EP2260556B1 - Method and arrangement for generating an error signal - Google Patents

Method and arrangement for generating an error signal Download PDF

Info

Publication number
EP2260556B1
EP2260556B1 EP08735072.4A EP08735072A EP2260556B1 EP 2260556 B1 EP2260556 B1 EP 2260556B1 EP 08735072 A EP08735072 A EP 08735072A EP 2260556 B1 EP2260556 B1 EP 2260556B1
Authority
EP
European Patent Office
Prior art keywords
line
harmonic
determined
zero phase
ground fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08735072.4A
Other languages
German (de)
French (fr)
Other versions
EP2260556A1 (en
Inventor
Andreas Jurisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2260556A1 publication Critical patent/EP2260556A1/en
Application granted granted Critical
Publication of EP2260556B1 publication Critical patent/EP2260556B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/38Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current
    • H02H3/385Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to both voltage and current; responsive to phase angle between voltage and current using at least one homopolar quantity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground

Definitions

  • the invention relates to an arrangement and a method for generating an error signal, which characterizes the location of a ground fault on a line between two line ends, wherein in the method at both line ends in each case the voltage and the current are measured to form measured values and after or at a detection of an earth fault, the location of the ground fault is determined.
  • an error signal which characterizes the location of a ground fault on a line between two line ends, wherein in the method at both line ends in each case the voltage and the current are measured to form measured values and after or at a detection of an earth fault, the location of the ground fault is determined.
  • Previous methods use devices that use the principle of Wattmetric earth fault detection, harmonics or ground-fault wiper relays for ground fault detection.
  • Devices based on the principle of Wattmetric earth fault detection determine the complex pointers of the zero system variables of current and voltage of the fundamental oscillation. From these variables, the active and reactive power of the zero system variables is determined. The active component of this signal indicates the direction to the earth fault as seen from the relay installation point. The determined Directional signals must be transported via telecontrol or control technology from the devices to a central evaluation point. There, the line affected by the ground fault can be determined by means of manual or program-supported evaluation.
  • the principle of Wattmetric earth fault detection requires very accurate transducers with small angle errors. Usually used cable conversion converters must be adjusted during commissioning in order to meet the high accuracy requirements of the process. Since the angular errors of the transducers to be corrected depend on the modulation of the transducers, this calibration is prone to error and can lead to unreliable displays.
  • the following two variants are known in the principle of the earth-fault wiper relay:
  • the sign of the first half-cycle of the transient transient of the ground fault is evaluated.
  • this first variant only works if there is a sudden ground fault, if possible in the voltage maximum.
  • the displacement current is calculated from the instantaneous values of the voltage and the zero capacitance of the line to be examined, and a Lissajou figure is formed with the measured zero current. The rise of this curve allows a determination of the earth fault direction.
  • harmonics are impressed artificially via a transformer star point and these impressed harmonics are utilized for the earth fault detection. Due to the active supply of the harmonics, additional primary technology is necessary in the network. The method allows only the determination of the earth fault direction.
  • the invention has for its object to provide a reliable method for Erd gleichortung.
  • the invention provides that is determined with the measured values contained in the zero voltage or zero current harmonic content and its time decay constant for each of the two line ends, with the harmonic component and the decay constant for each line end each a harmonic generator measured magnitude and phase is formed, wherein the temporal reference point of the phase of the harmonic generator measured value relates to the time of ground fault detection at the respective line end, the harmonic generator measured in this way are rotated from their respective end of the line in time to the past and determined at what time in the past and at what point on the line, the reverted harmonic generator readings are at least approximately equal in magnitude and at least approximately the same phase, and the location thus determined is al s location of the ground fault is considered and output with the error signal.
  • a significant advantage of the method according to the invention is the fact that these harmonics are evaluated, whereby a very accurate fault location is possible. Also, only small demands on the measurement accuracy of the converter used must be made, since the location of a ground fault in the method according to the invention can be determined very accurately even with not specially matched transducers.
  • Another significant advantage of the method according to the invention is the fact that this method - in contrast to the previously described prior art method - works reliably even in so-called ground fault wipers.
  • the location of the ground fault wiper does not always work reliably with previously known methods, since ground-fault wipers are only transiently present.
  • a third significant advantage of the method according to the invention is that the measurement of the voltage at the two line ends can take place without synchronization and the voltage measurement values at the two line ends can be unsynchronized.
  • a first and a second zero voltage pointer for a time past the propagation time to the selectable location using the Harmonic generator magnitudes of zero current and zero voltage at the two line ends are calculated, the first zero voltage pointer being calculated from the first line end towards the second line end and the second zero voltage pointer from the second line end towards the first line end, the two zero voltage pointers calculated in this way are compared with each other and the one place is selected where the calculated zero voltage pointers best match, and the line location determined in this way as the location of the Earth fault is considered.
  • the telegraph equation locating is very easy and fast possible.
  • the two harmonic generator measured quantities are determined by magnitude and phase in each case on the basis of a predetermined signal model, which simulates the time course of the zero voltage in the case of a ground fault, by means of an estimation method, wherein the predetermined signal model at least the Determining harmonic generator measuring variable with a fixed pointer circle frequency, the determined time decay constant of the harmonic component and a Nullwoods enableermess foi with the fundamental frequency of the zero voltage and wherein the amount and the phase of the harmonic generator measured variable are adjusted in the estimation method such that the deviation between the temporal waveform of the simulated signal of Signal model and the measured temporal waveform of the measured values of the zero voltage is minimal.
  • a least-squares estimation method a Kalman filter algorithm or an ARMAX estimation method is preferably used.
  • a frequency dominant for the harmonic component is selected from the frequency spectrum of the harmonic component and the pointer frequency of the harmonic generator parameters is in each case set such that it corresponds to the dominant frequency.
