EP2262735A1 - Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur - Google Patents

Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur

Info

Publication number
EP2262735A1
EP2262735A1 EP09719637A EP09719637A EP2262735A1 EP 2262735 A1 EP2262735 A1 EP 2262735A1 EP 09719637 A EP09719637 A EP 09719637A EP 09719637 A EP09719637 A EP 09719637A EP 2262735 A1 EP2262735 A1 EP 2262735A1
Authority
EP
European Patent Office
Prior art keywords
oxide
zirconium
supported
titanium
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09719637A
Other languages
German (de)
English (en)
Inventor
Stephan Verdier
Guillaume Criniere
Simon Ifrah
Rui Jorge Coelho Marques
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Operations SAS
Original Assignee
Rhodia Operations SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Operations SAS filed Critical Rhodia Operations SAS
Publication of EP2262735A1 publication Critical patent/EP2262735A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • C01P2006/13Surface area thermal stability thereof at high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a composition based on a zirconium oxide, a titanium oxide or a mixed oxide of zirconium and titanium on a silica-based support, its methods of preparation and its use as a catalyst.
  • the catalysts often consist of an active phase which is one which has the desired catalytic properties and a support on which this active phase is deposited. It is important for the efficiency of the catalyst that the active phase is dispersed as finely as possible on the support, that is to say that this active phase is in the form of fine particles, not aggregated on the support. In addition, since the catalysts are often exposed to high temperatures, the finely divided state of the active phase should also be maintained at these temperatures. In other words, there should be no sintering of the particles.
  • the object of the invention is the development of catalysts meeting these conditions.
  • the composition of the invention comprises at least one supported oxide, based on a zirconium oxide, a titanium oxide or a mixed oxide of zirconium and titanium on a support based on silica, and it is characterized in that, after calcination for 4 hours at 900 ° C., the supported oxide is in the form of particles deposited on said support, the size of which is at most 5 nm when the supported oxide is based on a zirconium oxide; at most 10 nm when the supported oxide is based on a titanium oxide; at most 8 nm when the supported oxide is based on a mixed oxide of zirconium and titanium.
  • the composition comprises at least the same type of supported oxide and the same type of support and is characterized in that, after calcination for 4 hours at 1000 ° C., the supported oxide is in the form of particles, deposited on said support, whose size is at most 7 nm when the supported oxide is based on a zirconium oxide; at most 19 nm when the supported oxide is based on a titanium oxide; at most 10 nm when the supported oxide is based on a mixed oxide of zirconium and titanium.
  • Rare earth means the elements of the group constituted by yttrium and the elements of the periodic classification of atomic number inclusive between 57 and 71.
  • specific surface means the specific surface area B. AND. determined by nitrogen adsorption according to ASTM D 3663-78 based on the BRUNAUER method -
  • calcinations for a given temperature and duration correspond, unless otherwise indicated, to calcinations under air at a temperature level over the time indicated.
  • composition of the invention comprises an oxide supported in the form of particles of nanometric dimensions, these particles being deposited on a support.
  • the supported oxide particles are predominantly present on the surface of this support, it being understood that the particles may be present within the pores of the support but remaining on the surface of these pores.
  • This supported oxide may be first a single zirconium oxide, single oxide, in ZrO 2 form.
  • the supported oxide may also be a doped zirconium oxide, that is to say it may be based on a zirconium oxide and at least one oxide of another element M chosen from praseodymium. , lanthanum, neodymium and yttrium.
  • zirconium oxide ZrO 2 is the essential or majority constituent, the element or elements M then constitute the rest of the supported oxide.
  • the content of element M is at most 50% by weight, zirconium oxide constituting at least 50% by weight of the supported oxide. This content is expressed as the mass of oxide of the element M or of all the elements M, relative to the mass of the supported oxide as a whole (zirconium oxide and oxide (s) element (s) ) M). This content of element M may vary over a wide range and may especially be between 5% and 40% and more particularly between 10% and 40%. This content may be especially between 10% and 30%.
  • the supported oxide may also be TiO 2 titanium oxide.
  • the supported oxide may be a mixed oxide of zirconium and titanium.
  • mixed oxide is meant here a solid solution of titanium oxide and zirconium in the form of a pure crystallographic phase structure ZrTiO 4 .
  • XRD X-ray diffraction technique
  • This solid solution is generally present for proportions which may be between 30% and 40% by weight of titanium oxide relative to the total mass of the mixed oxide.
  • composition may comprise several types of oxide on the support, that is to say both zirconium oxide particles, titanium oxide particles and mixed oxide particles.
  • the supported oxide is in crystalline form.
  • the supported oxide is present in the composition of the invention in the form of particles of nanometric dimensions.
  • these particles can be either individualized or possibly in the form of aggregates.
  • the size values given in the present description are average sizes determined by the XRD technique. The value measured
  • DRX is the size of the coherent domain calculated from the width of the three most intense diffraction lines in the x, y, z space group and using the Debye-Scherrer model.
  • the particle sizes of the supported oxide were given above depending on the supported oxide and the calcination conditions of the composition. It may be noted here that the values which have been given for a composition calcined at 1000 ° C. (second embodiment) can be applied to a composition which has also been previously calcined at 900 ° C.
  • the particle sizes of the supported oxide may be even smaller than those given above.
  • this size may be at most 4 nm when the supported oxide is based on an optionally doped zirconium oxide and at most 7 nm when the The supported oxide is based on a titanium oxide or a mixed oxide of zirconium and titanium.
  • the minimum particle sizes are not critics and they can be very weak.
  • the particle size may be at least 2 nm, more particularly at least 3 nm when the supported oxide is based on a zirconium oxide, optionally doped, and at least 3 nm.
  • this size can be at most 6 nm when the supported oxide is based on a zirconium oxide, optionally doped, of at most 15 nm when the oxide supported is based on a titanium oxide and at most 8 nm when the supported oxide is based on a mixed oxide of zirconium and titanium.
  • the particle size may be at least 2 nm, more particularly at least 3 nm when the supported oxide is based on an optionally doped zirconium oxide of at least 6 nm, more particularly at least 7 nm, when the supported oxide is based on a titanium oxide and at least 5 nm, more particularly at least 6 nm when the supported oxide is based on a mixed oxide of zirconium and titanium.
  • the supported oxide content of the composition of the invention is generally at most 50% by weight of the entire composition (supported oxide and support). It may be in particular of not more than 30%.
  • the minimum supported oxide content is that from which one skilled in the art knows that sufficient catalytic activity can be obtained and is set according to the desired performance of the composition. By way of example only, this minimum content is generally at least 3%, more particularly at least 4% by weight.
  • the supported oxide content may in particular be between 10% and
  • the support of the compositions of the invention is based on silica.
  • a silica suitable for these uses is used, and preferably a silica having a high and stable specific surface area, that is to say which remains at a sufficient value. even after exposure to high temperature.
  • This silica may be a precipitated silica or a pyrogenation silica.
  • the silica may optionally be stabilized by a stabilizing element such as aluminum, for example.
  • suitable silicas for the invention are those described in WO 2005/061384 and WO 99/49850.
  • compositions of the invention may have a high BET surface area which may be, after calcination for 4 hours at 900 ° C., of at least 80 m 2 / g, more particularly at least 120 m 2 / g more particularly at least 150 m 2 / g. After calcination at 1000 ° C. for 4 hours, these compositions may have an area of at least 50 m 2 / g, more particularly at least 80 m 2 / g, still more particularly at least 100 m 2 / g.
  • silicas which have been calcined beforehand at a temperature of between 600 ° C. and 650 ° C. and 900 ° C. and which have a loss on ignition (PAF) of between 2% and 15% are used as support. %, more particularly between 2 and 10% (measured at constant weight).
  • PAF loss on ignition
  • compositions of the invention can be prepared by various methods which will now be described.
  • This first method comprises the following steps:
  • the first step of this process is therefore to form a mixture from a colloidal dispersion of a zirconium compound or a colloidal dispersion of a titanium compound or a dispersion comprising both a compound of zirconium and a titanium compound this depending on the nature of the oxide supported in the composition that is to be prepared.
  • this mixture further comprises a colloidal dispersion of a oxide of this element. It is also possible to use a single colloidal dispersion in which the colloids are based on a mixed zirconium oxide and on the element M.
  • the present description applies well understood here in the case where the supported oxide comprises several elements M and it is understood that one can then use in this case several dispersions of the different elements M or possibly a single colloidal dispersion comprising all the elements M.
  • the dispersions of the different elements M or possibly a single colloidal dispersion comprising all the elements M.
  • colloidal dispersion any system consisting of fine solid particles of colloidal dimensions, that is to say dimensions of between about 1 nm and about 100 nm (dimension measured by the quasi-elastic light scattering technique), based on a compound of zirconium, titanium and / or the element M, this compound being generally an oxide and / or a hydrated oxide, in stable suspension in an aqueous liquid phase, said particles possibly also possibly containing quantities residuals of bound or adsorbed ions such as, for example, nitrates, acetates, chlorides or ammoniums.
  • titanium or element M can be either totally in the form of colloids, or simultaneously in the form of ions and in the form of colloids.
  • a mixture of the dispersion is formed with a suspension of the support.
  • a colloidal dispersion of silica may be used.
  • the suspension is generally an aqueous suspension.
  • the mixture is in the aqueous phase, generally water and for example distilled or permuted water.
  • the second step of the process is a drying step.
  • This drying is done by atomization.
  • Spray drying is understood to mean spray drying of the mixture in a hot atmosphere (spray-drying).
  • the atomization can be carried out using any sprayer known per se, for example by a spraying nozzle of the watering apple or other type. It is also possible to use so-called turbine atomizers.
  • spraying techniques that can be implemented in the present process, reference may be made in particular to the basic work of MASTERS entitled "SPRAY-DRYING" (second edition, 1976, Editions George Godwin - London).
  • the atomization output temperature may be, for example, between 80 ° C. and 150 ° C.
  • the last step of the process is a calcination step.
  • This calcination makes it possible to develop the crystallinity of the supported product and it can also be adjusted and / or chosen as a function of the temperature of subsequent use reserved for the composition according to the invention, and this taking into account that the specific surface area of the product is even lower than the calcination temperature used is higher.
  • Such calcination is generally performed under air, but a calcination carried out for example under inert gas or under a controlled atmosphere (oxidizing or reducing) is obviously not excluded.
  • the calcination temperature is generally limited to a range of values between 500 ° C. and 800 ° C., preferably between
  • the duration of calcination is adjusted in a known manner, it can vary for example between 30 minutes and 4 hours, this duration being generally lower as the temperature is high.
