EP2265695A1 - Method for removing mercury from hydrocarbon streams - Google Patents

Method for removing mercury from hydrocarbon streams

Info

Publication number
EP2265695A1
EP2265695A1 EP09720628A EP09720628A EP2265695A1 EP 2265695 A1 EP2265695 A1 EP 2265695A1 EP 09720628 A EP09720628 A EP 09720628A EP 09720628 A EP09720628 A EP 09720628A EP 2265695 A1 EP2265695 A1 EP 2265695A1
Authority
EP
European Patent Office
Prior art keywords
mercury
absorbent
copper
oxide
hydrocarbon stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09720628A
Other languages
German (de)
French (fr)
Inventor
Peter Rudolf
Michael Bender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP09720628A priority Critical patent/EP2265695A1/en
Publication of EP2265695A1 publication Critical patent/EP2265695A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/11Purification; Separation; Use of additives by absorption, i.e. purification or separation of gaseous hydrocarbons with the aid of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/86Chromium
    • B01J23/868Chromium copper and chromium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/202Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/50Aspects relating to the use of sorbent or filter aid materials
    • B01J2220/56Use in the form of a bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper

Definitions

  • the invention relates to a process for the separation of mercury and / or arsenic from a mercury-containing hydrocarbon stream.
  • Mercury is present as an impurity in numerous streams that are produced or processed in the chemical or petrochemical industry. Often, these are material flows that occur in the processing or thermal utilization of fossil fuels such as oil, natural gas or coal, as well as the recycling of waste, as these raw materials or waste contain traces of mercury in elemental form or chemically bound. Also, mercury contaminant streams fall into processes in which mercury or mercury-containing substances are used as the reagent or catalyst. An example of this is the electrolysis hydrogen produced in the chlorine production by the A-malgam process. Because of the high toxicity of mercury, it is necessary in most cases to separate these metal or metal-containing compounds from the streams occurring in the processes in question.
  • mercury has the property of attacking aluminum-based apparatus by amalgamation, destroying the surface oxide layer of the aluminum, so that streams passing through aluminum apparatus or containers must be virtually free of mercury.
  • noble metal-containing catalysts such as those used in petrochemical processes, are poisoned by traces of mercury.
  • EP-A-0 761 830 discloses a simple, purely mechanical process in which finely divided mercury is collected by coalescence into larger mercury droplets which are easily separable.
  • WO 2004/048624 describes a process for the removal of mercury by filtration on electrographite.
  • DE-A 26 43 478 describes the separation of mercury from liquids by adsorption on activated carbon having a specific surface area of at least 250 m 2 / g.
  • carbon-supported adsorbents are used, as described in US Pat. No. 3,755,989.
  • No. 4,500,327 describes sulfur-impregnated activated carbon for the separation of mercury from gaseous streams, while JP 52-53793 describes the separation of iodide-containing activated carbon for the separation of mercury from liquid streams.
  • EP-A 0 385 742 describes a process for the removal of mercury from liquid hydrocarbon streams of hydrocarbons having up to 8 C atoms by contacting with metallic copper or copper compounds present on a support.
  • DE-A 21 02 039 discloses a method for separating mercury from gases, in which the mercury-containing gases are brought into contact with a mass containing copper on a porous alumina support.
  • US 4,230,486 discloses a process for separating mercury from liquids by passing the liquids over an absorbent containing metallic silver on a porous support such as activated carbon or a ceramic support.
  • DE-A 42 21 207 teaches a method for the separation of mercury from alkali or alkali koholatains by passing the solutions over silver-coated fibers.
  • DE-A 41 16 890 discloses absorbents for the removal of mercury, which in particular Cu, Ag, Fe and Bi, but also Au, Sn, Zn and Pd and mixtures of said metals in metallic or oxidic or sulphidic form on an activated carbon support with a BET Surface of 300 to 1000 m 2 / g.
  • US Pat. No. 4.91 1, 825 describes the separation of mercury and arsenic from hydrocarbon streams, in which, in the presence of hydrogen, these are reacted in a first step with a catalyst comprising nickel and palladium on alumina and in a second Step comprising an absorbent containing sulfur or a metal sulfide, preferably copper sulfide or a combination of copper and silver sulfide, on a support.
  • a catalyst comprising nickel and palladium on alumina
  • a second Step comprising an absorbent containing sulfur or a metal sulfide, preferably copper sulfide or a combination of copper and silver sulfide, on a support.
  • the process can also be carried out in one stage on a mixture of the catalyst and the absorbent.
  • FR-A 2 310 795 describes the removal of mercury from a gaseous natural gas stream using an absorbent containing metallic gold, silver, copper or nickel on a support of silica, alumina or aluminosilicate having a BET surface area of 40 to 250 m 2 / G.
  • WO 91/15559 discloses a process for separating mercury from liquid hydrocarbon streams by contacting it with an absorbent obtained by mixing a powdery oxide, preferably selected from nickel oxide, copper oxide and cobalt oxide, with a porous support material, such as alumina, silica, zeolites or Toning, and subsequent reduction is made.
  • the object of the invention is to provide an improved process for the separation of mercury from a mercury-containing hydrocarbon stream.
  • the object is achieved by a method for separating mercury from a mercury-containing hydrocarbon stream in which the hydrocarbon stream is contacted with an absorbent containing copper on a porous oxidic support material, characterized in that the hydrocarbon stream in the presence of hydrogen with the absorbent in Contact is brought.
  • the absorbent used according to the invention contains copper, preferably in reduced form, on a porous support material.
  • the absorbent used in the invention is effective as a hydrogenation catalyst.
  • Suitable porous support materials are amorphous and crystalline aluminosilicates, alumina, silica, clays and metal oxides.
  • Suitable clays are, for example, attapulgite, kaolin, bentonite, fuller earth.
  • Suitable metal oxides are, for example, in addition to aluminum oxides and silicon dioxide, magnesium oxide, zirconium dioxide, titanium dioxide, zinc oxide, chromium (III) oxide, barium oxide and mixtures thereof.
  • Preferred alumina is ⁇ -alumina. - A -
  • the copper-containing hydrogenation-active absorption agents used according to the invention are obtainable by mixing copper oxide with a support material and subsequent conversion of copper into the metallic form by reduction, preferably in a hydrogen stream.
  • the absorbents used according to the invention can be further prepared by impregnating the support material with an aqueous solution of a copper salt, drying, optionally calcining, and converting the copper into the metallic form by reduction, preferably with a hydrogen-containing gas stream, but also with a reducing agent such as hydrazine.
  • the absorbents used according to the invention contain from 10 to 50% by weight of copper on an oxidic support material.
  • suitable compositions on the basis of which the absorbents used according to the invention are obtained are compositions comprising copper oxide, zinc oxide and aluminum oxide or compositions comprising copper oxide, magnesium oxide, barium oxide, chromium (III) oxide, zinc oxide and silicon dioxide.
  • Particularly preferred is a mixture of 10 to 60 wt .-% copper oxide, 0 to 40 wt .-% zinc oxide, 0 to 20 wt .-% alumina, 5 to 25 wt .-% magnesium oxide, 10 to 40 wt .-% silica , 0 to 5 wt .-% chromium (III) oxide and 0 to 10 wt .-% barium oxide.
  • Hydrocarbon streams from which mercury can be separated according to the invention are any hydrocarbon streams which may be contaminated with mercury. These generally contain aliphatic, aromatic, alicyclic and / or heterocyclic hydrocarbons having 1 to 14 carbon atoms.
  • hydrocarbon mixtures which can be freed from mercury according to the invention are LNG (Liquefied Natural Gas), LPG (Liquefied Petroleum Gas), Napththa and kerosene.
  • pure hydrocarbons which can be purified according to the invention are ethylene and propylene and also aliphatic hydrocarbons.
  • the mercury content of the hydrocarbons or hydrocarbon mixtures before carrying out the process according to the invention can be up to 100 ppm, In general, it is up to 1 ppm Hg. Mercury is generally present in the form of organomercury compounds.
  • the process according to the invention can be carried out in suspension or fixed bed mode. If it is carried out in fixed bed mode, it can be carried out in sump or breeze mode.
  • the mercury or arsenic-containing hydrocarbons or mixtures can be used in gaseous or liquid form.
  • the hydrocarbons or hydrocarbon mixtures are preferably used in liquid form.
  • Hydrogen is introduced together with the gaseous or liquid hydrocarbon or hydrocarbon mixture into a suitable reaction vessel and, generally in cocurrent, passed through the lumped absorbent arranged in a fixed bed. It can be worked in sump or trickle way. However, hydrogen and hydrocarbon or hydrocarbon mixture can also be passed in countercurrent over the absorbent bed.
  • the absorbent may further be suspended in the hydrocarbon or hydrocarbon mixture.
  • the process is carried out at a temperature of 30 to 250 ° C., preferably 60 to 180 ° C., and a hydrogen pressure of 1 to 20 bar.
  • the pressure is preferably chosen such that the hydrocarbon or the hydrocarbon mixture is present as a liquid.
  • the amount of hydrogen introduced generally corresponds to a load of 10 to 650 Nl per kg of absorbent and hour.
  • this can be thermally regenerated by this is heated in an inert gas or a hydrogen-containing gas stream, generally to temperatures of 180 to 400 0 C, for example 200 to 220 0 C, and evaporated mercury is condensed out.
  • Example 1 The procedure was as in Example 1. However, the reduced catalyst was added in powder form (Absorbent C). Samples were taken at regular intervals and their mercury content determined. The results are shown in Table 1.
  • Example 2 The procedure was as in Example 1, but the solution was heated to 25 0 C. Samples were taken at regular intervals and their mercury content determined. The results are shown in Table 2.
  • Example 2 The procedure was as in Example 1. The temperature was thus 60 ° C. Samples were taken at regular intervals and their mercury content was determined. The results are shown in Table 2.
  • Example 2 The procedure was as in Example 1, but was heated to 100 0 C. Samples were taken at regular intervals and their mercury content was determined. The results are shown in Table 2.
  • the experiments were carried out in a monoline reactor with an internal diameter of 6 mm and a total length of 5 m.
  • the reactor consisted of 4 segments connected by a capillary. The reactor was operated in trickle mode. The reactor segments were heated to 60 0 C.
  • the liquid hydrocarbon feed was mixed with hydrogen.
  • the reactor effluent was cooled by means of an intensive condenser and the gas phase separated from the liquid phase. The liquid phase was used to determine the mercury content, the gas phase was disposed of via a mercury Guardbed.
  • the reactor were 80 g of a catalyst of 45 wt .-% CuO, 16 wt .-% MgO, 35 wt .-% SiO 2 , 0.9 wt .-% Cr 2 O 3 , 1, 1 wt. % BaO and 0.6% by weight ZnO in the form of 3 ⁇ 5 mm tablets. Between the individual tablets was in each case a glass sphere of 2 mm diameter.
  • the catalyst was first activated in a hydrogen stream at 180 to 220 0 C. Subsequently, the reactor was cooled to 60 ° C. in a hydrogen stream. The reactor was operated at atmospheric pressure.
  • the feed used was octane, which was saturated with an organomercury compound.
  • organomercury compound phenylmercuric acetate PhHgOAc was used in one part of the experiments and mercury acetate Hg (OAc) 2 in another part of the experiments. In each case several batches with different mercury concentrations were used. 100 Nl / h of the mercury-containing octane and 2 Nl / h of hydrogen were added. The results of the experiments are summarized in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