  • the pointer frequency of the harmonic generator parameters is in each case set such that it corresponds to the dominant frequency. For example, in the harmonic content that harmonic frequency can be determined whose amplitude is maximum, and these are set as the pointer circle frequency.
  • the time window for the data used to determine the harmonic generator measurement values is preferably determined such that the time window beginning at the beginning of the rise of the zero voltage is set after exceeding a predetermined threshold.
  • the harmonic content is preferably determined by opening a measurement window for each line end after detection of the ground fault, for which the frequency spectrum of the zero voltage is determined by means of a Fourier transformation, and the frequency spectrum is subjected to high-pass filtering, in which the harmonics of the fundamental frequency of the zero voltage be separated by forming the harmonic component.
  • the decay constant can be determined particularly simply and thus advantageously by determining the rms value of the harmonic component and determining the time decay constant of the rms value and determining the determined time decay constant of the rms value as the time decay constant of the harmonic component.
  • the invention also relates to an arrangement for generating an error signal characterizing the location of a ground fault on a line between a first and a second line end, the arrangement comprising: a first measuring device at the first line end of the line and a second measuring device at the line second line end of the line.
  • an evaluation device connected to the two measuring devices is provided, which is suitable for carrying out a method with the measured values of the two measuring devices, as described above.
  • the evaluation device can be formed for example by a programmed data processing system.
  • the evaluation device can be arranged in a central device with which the two measuring devices are connected.
  • the two measuring devices can be connected to one another, wherein the evaluation device is implemented in one of the measuring devices.
  • the invention also relates to a field device, in particular protective device, for connection to a line end of an electrical line and for detecting a ground fault on the line.
  • the field device comprises: an evaluation device which is suitable for carrying out a method as described above, and a data connection for connection to another measuring device for receiving measured values relating to the other line end of the line.
  • FIG. 1 an electrical arrangement is shown comprising three substations 10, 20 and 30.
  • two field devices 40 and 41 are included, in the two substations 20 and 30 each one.
  • the four field devices 40, 41, 42 and 43 may be identical, for example, but this is not mandatory.
  • junction A of the substation 10 and the junction B of the substation 20 are connected to each other by an example, three-phase power transmission line 50; the junction A of the substation 10 and the junction C of the substation 30 are connected together by an example, three-phase power transmission line 60.
  • the field devices are connected via their data connection D40, D41, D42 and D43 to local networks 70, routers 80 and a WAN 90 (WAN: wide area network), such as the Internet, and thus also to each other in a data connection, for example to the ETHERNET Standard using fixed IP addresses for each of the field devices.
  • WAN wide area network
  • the field device 40 of the substation 10 can exchange data with the field device 42 of the substation 30 via this data connection, for example the measured values of current and voltage at the respective connection points A and C and / or measured values derived therefrom, such as harmonic vector measured quantities in magnitude and phase ,
  • harmonic generator readings U0A and I0A may be transmitted from the field device 40 to the field device 42 and harmonic generator readings U0C and I0C from the field device 42 to the field device 40.
  • FIG. 1 The simplified electrical equivalent circuit diagram of the arrangement according to the FIG. 1 show by way of example the FIGS. 2 and 3 , It can be seen that the subnetwork to the right of a transformer 100 of the substation 10 is provided with a resonance neutral point earthing. If an equivalent resistance and an equivalent voltage source are formed in this subsystem for the positive sequence and negative sequence system, a simplified equivalent circuit diagram is created FIG. 4 is shown.
  • FIG. 14 an embodiment of the field device 42 is shown.
  • the field devices 40, 41 and 43 are off FIG. 1 can be identical or similar.
  • a zero voltage generator 120 and a zero-current generator 125 which are connected on the input side to the junction C of the substation 30 and current readings Mi and voltage readings Mu obtained. Downstream of the zero-voltage generator 120 and the zero-current generator 125 are a device 130 for determining a decay constant ⁇ , a device 135 for determining a harmonic frequency fm and an estimator 140.
  • the means 130 for determining the decay constant ⁇ comprises a high pass 145, an effective value generator 150 and a time constant determiner 155.
  • the device 135 for determining the harmonic frequency fm comprises an FFT device (FFT: Fast Fourier Transformation) 160 and a maximum value searcher 165.
  • FFT Fast Fourier Transformation
  • the outputs of the devices 130 and 135 are connected to other inputs of the estimator 140.
  • the estimation device 140 is provided with a fault locating device 170 in connection, the input side is also connected to the data port D42.
  • the means 130 for determining the decay constant filters out the harmonic component with its high-pass 145 from the zero voltage and, together with the rms value generator 150, forms an effective value of the harmonic component.
  • the time constant determiner 155 determines the time drop of the rms value to form the decay constant ⁇ which reaches the estimator 140.
  • the maximum value finder 165 of the device 135 retrieves a dominating frequency fm in the voltage frequency spectrum formed by the FFT device 160 and sends it to the estimator 140. For example, the maximum value finder 165 in the harmonic content will determine the harmonic frequency whose amplitude is maximum and this frequency spend as dominating frequency fm.
  • a signal model is stored, which simulates the time course of the zero voltage in the event of a ground fault.
  • the signal model takes into account as influencing parameters determining the signal progression a harmonic generator measuring variable with the dominant frequency fm, the decay constant ⁇ and a zero voltage indicator measured value the fundamental frequency of the zero voltage.
  • the estimation means 140 adjusts the amount and phase of the harmonic generator measured value by using this signal model until the deviation between the temporal waveform of the simulated signal of the signal model and the measured temporal waveform of the measured values of the zero voltage is minimum.
  • harmonic current measurement quantities for current and voltage are identified by the reference symbols U0C and I0C.
  • the harmonic generator measuring quantities U0C and I0C as well as the harmonic current measuring quantities U0A and I0A reach the fault locating device 170, which chronologically rotates and determines the harmonic generator measured quantities formed in the manner described from their respective line end A or C, at which point in time in the past and at which point on the line 60 the two back-rotated harmonic measures U0C and U0A and the two back-rotated harmonic readings I0A and I0C have at least approximately the same amount and at least approximately the same phase.
