant-bras reste applicable à l'exemple de réalisation de la figure 4, c'est-à-dire lorsque l'axe primaire de rotation passe par le foyer.Of course, this alternative arrangement of the arm and the forearm remains applicable to the embodiment of the figure 4 , that is to say when the primary axis of rotation passes through the focal point.

Plus généralement et avantageusement vis-à-vis des performances de l'antenne, on construit chacun des assemblages 14A à 14D de telle sorte que quels que soient sa position et ses axes de rotation, l'axe de la source vise le centre du dispositif de réflexion.More generally and advantageously with respect to the performance of the antenna, each of the assemblies 14A to 14D is constructed in such a way that whatever its position and its axes of rotation, the axis of the source aims at the center of the device reflection.

Ainsi, quelle que soit la position des bras, l'axe de chaque source vise le centre du dispositif de réflexion 12.Thus, whatever the position of the arms, the axis of each source aims at the center of the reflection device 12.

De manière générale, il est possible de disposer de cette manière N assemblages mobiles analogues aux assemblages mobiles 14A et 14B de la figure 5, de sorte que leurs sources rayonnantes visent le centre du dispositif de réflexion et décrive avantageusement une même surface de balayage présentant une partie d'une sphère.In general, it is possible to arrange in this way N mobile assemblies analogous to the mobile assemblies 14A and 14B of the figure 5 , so that their radiating sources aim at the center of the reflection device and advantageously describe the same scanning surface having part of a sphere.

Ainsi, selon d'autres variantes du deuxième exemple de réalisation de l'assemblage mobile 14A illustrées sur les figures 6 et 7, l'axe primaire de rotation X1 de de cet assemblage 14A ainsi que des assemblages lui analogues 14B à 14D est disposé loin du foyer F.Thus, according to other variants of the second embodiment of the mobile assembly 14A illustrated on the figure 6 and 7 , the primary axis of rotation X 1 of this assembly 14A as well as similar assemblies 14B to 14D is disposed far from the focus F.

Dans ce cas, chacun de ces assemblages 14A à 14D et notamment leurs axes X1 et X2 sont configurés de telle sorte que les axes de source correspondants visent le centre ou un point proche du centre du dispositif de réflexion. Les sources sont alors mobiles sur une partie d'une sphère comme décrit précédemment.In this case, each of these assemblies 14A to 14D and in particular their axes X 1 and X 2 are configured such that the corresponding source axes aim at the center or at a point close to the center of the reflection device. The sources are then mobile over part of a sphere as described above.

Ceci permet d'excentrer le foyer F du dispositif de réflexion 12 de telle sorte à disposer d'une surface de balayage centrée sur le foyer comme illustré sur les figures 6 et 7.This makes it possible to offset the focal point F of the reflection device 12 so as to have a scanning surface centered on the focal point as illustrated in the figure 6 and 7 .

En effet, ces figures 6 et 7 montrent un agencement possible des assemblages mobiles 14A à 14D sur l'embase 16 avec un foyer excentré. Le cercle T représente par exemple sur les figures 6 et 7 l'image de la terre vue du foyer du dispositif de réflexion. On comprend ainsi que l'excentration du foyer F permet avantageusement de pouvoir balayer l'ensemble de la terre.Indeed, these figure 6 and 7 show a possible arrangement of the mobile assemblies 14A to 14D on the base 16 with an eccentric focus. The circle T represents for example on the figure 6 and 7 the image of the earth seen from the focus of the reflecting device. It is thus understood that the eccentricity of the focus F advantageously makes it possible to be able to sweep the whole of the earth.

Un autre agencement possible des assemblages mobiles 14A à 14D sur l'embase 16 est illustré sur les figures 8 et 9.Another possible arrangement of the movable assemblies 14A to 14D on the base 16 is illustrated in the figure 8 and 9 .

En particulier, ces figures illustrent un agencement de ces assemblages 14A à 14D selon le premier exemple de réalisation de chacun d'entre eux mais peut également être appliqué à des assemblages selon le deuxième exemple de réalisation.In particular, these figures illustrate an arrangement of these assemblies 14A to 14D according to the first embodiment of each of them but can also be applied to assemblies according to the second embodiment.

Ainsi, selon ces figures, les assemblages mobiles 14A à 14D sont agencés de manière symétrique autour du foyer F du dispositif de réflexion 12. Par ailleurs, avantageusement, les axes primaires de rotation X1 de ces assemblages sont disposés au plus près de ce foyer et visent le centre du dispositif de réflexion.Thus, according to these figures, the mobile assemblies 14A to 14D are arranged symmetrically around the focus F of the reflection device 12. Furthermore, advantageously, the primary axes of rotation X 1 of these assemblies are arranged as close as possible to this focus. and aim at the center of the reflector.