  • compositions of the invention may also be prepared by a second method which will be described below. This process comprises the following steps:
  • the mixture thus formed is heated to a temperature of at least 100 ° C .;
  • said precipitate is calcined.
  • a suspension of the support is also started but it is mixed with a zirconium salt and / or a titanium salt and a salt of the element M, in the case of compositions in which the supported oxide is based on a zirconium oxide and an oxide of another element M.
  • This mixture is in aqueous phase, usually water.
  • the starting silica suspension may optionally be acidified.
  • the salts are preferably inorganic salts and they may be chosen in particular from nitrates, sulphates, acetates and chlorides.
  • zirconyl sulphate, zirconyl nitrate or zirconyl chloride may more particularly be mentioned. It is also possible to use an oxychloride or a titanium oxysulphate.
  • the next step of the process is the step of heating the liquid mixture thus formed.
  • the temperature at which the liquid mixture is heated is at least
  • the heating operation can be conducted by introducing the liquid mixture in a closed chamber (closed reactor type autoclave). Under the conditions of the temperatures given above, and in aqueous medium, it is thus possible to specify, by way of illustration, that the pressure in the closed reactor can vary between a value greater than 1 bar (10 5 Pa) and 165 bar (1 bar). , 65. 10 7 Pa), preferably between 5 Bar (5 ⁇ 10 5 Pa) and 165 Bar (1, 65. 10 7 Pa). It is also possible to carry out heating in an open reactor for temperatures close to 100 ° C.
  • the heating may be conducted either in air or in an atmosphere of inert gas, preferably nitrogen.
  • the duration of the heating can vary within wide limits, for example between 1 and 48 hours, preferably between 2 and 24 hours.
  • the rise in temperature is carried out at a speed which is not critical, and it is thus possible to reach the fixed reaction temperature by heating the liquid mixture for example between 30 minutes and 4 hours, these values being given as to indicative.
  • a solid precipitate is recovered which can be separated from its medium by any conventional solid-liquid separation technique such as, for example, filtration, decantation, spinning or centrifugation.
  • the product as recovered can then be subjected to washes, which are then operated with water or optionally with a basic solution, for example an ammonia solution or an acidic solution, a nitric acid solution, for example.
  • the method comprises a ripening.
  • This ripening is generally carried out on a suspension obtained after returning to the water of the precipitate, especially after washing.
  • the ripening is done by heating again this suspension.
  • the temperature at which the suspension is heated is at least 40 ° C., more particularly at least 60 ° C. and even more particularly at least 100 ° C. Generally, this temperature is at most 200 ° C., more particularly at most 150 ° C.
  • the medium is thus maintained at a constant temperature for a period of time which is usually at least 30 minutes and more particularly at least 1 hour.
  • the ripening can be done at atmospheric pressure or possibly at a higher pressure.
  • the last stage of calcination of this second process can be carried out in the same way as for the first process and thus what has been described above for this calcination applies likewise here.
  • compositions of the invention may also be prepared by a third method which will now be described. This process comprises the following steps:
  • a base is brought into contact with the preceding mixture so as to form a precipitate
  • the first step of this third method is similar to the first one of the second method and what has been described above on this subject applies likewise here.
  • the second step consists in obtaining a precipitate by reacting the mixture formed in the preceding stage with a base.
  • Hydroxide, carbonate or hydroxycarbonate products can be used as the base, for example.
  • Mention may be made of alkali or alkaline earth hydroxides, secondary, tertiary or quaternary amines. However, amines and ammonia may be preferred in that they reduce the risk of pollution by alkaline or alkaline earth cations. We can also mention urea.
  • the placing in the presence or in contact can be done in any order in a liquid medium.
  • the contact with the base leads to the formation of a precipitate suspended in the reaction liquid medium. More particularly, the addition of the base is carried out until a pH of the reaction medium of at least 7 is obtained.
  • this process may comprise an optional additional step which consists in subjecting the suspension resulting from the preceding step to maturing.
  • the ripening is done by heating the suspension to a temperature of at least 60 ° C., more particularly at least 80 ° C. Generally this temperature is at most 200 ° C., more particularly at most 150 ° C.
  • the medium is thus maintained at a constant temperature for a period of time which is usually at least 30 minutes and more particularly at least 1 hour.
  • the ripening can be done at atmospheric pressure or possibly at a higher pressure.
  • compositions of the invention as described above or as obtained by the methods described above are in the form of powders but they may optionally be shaped to be in the form of granules, beads, cylinders or nests. bee of variable dimensions.
  • compositions of the invention can be used as catalysts.
  • the invention also relates to catalytic systems comprising the compositions of the invention.
  • These systems comprise a coating (wash coat) with catalytic properties based on these compositions and a binder of known type, on a substrate of the type for example metallic monolith or ceramic. This coating is obtained by mixing the composition with the binder so as to form a suspension which can then be deposited on the substrate.
  • catalytic systems and more particularly the compositions of the invention can find very many applications. They are thus particularly well adapted to, and therefore usable in the catalysis of various reactions such as, for example, dehydration, hydrosulfuration, hydrodenitrification, desulfurization, hydrodesulphurization, dehydrohalogenation, reforming, reforming.
  • the catalytic systems and compositions of the invention may finally be used as a catalyst for the selective reduction of NOx by reduction reaction of these NOx by any hydrocarbon reducing agent or else by ammonia or urea and, in this case as a catalyst for the hydrolysis or decomposition reaction of urea to ammonia (SCR process).
  • the compositions of the invention can be used in combination with precious metals or transition metals in oxide, sulfide or other form and thus play the role of support for these metals.
  • the nature of these metals and the techniques for incorporating them into the support compositions are well known to those skilled in the art.
  • the metals can be gold, silver, platinum, rhodium, palladium or iridium, molybdenum, tungsten, nickel, cobalt, manganese or vanadium; they may be used alone or in combination and they may in particular be incorporated into the compositions by impregnation.
  • This example relates to the preparation according to the first method of the invention of a composition based on zirconium oxide dispersed on a silica support in the respective proportions by weight of oxide of 30% and 70%.
  • a colloidal solution of ZrO 2 is first carried out.
  • a concentrated solution of ZrO (NO 3 ) 2 with deionized water is diluted to obtain 600 ml of a solution of ZrO (NO 3 ) 2 at 80 g / l eq. ZrO 2 having a pH of 2.
  • An NH 3 solution of 28% is added instantaneously so that the final pH reaches 10 and the formation of a precipitate is observed.
  • the precipitate is filtered and then washed with 6L of deionized water.
  • EXAMPLE 2 This example relates to the preparation according to the third method of the invention of a composition based on zirconium oxide on a silica support in the respective proportions by mass of oxide of 10% and 90%.
  • the silica used is Tixosil 68® whose solids content at 900 ° C. is 90%
  • the zirconium source is a solution of ZrO (NO 3 ) 2 whose solids content at 900 ° C. is 19.1%.
  • a dilute solution of 10% ammonia is prepared by adding a volume of 28% NH 3 with two volumes of water.
  • a stock is formed in the reactor by introducing 59.80 g of silica (ie 54 g of SiO 2) diluted with 771 ml of deionized water (70 g / l eq SiO 2), then 68% HNO 3 is added. in order to obtain a dispersion at pH 2.
  • 31.41 g of ZrO (NO 3 ) 2 solution ie 6 g of ZrO 2 eq.
  • 86 ml with deionized water 70 g / l eq ZrO 2
  • the ammonia solution is then added at 10 ml / min until a pH of 9 is obtained (added mass: 32 g).
  • the whole is transferred into an autoclave and brought under agitation to
  • the cooled mixture is then filtered off and isovolume washed with water at room temperature.
  • the cake is then calcined in air at 700 ° C. for 4 hours.
  • This example relates to the preparation according to the third method of the invention of a composition based on zirconium oxide on a silica support in the respective proportions by weight of oxide of 30% and 70%.
  • the same silica, the same source of zirconium and the same ammonia solution as in Example 2 are used.
  • a stock is formed in the reactor by introducing 46.51 g of silica (ie 42 g of SiO 2 ) diluted with 60OmL of deionized water (70 g / L eq SiO 2 ), followed by HNO 3 68% in order to obtain a dispersion at pH 2.
  • 94.24 g of ZrO (NO 3 ) 2 solution ie 18 g of ZrO 2 eq.
  • diluted to 257 ml with deionized water (70 g / L eq ZrO 2 ) are introduced into the bottom of the tank, the ammonia solution is then added at 10 ml / min until a pH of 9 is obtained (added mass: 73 g).
  • the treatment is then carried out by autoclaving, washing and calcining in the same manner as in Example 2.
  • EXAMPLE 4 This example relates to the preparation according to the third method of the invention of a composition based on titanium oxide on a silica support in the respective proportions by mass of oxide of 10% and 90%.
  • Tixosil 68® silica powder 200 g are dispersed in 570 ml of water in which HNO 3 has been added to obtain a pH of 0.5. 26.8 g of TiOCI 2 (21% equivalent weight of TiO 2) are then added to the medium obtained. 10% NH 4 OH is then added to achieve a pH of 7.
  • Example 2 The treatment is then carried out by autoclaving, washing and calcining in the same manner as in Example 2.
  • This example relates to the preparation according to the third method of the invention of a composition based on titanium oxide on a silica support in the respective proportions by mass of oxide of 30% and 70%.
  • Example 2 The treatment is then carried out by autoclaving, washing and calcining in the same manner as in Example 2.
  • This example relates to the preparation according to the third method of the invention of a composition based on oxides of titanium and zirconium on a silica support in the respective proportions by weight of oxide of 30% for ZrTiO 4 and 70% for SiO2.
  • Example 2 The treatment is then carried out by autoclaving, washing and calcining in the same manner as in Example 2.
  • the XRD analysis only shows the presence of the ZrTiO 4 phase.
  • the following examples are comparative examples implementing the known technique of impregnation.
  • This example relates to the preparation of a composition based on titanium oxide on a silica support in the respective proportions by mass of oxide of 10% and 90%.
  • a composition containing 90% of SiO 2 and 10% of TiO 2 is prepared by dry impregnation of 16.09 g of silica according to Example 2 with 6.64 g of a 25.1% by weight TiOCI solution. 2 previously diluted in 23.5 ml of H 2 O.
  • the powder is then calcined under air at 700 ° C. for 4 hours. It is verified by XRD that only the anatase phase is present between 700 and 900 ° C.
  • This example relates to the preparation of a composition based on titanium oxide on a silica support in the respective proportions by weight of oxide of 30% and 70%.
  • a mixture containing 70% of SiO 2 and 30% of TiO 2 is produced by dry impregnation of 12.88 g of silica according to Example 2 with 20.49 g of a 25.1% by weight TiOCI solution. 2 previously diluted in 9 ml of H 2 O. The powder is then calcined in air at 700 ° C for 4 hours.
  • This example relates to the preparation of a composition based on titanium oxide on a silica support in the respective proportions by weight of oxide of 30% and 70%.
  • a mixture containing 70% of SiO 2 and 30% of TiO 2 is produced by dry impregnation of 22.5 g of silica according to Example 2 with 15.45 g of a 25.1% by weight TiOCI solution. 2 previously diluted in 14.3 ml of H 2 O.
  • the powder is then calcined under air at 700 ° C. for 4 hours. It is verified by XRD that only the ZrTiO 4 phase is present between 700 and 1000 ° C.
  • compositions according to the invention have supported oxides whose size is significantly smaller than those of the oxides of the compositions obtained by the known impregnation technique.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