  • the location determined in this way is regarded as the location of the ground fault and output with the error signal F.
  • the mathematical turning back of the harmonic generator magnitudes can be described, for example, taking into account the propagation of electromagnetic waves on lines Chat equation.
  • the magnitude and phase of the harmonic generator measurement value of the zero voltage for a time lying around the propagation time to the selectable location in the past is calculated from the harmonic generator magnitudes of zero current and zero voltage of its own line end toward the other line end.
  • the zero voltage hands calculated in this way - starting from each of the two conductor ends - are compared with each other and the location where the calculated hands best match is selected.
  • the components 120, 125, 130, 135, 140 and 170 of the field device 42 form an evaluation device 200; this can be formed for example by a data processing system.
  • two loops are to be recognized, which contain a common voltage at the fault point F for the voltage in the zero system at the fault point U0F.
  • the two four-poles KA and KC represent the line model of the zero system from the line ends of the nodes A and C to the error point F.
  • the above function can be transformed into a nonlinear optimization problem.
  • the parameters of the Anac impedances can be included in the vector of the quantities to be optimized.
  • U 0 ⁇ rh k 11 j ⁇ l ⁇ U 0 ⁇ A + k 12 j ⁇ l ⁇ I 0 ⁇ A
  • U 0 ⁇ rC k 11 ⁇ j ⁇ . 1 - l ⁇ U 0 ⁇ C + k 12 ⁇ j ⁇ . 1 - l ⁇ I 0 ⁇ C
  • pointers U0A, I0A, U0C and I0C not the pointers of the fundamental wave are used, but pointers for the dominant transient frequency.
  • pointers for the dominant transient frequency can be determined, for example, as follows: In the zero system, the reactance of the Petersen coil located in the neutral point of the feed transformer and the capacitance of the overall network to ground produces a parallel resonant circuit which is tuned to the mains frequency. This signal provides a good balance with a correlated proportion to the fundamental wave pointer and can thus cause significant measurement errors in the pointer determination.
  • the longitudinal inductances of the network form, with the earth capacitances of the line, further series and parallel resonant circuits which, in the case of ground fault, discharge by discharging the conductor affected by the ground fault and charging it the unaffected conductors are excited to transient phenomena at their natural frequency.
  • FIG. 6 shows a typical course of zero current and voltage at a Erd gleicheinstory.
  • the FIG. 6 clearly shows the transient of the zero voltage (upper diagram) and the zero current (lower diagram).
  • the amplitude of the zero current during the transient is a multiple of the current amplitude during the steady state.
  • FIG. 7 shows a section of the transient of the voltage; where u0 is the measured zero voltage, u0eff is the rms value of the zero voltage, u0hp is the high-pass filtered zero voltage, and u0eff-hp is the high-pass filtered rms value of the zero voltage.
  • the exceeding of a U0 threshold value is used as the starting value.
  • pre-fault sizes may be used in conjunction with a healthy-line null-system model.
  • the time difference of the data windows can be included in the solution of the nonlinear optimization.
  • the propagation times of the wave from the point of failure to the measuring locations are considered as follows (cf. FIG.
  • the pointers of the complex pointers related to the data window start are turned back to the error entry time.
  • the FIG. 8 shows the spectra of zero current and zero voltage determined by an FFT (Fourier transform). From the spectrum of the voltage, the maximum value is searched in the range above the nominal frequency.
  • FFT Fast Fourier transform
  • the center frequency can be determined from the voltage spectrum samples calculated by FFT by means of linear interpolation.
  • the estimator calculates an optimal filter k. To calculate the zero or zero voltage complex pointer, it is sufficient to calculate the first two elements of the parameter vector. These elements represent the real and imaginary parts of the complex vector of the dominant equalizing vibration.
  • FIG. 9 the agreement of measured and estimated signals in the complete data window and the FIG. 10 the match of measured and estimated signals in the clipping.
  • FIG. 11 shows the complex pointers formed from the parameters.
  • the FIG. 11 are clearly the size ratios between the fundamental wave pointers U50 and I50 and the hands Uos and Ios the dominant frequency fm of the transient response to recognize.
  • the harmonic pointers Uos and Ios allow a much more reliable direction determination and fault location, since the magnitude of the current vector Ios is significantly greater than the basic current vector 150.
  • the function shows the difference of the voltage at the fault location calculated with the complex phasors of the dominant transient frequency.
  • the error voltage calculated by both sides coincides and the cost function reaches its minimum.
  • the second embodiment exploits the transients arising in the event of a ground fault and calculates the zero and zero voltage complex phasors for this one-swing operation with an exponentially decaying envelope.
  • the dominant natural frequency of the ground fault transient present in the zero voltage is used.
  • the complex pointers determined in this way are transmitted via a communication device to the protective device, which protects the other end of the line to be monitored.
  • an IP-based network technology can be used, which establishes a connection to the other substation briefly only when needed and terminated after a defined time.
  • the complex pointers of the two line ends are synchronized by means of pre-fault data or by detecting the entry time by a signal model for the signals in the faulty state to a common time base. From the complex pointers of the zero magnitudes, the percentage distance of the ground-fault location from one end of the line to the other is determined by solving the mesh equations FIG. 5 calculated. This solution can be done directly or using a non-linear optimization algorithm known per se.
  • the line data of the zero system required for solving the mesh equations are originally set with an estimate of the line data and automatically measured at an external ground fault and stored for later use.
  • the solution of the mesh equation of the zero system can also be carried out with the 50Hz-pointers of the zero system quantities.
  • a trigger signal is generated which triggers a recording of zero current and zero voltage of the outgoer connected to the field device. From this point on, a data window is selected and the signal spectrum of the zero voltage is determined by means of an FFT.
  • the frequency of the dominant harmonic is determined.
  • High-pass filtering separates the harmonic component of the transient from the fundamental and determines the rms value of the harmonic component.
  • the decay time constant of the harmonic content is determined by coefficient comparison or by a least squares estimation method from the filtered RMS signal.
  • the complex pointer of the transient response is calculated by means of a least-squares estimator.
  • the absolute time of the fault entry and the complex pointer of the transient are transmitted alternately to the device at the other end of the line.
  • the quadripole parameters of the zero system are calculated and stored for use in a ground fault on the own line.
  • the line affected by the ground fault can also be detected with non-specially tuned transducers. So it can be made very low demands on the accuracy of the converter used.