The invention relates to a method for removing mercury from a mercury-containing hydrocarbon stream, the hydrocarbon stream being contacted with an absorbent containing copper on a carrier substance. The method according to the invention is characterized in that the hydrocarbon stream is contacted with the absorbent in the presence of hydrogen.

Description

Verfahren zur Abtrennung von Quecksilber aus Kohlenwasserstoffströmen Process for the separation of mercury from hydrocarbon streams
Die Erfindung betrifft ein Verfahren zur Abtrennung von Quecksilber und/oder Arsen aus einem Quecksilber enthaltenden Kohlenwasserstoffstrom.The invention relates to a process for the separation of mercury and / or arsenic from a mercury-containing hydrocarbon stream.
Quecksilber liegt in zahlreichen Stoffströmen, welche in der chemischen oder petrochemi- schen Industrie anfallen oder verarbeitet werden, als Verunreinigung vor. Oft sind dies Stoffströme, die bei der Verarbeitung oder thermischen Verwertung fossiler Rohstoffe wie Erdöl, Erdgas oder Kohle, sowie der Verwertung von Abfällen anfallen, da diese Rohstoffe beziehungsweise Abfälle Spuren von Quecksilber in elementarer Form oder chemisch gebunden enthalten. Auch fallen Quecksilber als Verunreinigung enthaltende Stoffströme in Prozessen an, in denen Quecksilber oder quecksilberhaltige Substanzen als Reagens oder Katalysator eingesetzt werden. Als Beispiel sei der bei der Chlorherstellung nach dem A- malgamverfahren anfallende Elektrolysewasserstoff genannt. Wegen der hohen Toxizität von Quecksilber ist es in den meisten Fällen erforderlich, dieses Metall beziehungsweise dieses Metall enthaltende Verbindungen aus den in den betreffenden Prozessen anfallenden Stoffströmen abzutrennen. Ferner hat Quecksilber die Eigenschaft, aus Aluminium bestehende Apparate durch Amalgambildung unter Zerstörung der oberflächlichen Oxidschicht des Aluminiums anzugreifen, so dass Stoffströme, die Apparate oder Behälter aus Aluminium durchlaufen, praktisch quecksilberfrei sein müssen. Weiterhin werden edelme- tallhaltige Katalysatoren, wie sie beispielsweise in petrochemischen Prozessen eingesetzt werden, durch Spuren von Quecksilber vergiftet.Mercury is present as an impurity in numerous streams that are produced or processed in the chemical or petrochemical industry. Often, these are material flows that occur in the processing or thermal utilization of fossil fuels such as oil, natural gas or coal, as well as the recycling of waste, as these raw materials or waste contain traces of mercury in elemental form or chemically bound. Also, mercury contaminant streams fall into processes in which mercury or mercury-containing substances are used as the reagent or catalyst. An example of this is the electrolysis hydrogen produced in the chlorine production by the A-malgam process. Because of the high toxicity of mercury, it is necessary in most cases to separate these metal or metal-containing compounds from the streams occurring in the processes in question. Furthermore, mercury has the property of attacking aluminum-based apparatus by amalgamation, destroying the surface oxide layer of the aluminum, so that streams passing through aluminum apparatus or containers must be virtually free of mercury. Furthermore, noble metal-containing catalysts, such as those used in petrochemical processes, are poisoned by traces of mercury.
J. H. Pavlish et al. geben in Fuel Processing Technology 82 (2003), S. 89-165 einen Über- blick über Verfahren zur Entfernung von Quecksilber aus den in Kohlekraftwerken anfallenden Abgasströmen. S. M. Wilhelm gibt in Hydrocarbon Processing, 1999, S. 61 ff. eine Übersicht über Verfahren zur Entfernung von Quecksilber aus flüssigen Kohlenwasserstoffströmen. Eine Übersicht über die Entfernung von Quecksilber in Olefinanlagen geben Steve Coleman et al.: Feedstock Contaminants in Ethylene Plants, 2005 Spring National Meeting Atlanta, GA, April 10-14, 2005.J.H. Pavlish et al. in Fuel Processing Technology 82 (2003), pp. 89-165 give an overview of methods for removing mercury from the exhaust gas streams produced in coal-fired power plants. S.M. Wilhelm gives in Hydrocarbon Processing, 1999, p. 61 ff. A review of methods for the removal of mercury from liquid hydrocarbon streams. An overview of the removal of mercury in olefin plants is given by Steve Coleman et al .: Feedstock Contaminants at Ethylene Plants, 2005 Spring National Meeting Atlanta, GA, April 10-14, 2005.
Sofern metallisches Quecksilber flüssig in Stoffströmen vorliegt, gelingt die Quecksilberabtrennung häufig durch mechanische Maßnahmen unter Ausnutzung der hohen Oberflächenspannung oder des hohen spezifischen Gewichts von Quecksilber durch Dekantieren, mittels Koaleszenzfilter, Aktivkohle-Anschwemmfilter oder ähnlichem. EP-A 0 761 830 offenbart ein einfaches, rein mechanisches Verfahren, bei dem feinverteiltes Quecksilber durch Koaleszenz zu leicht abtrennbaren größeren Quecksilbertropfen gesammelt wird. WO 2004/048624 beschreibt ein Verfahren zur Entfernung von Quecksilber durch Filtration an Elektrographit.When metallic mercury is liquid in streams, mercury removal is often accomplished by mechanical means utilizing the high surface tension or high specific gravity of mercury by decantation, coalescing, activated carbon precoat or the like. EP-A-0 761 830 discloses a simple, purely mechanical process in which finely divided mercury is collected by coalescence into larger mercury droplets which are easily separable. WO 2004/048624 describes a process for the removal of mercury by filtration on electrographite.
