EP2264832B1 - Secondary reflector for a double reflector antenna - Google Patents

Secondary reflector for a double reflector antenna Download PDF

Info

Publication number
EP2264832B1
EP2264832B1 EP10164928.3A EP10164928A EP2264832B1 EP 2264832 B1 EP2264832 B1 EP 2264832B1 EP 10164928 A EP10164928 A EP 10164928A EP 2264832 B1 EP2264832 B1 EP 2264832B1
Authority
EP
European Patent Office
Prior art keywords
secondary reflector
reflector
horn
waveguide
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10164928.3A
Other languages
German (de)
French (fr)
Other versions
EP2264832A3 (en
EP2264832A2 (en
Inventor
Armel Le Bayon
Denis Tuau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP2264832A2 publication Critical patent/EP2264832A2/en
Publication of EP2264832A3 publication Critical patent/EP2264832A3/en
Application granted granted Critical
Publication of EP2264832B1 publication Critical patent/EP2264832B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • H01Q19/193Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector

Definitions

  • the present invention relates to radio frequency (RF) antennas with dual reflectors.
  • These antennas comprise a concave primary reflector of large diameter and a secondary reflector ("sub-reflector" in English) convex of smaller diameter located near the focus of the primary reflector.
  • These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation.
  • the description is given either in transmission mode or in reception mode of the antenna, according to which allows to better illustrate the described phenomena. It should be noted that all the reasonings apply to the antennas as well in reception as in emission.
  • Double reflector antennas are used to produce compact systems.
  • the double reflectors comprise a concave primary reflector, usually parabolic, and a convex secondary reflector of smaller diameter which is placed in the vicinity of the focus, on the same axis of revolution as the primary reflector.
  • the primary reflector is pierced at its top and a waveguide is inserted along its axis. The end of the waveguide faces the secondary reflector. In transmission mode, the RF waves transmitted by the waveguide are reflected by the secondary reflector to the primary reflector.
  • the secondary reflector must be maintained in the vicinity of the focus of the primary reflector.
  • One of the possible ways is to fix the secondary reflector at the end of the waveguide, then serving as a mechanical support.
  • the secondary reflector usually comprises a dielectric body (frequently plastic) substantially conical and transparent to RF waves.
  • the outer surface of substantially conical general shape of the secondary reflector faces the primary reflector.
  • the convex inner surface of the secondary reflector is coated with a treatment for reflecting the RF waves in direction of the primary reflector through the dielectric body. This coating is usually made of metal. Multiple reflections of RF waves occur between the end of the waveguide and the primary reflector, involving the secondary reflector.
  • the overflow losses In the antenna transmission mode, for example, the overflow losses, expressed in dB, correspond to the energy reflected by the secondary reflector towards the primary reflector, and whose path ends beyond the outer diameter of the reflector. primary. These losses lead to pollution of the environment by RF waves. These overflow losses should be limited to levels defined by standards.
  • a first proposed solution is to attach to the periphery of the primary reflector a skirt which has the shape of a cylinder, of diameter close to that of the primary reflector and of suitable height, lined internally with a layer absorbing RF radiation.
  • this known solution has the inconvenient today troublesome cost of the material of the skirt, as well as the cost of assembling this skirt on the primary reflector.
  • Another solution is to provide a secondary reflector whose outer surface has a profile according to a particular curve.
  • this solution allows a low overflow loss value only if the secondary reflector has a large size.
  • the reflection losses are reduced only for a narrow frequency band. Indeed, the waveguide produces a large beam of radiation with a low gain.
  • the secondary reflector In order to reduce overflow losses, the secondary reflector must therefore have a large diameter or be placed very close to the waveguide. However, in the latter case, the performance relating to the reflection loss is affected.
  • the document US 6724349 proposes to provide the inside of the waveguide transverse sections of different diameter and to provide on the convex surface of the secondary reflector faces perpendicular to its axis.