Description

Die Erfindung bezieht sich auf eine Anordnung und ein Verfahren zum Erzeugen eines Fehlersignals, das den Ort eines Erdschlusses auf einer Leitung zwischen zwei Leitungsenden kennzeichnet, wobei bei dem Verfahren an beiden Leitungsenden jeweils die Spannung und der Strom unter Bildung von Messwerten gemessen und nach oder bei einer Detektion eines Erdschlusses der Ort des Erdschlusses ermittelt wird. Mit einem solchen Verfahren können beispielsweise Erdschlüsse in Netzen mit isoliertem Sternpunkt oder mit Resonanzsternpunkterdung erfasst und geortet werden.The invention relates to an arrangement and a method for generating an error signal, which characterizes the location of a ground fault on a line between two line ends, wherein in the method at both line ends in each case the voltage and the current are measured to form measured values and after or at a detection of an earth fault, the location of the ground fault is determined. With such a method, for example, ground faults in networks with isolated neutral point or with resonance neutral point grounding can be detected and located.

Erdschlüsse in Netzen mit isoliertem Sternpunkt oder mit Resonanzsternpunkterdung führen zu einer Spannungsüberhöhung im gesamten über Transformatoren entkoppelten Teilnetz. Die Lokalisierung von Erdschlüssen bereitet immer wieder Schwierigkeiten und führt zu zeitaufwändigen Suchschaltungen, da die bis heute eingesetzten Verfahren zur Erdschlusserkennung nicht immer selektiv arbeiten.Earth faults in networks with isolated neutral point or with resonance earthing lead to a voltage increase in the entire transformer network decoupled subnet. The localization of ground faults always causes difficulties and leads to time-consuming search circuits, since the methods used to date for detecting earth faults are not always selective.

Bisherige Verfahren setzen für die Erdschlussortung Geräte ein, die das Prinzip der Wattmetrischen Erdschlusserfassung, Oberschwingungsverfahren oder Erdschlusswischer-Relais nutzen.Previous methods use devices that use the principle of Wattmetric earth fault detection, harmonics or ground-fault wiper relays for ground fault detection.

Geräte nach dem Prinzip der Wattmetrischen Erdschlusserfassung bestimmen die komplexen Zeiger der Nullsystemgrößen von Strom und Spannung der Grundschwingung. Aus diesen Größen wird die Wirk- und Blindleistung der Nullsystemgrößen bestimmt. Der Wirkanteil dieses Signals zeigt die Richtung zum Erdschluss vom Relaiseinbauort aus gesehen an. Die ermittelten Richtungssignale müssen über eine Fernwirk- oder Leittechnik von den Geräten zu einer zentralen Auswertestelle transportiert werden. Dort kann mittels manueller oder programmgestützter Auswertung die vom Erdschluss betroffene Leitung ermittelt werden. Das Prinzip der Wattmetrischen Erdschlusserfassung setzt sehr genaue Wandler mit kleinen Winkelfehlern voraus. Üblicherweise müssen eingesetzte Kabelumbauwandler bei der Inbetriebnahme abgeglichen werden, um die hohen Genauigkeitsforderungen des Verfahrens zu erfüllen. Da die zu korrigierenden Winkelfehler der Wandler von der Aussteuerung der Wandler abhängig sind, ist dieser Abgleich fehleranfällig und kann zu unzuverlässigen Anzeigen führen.Devices based on the principle of Wattmetric earth fault detection determine the complex pointers of the zero system variables of current and voltage of the fundamental oscillation. From these variables, the active and reactive power of the zero system variables is determined. The active component of this signal indicates the direction to the earth fault as seen from the relay installation point. The determined Directional signals must be transported via telecontrol or control technology from the devices to a central evaluation point. There, the line affected by the ground fault can be determined by means of manual or program-supported evaluation. The principle of Wattmetric earth fault detection requires very accurate transducers with small angle errors. Usually used cable conversion converters must be adjusted during commissioning in order to meet the high accuracy requirements of the process. Since the angular errors of the transducers to be corrected depend on the modulation of the transducers, this calibration is prone to error and can lead to unreliable displays.

Beim Prinzip des Erdschlusswischer-Relais sind folgende zwei Varianten bekannt: Bei der ersten Variante wird das Vorzeichen der ersten Halbschwingung des transienten Einschwingvorganges des Erdschlusses ausgewertet. Diese erste Variante funktioniert jedoch nur bei einem schlagartigen Erdschlusseintritt möglichst im Spannungsmaximum. Bei der zweiten Variante, auch qu-Verfahren genannt, wird aus den Augenblickswerten der Spannung und der Nullkapazität der zu untersuchenden Leitung der Verschiebestrom berechnet und mit dem gemessenen Nullstrom eine Lissajou-Figur gebildet. Der Anstieg dieser Kurve erlaubt eine Bestimmung der Erdschlussrichtung.The following two variants are known in the principle of the earth-fault wiper relay: In the first variant, the sign of the first half-cycle of the transient transient of the ground fault is evaluated. However, this first variant only works if there is a sudden ground fault, if possible in the voltage maximum. In the second variant, also called qu-method, the displacement current is calculated from the instantaneous values of the voltage and the zero capacitance of the line to be examined, and a Lissajou figure is formed with the measured zero current. The rise of this curve allows a determination of the earth fault direction.

Beim Oberschwingungsverfahren werden künstlich über einen Transformatorsternpunkt Oberwellen eingeprägt und diese eingeprägten Oberwellen für die Erdschlussortung ausgenutzt. Wegen der aktiven Einspeisung der Oberwellen ist zusätzliche Primärtechnik im Netz notwendig. Das Verfahren gestattet ausschließlich die Bestimmung der Erdschlussrichtung.In the case of the harmonic oscillation method, harmonics are impressed artificially via a transformer star point and these impressed harmonics are utilized for the earth fault detection. Due to the active supply of the harmonics, additional primary technology is necessary in the network. The method allows only the determination of the earth fault direction.

Ferner ist aus der EP 0 933 643 A1 ein Verfahren zum Orten eines Fehlers in einem Drehstromnetz bekannt, bei dem unter Zuhilfenahme von an zwei Messstellen erfassten Nullsystemströmen und -spannungen ein fehlerbehafteter Knoten im Drehstromnetz ermittelt werden kann.Furthermore, from the EP 0 933 643 A1 a method for locating a fault in a three-phase network, in which with the aid of detected at two measuring points zero system currents and voltages a faulty node in the three-phase network can be determined.