Zur Abtrennung von Quecksilber werden oft auch Verfahren eingesetzt, bei denen das Quecksilber an ein Adsorbens gebunden wird. So beschreibt DE-A 26 43 478 die Abtrennung von Quecksilber aus Flüssigkeiten durch Adsorption an Aktivkohle mit einer spezifischen Oberfläche von mindestens 250 m2/g. Zur Entfernung von Quecksilber aus Stoffströmen werden unter anderem Kohlenstoff-geträgerte Adsorbentien eingesetzt, wie in US 3,755,989 beschrieben. US 4,500,327 beschreibt Schwefel-imprägnierte Aktivkohle zur Abtrennung von Quecksilber aus gasförmigen Stoffströmen, während JP 52-53793 die Abtrennung von lodid-haltiger Aktivkohle zur Abtrennung von Quecksilber aus flüssigen Stoffströmen beschreibt. US 4,909,926 und US 4,094,777 beschreiben zur Entfernung von Quecksilber aus Stoffströmen Aktivmassen, welche CuS oder CuO beziehungsweise Ag2S auf Trägermaterialien wie Aluminiumoxid enthalten. EP-A 0 385 742 beschreibt ein Verfah- ren zur Entfernung von Quecksilber aus flüssigen Kohlenwasserstoffströmen aus Kohlenwasserstoffen mit bis zu 8 C-Atomen durch Inkontaktbringen mit auf einem Träger vorliegenden metallischem Kupfer oder Kupferverbindungen.For the removal of mercury, methods are also often used in which the mercury is bound to an adsorbent. Thus, DE-A 26 43 478 describes the separation of mercury from liquids by adsorption on activated carbon having a specific surface area of at least 250 m 2 / g. To remove mercury from streams, inter alia, carbon-supported adsorbents are used, as described in US Pat. No. 3,755,989. No. 4,500,327 describes sulfur-impregnated activated carbon for the separation of mercury from gaseous streams, while JP 52-53793 describes the separation of iodide-containing activated carbon for the separation of mercury from liquid streams. US Pat. No. 4,909,926 and US Pat. No. 4,094,777 describe active compositions for removing mercury from streams which contain CuS or CuO or Ag 2 S on support materials such as aluminum oxide. EP-A 0 385 742 describes a process for the removal of mercury from liquid hydrocarbon streams of hydrocarbons having up to 8 C atoms by contacting with metallic copper or copper compounds present on a support.
Oft wird zur Abtrennung von Quecksilber auch die Bildung von festen Amalgamen genutzt. Hierzu am besten geeignet sind die Metalle der 1 1. Gruppe des Periodensystems (Cu, Ag, Au), die meist in Form einer Absorptionsmasse, bei der das Metall auf einem Träger feinverteilt ist, eingesetzt werden. So offenbart die DE-A 21 02 039 ein Verfahren zur Abtrennung von Quecksilber aus Gasen, bei dem die Quecksilber enthaltenden Gase mit einer Masse enthaltend Kupfer auf einem porösen Aluminiumoxidträger in Kontakt gebracht wer- den. US 4,230,486 offenbart ein Verfahren zur Abtrennung von Quecksilber aus Flüssigkeiten durch Überleiten der Flüssigkeiten über ein Absorptionsmittel enthaltend metallisches Silber auf einem porösen Träger wie Aktivkohle oder einem keramischen Träger. DE-A 42 21 207 lehrt ein Verfahren zur Abtrennung von Quecksilber aus Alkalilauge oder Alkalial- koholatlösung durch Überleiten der Lösungen über mit Silber beschichtete Fasern. DE-A 41 16 890 offenbart Absorptionsmittel zur Abtrennung von Quecksilber, welche insbesondere Cu, Ag, Fe und Bi, aber auch Au, Sn, Zn und Pd sowie Gemische der genannten Metalle in metallischer oder oxidischer oder sulfidischer Form auf einem Aktivkohleträger mit einer BET-Oberfläche von 300 bis 1000 m2/g enthalten.Often, the formation of solid amalgams is also used to remove mercury. Most suitable for this purpose are the metals of the 1st group of the periodic table (Cu, Ag, Au), which are usually used in the form of an absorption mass in which the metal is finely distributed on a support. Thus, DE-A 21 02 039 discloses a method for separating mercury from gases, in which the mercury-containing gases are brought into contact with a mass containing copper on a porous alumina support. US 4,230,486 discloses a process for separating mercury from liquids by passing the liquids over an absorbent containing metallic silver on a porous support such as activated carbon or a ceramic support. DE-A 42 21 207 teaches a method for the separation of mercury from alkali or alkali koholatlösung by passing the solutions over silver-coated fibers. DE-A 41 16 890 discloses absorbents for the removal of mercury, which in particular Cu, Ag, Fe and Bi, but also Au, Sn, Zn and Pd and mixtures of said metals in metallic or oxidic or sulphidic form on an activated carbon support with a BET Surface of 300 to 1000 m 2 / g.
US 4,91 1 ,825 beschreibt die Abtrennung von Quecksilber und Arsen aus Kohlenwasserstoffströmen, bei der diese in Gegenwart von Wasserstoff in einem ersten Schritt mit einem Katalysator enthaltend Nickel und Palladium auf Aluminiumoxid und in einem zweiten Schritt mit einem Absorptionsmittel enthaltend Schwefel oder ein Metallsulfid, bevorzugt Kupfersulfid oder eine Kombination aus Kupfer- und Silbersulfid, auf einem Träger in Kontakt gebracht werden. Das Verfahren kann auch einstufig an einem Gemisch aus dem Katalysator und dem Absorptionsmittel durchgeführt werden. FR-A 2 310 795 beschreibt die Entfernung von Quecksilber aus einem gasförmigen Erdgasstrom unter Verwendung eines Absorptionsmittels enthaltend metallisches Gold, Silber, Kupfer oder Nickel auf einem Träger aus Siliciumdioxid, Aluminiumoxid oder einem Alumosilikat mit einer BET-Oberfläche von 40 bis 250 m2/g. WO 91/15559 offenbart ein Verfahren zur Abtrennung von Quecksilber aus flüssigen Kohlenwasserstoffströmen durch Inkontaktbringen mit einem Absorpti- onsmittel, welches durch Mischen eines pulverförmigen Oxids, vorzugsweise ausgewählt aus Nickeloxid, Kupferoxid und Cobaltoxid, mit einem porösen Trägermaterial, wie Aluminiumoxid, Siliciumdioxid, Zeolithen oder Tonen, und anschließende Reduktion hergestellt wird.US Pat. No. 4.91 1, 825 describes the separation of mercury and arsenic from hydrocarbon streams, in which, in the presence of hydrogen, these are reacted in a first step with a catalyst comprising nickel and palladium on alumina and in a second Step comprising an absorbent containing sulfur or a metal sulfide, preferably copper sulfide or a combination of copper and silver sulfide, on a support. The process can also be carried out in one stage on a mixture of the catalyst and the absorbent. FR-A 2 310 795 describes the removal of mercury from a gaseous natural gas stream using an absorbent containing metallic gold, silver, copper or nickel on a support of silica, alumina or aluminosilicate having a BET surface area of 40 to 250 m 2 / G. WO 91/15559 discloses a process for separating mercury from liquid hydrocarbon streams by contacting it with an absorbent obtained by mixing a powdery oxide, preferably selected from nickel oxide, copper oxide and cobalt oxide, with a porous support material, such as alumina, silica, zeolites or Toning, and subsequent reduction is made.