  • the object of the present invention is to propose a secondary reflector of a double reflector antenna whose overflow losses are significantly reduced, without presenting the drawbacks of the prior art, particularly in terms of size and cost.
  • the overflow losses for the transmission mode of an RF antenna correspond to values of the illumination angle (measured with respect to the axis of revolution of the secondary reflector) of the primary reflector by the secondary reflector for which RF waves from the waveguide are reflected by the secondary reflector in a direction which is outside the perimeter of the primary reflector.
  • the object of the present invention is a dual reflector antenna secondary reflector according to claim 1.
  • the outer surface of the horn has a substantially linear profile and the horn has substantially the shape of a truncated cone.
  • the constant A is different from zero (A ⁇ 0).
  • the outer surface of the horn has a continuous profile of particular shape.
  • the horn has better efficiency, lower cross polarization, side lobes having a lower level and a frequency band of increased width.
  • the outer surface of the horn is metallized. It may for example be covered with a reflective metal, such as silver.
  • the invention also proposes a double reflector antenna comprising a secondary reflector as previously described.
  • the invention has the advantage of significantly reducing the losses by overflow and to have low losses by reflection.
  • a secondary reflector 1 of a double reflector antenna connected to a waveguide 2 .
  • the waveguide 2 is here a hollow metal tube, for example aluminum. Its diameter, about ⁇ g / 2.5 where ⁇ g is the wavelength of the guided RF signal, is chosen so as to allow propagation of the TE11 mode only, before the appearance of higher modes.
  • the secondary reflector 1 comprises a dielectric body 3 whose end 4 of smaller diameter is connected to the waveguide 2 .
  • the dielectric body 3 of the secondary reflector 1 is for example a dielectric material such as plastic.
  • the opposite end 5 of the dielectric body 3 is dug to form a reflective inner concave surface 6 for the RF signal.
  • the inner surface 6 of the secondary reflector 1 is for example a surface of revolution described by a polynomial equation around an axis of revolution W-W '
  • the inner surface 6 may be covered with a reflecting metal, such as silver.
  • the outer surface 7 of the secondary reflector 1 is the surface placed facing the primary reflector.
  • the outer surface 7 is a surface of revolution about the axis of revolution WW ".
  • the end 4 of the dielectric body 3 of the secondary reflector 1 is externally provided with a bulge, here in the shape of a truncated cone, forming a horn 8 ("horn" in English) whose outer surface 9 has a continuous profile.
  • the outer surface 9 of the horn 8 is smooth and metallized to be reflective.
  • the junction 10 of the secondary reflector 1 and the waveguide 2 is located at the smaller diameter end of the horn 8 .
  • Part of the dielectric material of the dielectric body 3 extends to penetrate inside the waveguide 2, to ensure the mechanical maintenance and the radio-electric transition between the waveguide 2 and the secondary reflector 1 .
  • the horn 31 with such a profile has a better efficiency, a lower cross polarization, side lobes having a lower level and a frequency band of increased width.
  • a secondary reflector 40 connected to a waveguide 41 is shown in perspective.
  • the figure 4a is a partial section.
  • the secondary reflector 40 comprises a bulge, forming a horn 42 having a continuous profile as described by the aforementioned equation, placed at its smaller diameter end cooperating with the waveguide 41.
  • the figure 5 is a comparison of the width of the beam emerging from a waveguide of the prior art and that of the horn having a profile as described by the equation previously mentioned placed at the end of smaller diameter of the secondary reflector.
  • the amplitude of the signal S is given for a frequency of 7.8 GHz in the vertical plane (curves 50 and 51 ) and in the horizontal plane (curves 52 and 53 ) as a function of the opening angle ⁇ of the waveguide. wave (curves 51 and 53) or the horn at its end of larger diameter (curves 50 and 52 ) respectively.
  • an antenna has a horn having a profile as described by the aforementioned equation, its diagram is more directive, with reduced overflow losses.
  • FIG. 7 represents the radiation pattern of the secondary reflector respectively in the horizontal plane (curve 70 ) and in the vertical plane (curve 71 ). It can be seen, for an opening angle ⁇ around -120 ° and + 120 ° by relative to the axis of revolution WW 'of the reflector, areas 72 and 73 respectively in which the overflow losses are significantly improved over the antecuric art.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