Der Erfindung liegt die Aufgabe zugrunde, ein zuverlässiges Verfahren zur Erdschlussortung anzugeben.The invention has for its object to provide a reliable method for Erdschlussortung.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.This object is achieved by a method having the features according to claim 1. Advantageous embodiments of the method according to the invention are specified in subclaims.

Danach ist erfindungsgemäß vorgesehen, dass mit den Messwerten der in der Nullspannung oder Nullstrom enthaltene Oberschwingungsanteil sowie dessen zeitliche Abklingkonstante für jedes der beiden Leitungsenden ermittelt wird, mit dem Oberschwingungsanteil und der Abklingkonstante für jedes Leitungsende jeweils eine Oberwellenzeigermessgröße nach Betrag und Phase gebildet wird, wobei sich der zeitliche Bezugspunkt der Phase der Oberwellenzeigermessgröße auf den Zeitpunkt der Erdschlussdetektion an dem jeweiligen Leitungsende bezieht, die in dieser Weise gebildeten Oberwellenzeigermessgrößen ausgehend von ihrem jeweiligen Leitungsende aus zeitlich in die Vergangenheit gedreht werden und ermittelt wird, zu welchem Zeitpunkt in der Vergangenheit und an welcher Stelle auf der Leitung die zurückgedrehten Oberwellenzeigermessgrößen zumindest annäherungsweise den gleichen Betrag und zumindest annäherungsweise die gleiche Phase aufweisen, und der in dieser Weise ermittelte Ort als Ort des Erdschlusses angesehen und mit dem Fehlersignal ausgegeben wird.Thereafter, the invention provides that is determined with the measured values contained in the zero voltage or zero current harmonic content and its time decay constant for each of the two line ends, with the harmonic component and the decay constant for each line end each a harmonic generator measured magnitude and phase is formed, wherein the temporal reference point of the phase of the harmonic generator measured value relates to the time of ground fault detection at the respective line end, the harmonic generator measured in this way are rotated from their respective end of the line in time to the past and determined at what time in the past and at what point on the line, the reverted harmonic generator readings are at least approximately equal in magnitude and at least approximately the same phase, and the location thus determined is al s location of the ground fault is considered and output with the error signal.

Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass bei diesem Oberwellen ausgewertet werden, wodurch eine sehr genaue Fehlerortung ermöglicht wird. Auch müssen nur geringe Anforderungen an die Messgenauigkeit der eingesetzten Wandler gestellt werden, da sich der Ort eines Erdschlusses bei dem erfindungsgemäßen Verfahren auch mit nicht speziell abgeglichenen Wandlern sehr genau ermitteln lässt.A significant advantage of the method according to the invention is the fact that these harmonics are evaluated, whereby a very accurate fault location is possible. Also, only small demands on the measurement accuracy of the converter used must be made, since the location of a ground fault in the method according to the invention can be determined very accurately even with not specially matched transducers.

Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass dieses Verfahren - im Unterschied zu den eingangs beschriebenen vorbekannten Verfahren-auch bei so genannten Erdschlusswischern zuverlässig arbeitet. Die Ortung der Erdschlusswischer funktioniert bei vorbekannten Verfahren nicht immer zuverlässig, da Erdschlusswischer nur transient vorhanden sind.Another significant advantage of the method according to the invention is the fact that this method - in contrast to the previously described prior art method - works reliably even in so-called ground fault wipers. The location of the ground fault wiper does not always work reliably with previously known methods, since ground-fault wipers are only transiently present.

Ein dritter wesentlicher Vorteil des erfindungsgemäßen Verfahrens besteht darin, dass das Messen der Spannung an den beiden Leitungsenden synchronisationsfrei erfolgen kann und die Spannungsmesswerte an den beiden Leitungsenden unsynchronisiert sein können.A third significant advantage of the method according to the invention is that the measurement of the voltage at the two line ends can take place without synchronization and the voltage measurement values at the two line ends can be unsynchronized.

Gemäß einer bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass unter Berücksichtigung der die Ausbreitung elektromagnetischer Wellen auf Leitungen beschreibenden Telegraphengleichung für einen wählbaren Ort auf der Leitung ein erster und ein zweiter Nullspannungszeiger für einen um die Ausbreitungszeit zum wählbaren Ort in der Vergangenheit liegenden Zeitpunkt unter Verwendung der Oberwellenzeigermeßgrößen von Nullstrom und Nullspannung an den beiden Leitungsenden berechnet werden, wobei der erste Nullspannungszeiger ausgehend von dem ersten Leitungsende in Richtung des zweiten Leitungsendes und der zweite Nullspannungszeiger ausgehend von dem zweiten Leitungsende in Richtung des ersten Leitungsendes berechnet wird, die in dieser Weise berechneten beiden Nullspannungszeiger miteinander verglichen werden und derjenige Ort ausgewählt wird, an dem die berechneten Nullspannungszeiger am besten übereinstimmen, und der in dieser Weise bestimmte Leitungsort als Ort des Erdschlusses angesehen wird. Mit der Telegraphengleichung ist eine Ortung sehr einfach und schnell möglich.According to a preferred embodiment of the method, it is provided that, taking into account the telegraph equation describing the propagation of electromagnetic waves on lines for a selectable location on the line, a first and a second zero voltage pointer for a time past the propagation time to the selectable location using the Harmonic generator magnitudes of zero current and zero voltage at the two line ends are calculated, the first zero voltage pointer being calculated from the first line end towards the second line end and the second zero voltage pointer from the second line end towards the first line end, the two zero voltage pointers calculated in this way are compared with each other and the one place is selected where the calculated zero voltage pointers best match, and the line location determined in this way as the location of the Earth fault is considered. With the telegraph equation locating is very easy and fast possible.