Aufgabe der Erfindung ist es, ein verbessertes Verfahren zur Abtrennung von Quecksilber aus einem Quecksilber enthaltenden Kohlenwasserstoffstrom bereitzustellen.The object of the invention is to provide an improved process for the separation of mercury from a mercury-containing hydrocarbon stream.
Gelöst wird die Aufgabe durch ein Verfahren zur Abtrennung von Quecksilber aus einem Quecksilber enthaltenden Kohlenwasserstoffstrom, bei dem der Kohlenwasserstoffstrom mit einem Absorptionsmittel enthaltend Kupfer auf einem porösen oxidischen Trägermaterial in Kontakt gebracht wird, dadurch gekennzeichnet, dass der Kohlenwasserstoffstrom in Gegenwart von Wasserstoff mit dem Absorptionsmittel in Kontakt gebracht wird.The object is achieved by a method for separating mercury from a mercury-containing hydrocarbon stream in which the hydrocarbon stream is contacted with an absorbent containing copper on a porous oxidic support material, characterized in that the hydrocarbon stream in the presence of hydrogen with the absorbent in Contact is brought.
Es wurde gefunden, dass in Gegenwart von Wasserstoff mit den kupferhaltigen Absorpti- onsmitteln, welche Kupfer auf einem Träger enthalten und als Hydrierkatalysatoren wirksam sind, eine sehr viel bessere Abtrennung von Quecksilber aus den Kohlenwasserstoffströmen bewirkt wird als in Abwesenheit von Wasserstoff.It has been found that in the presence of hydrogen with the copper-containing absorbers containing copper on a support and acting as hydrogenation catalysts, a much better separation of mercury from the hydrocarbon streams is effected than in the absence of hydrogen.
Das erfindungsgemäß eingesetzte Absorptionsmittel enthält Kupfer, vorzugsweise in redu- zierter Form, auf einem porösen Trägermaterial. Das erfindungsgemäß eingesetzte Absorptionsmittel ist als Hydrierkatalysator wirksam. Geeignete poröse Trägermaterialien sind amorphe und kristalline Aluminosilicate, Aluminiumoxid, Siliciumdioxid, Tone und Metalloxide. Geeignete Tone sind beispielsweise Attapulgit, Kaolin, Bentonit, Fullererde. Geeignete Metalloxide sind beispielsweise, neben Aluminiumoxiden und Siliciumdioxid, Magne- siumoxid, Zirkondioxid, Titandioxid, Zinkoxid, Chrom(lll)oxid, Bariumoxid sowie deren Gemische. Bevorzugtes Aluminiumoxid ist γ-Aluminiumoxid. - A -The absorbent used according to the invention contains copper, preferably in reduced form, on a porous support material. The absorbent used in the invention is effective as a hydrogenation catalyst. Suitable porous support materials are amorphous and crystalline aluminosilicates, alumina, silica, clays and metal oxides. Suitable clays are, for example, attapulgite, kaolin, bentonite, fuller earth. Suitable metal oxides are, for example, in addition to aluminum oxides and silicon dioxide, magnesium oxide, zirconium dioxide, titanium dioxide, zinc oxide, chromium (III) oxide, barium oxide and mixtures thereof. Preferred alumina is γ-alumina. - A -
In dem erfindungsgemäßen Verfahren können alle herkömmlichen kupferhaltigen Hydrierkatalysatoren in aktivierter (reduzierter) Form eingesetzt werden.In the process according to the invention, it is possible to use all conventional copper-containing hydrogenation catalysts in activated (reduced) form.
Die erfindungsgemäß eingesetzten kupferhaltigen hydrieraktiven Absorptionsmittel sind erhältlich durch Vermischen von Kupferoxid mit einem Trägermaterial und anschließende Überführung von Kupfer in die metallische Form durch Reduktion, vorzugsweise in einem Wasserstoffstrom. Die erfindungsgemäß eingesetzten Absorptionsmittel können weiterhin hergestellt werden durch Imprägnierung des Trägermaterials mit einer wässrigen Lösung eines Kupfersalzes, Trocknen, gegebenenfalls Calcinieren, und Überführung des Kupfers in die metallische Form durch Reduktion, vorzugsweise mit einem wasserstoffhaltigen Gasstrom, aber auch mit einem Reduktionsmittel wie beispielsweise Hydrazin.The copper-containing hydrogenation-active absorption agents used according to the invention are obtainable by mixing copper oxide with a support material and subsequent conversion of copper into the metallic form by reduction, preferably in a hydrogen stream. The absorbents used according to the invention can be further prepared by impregnating the support material with an aqueous solution of a copper salt, drying, optionally calcining, and converting the copper into the metallic form by reduction, preferably with a hydrogen-containing gas stream, but also with a reducing agent such as hydrazine.
Kupfer liegt in dem erfindungsgemäß eingesetzten Absorptionsmittel im Allgemeinen in reduzierter, d. h. metallischer (elementarer) Form feindispergiert auf dem Trägermaterial vor. Im Allgemeinen enthalten die erfindungsgemäß eingesetzten Absorptionsmittel 10 bis 50 Gew.-% Kupfer auf einem oxidischen Trägermaterial. Beispiele für geeignete Zusammensetzungen, auf deren Basis die erfindungsgemäß eingesetzten Absorptionsmittel erhalten werden, sind Zusammensetzungen enthaltend Kupferoxid, Zinkoxid und Aluminium- oxid oder Zusammensetzungen enthaltend Kupferoxid, Magnesiumoxid, Bariumoxid, Chrom(lll)oxid, Zinkoxid und Siliciumdioxid. Besonders bevorzugt ist ein Gemisch aus 10 bis 60 Gew.-% Kupferoxid, 0 bis 40 Gew.-% Zinkoxid, 0 bis 20 Gew.-% Aluminiumoxid, 5 bis 25 Gew.-% Magnesiumoxid, 10 bis 40 Gew.-% Siliciumdioxid, 0 bis 5 Gew.-% Chrom(lll)oxid und 0 bis 10 Gew.-% Bariumoxid.Copper is generally reduced in the absorbent used in the invention, d. H. metallic (elemental) form finely dispersed on the support material before. In general, the absorbents used according to the invention contain from 10 to 50% by weight of copper on an oxidic support material. Examples of suitable compositions on the basis of which the absorbents used according to the invention are obtained are compositions comprising copper oxide, zinc oxide and aluminum oxide or compositions comprising copper oxide, magnesium oxide, barium oxide, chromium (III) oxide, zinc oxide and silicon dioxide. Particularly preferred is a mixture of 10 to 60 wt .-% copper oxide, 0 to 40 wt .-% zinc oxide, 0 to 20 wt .-% alumina, 5 to 25 wt .-% magnesium oxide, 10 to 40 wt .-% silica , 0 to 5 wt .-% chromium (III) oxide and 0 to 10 wt .-% barium oxide.