En outre, ces assemblages 14A à 14D sont disposés de sorte que les plans de rotation inférieurs PI de leur avant-bras 26 coïncident entre eux. Autrement dit, dans ce type d'agencement, le bras 28 de chaque assemblage 14A à 14D se trouve au-dessus de l'avant-bras 26 de chaque assemblage 14A à 14D. Ceci permet alors de faciliter les déplacements respectifs des sources rayonnantes 22 correspondantes afin de balayer une plus grande partie de la surface de balayage.Furthermore, these assemblies 14A to 14D are arranged so that the lower planes of rotation PI of their forearm 26 coincide with each other. In other words, in this type of arrangement, the arm 28 of each assembly 14A to 14D is above of the forearm 26 of each assembly 14A to 14D. This then makes it possible to facilitate the respective movements of the corresponding radiating sources 22 in order to scan a greater part of the scanning surface.

La figure 8 illustre les positions initiales de ces assemblages mobiles 14A à 14D lors par exemple du lancement du satellite.The figure 8 illustrates the initial positions of these mobile assemblies 14A to 14D during the launch of the satellite, for example.

La figure 9 illustre des positions opérationnelles de ces assemblages. Ces positions peuvent être changées au cours de la mission du satellite. On conçoit alors que la présente invention présente un certain nombre d'avantages.The figure 9 illustrates operational positions of these assemblies. These positions can be changed during the satellite mission. It can then be seen that the present invention has a certain number of advantages.

En particulier, l'invention propose une antenne comprenant des sources rayonnantes mobiles dans le plan focal ou à proximité de celui-ci. L'invention permet de modifier les positions de ces sources rayonnantes indépendamment l'une de l'autre en modifiant ainsi le pointage de l'antenne de façon mécanique.In particular, the invention proposes an antenna comprising mobile radiating sources in the focal plane or close to it. The invention makes it possible to modify the positions of these radiating sources independently of one another, thus modifying the pointing of the antenna mechanically.

Cela permet d'éviter l'utilisation de composantes électroniques complexes et lourdes des antennes actives mettant en œuvre un pointage électronique.This makes it possible to avoid the use of complex and heavy electronic components of active antennas implementing electronic pointing.

Cela permet également d'utiliser un seul dispositif de réflexion ce qui permet de réduire considérablement la masse et l'encombrement de l'antenne dans le cas des antennes passives mettant en œuvre un pointage mécanique.This also makes it possible to use a single reflection device, which makes it possible to considerably reduce the mass and the size of the antenna in the case of passive antennas implementing mechanical pointing.

L'antenne selon l'invention permet donc de mettre en œuvre un pointage flexible sans ajout de composantes lourdes et complexe.The antenna according to the invention therefore makes it possible to implement flexible pointing without adding heavy and complex components.

Une antenne multifaisceaux selon un deuxième mode de réalisation sera désormais décrite en référence à la figure 10.A multibeam antenna according to a second embodiment will now be described with reference to the figure 10 .

Cette antenne selon le deuxième mode de réalisation est sensiblement analogue à l'antenne 10 décrite précédemment à l'exception des assemblages mobiles.This antenna according to the second embodiment is substantially similar to the antenna 10 described previously with the exception of the mobile assemblies.

En particulier, l'antenne selon le deuxième mode de réalisation comprend quatre assemblages mobiles 114A à 114D dont au moins un diffère des autres assemblages.In particular, the antenna according to the second embodiment comprises four mobile assemblies 114A to 114D, at least one of which differs from the other assemblies.

Ainsi, dans l'exemple de la figure 10, les assemblages 114B à 114D sont identiques aux assemblages 14B à 14D décrits précédemment et sont donc identiques entre eux.So, in the example of the figure 10 , the assemblies 114B to 114D are identical to the assemblies 14B to 14D described previously and are therefore identical to each other.

En revanche, l'assemblage 114A diffère de chacun de ces assemblages par une extrémité 129 du bras 128 portant la source rayonnante 122.On the other hand, the assembly 114A differs from each of these assemblies by an end 129 of the arm 128 carrying the radiating source 122.

Selon ce deuxième mode de réalisation, cette extrémité présente une forme allongée d'étendue égale par exemple à la somme des étendues transversales du bras et de l'avant-bras par exemple de l'assemblage 114B.According to this second embodiment, this end has an elongated shape with an extent equal for example to the sum of the transverse extents of the arm and of the forearm, for example of the assembly 114B.