La présente invention se rapporte aux antennes radiofréquences (RF) à double réflecteur. Ces antennes comportent un réflecteur primaire concave de grand diamètre et un réflecteur secondaire (« sub-reflector » en anglais) convexe de diamètre moindre situé à proximité du foyer du réflecteur primaire. Ces antennes fonctionnent indifféremment en mode transmetteur ou en mode récepteur, correspondant à deux sens opposés de propagation des ondes RF. Dans ce qui suit, la description est donnée soit en mode émission, soit en mode réception de l'antenne, selon ce qui permet de mieux illustrer les phénomènes dêcrits. Il faut noter que tous les raisonnements s'appliquent aux antennes aussi bien en réception qu'en émission.The present invention relates to radio frequency (RF) antennas with dual reflectors. These antennas comprise a concave primary reflector of large diameter and a secondary reflector ("sub-reflector" in English) convex of smaller diameter located near the focus of the primary reflector. These antennas operate indifferently in transmitter mode or in receiver mode, corresponding to two opposite directions of RF wave propagation. In what follows, the description is given either in transmission mode or in reception mode of the antenna, according to which allows to better illustrate the described phenomena. It should be noted that all the reasonings apply to the antennas as well in reception as in emission.

Les antennes à double réflecteur, notamment celles dites de type Cassegrain, sont utilisées pour réaliser des systèmes compacts. Les doubles réflecteurs comportent un réflecteur primaire concave, habituellement parabolique, ainsi qu'un réflecteur secondaire convexe de diamètre inférieur qui est placé au voisinage du foyer, sur le même axe de révolution que le réflecteur primaire. Le réflecteur primaire est percé à son sommet et un guide d'onde est inséré selon son axe. L'extrémité du guide d'onde fait face au réflecteur secondaire. En mode émission, les ondes RF transmises par le guide d'onde sont réfléchies par le réflecteur secondaire vers le réflecteur primaire.Double reflector antennas, especially those known as Cassegrain type, are used to produce compact systems. The double reflectors comprise a concave primary reflector, usually parabolic, and a convex secondary reflector of smaller diameter which is placed in the vicinity of the focus, on the same axis of revolution as the primary reflector. The primary reflector is pierced at its top and a waveguide is inserted along its axis. The end of the waveguide faces the secondary reflector. In transmission mode, the RF waves transmitted by the waveguide are reflected by the secondary reflector to the primary reflector.

Le réflecteur secondaire doit être maintenu au voisinage du foyer du réflecteur primaire. Un des moyens possibles est de fixer le réflecteur secondaire à l'extrémité du guide d'onde, lui servant alors de support mécanique. Dans ce cas, le réflecteur secondaire comporte habituellement un corps diélectrique (fréquemment en plastique) sensiblement conique et transparent aux ondes RF. La surface externe de forme générale sensiblement conique du réflecteur secondaire fait face au réflecteur primaire. La surface interne convexe du réflecteur secondaire est revêtue d'un traitement permettant de réfléchir les ondes RF en dîrection du réflecteur primaire en traversant le corps diélectrique. Ce revëtement est le plus souvent en métal De multiples réflexions des ondes RF surviennent entre l'extrémité du guide d'onde et le réflecteur primaire, en impliquant le réflecteur secondaire.The secondary reflector must be maintained in the vicinity of the focus of the primary reflector. One of the possible ways is to fix the secondary reflector at the end of the waveguide, then serving as a mechanical support. In this case, the secondary reflector usually comprises a dielectric body (frequently plastic) substantially conical and transparent to RF waves. The outer surface of substantially conical general shape of the secondary reflector faces the primary reflector. The convex inner surface of the secondary reflector is coated with a treatment for reflecting the RF waves in direction of the primary reflector through the dielectric body. This coating is usually made of metal. Multiple reflections of RF waves occur between the end of the waveguide and the primary reflector, involving the secondary reflector.

De manière à réduire ces réflexions, on a proposé d'introduire des perturbations locales, sous forme de reliefs, sur la surface externe du réflecteur secondaire faisant face au réflecteur primaire. Cependant ces reliefs ont un effet moindre sur les pertes par débordement (« spillover » en anglais).In order to reduce these reflections, it has been proposed to introduce local perturbations, in the form of reliefs, on the external surface of the secondary reflector facing the primary reflector. However, these reliefs have a lesser effect on overflow losses ("spillover" in English).

En mode émission de l'antenne, par exemple, les pertes par débordement, exprimées en dB, correspondent à l'énergie réfléchie par le réflecteur secondaire en direction du réflecteur primaire, et dont le trajet se termine au-delà du diamètre externe du réflecteur primaire. Ces pertes conduisent à une pollution de l'environnement par les ondes RF. Ces pertes par débordement doivent être limitées à des niveaux définis par des normes.In the antenna transmission mode, for example, the overflow losses, expressed in dB, correspond to the energy reflected by the secondary reflector towards the primary reflector, and whose path ends beyond the outer diameter of the reflector. primary. These losses lead to pollution of the environment by RF waves. These overflow losses should be limited to levels defined by standards.

Une première solution proposée est d'attacher à la périphérie du réflecteur primaire une jupe qui a la forme d'un cylindre, de diamètre voisin de celui du réflecteur primaire et de hauteur convenable, revêtu intérieurement d'une couche absorbant le rayonnement RF. Outre l'encombrement qui en résulte, cette solution connue présente l'inconvénient aujourd'hui gênant du coût du matériau de la jupe, ainsi que du coût d'assemblage de cette jupe sur le réflecteur primaire.A first proposed solution is to attach to the periphery of the primary reflector a skirt which has the shape of a cylinder, of diameter close to that of the primary reflector and of suitable height, lined internally with a layer absorbing RF radiation. In addition to the resulting congestion, this known solution has the inconvenient today troublesome cost of the material of the skirt, as well as the cost of assembling this skirt on the primary reflector.