Kohlenwasserstoffströme, aus denen erfindungsgemäß Quecksilber abgetrennt werden kann, sind beliebige Kohlenwasserstoffströme, welche mit Quecksilber verunreinigt sein können. Diese enthalten im Allgemeinen aliphatische, aromatische, alizyklische und/oder heterozyklische Kohlenwasserstoffe mit 1 bis 14 C-Atomen. Beispiele für Kohlenwasser- stoffgemische, die erfindungsgemäß von Quecksilber befreit werden können, sind LNG (Liquefied Natural Gas), LPG (Liquefied Petroleum Gas), Napththa und Kerosin. Beispiele für reine Kohlenwasserstoffe, die erfindungsgemäß gereinigt werden können, sind Ethylen und Propylen sowie aliphatische Kohlenwasserstoffe.Hydrocarbon streams from which mercury can be separated according to the invention are any hydrocarbon streams which may be contaminated with mercury. These generally contain aliphatic, aromatic, alicyclic and / or heterocyclic hydrocarbons having 1 to 14 carbon atoms. Examples of hydrocarbon mixtures which can be freed from mercury according to the invention are LNG (Liquefied Natural Gas), LPG (Liquefied Petroleum Gas), Napththa and kerosene. Examples of pure hydrocarbons which can be purified according to the invention are ethylene and propylene and also aliphatic hydrocarbons.
Der Quecksilbergehalt der Kohlenwasserstoffe beziehungsweise Kohlenwasserstoffgemische vor Durchführung des erfindungsgemäßen Verfahrens kann bis zu 100 ppm betragen, im Allgemeinen beträgt er bis zu 1 ppm Hg. Quecksilber liegt dabei im Allgemeinen in Form von quecksilberorganischen Verbindungen vor.The mercury content of the hydrocarbons or hydrocarbon mixtures before carrying out the process according to the invention can be up to 100 ppm, In general, it is up to 1 ppm Hg. Mercury is generally present in the form of organomercury compounds.
Das erfindungsgemäße Verfahren kann in Suspensions- oder Festbettfahrweise durch- geführt werden. Wird es in Festbettfahrweise durchgeführt, so kann es in Sumpf- oder Rie- selfahrweise durchgeführt werden. Die Quecksilber beziehungsweise Arsen enthaltenden Kohlenwasserstoffe beziehungsweise -gemische können gasförmig oder flüssig eingesetzt werden. Vorzugsweise werden die Kohlenwasserstoffe beziehungsweise Kohlenwasserstoffgemische in flüssiger Form eingesetzt. Wasserstoff wird zusammen mit dem gasförmi- gen oder flüssigen Kohlenwasserstoff oder Kohlenwasserstoffgemisch in einen geeigneten Reaktionsbehälter eingeleitet und - im Allgemeinen im Gleichstrom - über das in stückiger Form vorliegende, in einem Festbett angeordnete Absorptionsmittel geführt. Dabei kann in Sumpf- oder Rieselfahrweise gearbeitet werden. Wasserstoff und Kohlenwasserstoff beziehungsweise Kohlenwasserstoffgemisch können aber auch im Gegenstrom über das Absorptionsmittelbett geführt werden. Das Absorptionsmittel kann ferner in dem Kohlenwasserstoff beziehungsweise Kohlenwasserstoffgemisch suspendiert vorliegen. Im Allgemeinen wird das Verfahren bei einer Temperatur von 30 bis 250 0C, bevorzugt 60 bis 180 0C, und einem Wasserstoffdruck von 1 bis 20 bar durchgeführt. Vorzugsweise wird der Druck so gewählt, dass der Kohlenwasserstoff beziehungsweise das Kohlenwasserstoff - gemisch als Flüssigkeit vorliegen. Die Menge des eingeleiteten Wasserstoffs entspricht im Allgemeinen einer Belastung von 10 bis 650 Nl pro kg Absorptionsmittel und Stunde.The process according to the invention can be carried out in suspension or fixed bed mode. If it is carried out in fixed bed mode, it can be carried out in sump or breeze mode. The mercury or arsenic-containing hydrocarbons or mixtures can be used in gaseous or liquid form. The hydrocarbons or hydrocarbon mixtures are preferably used in liquid form. Hydrogen is introduced together with the gaseous or liquid hydrocarbon or hydrocarbon mixture into a suitable reaction vessel and, generally in cocurrent, passed through the lumped absorbent arranged in a fixed bed. It can be worked in sump or trickle way. However, hydrogen and hydrocarbon or hydrocarbon mixture can also be passed in countercurrent over the absorbent bed. The absorbent may further be suspended in the hydrocarbon or hydrocarbon mixture. In general, the process is carried out at a temperature of 30 to 250 ° C., preferably 60 to 180 ° C., and a hydrogen pressure of 1 to 20 bar. The pressure is preferably chosen such that the hydrocarbon or the hydrocarbon mixture is present as a liquid. The amount of hydrogen introduced generally corresponds to a load of 10 to 650 Nl per kg of absorbent and hour.
Nach Erschöpfung des Absorptionsmittels kann dieses thermisch regeneriert werden, indem dieses in einem Inertgasstrom oder einem wasserstoffhaltigen Gasstrom erhitzt wird, im Allgemeinen auf Temperaturen von 180 bis 400 0C, beispielsweise 200 bis 220 0C, und abgedampftes Quecksilber auskondensiert wird.After exhaustion of the absorbent, this can be thermally regenerated by this is heated in an inert gas or a hydrogen-containing gas stream, generally to temperatures of 180 to 400 0 C, for example 200 to 220 0 C, and evaporated mercury is condensed out.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.The invention is further illustrated by the following examples.
BeispieleExamples
Vergleichsbeispiel 1Comparative Example 1
Eine Lösung von Diphenylquecksilber (Ph2Hg) in 500 ml Oktan, entsprechend 350 ppm Hg, wurde in einem Glaskolben auf 60 0C erwärmt. In diese Lösung wurden unter Rühren 1 ,5 Nl/h Wasserstoff eingeleitet. Zu dieser Lösung wurden 5 g eines nicht-reduzierten Hydrierkatalysators aus 40 Gew.-% CuO, 40 Gew.-% ZnO und 20 Gew.-% AI2O3 in Form von 3 x 5 mm-Tabletten (Absorptionsmittel A) zugegeben. Der Lösung wurden nach 2 h und 24 h Proben entnommen, und der Quecksilbergehalt der Proben wurde bestimmt. Die Ergebnisse sind in Tabelle 1 wiedergegeben.A solution of diphenylmercury (Ph 2 Hg) in 500 ml of octane, corresponding to 350 ppm Hg, was heated to 60 ° C. in a glass flask. In this solution, 1, 5 Nl / h of hydrogen were introduced with stirring. To this solution, 5 g of a non-reduced hydrogenation catalyst of 40 wt .-% CuO, 40 wt .-% ZnO and 20 wt .-% Al 2 O 3 in the form of 3 x 5 mm tablets (Absorbent A) was added. The solution was sampled after 2 hours and 24 hours, and the mercury content of the samples was determined. The results are shown in Table 1.
Vergleichsbeispiel 2Comparative Example 2