Gemäß einer weiteren bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die beiden Oberwellenzeigermessgrößen nach Betrag und Phase jeweils unter Zugrundelegung eines vorgegebenen Signalmodells, das den zeitlichen Verlauf der Nullspannung im Falle eines Erdschlusses nachbildet, mittels eines Schätzverfahrens bestimmt werden, wobei das vorgegebene Signalmodell zumindest die zu bestimmende Oberwellenzeigermessgröße mit einer festgelegten Zeigerkreisfrequenz, die ermittelte zeitliche Abklingkonstante des Oberschwingungsanteils und eine Nullspannungszeigermessgröße mit der Grundfrequenz der Nullspannung berücksichtigt und wobei im Rahmen des Schätzverfahrens der Betrag und die Phase der Oberwellenzeigermessgröße derart angepasst werden, dass die Abweichung zwischen dem zeitlichen Signalverlauf des nachgebildeten Signals des Signalsmodells und dem gemessenen zeitlichen Signalverlauf der Messwerte der Nullspannung minimal ist. Als Schätzverfahren wird bevorzugt ein Least-Squares-Schätzverfahren, ein Kalman-Filter-Algorithmus oder ein ARMAX-Schätzverfahren verwendet.According to a further preferred embodiment of the method, it is provided that the two harmonic generator measured quantities are determined by magnitude and phase in each case on the basis of a predetermined signal model, which simulates the time course of the zero voltage in the case of a ground fault, by means of an estimation method, wherein the predetermined signal model at least the Determining harmonic generator measuring variable with a fixed pointer circle frequency, the determined time decay constant of the harmonic component and a Nullspannungszeigermessgröße with the fundamental frequency of the zero voltage and wherein the amount and the phase of the harmonic generator measured variable are adjusted in the estimation method such that the deviation between the temporal waveform of the simulated signal of Signal model and the measured temporal waveform of the measured values of the zero voltage is minimal. As an estimation method, a least-squares estimation method, a Kalman filter algorithm or an ARMAX estimation method is preferably used.

Im Übrigen wird es als vorteilhaft angesehen, wenn aus dem Frequenzspektrum des Oberschwingungsanteils eine für den Oberschwingungsanteil dominante Frequenz ausgewählt wird und die Zeigerkreisfrequenz der Oberwellenzeigermessgrößen jeweils derart festgelegt wird, dass sie der dominanten Frequenz entspricht. Beispielsweise kann in dem Oberschwingungsanteil diejenige Oberschwingungsfrequenz bestimmt werden, deren Amplitude maximal ist, und diese als Zeigerkreisfrequenz festgelegt werden.Moreover, it is considered advantageous if a frequency dominant for the harmonic component is selected from the frequency spectrum of the harmonic component and the pointer frequency of the harmonic generator parameters is in each case set such that it corresponds to the dominant frequency. For example, in the harmonic content that harmonic frequency can be determined whose amplitude is maximum, and these are set as the pointer circle frequency.

Das Zeitfenster für die zur Bestimmung der Oberwellenzeigermessgrößen verwendeten Daten wird bevorzugt so bestimmt, dass der Zeitfensterbeginn auf den Beginn des Anstiegs der Nullspannung nach Überschreiten eines vorgegebenen Schwellenwertes festgelegt wird.The time window for the data used to determine the harmonic generator measurement values is preferably determined such that the time window beginning at the beginning of the rise of the zero voltage is set after exceeding a predetermined threshold.

Der Oberschwingungsanteil wird bevorzugt ermittelt, indem nach der Detektion des Erdschlusses für jedes Leitungsende jeweils ein Messfenster geöffnet wird, für das mittels einer Fouriertransformation das Frequenzspektrum der Nullspannung ermittelt wird, und das Frequenzspektrum einer Hochpassfilterung unterzogen wird, bei der die Oberwellen von der Grundfrequenz der Nullspannung unter Bildung des Oberschwingungsanteils getrennt werden.The harmonic content is preferably determined by opening a measurement window for each line end after detection of the ground fault, for which the frequency spectrum of the zero voltage is determined by means of a Fourier transformation, and the frequency spectrum is subjected to high-pass filtering, in which the harmonics of the fundamental frequency of the zero voltage be separated by forming the harmonic component.

Die Abklingkonstante lässt sich besonders einfach und damit vorteilhaft ermitteln, indem der Effektivwert des Oberschwingungsanteils bestimmt wird und die zeitliche Abklingkonstante des Effektivwertes ermittelt wird und die ermittelte zeitliche Abklingkonstante des Effektivwertes als zeitliche Abklingkonstante des Oberschwingungsanteils angesehen wird.The decay constant can be determined particularly simply and thus advantageously by determining the rms value of the harmonic component and determining the time decay constant of the rms value and determining the determined time decay constant of the rms value as the time decay constant of the harmonic component.

Um einen möglichst geringen Apparateaufwand zu erreichen, wird es als vorteilhaft angesehen, wenn bei dem Verfahren das Messen von Spannung und Strom an den beiden Leitungsenden synchronisationsfrei erfolgt und die Spannungs- und Strommesswerte an den beiden Leitungsenden unsynchronisiert sind.In order to achieve the lowest possible expenditure on equipment, it is considered advantageous if, in the method, the measurement of voltage and current takes place without synchronization at the two line ends and the voltage and current measured values at the two line ends are unsynchronized.

Die Erfindung bezieht sich außerdem auf eine Anordnung zum Erzeugen eines Fehlersignals, das den Ort eines Erdschlusses auf einer Leitung zwischen einem ersten und einem zweiten Leitungsende kennzeichnet, wobei die Anordnung aufweist: ein erstes Messgerät an dem ersten Leitungsende der Leitung und ein zweites Messgerät an dem zweiten Leitungsende der Leitung.The invention also relates to an arrangement for generating an error signal characterizing the location of a ground fault on a line between a first and a second line end, the arrangement comprising: a first measuring device at the first line end of the line and a second measuring device at the line second line end of the line.

Erfindungsgemäß ist eine mit den beiden Messgeräten verbundene Auswerteinrichtung vorhanden, die geeignet ist, mit den Messwerten der beiden Messgeräte ein Verfahren auszuführen, wie es oben beschrieben ist.According to the invention, an evaluation device connected to the two measuring devices is provided, which is suitable for carrying out a method with the measured values of the two measuring devices, as described above.

Die Auswerteinrichtung kann beispielsweise durch eine programmierte Datenverarbeitungsanlage gebildet sein.The evaluation device can be formed for example by a programmed data processing system.