Une autre solution consiste à proposer un réflecteur secondaire dont la surface externe présente un profil selon une courbe particulière. Toutefois cette solution ne permet une faible valeur de perte par débordement qu'à condition que le réflecteur secondaire ait une taille importante. En outre les pertes par réflexion ne sont réduites que pour une étroite bande de fréquence. En effet le guide d'onde produit un large faisceau de radiation avec un gain faible. Afin de réduire les pertes par débordement, le réflecteur secondaire doit donc avoir un large diamètre ou bien être placé très près du guide d'onde. Toutefois dans ce dernier cas, les performances relatives à la perte par réflexion sont affectées.Another solution is to provide a secondary reflector whose outer surface has a profile according to a particular curve. However, this solution allows a low overflow loss value only if the secondary reflector has a large size. In addition, the reflection losses are reduced only for a narrow frequency band. Indeed, the waveguide produces a large beam of radiation with a low gain. In order to reduce overflow losses, the secondary reflector must therefore have a large diameter or be placed very close to the waveguide. However, in the latter case, the performance relating to the reflection loss is affected.

Le document US-6,724,349 propose de munir l'intérieur du guide d'onde de sections transversales de diamètre différent et de ménager sur la surface convexe du réflecteur secondaire des faces perpendiculaires à son axe.The document US 6724349 proposes to provide the inside of the waveguide transverse sections of different diameter and to provide on the convex surface of the secondary reflector faces perpendicular to its axis.

La présente invention a pour but de proposer un réflecteur secondaire d'antenne à double réflecteur dont les pertes par débordement sont notablement réduites, sans présenter les inconvénients de l'art antérieur notamment en termes de dimensions et de coût.The object of the present invention is to propose a secondary reflector of a double reflector antenna whose overflow losses are significantly reduced, without presenting the drawbacks of the prior art, particularly in terms of size and cost.

Les pertes par débordement pour le mode émission d'une antenne RF correspondent à des valeurs de l'angle d'éclairement (mesuré par rapport à l'axe de révolution du réflecteur secondaire) du réflecteur primaire par le réflecteur secondaire pour lesquels les ondes RF issues du guide d'onde sont réfléchies par le réflecteur secondaire dans une direction qui est en dehors du périmétre du réflecteur primaire.The overflow losses for the transmission mode of an RF antenna correspond to values of the illumination angle (measured with respect to the axis of revolution of the secondary reflector) of the primary reflector by the secondary reflector for which RF waves from the waveguide are reflected by the secondary reflector in a direction which is outside the perimeter of the primary reflector.

L'objet de la présente invention est un réflecteur secondaire d'antenne à double réflecteur selon la revendication 1.The object of the present invention is a dual reflector antenna secondary reflector according to claim 1.

De préférence la surface externe du cornet présente un profil défini par la relation suivante : ρ z = a ω + ρ 0 - a ω 1 - A z + L L + A sin 2 π z + L 2 L

Figure imgb0001

dans laquelle

  • A est une constante numérique,
  • aw est le premier rayon de la première extrémité du réflecteur secondaire,
  • po est le deuxième rayon de la deuxième extrémité du réflecteur secondaire.
  • L est la hauteur totale du réflecteur secondaire,
  • z est la hauteur considérée du réflecteur secondaire, et
  • p(z) est le rayon d'une section placée à la hauteur z du réflecteur secondaire.
Preferably the outer surface of the horn has a profile defined by the following relation: ρ z = at ω + ρ 0 - at ω 1 - AT z + The The + AT sin 2 π z + The 2 The
Figure imgb0001

in which
  • A is a numerical constant,
  • w is the first radius of the first end of the secondary reflector,
  • p o is the second radius of the second end of the secondary reflector.
  • L is the total height of the secondary reflector,
  • z is the considered height of the secondary reflector, and
  • p (z) is the radius of a section placed at the height z of the secondary reflector.

Selon une première variante de la constante A est égale à zéro (A = 0). Dans ce cas, la surface externe du cornet présente un profil sensiblement linéaire et le cornet a sensiblement la forme d'un cône tronqué.According to a first variant of the constant A is equal to zero (A = 0). In this case, the outer surface of the horn has a substantially linear profile and the horn has substantially the shape of a truncated cone.

Selon une seconde variante de réalisation, la constante A est différente de zéro (A ≠ 0). Dans ce cas, la surface externe du cornet présente un profil continu de forme particulière.According to a second variant embodiment, the constant A is different from zero (A ≠ 0). In this case, the outer surface of the horn has a continuous profile of particular shape.