La composition de l'invention comprend au moins un oxyde supporté, à base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support à base de silice. Elle est caractérisée en ce que, après calcination 4 heures à 900 °C, l'oxyde supporté est sous forme de particules, déposées sur ledit support, dont la taille est d'au plus 5 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 10 nm lorsque l'oxyde supporté est à base d'un oxyde de titane et d'au plus 8 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane. La composition de l'invention peut être utilisée comme catalyseur, notamment pour la réduction sélective des NOx.

Description

COMPOSITION A BASE D'UN OXYDE DE ZIRCONIUM, D'UN OXYDE DE
TITANE OU D'UN OXYDE MIXTE DE ZIRCONIUM ET DE TITANE SUR UN
SUPPORT EN SILICE, PROCEDES DE PREPARATION ET UTILISATION
COMME CATALYSEUR
La présente invention concerne une composition à base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support à base de silice, ses procédés de préparation et son utilisation comme catalyseur.
Les catalyseurs sont souvent constitués d'une phase active qui est celle qui a les propriétés catalytiques recherchées et d'un support sur lequel est déposée cette phase active. Il est important pour l'efficacité du catalyseur que la phase active soit dispersée le plus finement possible sur le support, c'est-à- dire que cette phase active se présente sous la forme de particules fines, non agrégées sur le support. En outre, comme les catalyseurs sont souvent exposés à des températures élevées, il convient aussi que l'état finement divisé de la phase active soit maintenu même à ces températures. En d'autres termes, il ne doit pas y avoir de frittage des particules.
L'objet de l'invention est la mise au point de catalyseurs répondant à ces conditions.
Dans ce but, la composition de l'invention selon un premier mode de réalisation comprend au moins un oxyde supporté, à base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support à base de silice, et elle est caractérisée en ce que, après calcination 4 heures à 9000C, l'oxyde supporté est sous forme de particules, déposées sur ledit support, dont la taille est d'au plus 5 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 10 nm lorsque l'oxyde supporté est à base d'un oxyde de titane; d'au plus 8 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane.
Selon un second mode de réalisation, la composition comprend au moins le même type d'oxyde supporté et le même type de support et elle est caractérisée en ce que, après calcination 4 heures à 10000C, l'oxyde supporté est sous forme de particules, déposées sur ledit support, dont la taille est d'au plus 7 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 19 nm lorsque l'oxyde supporté est à base d'un oxyde de titane; d'au plus 10 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront encore plus complètement à la lecture de la description qui va suivre, ainsi que des divers exemples concrets mais non limitatifs destinés à l'illustrer.
Par terre rare on entend les éléments du groupe constitué par l'yttrium et les éléments de la classification périodique de numéro atomique compris inclusivement entre 57 et 71.
Pour la suite de la description, on entend par surface spécifique, la surface spécifique B. ET. déterminée par adsorption d'azote conformément à la norme ASTM D 3663-78 établie à partir de la méthode BRUNAUER -
EMMETT- TELLER décrite dans le périodique "The Journal of the American
Chemical Society, 60, 309 (1938)".
En outre, les calcinations pour une température et une durée données correspondent, sauf indication contraire, à des calcinations sous air à un palier de température sur la durée indiquée.
La composition de l'invention comprend un oxyde supporté sous forme de particules de dimensions nanométriques, ces particules étant déposées sur un support. On entend par là que les particules d'oxyde supporté sont majoritairement présentes sur la surface de ce support étant entendu que les particules peuvent être présentes à l'intérieur des pores du support mais en restant à la surface de ces pores.
Cet oxyde supporté peut être tout d'abord un oxyde de zirconium seul, oxyde simple, sous forme ZrÛ2. L'oxyde supporté peut être aussi un oxyde de zirconium dopé, c'est-à- dire qu'il peut être à base d'un oxyde de zirconium et d'au moins un oxyde d'un autre élément M choisi parmi le praséodyme, le lanthane, le néodyme et ryttrium. Dans ce cas, l'oxyde de zirconium ZrÛ2 est le constituant essentiel ou majoritaire, l'élément ou les éléments M constituent alors le reste de l'oxyde supporté.
La teneur en élément M est d'au plus 50% en masse, l'oxyde de zirconium constituant au moins 50% en masse de l'oxyde supporté. Cette teneur est exprimée en masse d'oxyde de l'élément M ou de l'ensemble des éléments M, par rapport à la masse de l'oxyde supporté dans son ensemble (oxyde de zirconium et oxyde(s) d'élément(s) M). Cette teneur en élément M peut varier dans une large gamme et elle peut être notamment comprise entre 5% et 40% et plus particulièrement entre 10% et 40%. Cette teneur peut être tout particulièrement comprise entre 10% et 30%. L'oxyde supporté peut être aussi l'oxyde de titane TiO2.
L'oxyde supporté peut être encore un oxyde mixte de zirconium et de titane. Par oxyde mixte on entend ici une solution solide des oxydes de titane et de zirconium sous la forme d'une phase cristallographique pure de structure ZrTiO4. Dans ce cas l'analyse du produit par la technique de diffraction des rayons X (DRX) ne permet pas de mettre en évidence une autre structure que la structure ZrTiO4. Cette structure correspond à la référence 34-415 JCPDS.
Cette solution solide est généralement présente pour des proportions qui peuvent être comprises entre 30% et 40% en masse d'oxyde de titane par rapport à la masse totale de l'oxyde mixte.
On notera ici que la composition peut comprendre plusieurs types d'oxydes sur le support c'est-à-dire à la fois des particules d'oxyde de zirconium, des particules d'oxyde de titane et des particules d'oxyde mixte.
L'oxyde supporté est sous forme cristallisée. L'oxyde supporté est présent dans la composition de l'invention sous forme de particules de dimensions nanométriques.
On doit noter ici que ces particules peuvent être soit individualisées soit éventuellement sous forme d'agrégats.
Les valeurs de taille données dans la présente description sont des tailles moyennes déterminées par la technique DRX. La valeur mesurée en
DRX correspond à la taille du domaine cohérent calculé à partir de la largeur des trois raies de diffraction les plus intenses dans le groupe d'espace x, y, z et en utilisant le modèle de Debye-Scherrer.
Les tailles de particules de l'oxyde supporté ont été données plus haut en fonction de l'oxyde supporté et des conditions de calcination de la composition. On peut noter ici que les valeurs qui ont été données pour une composition calcinée à 10000C (second mode de réalisation) peuvent s'appliquer à une composition qui a été aussi préalablement calcinée à 9000C
4 heures ce qui montre qu'il n'y a pas de frittage substantiel des particules d'oxyde supporté lorsque les compositions de l'invention sont soumises à une augmentation de température entre 900°C et 10000C.
Selon des modes de réalisation préférés de l'invention, les tailles de particules de l'oxyde supporté peuvent être encore plus faibles que celles qui ont été données plus haut. Ainsi, pour des compositions calcinées 4 heures à 900°C, cette taille peut être d'au plus 4 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium, éventuellement dopé, et d'au plus 7 nm lorsque l'oxyde supporté est à base d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane. Les tailles minimales des particules ne sont pas critiques et elles peuvent être très faibles. A titre purement indicatif, la taille des particules peut être d'au moins 2 nm, plus particulièrement d'au moins 3 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium, éventuellement dopé, et d'au moins 3 nm, plus particulièrement d'au moins 4 nm lorsque l'oxyde supporté est à base d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane. Ces valeurs minimales sont données aussi ici pour des compositions calcinées 4 heures à 9000C.