Ainsi, lorsque les assemblages mobiles 114A à 114D sont agencés par exemple de manière symétrique atour du foyer, le bras 128 et l'avant-bras 126 de l'assemblage 114A sont disposés au-dessous du bras et de l'avant-bras de chaque autre assemblage mobile 114B à 114D.Thus, when the mobile assemblies 114A to 114D are arranged for example symmetrically around the hearth, the arm 128 and the forearm 126 of the assembly 114A are arranged below the arm and the forearm of each other movable assembly 114B through 114D.

Autrement dit, dans ce cas, les surfaces de rotation supérieures SS et les plans de rotation inférieurs PI des supports des assemblages 114B à 114D sont compris entre la surface de balayage et la surface de rotation supérieure SS et le plan de rotation inférieur PI du support de l'assemblage mobile 114A.In other words, in this case, the upper rotation surfaces SS and the lower rotation planes PI of the supports of the assemblies 114B to 114D are included between the scanning surface and the upper rotation surface SS and the lower rotation plane PI of the support of the movable assembly 114A.

Encore autrement dit, dans ce cas, le bras et l'avant-bras du support de l'assemblage mobile 114A sont disposés au-dessous des bras et des avant-bras des autres assemblages mobiles 114B à 114D.Still in other words, in this case, the arm and the forearm of the support of the mobile assembly 114A are arranged below the arms and the forearms of the other mobile assemblies 114B to 114D.

Il est également possible de disposer ces assemblages 114A à 114D de telle sorte que la surface de rotation supérieure du bras 128 d'au moins un support soit comprise dans le plan de rotation inférieur PI de l'avant-bras 126 d'au moins un autre support.It is also possible to arrange these assemblies 114A to 114D so that the upper surface of rotation of the arm 128 of at least one support is included in the lower plane of rotation PI of the forearm 126 of at least one other support.

Dans ce cas, le bras 128 d'au moins un support est disposé au niveau de l'avant-bras 126 d'au moins un autre support.In this case, the arm 128 of at least one support is placed at the level of the forearm 126 of at least one other support.

Cela permet alors d'avoir davantage d'espace disponible pour faire bouger ces différents assemblages.This then makes it possible to have more space available to move these different assemblies.

Bien entendu, d'autres modes et exemples de réalisation sont également possibles.Of course, other embodiments and examples are also possible.

Il est par exemple possible de rendre mobile au moins selon un degré de liberté le dispositif de réflexion 12. Ceci rendra le pointage de l'antenne selon le premier ou le deuxième mode de réalisation encore plus flexible.It is for example possible to make the reflection device 12 movable at least according to one degree of freedom. This will make the pointing of the antenna according to the first or the second embodiment even more flexible.

Il est également possible de monter au moins une source rayonnante de façon immobile par exemple au foyer de l'antenne et de disposer les autres sources rayonnantes mobiles par exemple autour de cette source immobile.It is also possible to mount at least one radiating source immobile, for example at the focal point of the antenna, and to arrange the other mobile radiating sources, for example around this immobile source.

Il est possible également de ne pas limiter le nombre de degré de liberté, il est donc possible d'avoir des ensembles mobiles avec 1 à N axe(s) de rotation.It is also possible not to limit the number of degrees of freedom, it is therefore possible to have mobile assemblies with 1 to N axis(es) of rotation.

Claims (13)