Eine Lösung von Diphenylquecksilber in 500 ml Oktan, entsprechend 350 ppm Quecksilber, wurde in einem Glaskolben auf 60 0C erwärmt. Zu dieser Lösung wurden 5 g des Katalysators aus 40 Gew.-% CuO, 40 Gew.-% ZnO und 20 Gew.-% AI2O3, der vorher bei 180 0C mittels H2 reduziert und aktiviert worden war (Absorptionsmittel B), in Form von 3 x 5 mm-Tabletten zugegeben. Wasserstoff wurde nicht eingeleitet. Die Lösung wurde gerührt. Nach 2 h und 24 h wurden Proben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 1 wiedergegeben.A solution of diphenylmercury in 500 ml of octane, corresponding to 350 ppm of mercury, was heated to 60 ° C. in a glass flask. To this solution, 5 g of the catalyst of 40 wt .-% CuO, 40 wt .-% ZnO and 20 wt .-% Al 2 O 3 , which had previously been reduced and activated at 180 0 C by means of H 2 (Absorbent B ), in the form of 3 x 5 mm tablets. Hydrogen was not introduced. The solution was stirred. After 2 h and 24 h, samples were taken and their mercury content was determined. The results are shown in Table 1.
Beispiel 1example 1
Es wurde wie in Vergleichsbeispiel 2 verfahren, jedoch wurden 1 ,5 Nl/h Wasserstoff eingeleitet. In regelmäßigen zeitlichen Abständen wurden Proben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 1 wiedergegeben.The procedure was as in Comparative Example 2, but 1, 5 Nl / h of hydrogen were introduced. Samples were taken at regular intervals and their mercury content was determined. The results are shown in Table 1.
Beispiel 2Example 2
Es wurde wie in Beispiel 1 verfahren. Jedoch wurde der reduzierte Katalysator in Pulverform zugegeben (Absorptionsmittel C). In regelmäßigen zeitlichen Abständen wurden Pro- ben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 1 wiedergegeben.The procedure was as in Example 1. However, the reduced catalyst was added in powder form (Absorbent C). Samples were taken at regular intervals and their mercury content determined. The results are shown in Table 1.
Tabelle 1Table 1
Beispiel 3Example 3
Es wurde wie in Beispiel 1 verfahren, jedoch wurde die Lösung auf 25 0C temperiert. In regelmäßigen Abständen wurden Proben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 2 wiedergegeben.The procedure was as in Example 1, but the solution was heated to 25 0 C. Samples were taken at regular intervals and their mercury content determined. The results are shown in Table 2.
Beispiel 4Example 4
Es wurde wie in Beispiel 1 verfahren. Die Temperatur betrug also 60 0C. In regelmäßigen Abständen wurden Proben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 2 wiedergegeben.The procedure was as in Example 1. The temperature was thus 60 ° C. Samples were taken at regular intervals and their mercury content was determined. The results are shown in Table 2.
Beispiel 5Example 5
Es wurde wie in Beispiel 1 verfahren, jedoch wurde auf 100 0C erwärmt. In regelmäßigen zeitlichen Abständen wurden Proben entnommen und deren Quecksilbergehalt bestimmt. Die Ergebnisse sind in Tabelle 2 wiedergegeben.The procedure was as in Example 1, but was heated to 100 0 C. Samples were taken at regular intervals and their mercury content was determined. The results are shown in Table 2.
Tabelle 2Table 2
Beispiel 6Example 6
Die Versuche wurden in einem Monoline-Reaktor mit einem Innendurchmesser von 6 mm und einer Gesamtlänge von 5 m durchgeführt. Der Reaktor bestand aus 4 Segmenten, die mittels einer Kapillare miteinander verbunden waren. Der Reaktor wurde in Rieselfahrweise betrieben. Die Reaktorsegmente wurden auf 60 0C temperiert. Vor dem Reaktoreingang wurde der flüssige Kohlenwasserstoffzulauf mit Wasserstoff vermischt. Der Reaktoraustrag wurde mittels eines Intensivkühlers abgekühlt und die Gasphase von der flüssigen Phase getrennt. Die flüssige Phase wurde zur Bestimmung des Quecksilbergehalts herangezogen, die Gasphase wurde über ein Quecksilber-Guardbed entsorgt.The experiments were carried out in a monoline reactor with an internal diameter of 6 mm and a total length of 5 m. The reactor consisted of 4 segments connected by a capillary. The reactor was operated in trickle mode. The reactor segments were heated to 60 0 C. In front of the reactor inlet, the liquid hydrocarbon feed was mixed with hydrogen. The reactor effluent was cooled by means of an intensive condenser and the gas phase separated from the liquid phase. The liquid phase was used to determine the mercury content, the gas phase was disposed of via a mercury Guardbed.
In dem Reaktor befanden sich 80 g eines Katalysators aus 45 Gew.-% CuO, 16 Gew.-% MgO, 35 Gew.-% SiO2, 0,9 Gew.-% Cr2O3, 1 ,1 Gew.-% BaO und 0,6 Gew.-% ZnO in Form von 3 x 5 mm-Tabletten. Zwischen den einzelnen Tabletten befand sich jeweils eine Glaskugel von 2 mm Durchmesser. Der Katalysator wurde zunächst im Wasserstoffstrom bei 180 bis 220 0C aktiviert. Anschließend wurde der Reaktor im Wasserstoffstrom auf 60 0C abgekühlt. Der Reaktor wurde bei Normaldruck betrieben.In the reactor were 80 g of a catalyst of 45 wt .-% CuO, 16 wt .-% MgO, 35 wt .-% SiO 2 , 0.9 wt .-% Cr 2 O 3 , 1, 1 wt. % BaO and 0.6% by weight ZnO in the form of 3 × 5 mm tablets. Between the individual tablets was in each case a glass sphere of 2 mm diameter. The catalyst was first activated in a hydrogen stream at 180 to 220 0 C. Subsequently, the reactor was cooled to 60 ° C. in a hydrogen stream. The reactor was operated at atmospheric pressure.
Als Feed wurde Oktan eingesetzt, welches an einer quecksilberorganischen Verbindung gesättigt war. Als quecksilberorganische Verbindung wurde in einem Teil der Versuche Phenylquecksilberacetat PhHgOAc und in einem anderen Teil der Versuche Quecksilber- acetat Hg(OAc)2 eingesetzt. Es wurden jeweils mehrere Chargen mit unterschiedlichen Quecksilber-Konzentrationen eingesetzt. Es wurden 100 Nl/h des quecksilberhaltigen Ok- tans und 2 Nl/h Wasserstoff zudosiert. Die Ergebnisse der Versuche sind in Tabelle 3 zu- sammengefasst.The feed used was octane, which was saturated with an organomercury compound. As an organomercury compound, phenylmercuric acetate PhHgOAc was used in one part of the experiments and mercury acetate Hg (OAc) 2 in another part of the experiments. In each case several batches with different mercury concentrations were used. 100 Nl / h of the mercury-containing octane and 2 Nl / h of hydrogen were added. The results of the experiments are summarized in Table 3.
Tabelle 3Table 3