Pour des compositions calcinées 4 heures à 10000C cette taille peut être d'au plus 6 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium, éventuellement dopé, d'au plus 15 nm lorsque l'oxyde supporté est à base d'un oxyde de titane et d'au plus 8 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane. Là encore à titre purement indicatif, et toujours pour des compositions calcinées 4 heures à 1000°C, la taille des particules peut être d'au moins 2 nm, plus particulièrement d'au moins 3 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium, éventuellement dopé, d'au moins 6 nm, plus particulièrement d'au moins 7 nm lorsque l'oxyde supporté est à base d'un oxyde de titane et d'au moins 5 nm, plus particulièrement d'au moins 6 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane. Ces dernières valeurs peuvent s'appliquer à des compositions qui ont été aussi préalablement calcinées à 9000C 4 heures.
La teneur en oxyde supporté de la composition de l'invention est généralement d'au plus 50% en masse de l'ensemble de la composition (oxyde supporté et support). Elle peut être notamment d'au plus 30%. La teneur minimale en oxyde supporté est celle à partir de laquelle l'homme du métier sait que l'on peut obtenir une activité catalytique suffisante et elle est fixée en fonction des performances recherchées de la composition. A titre d'exemple seulement, cette teneur minimale est généralement d'au moins 3%, plus particulièrement d'au moins 4% en masse. La teneur en oxyde supporté peut notamment être comprise entre 10% et
50%, plus particulièrement entre 10% et 30%.
Le support des compositions de l'invention est à base de silice. Compte tenu des applications en catalyse des compositions de l'invention, on utilise une silice adaptée à ces utilisation, ainsi, de préférence, une silice présentant une surface spécifique élevée et stable, c'est-à-dire qui reste à une valeur suffisante même après exposition à une température élevée. A titre d'exemple, on peut utiliser une silice présentant une surface d'au moins 100 m2/g, de préférence d'au moins 150 m2/g. Cette silice peut être une silice de précipitation ou une silice de pyrogénation. La silice peut éventuellement être stabilisée par un élément stabilisant comme l'aluminium par exemple.
A titre d'exemple on peut citer comme silices convenant pour l'invention celles décrites dans WO 2005/061384 et WO 99/49850.
Enfin, les compositions de l'invention peuvent présenter une surface spécifique BET élevée qui peut être, après calcination 4 heures à 9000C, d'au moins 80 m2/g, plus particulièrement d'au moins 120 m2/g encore plus particulièrement d'au moins 150 m2/g. Après calcination à 10000C 4 heures, ces compositions peuvent présenter une surface d'au moins 50 m2/g, plus particulièrement d'au moins 80 m2/g encore plus particulièrement d'au moins 100 m2/g.
Selon un mode de réalisation particulier, on utilise comme support des silices qui ont été préalablement calcinées à une température comprise entre 600°C ou 6500C et 900°C et qui présentent une perte au feu (PAF) comprise entre 2% et 15%, plus particulièrement entre 2 et 10% (mesurée à poids constant).
Les compositions de l'invention peuvent être préparées par différents procédés qui vont maintenant être décrits.
A Premier procédé de préparation des compositions de l'invention
Ce premier procédé comprend les étapes suivantes :
- on met en présence une dispersion colloïdale d'un composé du zirconium et/ou du titane et, le cas échéant d'un composé de l'élément M, et une suspension du support;
- on sèche par atomisation le mélange ainsi formé;
- on calcine le produit séché ainsi obtenu.
La première étape de ce procédé consiste donc à former un mélange à partir d'une dispersion colloïdale d'un composé du zirconium ou d'une dispersion colloïdale d'un composé du titane ou encore d'une dispersion comprenant à la fois un composé du zirconium et un composé du titane ceci en fonction de la nature de l'oxyde supporté dans la composition que l'on cherche à préparer. Dans le cas de la préparation d'une composition dans laquelle l'oxyde supporté est un mélange d'un oxyde de zirconium et d'au moins un oxyde d'un autre élément M, ce mélange comprend en outre une dispersion colloïdale d'un oxyde de cet élément. On peut utiliser aussi une dispersion colloïdale unique dans laquelle les colloïdes sont à base d'un oxyde mixte de zirconium et de l'élément M. La présente description s'applique bien entendu ici au cas où l'oxyde supporté comprend plusieurs éléments M et on comprend que l'on pourra utiliser alors dans ce même cas plusieurs dispersions des différents éléments M ou éventuellement une dispersion colloïdale unique comprenant tous les éléments M. Par souci de concision, on ne fera plus dans le reste de la description que référence à un dispersion d'un élément M mais la description devra être comprise comme s'appliquant au cas donné ci-dessus.
Par dispersion colloïdale on désigne tout système constitué de fines particules solides de dimensions colloïdales, c'est à dire des dimensions comprises entre environ 1 nm et environ 100 nm (dimension mesurée par la technique de diffusion quasi élastique de la lumière), à base d'un composé de zirconium, de titane et/ou de l'élément M, ce composé étant généralement un oxyde et/ou un oxyde hydraté, en suspension stable dans une phase liquide aqueuse, lesdites particules pouvant en outre, éventuellement, contenir des quantités résiduelles d'ions liés ou adsorbés tels que par exemple des nitrates, des acétates, des chlorures ou des ammoniums. On notera que dans une telle dispersion colloïdale le zirconium, le titane ou l'élément M peuvent se trouver soit totalement sous la forme de colloïdes, soit simultanément sous la forme d'ions et sous la forme de colloïdes. On forme un mélange de la dispersion avec une suspension du support.
On peut utiliser notamment une dispersion colloïdale de silice. La suspension est généralement une suspension aqueuse.
Le mélange se fait en phase aqueuse, l'eau généralement et par exemple l'eau distillée ou permutée. La deuxième étape du procédé est une étape de séchage.
Ce séchage se fait par atomisation.
On entend par séchage par atomisation un séchage par pulvérisation du mélange dans une atmosphère chaude (spray-drying). L'atomisation peut être réalisée au moyen de tout pulvérisateur connu en soi, par exemple par une buse de pulvérisation du type pomme d'arrosoir ou autre. On peut également utiliser des atomiseurs dits à turbine. Sur les diverses techniques de pulvérisation susceptibles d'être mises en œuvre dans le présent procédé, on pourra se référer notamment à l'ouvrage de base de MASTERS intitulé "SPRAY-DRYING" (deuxième édition, 1976, Editions George Godwin - London).
La température de sortie d'atomisation peut être comprise par exemple entre 800C et 1500C.
La dernière étape du procédé est une étape de calcination. Cette calcination permet de développer la cristallinité du produit supporté et elle peut être également ajustée et/ou choisie en fonction de la température d'utilisation ultérieure réservée à la composition selon l'invention, et ceci en tenant compte du fait que la surface spécifique du produit est d'autant plus faible que la température de calcination mise en œuvre est plus élevée. Une telle calcination est généralement opérée sous air, mais une calcination menée par exemple sous gaz inerte ou sous atmosphère contrôlée (oxydante ou réductrice) n'est bien évidemment pas exclue.
En pratique, on limite généralement la température de calcination à un intervalle de valeurs comprises entre 5000C et 8000C, de préférence entre
600°C et 7000C. La durée de calcination est ajustée d'une manière connue, elle peut varier par exemple entre 30 minutes et 4 heures, cette durée étant généralement d'autant plus faible que la température est élevée.
B Second procédé de préparation des compositions de l'invention
Les compositions de l'invention peuvent aussi être préparées par un second procédé qui va être décrit ci-dessous. Ce procédé comprend les étapes suivantes :
- on forme un mélange liquide comprenant un sel de zirconium ou de titane et, le cas échéant, de l'élément M et une suspension du support;
- on chauffe le mélange ainsi formé à une température d'au moins 100°C;
- on récupère le précipité ainsi obtenu;
- on calcine ledit précipité.