Avec un tel profil, le cornet a une meilleure efficacité, une polarisation croisée moins élevée, des lobes latéraux ayant un niveau plus faible et une bande de fréquence de largeur accrue.With such a profile, the horn has better efficiency, lower cross polarization, side lobes having a lower level and a frequency band of increased width.

Selon une autre variante, la surface externe du cornet est métallisée. Elle peut être par exemple recouverte d'un métal réfléchissant, comme l'argent.According to another variant, the outer surface of the horn is metallized. It may for example be covered with a reflective metal, such as silver.

L'invention propose aussi une antenne à double réflecteur comportant un réflecteur secondaire tel que précédemment décrit.The invention also proposes a double reflector antenna comprising a secondary reflector as previously described.

L'invention a comme avantage de réduire notablement les pertes par débordement et de présenter de faibles pertes par réflexion.The invention has the advantage of significantly reducing the losses by overflow and to have low losses by reflection.

D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation, donné bien entendu à titre illustratif et non limitatif, et dans le dessin annexé sur lequel

  • la figure 1 montre une coupe schématique d'un mode de réalisation d'un réflecteur secondaire selon l'invention.
  • la figure 2 représente en coupe axiale schématique d'un réflecteur secondaire selon le mode de réalisation préféré de l'invention.
  • la figure 3 est une vue en perspective coupée du réflecteur de la figure 2,
  • la figure 4 montre en perspective le réflecteur de la figure 2.
  • la figure 5 est une comparaison de la largeur du faisceau sortant d'un guide d'onde de l'art antérieur et celui sortant du cornet du réflecteur de la figure 2, le ? S en dB est donné en ordonnée, et en abscisse l'angle θ mesuré par rapport à l'axe de W-W' du réflecteur secondaire en degrès,
  • la figure 6 montre la perte par réflexion du réflecteur de la figure 2, la perte par réflexion R en dB est donné en ordonnée, et en abscisse la fréquence v en GHz,
  • la figure 7 reprèsente le diagramme de radiation du réflecteur de la figure 2, le gain G en dB est donné en ordonnée, et en abscisse l'angle θ en degrés.
Other characteristics and advantages of the present invention will appear on reading the following description of an embodiment, given of course by way of illustration and not limitation, and in the accompanying drawing in which:
  • the figure 1 shows a schematic section of an embodiment of a secondary reflector according to the invention.
  • the figure 2 is a schematic axial section of a secondary reflector according to the preferred embodiment of the invention.
  • the figure 3 is a perspective cut view of the reflector of the figure 2 ,
  • the figure 4 shows in perspective the reflector of the figure 2 .
  • the figure 5 is a comparison of the width of the beam emerging from a waveguide of the prior art and that coming out of the horn of the reflector of the figure 2 , the ? S in dB is given in ordinate, and in abscissa the angle θ measured with respect to the axis of WW 'of the secondary reflector in degrees,
  • the figure 6 shows the reflection loss of the reflector of the figure 2 , the reflection loss R in dB is given on the ordinate, and on the abscissa the frequency v in GHz,
  • the figure 7 represents the radiation diagram of the reflector of the figure 2 , the gain G in dB is given in ordinate, and in abscissa the angle θ in degrees.

Dans le mode de réalisation de l'invention illustré sur la figure 1, on a représenté en coupe axiale un réflecteur secondaire 1 d'une antenne à double réflecteur relié à un guide d'onde 2. Le guide d'onde 2 est ici un tube creux métallique, par exemple en aluminium. Son diamètre, d'environ λg/2,5 où λg est la longueur d'onde du signal RF guidé, est choisi de manière à permettre la propagation du mode TE11 seulement, avant l'apparition de modes supèrieurs. Le réflecteur secondaire 1 comporte un corps diélectrique 3 dont l'extrémité 4 de moindre diamètre est reliée au guide d'onde 2. Le corps diélectrique 3 du réflecteur secondaire 1 est par exemple en un matériau diélectrique comme du plastique. L'extrémité opposée 5 du corps diélectrique 3 est creusée pour former une surface interne 6 concave réfléchissante pour le signal RF. La surface interne 6 du réflecteur secondaire 1 est par exemple une surface de révolution décrite par une équation polynomiale autour d'un axe de révolution W-W' La surface interne 6 peut être recouverte d'un métal réfléchissant, comme l'argent. La surface externe 7 du réflecteur secondaire 1 est la surface placée en regard du réflecteur primaire. La surface externe 7 est une surface de révolution autour de l'axe de révolution W-W". In the embodiment of the invention illustrated on the figure 1 , in axial section, is shown a secondary reflector 1 of a double reflector antenna connected to a waveguide 2 . The waveguide 2 is here a hollow metal tube, for example aluminum. Its diameter, about λ g / 2.5 where λ g is the wavelength of the guided RF signal, is chosen so as to allow propagation of the TE11 mode only, before the appearance of higher modes. The secondary reflector 1 comprises a dielectric body 3 whose end 4 of smaller diameter is connected to the waveguide 2 . The dielectric body 3 of the secondary reflector 1 is for example a dielectric material such as plastic. The opposite end 5 of the dielectric body 3 is dug to form a reflective inner concave surface 6 for the RF signal. The inner surface 6 of the secondary reflector 1 is for example a surface of revolution described by a polynomial equation around an axis of revolution W-W ' The inner surface 6 may be covered with a reflecting metal, such as silver. The outer surface 7 of the secondary reflector 1 is the surface placed facing the primary reflector. The outer surface 7 is a surface of revolution about the axis of revolution WW ".