  1. Multibeam antenna (10) with adjustable pointing, comprising a single reflection arrangement (12) and a plurality of radiating sources (22; 122) arranged opposite the reflection arrangement (12) and suited to emit and/or receive radiofrequency (RF) signals, the reflection arrangement (12) comprising on or several reflectors, the reflection arrangement (12) defining a centre, a focal plane (PF), and a focal point located on the focal plane (PF);
    and at least one of the radiating sources (22; 122), named mobile source, is movable substantially independently of the or each other radiating source (22) on a scanning area to adjust the pointing of the antenna (10), wherein the scanning area coincides with the focal plane (PF) or is tangential to it at the focal point,
    the antenna being characterized in that the movable source (22; 122) is movable within the scanning area according to at least two degrees of freedom,
    each of the two degrees of freedom comprising rotation about an axis, one of which axes being the primary axis of rotation (X1) and the other being the secondary axis of rotation (X2),
    the antenna further including, for the/each movable source (22 ; 122), a support (24) fixed on a baseplate (16) and comprising an upper arm (26; 126) that rotates about the primary axis of rotation (X1) of the corresponding movable source (22; 122) and an arm (28; 128) that rotates about the secondary axis of rotation (X2) of the corresponding movable source (22; 122) and defines a mounting end of the movable source (22; 122).
  2. Antenna (10) according to claim 1, wherein:
    - the primary axis of rotation (X1) and the secondary axis of rotation (X2) are perpendicular to the focal plane (PF), wherein the scanning area then coincides with the focal plane, or
    - the primary axis of rotation (X1) is perpendicular to the focal plane (PF) and passes through the focal point of the reflection arrangement (12), and the secondary axis of rotation (X2) is inclined relative to the focal plane (PF) such that, in all positions, the movable source (22; 122) is orientated towards the centre of the reflection arrangement (12), wherein the scanning area is then tangential to the focal plane (PF) at the focal point, or
    - the primary axis of rotation (X1) is located outside of the focal point, and the primary axis of rotation (X1) and the secondary axis of rotation (X2) are inclined relative to the focal plane (PF), such that, in all positions, the movable source (22; 122) is orientated towards the centre of the reflection arrangement (12), the scanning surface then being tangential to the focal plane (PF) at the focal point.
  3. Antenna (10) according to claim 1 or 2, wherein the primary axis of rotation (X1) is translationally fixed.
  4. Antenna (10) according to any of claims 1 - 3, including several movable sources (22; 122) analogous to the movable source (22; 122).
  5. Antenna (10) according to claim 4, wherein the primary axes of rotation (X1) of the movable sources are arranged symmetrically around the focal point.
  6. Antenna (10) according to any of the preceeding claims, wherein the/each support (24) further comprises at least one stepper motor suited to rotate the upper arm (26; 126) or the arm (28; 128) of the support (24) about the corresponding axis (X1, X2).
  7. Antenna (10) according to any of the preceeding claims, wherein the/each support (24) further comprises at least one rotating joint connecting the upper arm (26; 126) to the baseplate (16) or the arm (28; 128) to the upper arm (26; 126) of the support (24), wherein the rotating joint is suited to transmit RF signals and/or electrical current between these elements.
  8. Antenna (10) according to claim 7, wherein the/each rotating joint comprises at least one channel for transmitting RF signals, the transmission channel being delimited by a plurality of plugs spaced apart from one another.
  9. Antenna (10) according to any of the preceeding claims, wherein the arm (28; 128) of the/each support (24) rotates within an area of rotation ('upper area of rotation') (SS), and at least one part of the upper arm (26; 126) of the support (24) rotates within a plane of rotation ('lower plane of rotation') (PI), wherein the lower plane of rotation (PI) is parallel to the focal plane (PF) and the upper area of rotation (SS) lies between the focal plane (PF) and the lower plane of rotation (PI).
  10. Antenna (10) according to claim 9, wherein, when it comprises several movable sources (22; 122), the lower planes of rotation (PI) of the upper arms of at least two supports (24) coincide.
  11. Antenna (10) according to claim 9 or 10, wherein, when it comprises several movable sources (122), the upper area of rotation (SS) and the lower plane of rotation (PI) of the arm (128) and the upper arm (126) of at least one support (24) lie between the scanning area and the upper area of rotation (SS) and the lower area of rotation (PI) of the arm (128) and upper arm (126) of at least one other support (24).
  12. Antenna (10) according to claim 9 or 10, wherein, when it comprises several movable sources (122), the upper area of rotation (SS) of the arm (128) of at least one support (24) is included within the lower plane of rotation (PI) of the upper arm (126) of at least one other support (24).
  13. Antenna (10) according to any of the foregoing claims, wherein the reflection arrangement (12) is mobile.
EP19219746.5A 2018-12-28 2019-12-27 Multibeam antenna with adjustable pointing Active EP3675278B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1874290A FR3091421B1 (en) 2018-12-28 2018-12-28 Multibeam antenna with adjustable aiming

Publications (2)

Publication Number Publication Date
EP3675278A1 EP3675278A1 (en) 2020-07-01
EP3675278B1 true EP3675278B1 (en) 2022-11-09

Family

ID=66867328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19219746.5A Active EP3675278B1 (en) 2018-12-28 2019-12-27 Multibeam antenna with adjustable pointing

Country Status (5)