Pour la première étape on part aussi d'une suspension du support mais on la mélange avec un sel de zirconium et/ou un sel de titane et un sel de l'élément M, dans le cas de compositions où l'oxyde supporté est à base d'un oxyde de zirconium et d'un oxyde d'un autre élément M. Ce mélange se fait en phase aqueuse, l'eau généralement. La suspension de silice de départ peut éventuellement être acidifiée. Les sels sont de préférence des sels inorganiques et ils peuvent être choisis notamment parmi les nitrates, les sulfates, les acétates, les chlorures. A titre d'exemples, on peut ainsi citer plus particulièrement le sulfate de zirconyle, le nitrate de zirconyle ou le chlorure de zirconyle. On peut aussi utiliser un oxychlorure ou un oxysulfate de titane. L'étape suivante du procédé est l'étape de chauffage du mélange liquide ainsi formé.
La température à laquelle est chauffé le mélange liquide est d'au moins
100°C et encore plus particulièrement d'au moins 1300C. Elle peut être ainsi comprise entre 10O0C et 1500C. L'opération de chauffage peut être conduite en introduisant le mélange liquide dans une enceinte close (réacteur fermé du type autoclave). Dans les conditions de températures données ci-dessus, et en milieu aqueux, on peut ainsi préciser, à titre illustratif, que la pression dans le réacteur fermé peut varier entre une valeur supérieure à 1 Bar (105 Pa) et 165 Bar (1 ,65. 107 Pa), de préférence entre 5 Bar (5. 105 Pa) et 165 Bar (1 ,65. 107 Pa). On peut aussi effectuer le chauffage dans un réacteur ouvert pour les températures voisines de 100°C.
Le chauffage peut être conduit soit sous air, soit sous atmosphère de gaz inerte, de préférence l'azote.
La durée du chauffage peut varier dans de larges limites, par exemple entre 1 et 48 heures, de préférence entre 2 et 24 heures. De même, la montée en température s'effectue à une vitesse qui n'est pas critique, et on peut ainsi atteindre la température réactionnelle fixée en chauffant le mélange liquide par exemple entre 30 minutes et 4 heures, ces valeurs étant données à titre tout à fait indicatif.
A l'issue de l'étape de chauffage, on récupère un précipité solide qui peut être séparé de son milieu par toute technique classique de séparation solide- liquide telle que par exemple filtration, décantation, essorage ou centrifugation. Le produit tel que récupéré peut ensuite être soumis à des lavages, qui sont alors opérés à l'eau ou éventuellement avec une solution basique, par exemple une solution d'ammoniaque ou encore une solution acide, une solution d'acide nitrique par exemple.
Selon une variante particulière de l'invention, le procédé comprend un mûrissement.
Ce mûrissement s'effectue généralement sur une suspension obtenue après remise dans l'eau du précipité, notamment après le lavage. Le mûrissement se fait en chauffant de nouveau cette suspension. La température à laquelle est chauffée la suspension est d'au moins 400C, plus particulièrement d'au moins 60°C et encore plus particulièrement d'au moins 100°C. Généralement cette température est d'au plus 2000C, plus particulièrement d'au plus 150°C. Le milieu est maintenu ainsi à une température constante pendant une durée qui est habituellement d'au moins 30 minutes et plus particulièrement d'au moins 1 heure. Le mûrissement peut se faire à la pression atmosphérique ou éventuellement à une pression plus élevée. La dernière étape de calcination de ce second procédé peut être mise en œuvre de la même manière que pour le premier procédé et donc ce qui a été décrit plus haut pour cette calcination s'applique de même ici.
C Troisième procédé de préparation des compositions de l'invention
Les compositions de l'invention peuvent aussi être préparées par un troisième procédé qui va maintenant être décrit. Ce procédé comprend les étapes suivantes :
- on forme un mélange liquide contenant une suspension du support et au moins un sel de zirconium ou de titane et, le cas échéant, de l'élément M;
- on met en présence une base et le mélange précédent de manière à former un précipité;
- on récupère le précipité ainsi obtenu;
- on calcine ledit précipité. La première étape de ce troisième procédé est semblable à la première du second procédé et ce qui a été décrit plus haut à ce sujet s'applique donc de même ici.
La seconde étape consiste à obtenir un précipité par réaction du mélange formé à l'étape précédente avec une base. On peut utiliser comme base les produits du type hydroxyde, carbonate ou hydroxy-carbonate par exemple. On peut citer les hydroxydes d'alcalins ou d'alcalino-terreux, les aminés secondaires, tertiaires ou quaternaires. Toutefois, les aminés et l'ammoniaque peuvent être préférés dans la mesure où ils diminuent les risques de pollution par les cations alcalins ou alcalino terreux. On peut aussi mentionner l'urée.
La mise en présence ou en contact peut se faire dans un ordre quelconque en milieu liquide.
La mise en contact avec la base conduit à la formation d'un précipité en suspension dans le milieu liquide réactionnel. Plus particulièrement, l'addition de la base se fait jusqu'à l'obtention d'un pH du milieu réactionnel d'au moins 7.
Selon une variante de ce procédé, celui-ci peut comporter une étape additionnelle éventuelle qui consiste à soumettre la suspension issue de l'étape précédente à un mûrissement. Le mûrissement se fait en chauffant la suspension à une température d'au moins 600C, plus particulièrement d'au moins 800C. Généralement cette température est d'au plus 200°C, plus particulièrement d'au plus 1500C. Le milieu est maintenu ainsi à une température constante pendant une durée qui est habituellement d'au moins 30 minutes et plus particulièrement d'au moins 1 heure. Le mûrissement peut se faire à la pression atmosphérique ou éventuellement à une pression plus élevée.
La récupération et la calcination du précipité se fait de la même manière que celle qui a été décrite plus haut pour le second procédé notamment.
Les compositions de l'invention telles que décrites plus haut ou telles qu'obtenues par les procédés décrits précédemment se présentent sous forme de poudres mais elles peuvent éventuellement être mises en forme pour se présenter sous forme de granulés, billes, cylindres ou nids d'abeille de dimensions variables.
Les compositions de l'invention peuvent être utilisées comme catalyseurs. Ainsi, l'invention concerne aussi des systèmes catalytiques comprenant les compositions de l'invention. Ces systèmes comprennent un revêtement (wash coat) à propriétés catalytiques à base de ces compositions et d'un liant de type connu, sur un substrat du type par exemple monolithe métallique ou en céramique. Ce revêtement est obtenu par mélange de la composition avec le liant de manière à former une suspension qui peut être ensuite déposée sur le substrat.
Ces systèmes catalytiques et plus particulièrement les compositions de l'invention peuvent trouver de très nombreuses applications. Ils sont ainsi particulièrement bien adaptés à, et donc utilisables dans la catalyse de diverses réactions telles que, par exemple, la déshydratation, l'hydrosulfuration, l'hydrodénitrification, la désulfuration, l'hydrodésulfuration, la déshydrohalogénation, le reformage, le reformage à la vapeur, le craquage, l'hydrocraquage, l'hydrogénation, la déshydrogénation, l'isomérisation, la dismutation, l'oxychloration, la déshydrocyclisation d'hydrocarbures ou autres composés organiques, les réactions d'oxydation et/ou de réduction, la réaction de Claus, le traitement des gaz d'échappement des moteurs à combustion interne, en particulier pour la post combustion automobile et notamment la catalyse trois voies, la démétallation, la méthanation, la shift conversion, l'oxydation catalytique des suies émises par les moteurs à combustion interne comme les moteurs diesel ou essence fonctionnant en régime pauvre. Les systèmes catalytiques et les compositions de l'invention peuvent enfin être utilisés comme catalyseur de la réduction sélective des NOx par réaction de réduction de ces NOx par tout réducteur du type hydrocarbure ou encore par l'ammoniaque ou l'urée et, dans ce cas, en tant que catalyseur pour la réaction d'hydrolyse ou de décomposition de l'urée en ammoniaque (Procédé SCR). Dans le cas de ces utilisations en catalyse, les compositions de l'invention peuvent être employées en combinaison avec des métaux précieux ou encore des métaux de transition sous forme oxyde, sulfure ou autre et elles jouent ainsi le rôle de support pour ces métaux. La nature de ces métaux et les techniques d'incorporation de ceux-ci dans les compositions supports sont bien connues de l'homme du métier. Par exemple, les métaux peuvent être l'or, l'argent, le platine, le rhodium, le palladium ou l'iridium, le molybdène, le tungstène, le nickel, le cobalt, le manganèse ou le vanadium; ils peuvent être utilisés seuls ou en combinaison et ils peuvent notamment être incorporés aux compositions par imprégnation.