L'extrémité 4 du corps diélectrique 3 du réflecteur secondaire 1 est munie extérieurement d'un renflement, ici en forme de cône tronqué, formant un cornet 8 (« horn » en anglais) dont la surface externe 9 présente un profil continu. La surface extérieure 9 du cornet 8 est lisse et métallisée pour être réfléchissante. La jonction 10 du rèflecteur secondaire 1 et du guide d'onde 2 est située à l'extrémité de moindre diamètre du cornet 8. Une partie du matériau diélectrique du corps diélectrique 3 se prolonge pour pénétrer à l'intérieur du guide d'onde 2, afin d'assurer le maintien mécanique et la transition radio-électrique entre le guide d'onde 2 et le réflecteur secondaire 1.The end 4 of the dielectric body 3 of the secondary reflector 1 is externally provided with a bulge, here in the shape of a truncated cone, forming a horn 8 ("horn" in English) whose outer surface 9 has a continuous profile. The outer surface 9 of the horn 8 is smooth and metallized to be reflective. The junction 10 of the secondary reflector 1 and the waveguide 2 is located at the smaller diameter end of the horn 8 . Part of the dielectric material of the dielectric body 3 extends to penetrate inside the waveguide 2, to ensure the mechanical maintenance and the radio-electric transition between the waveguide 2 and the secondary reflector 1 .

On considérera maintenant la figure 2 qui illustre un mode de réalisation avantageux d'un réflecteur secondaire 20, Bien qu'un cornet de forme sensiblement conique permette de résoudre le problème, de meilleurs résultats peuvent être obtenus avec un cornet 21 dont la surface externe 22 possède un profil dèfini par la relation : ρ z = a ω + ρ 0 - a ω 1 - A z + L L + A sin 2 π z + L 2 L

Figure imgb0002

permettant des transitions douces entre un guide d'onde et la surface interne réfléchissante 23 du réflecteur secondaire 20, We will now consider the figure 2 illustrating an advantageous embodiment of a secondary reflector 20 , Although a horn of substantially conical shape solves the problem, better results can be obtained with a horn 21 whose outer surface 22 has a profile defined by the relationship : ρ z = at ω + ρ 0 - at ω 1 - AT z + The The + AT sin 2 π z + The 2 The
Figure imgb0002

allowing smooth transitions between a waveguide and the reflecting inner surface 23 of the secondary reflector 20,

Les figures 3a et 3b montre la comparaison entre un cornet 30 en forme de cône tronqué (fig.3a) et un cornet 31 ayant une surface externe à profil défini par la relation suivante (fig. 3b) : ρ z = a ω + ρ 0 - a ω 1 - A z + L L + A sin 2 π z + L 2 L

Figure imgb0003

dans laquelle

  • A est une constante numérique,
  • aw est le premier rayon de la première extrémité du réflecteur secondaire,
  • ρo est le deuxième rayon de la deuxième extrémité du réflecteur secondaire,
  • L est la hauteur totale du réflecteur secondaire,
  • z est la hauteur considérée du réflecteur secondaire, et
  • ρ(z) est le rayon d'une section placée à la hauteur z du réflecteur secondaire.
The Figures 3a and 3b shows the comparison between a truncated cone-shaped horn 30 ( fig.3a ) and a horn 31 having a profile outer surface defined by the following relation ( Fig. 3b ): ρ z = at ω + ρ 0 - at ω 1 - AT z + The The + AT sin 2 π z + The 2 The
Figure imgb0003

in which
  • A is a numerical constant,
  • w is the first radius of the first end of the secondary reflector,
  • ρ o is the second radius of the second end of the secondary reflector,
  • L is the total height of the secondary reflector,
  • z is the considered height of the secondary reflector, and
  • ρ (z) is the radius of a section placed at the height z of the secondary reflector.