Country Link
US (1) US11264695B2 (en)
EP (1) EP3675278B1 (en)
CA (1) CA3066126A1 (en)
ES (1) ES2932430T3 (en)
FR (1) FR3091421B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11705630B1 (en) * 2022-04-05 2023-07-18 Maxar Space Llc Antenna with movable feed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065968A1 (en) * 2007-12-01 2009-06-03 FTA Communication Technologies SARL Holding system for reception heads of a parabolic antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2445040A1 (en) * 1978-12-22 1980-07-18 Thomson Csf CONICAL SCANNING ANTENNA FOR RADAR, ESPECIALLY TRACKING RADAR
JP2693497B2 (en) * 1988-07-22 1997-12-24 株式会社東芝 Mechanical beam scanning antenna device
IT1240810B (en) * 1990-03-28 1993-12-17 Selenia Spazio Spa Ora Alenia FINE POINTING SYSTEM FOR REFLECTOR ANTENNA, PARTICULARLY SUITABLE FOR SPACE APPLICATIONS.
US5473335A (en) * 1994-01-11 1995-12-05 Tines; John L. Base support for movable antenna
FR2787926B1 (en) * 1998-12-23 2001-02-09 Cahors App Elec METHOD AND DEVICE FOR POINTING AND POSITIONING A MULTISATELLITE ANTENNA
WO2003030303A1 (en) * 2001-09-28 2003-04-10 Sumitomo Electric Industries, Ltd. Radio wave lens antenna apparatus
TWI431846B (en) * 2010-10-01 2014-03-21 Wistron Neweb Corp Position adjustment device and satellite antenna thereof
WO2016054324A1 (en) * 2014-10-02 2016-04-07 Viasat, Inc. Multi-beam bi-focal shaped reflector antenna for concurrent communication with multiple non-collocated geostationary satellites and associated method
JP2017216674A (en) * 2016-04-06 2017-12-07 マクドナルド,デットワイラー アンド アソシエイツ コーポレーション Three axis reflector deployment and pointing mechanism
CN106785444A (en) * 2016-12-29 2017-05-31 中国电子科技集团公司第五十四研究所 A kind of arm-type Luneberg lens antenna of bispin
FR3071365B1 (en) * 2017-09-19 2019-09-06 Thales BIAXE ANTENNA COMPRISING A FIRST FIXED PART, A SECOND ROTARY PART AND A ROTATING GASKET

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2065968A1 (en) * 2007-12-01 2009-06-03 FTA Communication Technologies SARL Holding system for reception heads of a parabolic antenna

Also Published As

Publication number Publication date
FR3091421B1 (en) 2021-04-30
ES2932430T3 (en) 2023-01-19
US20200212534A1 (en) 2020-07-02
EP3675278A1 (en) 2020-07-01
CA3066126A1 (en) 2020-06-28
US11264695B2 (en) 2022-03-01
FR3091421A1 (en) 2020-07-03

Similar Documents

Publication Publication Date Title
EP0979539B1 (en) Terminal-antenna device for moving satellite constellation
EP2270922B1 (en) Antenna with mission flexibility, satellite comprising such an antenna and method for controlling mission changes in such an antenna
EP0656671A1 (en) Orientable antenna with maintenance of the polarisations axes
EP3675278B1 (en) Multibeam antenna with adjustable pointing
FR2888674A1 (en) NETWORK ANTENNA WITH REFLECTOR (S) CONFORMING (S), HAVING HIGH RECONFIGURABILITY IN ORBIT
EP3457489B1 (en) Rotary joint for a rotating antenna and rotating antenna comprising such a joint
EP0548876B1 (en) An active offset antenna having two reflectors
EP3457490B1 (en) Biaxial antenna comprising a first fixed portion, a second rotary portion and a rotating joint
EP0949710A1 (en) Spherical multilayer focalising lens
EP2497150A1 (en) Mobile-beam antenna mounting
EP0032081B1 (en) Directable-beam antenna for communication satellite
FR2646023A1 (en) Antenna pointing device, satellite equipped with such a device and antenna pointing process using such a device
FR2709877A1 (en) Active antenna with electronic scanning in azimuth and elevation, in particular for microwave microwave imagery.
CA2706761C (en) Multi-frequency flexible coverage reflector antenna and satellite equipped with such an antenna
EP0897201A1 (en) Cylindrical reflector with sliding radiating elements
EP0992080B1 (en) Antenna with high scanning capacity
EP0455543B1 (en) Device for pointing a reflector antenna
EP0229617A1 (en) Antenna-orientating device for scanning in two orthogonal directions
EP4194344A1 (en) Ttc antenna arrangement for flat satellite
EP3157094A1 (en) Compact antenna with modular beam aperture
FR2782193A1 (en) RECEPTION ANTENNA WITH EXCENTRE REFLECTOR SCANNED BY THE RECEPTION HEAD, IN PARTICULAR FOR THE RECEPTION OF SEVERAL TELEVISION SATELLITES AND ITS PROCESS FOR IMPLEMENTATION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20200616

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210401

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1530967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019021674

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2932430

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230119

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20221109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1530967

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230209

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230105

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230309

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019021674

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221227

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221109

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231221

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231220

Year of fee payment: 5

Ref country code: DE

Payment date: 20231208

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191227