Pour le traitement des gaz d'échappement les systèmes précités sont montés d'une manière connue dans les pots d'échappement des véhicules automobiles.
Des exemples vont maintenant être donnés.
EXEMPLE 1
Cet exemple concerne la préparation selon le premier procédé de l'invention d'une composition à base d'oxyde de zirconium dispersé sur un support de silice dans les proportions respectives en masse d'oxyde de 30% et 70%.
On procède au préalable à la préparation d'une solution colloïdale de ZrÛ2. Pour cela on dilue une solution concentrée de ZrO(NOs)2 avec de l'eau permutée, pour obtenir 600 ml d'une solution de ZrO(NO3)2 à 80 g/L éq. ZrO2 dont le pH est de 2. On ajoute d'une manière instantanée une solution de NH3 à 28% de telle sorte que le pH final atteigne 10 et on observe la formation d'un précipité. Le précipité est filtré puis lavé avec 6L d'eau permutée. Le gâteau est remis en suspension dans l'eau permutée (pH=7,5) et acidifié par ajout d'une solution d'acide nitrique HNO3 à 68% de telle sorte que la concentration soit de 10% poids éq. ZrO2. Après une nuit sous agitation, on obtient une solution colloïdale limpide à l'œil dont la taille des particules mesurée par diffusion quasi-élastique de la lumière est de 4 nm.
On ajoute sous agitation dans 430 g de cette solution colloïdale de l'acide aminocaproïque de manière à augmenter et stabiliser le pH à 4,5 (acide 6- aminocaproïque 98% Aldrich), puis on ajoute sous agitation 100 g de poudre de silice (Rhodia Siloa®) (Surface spécifique : 170 m2/g, PAF : 15%). La suspension ainsi obtenue est maintenue 30 minutes sous agitation puis atomisée sur Bϋchi® à 1100C (température de sortie 1100C, température d'entrée 220°C) avec un débit de 1 L/h. La poudre obtenue est calcinée sous air à 7000C pendant 4heures.
EXEMPLE 2 Cet exemple concerne la préparation selon le troisième procédé de l'invention d'une composition à base d'oxyde de zirconium sur un support en silice dans les proportions respectives en masse d'oxyde de 10% et 90%.
La silice utilisée est la Tixosil 68® dont l'extrait sec à 900°C est de 90%
(PAF :10%) et la surface spécifique de 160 m2/g. La source de zirconium est une solution de ZrO(NO3)2 dont l'extrait sec à 9000C est 19,1 %. Une solution diluée d'ammoniaque à 10% est préparée par ajout d'un volume de NH3 à 28% avec deux volumes d'eau.
On forme un pied de cuve dans le réacteur en introduisant 59,80 g de silice (soit 54 g de Siθ2) dilués avec 771 mL d'eau permutée (70 g/L éq Siθ2), puis on ajoute du HNO3 à 68% afin d'obtenir une dispersion à pH de 2. 31 ,41 g de solution de ZrO(NO3)2 (soit 6 g de ZrÛ2 éq.) dilués à 86 mL avec de l'eau permutée (70 g/L éq ZrO2) sont introduits dans le pied de cuve, on ajoute ensuite la solution d'ammoniaque à 10 mL/min jusqu'à l'obtention d'un pH de 9 (masse ajoutée : 32 g). L'ensemble est transféré dans un autoclave et amené sous agitation à
150°C pendant 2 heures.
Le mélange refroidi est ensuite séparé par filtration et lavé à isovolume avec de l'eau à température ambiante. Le gâteau est alors calciné sous air à 700°C pendant 4 heures.
EXEMPLE 3
Cet exemple concerne la préparation selon le troisième procédé de l'invention d'une composition à base d'oxyde de zirconium sur un support en silice dans les proportions respectives en masse d'oxyde de 30% et 70%. On utilise la même silice, la même source de zirconium et la même solution d'ammoniaque que dans l'exemple 2.
On forme un pied de cuve dans le réacteur en introduisant 46,51 g de silice (soit 42 g de SiO2) dilués avec 60OmL d'eau permutée (70 g/L éq SiO2), puis du HNO3 68% afin d'obtenir une dispersion à pH de 2. 94,24 g de solution de ZrO(NO3)2 (soit 18 g de ZrO2 éq.) dilués à 257 mL avec de l'eau permutée (70 g/L éq ZrO2) sont introduits dans le pied de cuve, on ajoute ensuite la solution d'ammoniaque à 10mL/nnin jusqu'à l'obtention d'un pH de 9 (masse ajoutée : 73 g). On procède ensuite au traitement par autoclavage, au lavage et à la calcination de la même manière que dans l'exemple 2.
EXEMPLE 4 Cet exemple concerne la préparation selon le troisième procédé de l'invention d'une composition à base d'oxyde de titane sur un support en silice dans les proportions respectives en masse d'oxyde de 10% et 90%.
200 g de poudre de silice Tixosil 68® sont dispersés dans 570 ml d'eau dans lesquels a été ajouté du HNO3 pour obtenir un pH de 0,5. On ajoute ensuite au milieu obtenu 26,8 g de TiOCI2 (21 % poids équivalent en Tiθ2). Du NH4OH à 10% est alors ajouté afin de parvenir à un pH de 7.
On procède ensuite au traitement par autoclavage, au lavage et à la calcination de la même manière que dans l'exemple 2.
EXEMPLE 5
Cet exemple concerne la préparation selon le troisième procédé de l'invention d'une composition à base d'oxyde de titane sur un support en silice dans les proportions respectives en masse d'oxyde de 30% et 70%.
155,6 g de poudre de la silice de l'exemple 2 sont dispersés dans 470 ml d'eau dans lesquels on a ajouté 13,3 g de HNO3 concentré pour obtenir un pH de 0,5. On ajoute ensuite au milieu obtenu 80,37 g de TiOCI2 dilué dans 204,6 ml d'eau. Du NH4OH à 10% est alors ajouté afin de parvenir à un pH de 7.
On procède ensuite au traitement par autoclavage, au lavage et à la calcination de la même manière que dans l'exemple 2.
EXEMPLE 6
Cet exemple concerne la préparation selon le troisième procédé de l'invention d'une composition à base d'oxydes de titane et de zirconium sur un support en silice dans les proportions respectives en masse d'oxyde de 30% pour ZrTiO4 et 70% pour SiO2.
155,6 g de poudre de la silice de l'exemple 2 sont dispersés dans 470 g d'eau dans lesquels on a ajouté 10 g de HNO3 concentré pour obtenir un pH de 0,5. On ajoute ensuite 30,9 g de TiOCI2 ainsi que 39,24 g de ZrOCI2 dilué dans 208 ml d'eau. Du NH4OH à 10% est ensuite ajouté afin de parvenir à un pH de 7.
On procède ensuite au traitement par autoclavage, au lavage et à la calcination de la même manière que dans l'exemple 2. L'analyse DRX ne fait apparaître que la présence de la phase ZrTiO4. Les exemples qui suivent sont des exemples comparatifs mettant en œuvre la technique connue d'imprégnation.
EXEMPLE COMPARATIF 7
Cet exemple concerne la préparation d'une composition à base d'oxyde de titane sur un support en silice dans les proportions respectives en masse d'oxyde de 10% et 90%.
Une composition contenant 90% de SiO2 et 10% de TiO2 est préparée par imprégnation à sec de 16,09 g de silice selon l'exemple 2 avec 6,64 g d'une solution à 25,1 % en poids de TiOCI2 préalablement diluée dans 23,5 ml d'H2O.
La poudre est ensuite calcinée sous air à 7000C pendant 4 heures. On vérifie par DRX que seule la phase anatase est présente entre 700 et 9000C.
EXEMPLE COMPARATIF 8
Cet exemple concerne la préparation d'une composition à base d'oxyde de titane sur un support en silice dans les proportions respectives en masse d'oxyde de 30% et 70%. Un mélange contenant 70% de SiO2 et 30% de TiO2 est réalisé par imprégnation à sec de 12,88 g de silice selon l'exemple 2 avec 20,49 g d'une solution à 25,1 % en poids de TiOCI2 préalablement diluée dans 9 ml d'H2O. La poudre est ensuite calcinée sous air à 700°C pendant 4 heures.
EXEMPLE COMPARATIF 9
Cet exemple concerne la préparation d'une composition à base d'oxyde de titane sur un support en silice dans les proportions respectives en masse d'oxyde de 30% et 70%.
Un mélange contenant 70% de SiO2 et 30% de TiO2 est réalisé par imprégnation à sec de 22,5 g de silice selon l'exemple 2 avec 15,45 g d'une solution à 25,1 % en poids de TiOCI2 préalablement diluée dans 14,3 ml d'H2O.
La poudre est ensuite calcinée sous air à 7000C pendant 4 heures. On vérifie par DRX que seule la phase ZrTiO4 est présente entre 700 et 1000°C.
On donne dans le tableau qui suit les caractéristiques des compositions obtenues dans les différents exemples, c'est-à-dire leur surface spécifique BET et la taille des particules de l'oxyde supporté aux différentes températures de calcination. TABLEAU
On voit que les compositions selon l'invention présentent des oxydes supportés dont la taille est nettement plus faible que celles des oxydes des compositions obtenues par la technique connue d'imprégnation.