Die Auswerteinrichtung kann in einer Zentraleinrichtung angeordnet sein, mit der die beiden Messgeräte in Verbindung stehen. Alternativ können die beiden Messgeräte miteinander verbunden sein, wobei die Auswerteinrichtung in einem der Messgeräte implementiert ist.The evaluation device can be arranged in a central device with which the two measuring devices are connected. Alternatively, the two measuring devices can be connected to one another, wherein the evaluation device is implemented in one of the measuring devices.

Die Erfindung bezieht sich außerdem auf ein Feldgerät, insbesondere Schutzgerät, zum Anschluss an ein Leitungsende einer elektrischen Leitung und zum Erkennen eines Erdschlusses auf der Leitung. Erfindungsgemäß weist das Feldgerät auf: eine Auswerteinrichtung, die geeignet ist, ein Verfahren wie oben beschrieben auszuführen, sowie einen Datenanschluss zum Anschluss an ein anderes Messgerät zum Empfangen von Messwerten, die sich auf das andere Leitungsende der Leitung beziehen.The invention also relates to a field device, in particular protective device, for connection to a line end of an electrical line and for detecting a ground fault on the line. According to the invention, the field device comprises: an evaluation device which is suitable for carrying out a method as described above, and a data connection for connection to another measuring device for receiving measured values relating to the other line end of the line.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft:

Figur 1
eine Anordnung mit drei Feldgeräten,
Figur 2
das elektrische Ersatzschaltbild der Anordnung gemäß Figur 1,
Figuren 3, 4
vereinfachte elektrische Ersatzschaltbilder der Anordnung gemäß Figur 1,
Figur 5
ein elektrisches Ersatzschaltbild einer erdschlussbehafteten Energieübertragungsleitung,
Figur 6
einen typischen Verlauf der Nullgrößen bei einem Erdschluss,
Figur 7
Signalverarbeitungsschritte zur Datenfenster- und Zeitkonstantenbestimmung,
Figur 8
Spektren von Nullstrom und Nullspannung,
Figur 9
die Übereinstimmung von gemessenen und geschätzten Signalen (komplettes Datenfenster),
Figur 10
die Übereinstimmung von gemessenen und geschätzten Signalen (Ausschnitt),
Figur 11
berechnete komplexe Zeiger,
Figur 12
den Verlauf einer Kostenfunktion,
Figur 13
schematisch die Ausbreitung einer Welle auf einer Leitung und
Figur 14
ein Ausführungsbeispiel für ein erfindungsgemäßes Feldgerät.
The invention will be explained in more detail with reference to embodiments; thereby show exemplarily:
FIG. 1
an arrangement with three field devices,
FIG. 2
the electrical equivalent circuit diagram of the arrangement according to FIG. 1 .
FIGS. 3, 4
simplified electrical equivalent circuit diagrams of the arrangement according to FIG. 1 .
FIG. 5
an electrical equivalent circuit diagram of a faulty power transmission line,
FIG. 6
a typical course of the zero values in case of a ground fault,
FIG. 7
Signal processing steps for data window and time constant determination,
FIG. 8
Spectra of zero current and zero voltage,
FIG. 9
the match of measured and estimated signals (complete data window),
FIG. 10
the agreement of measured and estimated signals (detail),
FIG. 11
calculated complex pointers,
FIG. 12
the course of a cost function,
FIG. 13
schematically the propagation of a wave on a pipe and
FIG. 14
an embodiment of an inventive field device.

In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet.For the sake of clarity, the same reference numbers are always used in the figures for identical or comparable components.

In der Figur 1 ist eine elektrische Anordnung dargestellt, die drei Umspannwerke 10, 20 und 30 umfasst. In dem Umspannwerk 10 sind zwei Feldgeräte 40 und 41 enthalten, in den beiden Umspannwerken 20 und 30 je eines. Die vier Feldgeräte 40, 41, 42 und 43 können beispielsweise baugleich sein, jedoch ist dies nicht zwingend.In the FIG. 1 an electrical arrangement is shown comprising three substations 10, 20 and 30. In the substation 10, two field devices 40 and 41 are included, in the two substations 20 and 30 each one. The four field devices 40, 41, 42 and 43 may be identical, for example, but this is not mandatory.

Die Anschlussstelle A des Umspannwerkes 10 und die Anschlussstelle B des Umspannwerkes 20 sind miteinander durch eine beispielsweise dreiphasige Energieübertragungsleitung 50 verbunden; die Anschlussstelle A des Umspannwerkes 10 und die Anschlussstelle C des Umspannwerkes 30 sind miteinander durch eine beispielsweise dreiphasige Energieübertragungsleitung 60 verbunden.The junction A of the substation 10 and the junction B of the substation 20 are connected to each other by an example, three-phase power transmission line 50; the junction A of the substation 10 and the junction C of the substation 30 are connected together by an example, three-phase power transmission line 60.

Die Feldgeräte stehen über ihren Datenanschluss D40, D41, D42 und D43 mit lokalen Netzen 70, Routern 80 sowie einem WAN 90 (WAN: wide area network), wie beispielsweise dem Internet, und damit auch miteinander in einer Datenverbindung, zum Beispiel nach dem ETHERNET-Standard unter Verwendung fest vorgegebener IP-Adressen für jedes der Feldgeräte.The field devices are connected via their data connection D40, D41, D42 and D43 to local networks 70, routers 80 and a WAN 90 (WAN: wide area network), such as the Internet, and thus also to each other in a data connection, for example to the ETHERNET Standard using fixed IP addresses for each of the field devices.

Über diese Datenverbindung kann beispielsweise das Feldgerät 40 des Umspannwerkes 10 mit dem Feldgerät 42 des Umspannwerkes 30 Daten austauschen, beispielsweise jeweils die Messwerte von Strom und Spannung an den jeweiligen Anschlussstellen A und C und/oder daraus abgeleitete Messwerte, wie beispielsweise Oberwellenzeigermessgrößen nach Betrag und Phase. So können beispielsweise Oberwellenzeigermessgrößen U0A und I0A von dem Feldgerät 40 zu dem Feldgerät 42 und Oberwellenzeigermessgrößen U0C und I0C von dem Feldgerät 42 zu dem Feldgerät 40 übertragen werden.By way of example, the field device 40 of the substation 10 can exchange data with the field device 42 of the substation 30 via this data connection, for example the measured values of current and voltage at the respective connection points A and C and / or measured values derived therefrom, such as harmonic vector measured quantities in magnitude and phase , For example, harmonic generator readings U0A and I0A may be transmitted from the field device 40 to the field device 42 and harmonic generator readings U0C and I0C from the field device 42 to the field device 40.