Claims

Patentansprüche claims
1. Verfahren zur Abtrennung von Quecksilber aus einem Quecksilber enthaltenden Kohlenwasserstoffstrom, bei dem der Kohlenwasserstoffstrom mit einem Absorptionsmit- tel enthaltend Kupfer auf einem Trägermaterial in Kontakt gebracht wird, dadurch gekennzeichnet, dass der Kohlenwasserstoffstrom in Gegenwart von Wasserstoff mit dem Absorptionsmittel in Kontakt gebracht wird.A process for separating mercury from a mercury-containing hydrocarbon stream, wherein the hydrocarbon stream is contacted with an absorbent containing copper on a support material, characterized in that the hydrocarbon stream is contacted with the absorbent in the presence of hydrogen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass Kupfer auf einem porö- sen oxidischen Trägermaterial vorliegt.2. The method according to claim 1, characterized in that copper is present on a porous oxidic carrier material.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Absorptionsmittel 10 bis 60 Gew.-% Kupfer enthält.3. The method according to any one of claims 1 or 2, characterized in that the absorbent contains 10 to 60 wt .-% copper.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Absorptionsmittel 10 bis 60 Gew.-% Kupferoxid, 0 bis 40 Gew.-% Zinkoxid, 0 bis 20 Gew.-% Aluminiumoxid, 5 bis 25 Gew.-% Magnesiumoxid, 10 bis 40 Gew.-% Silici- umdioxid, 0 bis 5 Gew.-% Chrom(lll)oxid und 0 bis 10 Gew.-% Bariumoxid enthält.4. The method according to any one of claims 1 to 3, characterized in that the absorbent 10 to 60 wt .-% copper oxide, 0 to 40 wt .-% zinc oxide, 0 to 20 wt .-% alumina, 5 to 25 wt. % Magnesium oxide, 10 to 40 wt .-% silicon dioxide, 0 to 5 wt .-% chromium (III) oxide and 0 to 10 wt .-% barium oxide.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Kohlenwasserstoffstrom in flüssiger Form vorliegt.5. The method according to any one of claims 1 to 4, characterized in that the hydrocarbon stream is in liquid form.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Absorptionsmittel als Festbett vorliegt.6. The method according to any one of claims 1 to 5, characterized in that the absorbent is present as a fixed bed.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Kohlenwasserstoffstrom in Sumpf- oder Rieselfahrweise mit dem Absorptionsmittel in Kontakt gebracht wird.7. The method according to claim 6, characterized in that the hydrocarbon stream is brought into contact with the absorbent in sump or trickle mode.
8. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Absorptionsmittel in dem Kohlenwasserstoffstrom suspendiert vorliegt. 8. The method according to claim 5, characterized in that the absorbent is suspended in the hydrocarbon stream.
EP09720628A 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams Withdrawn EP2265695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09720628A EP2265695A1 (en) 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08152517 2008-03-10
EP09720628A EP2265695A1 (en) 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams
PCT/EP2009/052693 WO2009112440A1 (en) 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams

Publications (1)

Publication Number Publication Date
EP2265695A1 true EP2265695A1 (en) 2010-12-29

Family

ID=40558912

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09720628A Withdrawn EP2265695A1 (en) 2008-03-10 2009-03-09 Method for removing mercury from hydrocarbon streams