Claims

REVENDICATIONS
1- Composition comprenant au moins un oxyde supporté, à base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support à base de silice, caractérisée en ce que, après calcination 4 heures à 9000C, l'oxyde supporté est sous forme de particules, déposées sur ledit support, dont la taille est d'au plus 5 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 10 nm lorsque l'oxyde supporté est à base d'un oxyde de titane; d'au plus 8 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane.
2- Composition comprenant au moins un oxyde supporté, à base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support à base de silice, caractérisée en ce que, après calcination 4 heures à 10000C, l'oxyde supporté est sous forme de particules, déposées sur ledit support, dont la taille est d'au plus 7 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 19 nm lorsque l'oxyde supporté est à base d'un oxyde de titane; d'au plus 10 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane.
3- Composition selon la revendication 1 ou 2, caractérisée en ce qu'elle présente une proportion en oxyde supporté d'au plus 50% en masse, plus particulièrement d'au plus 30%.
4- Composition selon l'une des revendications précédentes, caractérisée en ce que l'oxyde supporté est à base d'un oxyde de zirconium et d'au moins d'un oxyde d'un autre élément M choisi parmi le praséodyme, le lanthane, le néodyme et l'yttrium.
5- Composition selon la revendication 1 , caractérisée en ce que l'oxyde supporté est sous forme de particules dont la taille est d'au plus 4 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 7 nm lorsque l'oxyde supporté est à base d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane. 6- Composition selon la revendication 2, caractérisée en ce que l'oxyde supporté est sous forme de particules dont la taille est d'au plus 6 nm lorsque l'oxyde supporté est à base d'un oxyde de zirconium; d'au plus 15 nm lorsque l'oxyde supporté est à base d'un oxyde de titane; d'au plus 8 nm lorsque l'oxyde supporté est à base d'un oxyde mixte de zirconium et de titane.
7- Procédé de préparation d'une composition selon l'une des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes : - on met en présence une dispersion colloïdale d'un composé du zirconium et/ou du titane et, le cas échéant d'un composé de l'élément M, et une suspension du support;
- on sèche par atomisation le mélange ainsi formé;
- on calcine le produit séché ainsi obtenu.
8- Procédé de préparation d'une composition selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend les étapes suivantes :
- on forme un mélange liquide comprenant au moins un sel de zirconium ou de titane et, le cas échéant, de l'élément M et une suspension du support; - on chauffe le mélange ainsi formé à une température d'au moins 1000C;
- on récupère le précipité ainsi obtenu;
- on calcine ledit précipité.
9- Procédé de préparation d'une composition selon l'une des revendications 1 à 6, caractérisé en ce qu'il comprend les étapes suivantes :
- on forme un mélange liquide contenant une suspension du support et au moins un sel de zirconium ou de titane et, le cas échéant, de l'élément M;
- on met en présence une base et le mélange précédent de manière à former un précipité; - on récupère le précipité ainsi obtenu;
- on calcine ledit précipité.
10- Procédé selon la revendication 9, caractérisé en ce qu'on soumet à un mûrissement le précipité obtenu après la mise en présence avec la base.
11 - Système catalytique, caractérisé en ce qu'il comprend une composition selon l'une des revendications 1 à 6.
EP09719637A 2008-03-03 2009-02-23 Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur Withdrawn EP2262735A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801156A FR2928094B1 (fr) 2008-03-03 2008-03-03 Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur
PCT/EP2009/052126 WO2009112355A1 (fr) 2008-03-03 2009-02-23 Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur

Publications (1)

Publication Number Publication Date
EP2262735A1 true EP2262735A1 (fr) 2010-12-22

Family

ID=39689002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09719637A Withdrawn EP2262735A1 (fr) 2008-03-03 2009-02-23 Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur

Country Status (9)

Country Link
US (1) US8563462B2 (fr)
EP (1) EP2262735A1 (fr)
JP (1) JP5628049B2 (fr)
KR (1) KR101215678B1 (fr)
CN (1) CN101959800B (fr)
CA (1) CA2716556A1 (fr)
FR (1) FR2928094B1 (fr)
RU (2) RU2531306C2 (fr)
WO (1) WO2009112355A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3188833A4 (fr) * 2014-09-05 2018-05-16 BASF Corporation Zircone dopée à l'oxyde de titane en tant que support métallique du groupe du platine dans des catalyseurs pour le traitement de flux d'échappement de moteur à combustion

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732875B2 (ja) * 1988-06-29 1995-04-12 川崎製鉄株式会社 o−キシレンの気相接触酸化用流動触媒の製造方法
US6162530A (en) * 1996-11-18 2000-12-19 University Of Connecticut Nanostructured oxides and hydroxides and methods of synthesis therefor
RU2129989C1 (ru) * 1997-12-09 1999-05-10 Институт катализа им.Г.К.Борескова СО РАН Материал на основе диоксида циркония и способ его приготовления
JP2002047032A (ja) * 2000-08-01 2002-02-12 Nippon Sheet Glass Co Ltd 光触媒膜付き基板及びその製造方法
JP2004305947A (ja) * 2003-04-08 2004-11-04 Shinto V-Cerax Ltd アナターゼ形酸化チタン光触媒担持シリカゲル及びその製法
CN1264606C (zh) * 2003-12-12 2006-07-19 天津化工研究设计院 一种铈基稀土复合氧化物材料的制法及用途
CN100417589C (zh) * 2003-12-25 2008-09-10 千代田化工建设株式会社 层合多孔氧化钛及其制造方法和采用它的催化剂
US7125536B2 (en) * 2004-02-06 2006-10-24 Millennium Inorganic Chemicals, Inc. Nano-structured particles with high thermal stability
FR2887469B1 (fr) * 2005-06-27 2008-01-04 Rhodia Chimie Sa Procede de traitement de gaz pour l'oxydation catalytique du monoxyde de carbone et des hydrocarbures utilisant une composition a base d'un metal et d'une zircone comprenant de la silice
CN101069856A (zh) * 2006-05-12 2007-11-14 崔建光 柴油引擎尾气污染物氧化催化剂
FR2905371B1 (fr) * 2006-08-31 2010-11-05 Rhodia Recherches & Tech Composition a reductibilite elevee a base d'un oxyde de cerium nanometrique sur un support, procede de preparation et utilisation comme catalyseur
US20080206562A1 (en) * 2007-01-12 2008-08-28 The Regents Of The University Of California Methods of generating supported nanocatalysts and compositions thereof
JP4092714B1 (ja) * 2007-03-26 2008-05-28 Toto株式会社 光触媒塗装体およびそのための光触媒コーティング液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009112355A1 *

Also Published As

Publication number Publication date
US8563462B2 (en) 2013-10-22
RU2448908C1 (ru) 2012-04-27
FR2928094A1 (fr) 2009-09-04
CN101959800A (zh) 2011-01-26
US20110045967A1 (en) 2011-02-24
KR101215678B1 (ko) 2012-12-27
CN101959800B (zh) 2015-03-11
JP5628049B2 (ja) 2014-11-19
RU2012103968A (ru) 2013-08-20
CA2716556A1 (fr) 2009-09-17
RU2531306C2 (ru) 2014-10-20
KR20100120190A (ko) 2010-11-12
FR2928094B1 (fr) 2014-07-11
JP2011513054A (ja) 2011-04-28
WO2009112355A1 (fr) 2009-09-17

Similar Documents

Publication Publication Date Title
EP2262736B1 (fr) Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en alumine ou en oxyhydroxyde d'aluminium, procedes de preparation et utilisation comme catalyseur
CA2660002C (fr) Composition a reductibilite elevee a base d'un oxyde de cerium nanometrique sur un support, procede de preparation et utilisation comme catalyseur
EP2454196B1 (fr) Composition a base d'oxyde de cerium et d'oxyde de zirconium de porosite specifique, procede de preparation et utilisation en catalyse
EP2403638B1 (fr) Composition comprenant une perovskite a base de lanthane sur un support en alumine ou en oxyhydroxyde d'aluminium, procede de preparation et utilisation en catalyse
EP2083936B1 (fr) Composition a acidite elevee a base d'oxydes de zirconium, de silicium et d'au moins un autre element choisi parmi le titane, l'aluminium, le tungstene, le molybdene, le cerium, le fer, l'etain, le zinc et le manganese
EP1729883B1 (fr) Composition a base d'oxydes de zirconium, de praseodyme, de lanthane ou de neodyme, procede de preparation et utilisation dans un systeme catalytique
CA2489772C (fr) Composition a base d'oxyde de zirconium et d'oxydes de cerium, de lanthane et d'une autre terre rare, son procede de preparation et son utilisation comme catalyseur
EP0802824A1 (fr) Composition catalytique a base d'oxyde de cerium et d'oxyde de manganese, de fer ou de praseodyme, son procede de preparation et son utilisation en catalyse postcombustion automobile
EP2976300B1 (fr) Composition a base d'oxydes de zirconium, de cerium, de niobium et d'etain, procedes de preparation et utilisation en catalyse
FR2917646A1 (fr) Oxyde mixte a haute surface specifique de cerium et d'autre terre rare, procede de preparation et utilisation en catalyse
EP2571813B1 (fr) Composition a base de cerium, de zirconium et de tungstene, procede de preparation et utilisation en catalyse
FR2907445A1 (fr) Composition a acidite elevee a base d'oxyde de zirconium, d'oxyde de titane et d'oxyde de tungstene,procede de preparation et utilisation dans le traitement des gaz d'echappement
EP2590737A1 (fr) Composition a base d'oxydes de cerium, de niobium et, eventuellement, de zirconium et son utilisation en catalyse
EP2262735A1 (fr) Composition a base d'un oxyde de zirconium, d'un oxyde de titane ou d'un oxyde mixte de zirconium et de titane sur un support en silice, procedes de preparation et utilisation comme catalyseur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100923

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: VERDIER, STEPHAN

Inventor name: JORGE COELHO MARQUES, RUI

Inventor name: IFRAH, SIMON

Inventor name: CRINIERE, GUILLAUME

17Q First examination report despatched

Effective date: 20120227

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901