Le cornet 31 avec un tel profil a une meilleure efficacité, une polarisation croisée moins élevée, des lobes latéraux ayant un niveau plus faible et une bande de fréquence de largeur accrue.The horn 31 with such a profile has a better efficiency, a lower cross polarization, side lobes having a lower level and a frequency band of increased width.

Sur les figures 4a et 4b, un réflecteur secondaire 40 relié à un guide d'onde 41 est représenté en perspective. La figure 4a est une coupe partielle. Le réflecteur secondaire 40 comporte un renflement, formant un cornet 42 ayant un profil continu tel que décrit par l'équation précédemment mentionnée, placé à son extrémité de moindre diamètre coopérant avec le guide d'onde 41. On the Figures 4a and 4b , a secondary reflector 40 connected to a waveguide 41 is shown in perspective. The figure 4a is a partial section. The secondary reflector 40 comprises a bulge, forming a horn 42 having a continuous profile as described by the aforementioned equation, placed at its smaller diameter end cooperating with the waveguide 41.

La figure 5 est une comparaison de la largeur du faisceau sortant d'un guide d'onde de l'art antérieur et celui sortant du cornet ayant un profil tel que décrit par l'équation précédemment mention placé à l'extrémité de moindre diamètre du réflecteur secondaire. L'amplitude du signal S est donné pour une fréquence de 7,8 GHz dans le plan vertical (courbes 50 et 51) et dans le plan horizontal (courbes 52 et 53) en fonction de l'angle d'ouverture θ du guide d'onde (courbes 51 et 53) ou du cornet à son extrémité de plus grand diamètre (courbes 50 et 52) respectivement. Lorsqu'une antenne comporte un cornet ayant un profil tel que décrit par l'équation précédemment mentionnée, son diagramme est plus directif, avec des pertes par débordement réduites.The figure 5 is a comparison of the width of the beam emerging from a waveguide of the prior art and that of the horn having a profile as described by the equation previously mentioned placed at the end of smaller diameter of the secondary reflector. The amplitude of the signal S is given for a frequency of 7.8 GHz in the vertical plane (curves 50 and 51 ) and in the horizontal plane (curves 52 and 53 ) as a function of the opening angle θ of the waveguide. wave (curves 51 and 53) or the horn at its end of larger diameter (curves 50 and 52 ) respectively. When an antenna has a horn having a profile as described by the aforementioned equation, its diagram is more directive, with reduced overflow losses.

On voit sur la figure 6 la faible perte 60 par réflexion R du réflecteur secondaire en fonction de la fréquence ν du signal PF émis / transmis.We see on the figure 6 the low reflection loss R 60 of the secondary reflector as a function of the frequency ν of the transmitted / transmitted PF signal.

La ligure 7 représente le diagramme de radiation du réflecteur secondaire respectivement dans le plan horizontal (courbe 70) et dans le plan vertical (courbe 71), On voit, pour un angle d'ouverture ρ autour de -120° et +120° par rapport à l'axe de révolution W-W' du réflecteur, des zones 72 et 73 respectivement dans lesquelles les pertes par débordement sont nettement améliorées par rapport à l'art antércur.FIG. 7 represents the radiation pattern of the secondary reflector respectively in the horizontal plane (curve 70 ) and in the vertical plane (curve 71 ). It can be seen, for an opening angle ρ around -120 ° and + 120 ° by relative to the axis of revolution WW 'of the reflector, areas 72 and 73 respectively in which the overflow losses are significantly improved over the antecuric art.

Claims (6)

  1. Secondary reflector (1) for a double reflector antenna comprising:
    - a first end (4) having a first diameter,
    - a second end (5) having a second diameter longer than the first diameter,
    - a convex, reflective inner surface (6) positioned at the second end (3) having an axis of revolution (W-W'),
    - an outer surface (7), having the same axis of revolution as the inner surface (6), connecting the first end (4) to the second end (5),
    - a dielectric body (3) extending between the first and second ends (4, 5) and limited by the inner surface (6) and the outer surface (7),
    characterised in that the dielectric body (3) has, at the level of the first end (4), a bulge forming a horn (8) having an outer surface (9) with a continuous profile, the end of which having the shorter diameter is designed to be coupled to the end of a cylindrical waveguide (2), the outer surface (9) of which is reflective.
  2. Secondary reflector (1) according to claim 1, wherein the horn (8) has a substantially truncated cone shape.
  3. Secondary reflector (1) according to claim 1, wherein the profile of the outer surface (9) of the horn (8) is defined by the formula: p z = a w + p o - a w 1 - A z + L L + A sin 2 π 2 + L 2 L
    Figure imgb0006

    where
    A is a digital constant,
    aw is the first radius of the first end of the secondary reflector,
    ρo is the second radius of the second end of the secondary reflector,
    L is the total height of the secondary reflector,
    z is the considered height of the secondary reflector, and
    ρ(z) is the radius of a cross-section positioned at the height z of the secondary reflector.
  4. Secondary reflector (1) according to claim 3, wherein the constant A is different from zero.
  5. Secondary reflector (1) according to one of the previous claims, wherein the outer surface (9) of the horn (8) is metallic.
  6. Double reflector antenna comprising a secondary reflector (1) according to one of the previous claims.
EP10164928.3A 2009-06-04 2010-06-04 Secondary reflector for a double reflector antenna Active EP2264832B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0953694A FR2946466B1 (en) 2009-06-04 2009-06-04 SECONDARY REFLECTOR FOR A DOUBLE REFLECTOR ANTENNA