Country Status (6)

Country Link
US (1) US20110005975A1 (en)
EP (1) EP2265695A1 (en)
JP (1) JP5455939B2 (en)
KR (1) KR20100133394A (en)
CN (1) CN101970614A (en)
WO (1) WO2009112440A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147781A1 (en) * 2006-06-21 2007-12-27 Basf Se Absorption composition and process for removing mercury
CN102764655B (en) * 2011-12-23 2015-03-04 盐城工学院 Demercuration catalyst
US9006508B2 (en) * 2012-02-06 2015-04-14 Uop Llc Protected adsorbents for mercury removal and method of making and using same
JP6076854B2 (en) * 2013-08-07 2017-02-08 Jxエネルギー株式会社 Method for removing mercury from hydrocarbon oil
CN105148913B (en) * 2015-10-08 2017-11-07 宁波海越新材料有限公司 A kind of preparation method for the catalyst that MEK is prepared for sec-butyl alcohol
CN108249955B (en) * 2018-04-02 2020-12-29 中科京投环境科技江苏有限公司 Preparation method of composite ceramic material for removing mercury in waste water and sewage
CN115698231A (en) * 2020-05-29 2023-02-03 埃克森美孚化学专利公司 Hydrocarbon pyrolysis of mercury-containing feed

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570903A1 (en) * 2002-11-18 2005-09-07 ICT Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3227645A (en) * 1962-01-22 1966-01-04 Chevron Res Combined process for metal removal and hydrocracking of high boiling oils
US3755989A (en) * 1972-06-16 1973-09-04 Union Carbide Corp Removal of mercury from gas streams
IT1043119B (en) * 1975-10-03 1980-02-20 Tecneco Spa METHOD FOR REMOVAL OF METALLIC MER CURIO
DE2656803C2 (en) * 1975-12-18 1986-12-18 Institut Français du Pétrole, Rueil-Malmaison, Hauts-de-Seine Process for removing mercury from a gas or liquid
US4230486A (en) * 1978-04-28 1980-10-28 Olin Corporation Process for removal and recovery of mercury from liquids
AU559284B2 (en) * 1982-07-08 1987-03-05 Takeda Chemical Industries Ltd. Adsorption of mercury vapour
FR2628338B1 (en) * 1988-03-10 1991-01-04 Inst Francais Du Petrole PROCESS FOR THE REMOVAL OF MERCURY FROM HYDROCARBONS
US4909926A (en) * 1989-02-01 1990-03-20 Mobil Oil Corporation Method for removing mercury from hydrocarbon oil by high temperature reactive adsorption
JP2578514B2 (en) * 1989-03-03 1997-02-05 三井石油化学工業株式会社 Method for removing mercury from liquid hydrocarbon compounds
US5401392A (en) * 1989-03-16 1995-03-28 Institut Francais Du Petrole Process for eliminating mercury and possibly arsenic in hydrocarbons
FR2644472B1 (en) * 1989-03-16 1991-06-21 Inst Francais Du Petrole PROCESS FOR THE REMOVAL OF MERCURY AND POSSIBLY ARSENIC IN HYDROCARBONS
EP0541554A1 (en) * 1990-04-04 1993-05-19 Exxon Chemical Patents Inc. Mercury removal by dispersed-metal adsorbents
US5080799A (en) * 1990-05-23 1992-01-14 Mobil Oil Corporation Hg removal from wastewater by regenerative adsorption
FR2673191B1 (en) * 1991-02-27 1994-02-04 Institut Francais Petrole PROCESS FOR REMOVING MERCURY AND / OR ARSENIC FROM THE LOADS OF SOLVENT DEAROMATIZATION UNITS. .
DE4221207A1 (en) * 1992-06-27 1994-01-05 Huels Chemische Werke Ag Removal of mercury@ from liquids, e.g. alkali alkoxide solns. - by contacting liq. with fibres which are coated with a silver@ layer
FR2701270B1 (en) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Process for removing mercury from hydrocarbons by passing over a presulfurized catalyst.
US5948726A (en) * 1994-12-07 1999-09-07 Project Earth Industries, Inc. Adsorbent and/or catalyst and binder system and method of making therefor
FR2764214B1 (en) * 1997-06-10 1999-07-16 Inst Francais Du Petrole CAPTATION PROCESS AND MASSES FOR THE REMOVAL OF MERCURY AND ARSENIC IN HYDROCARBON CUTS
DE10255240A1 (en) * 2002-11-26 2004-06-09 Basf Ag Process for the removal of mercury from solutions contaminated with mercury
WO2007147781A1 (en) * 2006-06-21 2007-12-27 Basf Se Absorption composition and process for removing mercury

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1570903A1 (en) * 2002-11-18 2005-09-07 ICT Co., Ltd. Exhaust gas purifying catalyst and method for purifying exhaust gas

Also Published As

Publication number Publication date
KR20100133394A (en) 2010-12-21
CN101970614A (en) 2011-02-09
US20110005975A1 (en) 2011-01-13
WO2009112440A1 (en) 2009-09-17
JP2011513565A (en) 2011-04-28
JP5455939B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
EP2265695A1 (en) Method for removing mercury from hydrocarbon streams
EP0983794B1 (en) Catalyst and process for purifying material flows
EP4146768A1 (en) Process for purifying a crude pyrolysis oil originating from the pyrolysis of plastic waste
DE4116890A1 (en) METHOD FOR SEPARATING MERCURY FROM A WASTE FLOW AND METHOD FOR PRODUCING AN ADSORPTION AGENT THEREFOR
DE2525732C3 (en) Process for the regeneration of a solid reactant
DE3229897A1 (en) SULFUR SOURCE AND METHOD FOR THE PRODUCTION THEREOF
EP2035118A2 (en) Adsorption mass and method for eliminating co from streams of substances
EP2035136A1 (en) Absorption composition and process for removing mercury
CA1286087C (en) Process for cleaning of waste materials by refining and/or elimination of biologically difficult to degrade halogen-, nitrogen- and/or sulfur compounds
EP2097159A1 (en) Adsorption composition and process for removing co from streams
DE3401197A1 (en) Process for catalytic ultrapurification of inert gases
DE60303453T2 (en) Purification of H2S by porous media
EP0966508B1 (en) Process for purifying material flows
DE19901309C2 (en) Process for cleaning reducing gases
WO2020216837A1 (en) Method for cleaning sulfurous corrosive process gases
DE19731639A1 (en) Process for separating mercury from gases, adsorbent for carrying out the process and application of the process
DE2754393A1 (en) SOLID ACCEPTOR FOR SULFUR DIOXIDE AND ITS USE
DD240672B5 (en) Process for the purification of carbon dioxide
EP2102102B1 (en) Method for removing no and n<sb>2</sb>o from gas mixtures
WO1997034691A1 (en) Catalyser for aromatising aliphatic and alicyclic hydrocarbons, methods of producing and using said catalyst
DE2635452A1 (en) PROCESS FOR THE CONVERSION OF A HYDROCARBON FEED MATERIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140403

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20141014