Publications (3)

Publication Number Publication Date
EP2264832A2 EP2264832A2 (en) 2010-12-22
EP2264832A3 EP2264832A3 (en) 2011-01-19
EP2264832B1 true EP2264832B1 (en) 2015-08-19

Family

ID=41327325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10164928.3A Active EP2264832B1 (en) 2009-06-04 2010-06-04 Secondary reflector for a double reflector antenna

Country Status (2)

Country Link
EP (1) EP2264832B1 (en)
FR (1) FR2946466B1 (en)

Families Citing this family (147)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
CN107579353B (en) * 2017-08-25 2020-10-09 西安电子科技大学 High-directivity columnar convex surface conformal reflector antenna based on super surface
CN110571531B (en) * 2019-09-27 2021-07-30 中国电子科技集团公司第三十八研究所 Multi-beam phased array antenna based on parabolic cylinder reflective array
US11791562B2 (en) * 2021-02-04 2023-10-17 Orbit Communication Systems Ltd. Ring focus antenna system with an ultra-wide bandwidth

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724349B1 (en) * 2002-11-12 2004-04-20 L-3 Communications Corporation Splashplate antenna system with improved waveguide and splashplate (sub-reflector) designs
JP4919423B2 (en) * 2007-07-06 2012-04-18 日本無線株式会社 Antenna feeder

Also Published As

Publication number Publication date
EP2264832A3 (en) 2011-01-19
FR2946466A1 (en) 2010-12-10
FR2946466B1 (en) 2012-03-30
EP2264832A2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
EP2264832B1 (en) Secondary reflector for a double reflector antenna
EP2081258B1 (en) Secondary reflector of an antenna with double reflector
EP2804259B1 (en) Radome for a concave reflector antenna
EP1445829B1 (en) Subreflector for Cassegrain microwave antenna
FR2986376A1 (en) SECONDARY REFLECTOR OF DOUBLE REFLECTOR ANTENNA
EP0274074B1 (en) Feeding radiator for a communications antenna
EP3109941B1 (en) Microwave antenna with dual reflector
EP2416449A1 (en) Parabolic-reflector antenna
EP1489688B1 (en) Feeding for reflector antenna
EP0057121A2 (en) High-frequency dual-band feeder and antenna incorporating the same
EP2658032B1 (en) Corrugated horn antenna
FR2954858A1 (en) ANTENNA RADIANT A SIGNAL IN A DIRECTION OF THE SPACE DEPENDENT OF THE FREQUENCY OF THIS SIGNAL
EP0031275B1 (en) Microwave window and waveguide with such a window
WO2008037887A2 (en) Antenna using a pfb (photonic forbidden band) material and system
EP2264833B1 (en) Secondary reflector of a parabolic antenna
EP3721501B1 (en) Microwave component and associated manufacturing process
FR2594260A1 (en) HYPERFREQUENCY PRIMARY SOURCE FOR CONCEALED SCANNING ANTENNA AND INCORPORATING ANTENNA.
EP3264531A1 (en) Microwave antenna with dual reflector
FR2968848A1 (en) PARABOLIC REFLECTOR ANTENNA
EP3155690B1 (en) Flat antenna for satellite communication
EP3155689B1 (en) Flat antenna for satellite communication
EP1928055A1 (en) Device for powering a reflector-type antenna
FR2661562A1 (en) CASSEGRAIN ANTENNA.
EP2595239B1 (en) Lead-through antenna with a single- or double-ridge waveguide
FR2731846A1 (en) WALL FOR RADOMES AND RADOMES SO OBTAINED

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110719

17Q First examination report despatched

Effective date: 20120521

111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Effective date: 20130410

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

D11X Information provided on other rights and legal means of execution (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150319

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 744371

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010026750

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 744371

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150819

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151119

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151221

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010026750

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

26N No opposition filed

Effective date: 20160520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160604

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100604

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160604

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230510

Year of fee payment: 14

Ref country code: DE

Payment date: 20230502

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230504

Year of fee payment: 14