Das vereinfachte elektrische Ersatzschaltbild der Anordnung gemäß der Figur 1 zeigen beispielhaft die Figuren 2 und 3. Man erkennt, dass das Teilnetz rechts eines Transformators 100 des Umspannwerks 10 mit einer Resonanzsternpunkterdung versehen ist. Wird in diesem Teilnetz für das Mit- und Gegensystem ein Ersatzwiderstand und eine Ersatzspannungsquelle gebildet, entsteht ein vereinfachtes Ersatzschaltbild, das in der Figur 4 gezeigt ist.The simplified electrical equivalent circuit diagram of the arrangement according to the FIG. 1 show by way of example the FIGS. 2 and 3 , It can be seen that the subnetwork to the right of a transformer 100 of the substation 10 is provided with a resonance neutral point earthing. If an equivalent resistance and an equivalent voltage source are formed in this subsystem for the positive sequence and negative sequence system, a simplified equivalent circuit diagram is created FIG. 4 is shown.

In der Figur 14 ist ein Ausführungsbeispiel für das Feldgerät 42 gezeigt. Die Feldgeräte 40, 41 und 43 aus Figur 1 können identisch oder ähnlich aufgebaut sein.In the FIG. 14 an embodiment of the field device 42 is shown. The field devices 40, 41 and 43 are off FIG. 1 can be identical or similar.

Man erkennt in der Figur 14 einen Nullspannungsbildner 120 sowie einen Nullstrombildner 125, die eingangsseitig an die Anschlussstelle C des Umspannwerkes 30 angeschlossen sind und Strommesswerte Mi und Spannungsmesswerte Mu erhalten. Dem Nullspannungsbildner 120 und dem Nullstrombildner 125 nachgeordnet sind eine Einrichtung 130 zum Bestimmen einer Abklingkonstante τ, eine Einrichtung 135 zum Festlegen einer Oberschwingungsfrequenz fm sowie eine Schätzeinrichtung 140.One recognizes in the FIG. 14 a zero voltage generator 120 and a zero-current generator 125, which are connected on the input side to the junction C of the substation 30 and current readings Mi and voltage readings Mu obtained. Downstream of the zero-voltage generator 120 and the zero-current generator 125 are a device 130 for determining a decay constant τ, a device 135 for determining a harmonic frequency fm and an estimator 140.

Die Einrichtung 130 zum Bestimmen der Abklingkonstante τ umfasst einen Hochpass 145, einen Effektivwertbildner 150 sowie einen Zeitkonstantenbestimmer 155.The means 130 for determining the decay constant τ comprises a high pass 145, an effective value generator 150 and a time constant determiner 155.

Die Einrichtung 135 zum Festlegen der Oberschwingungsfrequenz fm umfasst eine FFT-Einrichtung (FFT: Fast Fourier Transformation) 160 sowie einen Maximalwertsucher 165.The device 135 for determining the harmonic frequency fm comprises an FFT device (FFT: Fast Fourier Transformation) 160 and a maximum value searcher 165.

Die Ausgänge der Einrichtungen 130 und 135 sind an weitere Eingänge der Schätzeinrichtung 140 angeschlossen. Ausgangsseitig steht die Schätzeinrichtung 140 mit einer Fehlerortbestimmeinrichtung 170 in Verbindung, die eingangsseitig außerdem an den Datenanschluss D42 angeschlossen ist.The outputs of the devices 130 and 135 are connected to other inputs of the estimator 140. On the output side, the estimation device 140 is provided with a fault locating device 170 in connection, the input side is also connected to the data port D42.

Das Feldgerät 42 kann beispielsweise wie folgt betrieben werden:

  • Zunächst bilden der Nullspannungsbildner 120 sowie der Nullstrombildner 125 Nullspannungswerte und Nullstromwerte.
The field device 42 can be operated, for example, as follows:
  • First, the zero voltage generator 120 and the zero current generator 125 form zero voltage values and zero current values.

Die Einrichtung 130 zum Bestimmen der Abklingkonstante filtert mit ihrem Hochpass 145 aus der Nullspannung den Oberschwingungsanteil heraus und bildet mit dem Effektivwertbildner 150 einen Effektivwert des Oberschwingungsanteils. Mit dem Zeitverlauf des Effektivwerts des Oberschwingungsanteils ermittelt der Zeitkonstantenbestimmer 155 den zeitlichen Abfall des Effektivwerts unter Bildung der Abklingkonstante τ, die zu der Schätzeinrichtung 140 gelangt.The means 130 for determining the decay constant filters out the harmonic component with its high-pass 145 from the zero voltage and, together with the rms value generator 150, forms an effective value of the harmonic component. With the time course of the rms value of the harmonic content, the time constant determiner 155 determines the time drop of the rms value to form the decay constant τ which reaches the estimator 140.

Der Maximalwertsucher 165 der Einrichtung 135 sucht in dem von der FFT-Einrichtung 160 gebildeten Spannungsfrequenzspektrum eine dominierende Frequenz fm heraus und leitet diese zu der Schätzeinrichtung 140. Beispielsweise wird der Maximalwertsucher 165 in dem Oberschwingungsanteil diejenige Oberschwingungsfrequenz bestimmen, deren Amplitude maximal ist, und diese Frequenz als dominierende Frequenz fm ausgeben.The maximum value finder 165 of the device 135 retrieves a dominating frequency fm in the voltage frequency spectrum formed by the FFT device 160 and sends it to the estimator 140. For example, the maximum value finder 165 in the harmonic content will determine the harmonic frequency whose amplitude is maximum and this frequency spend as dominating frequency fm.

In der Schätzeinrichtung 140 ist ein Signalmodell hinterlegt, das den zeitlichen Verlauf der Nullspannung im Falle eines Erdschlusses nachbildet. Das Signalmodell berücksichtigt als den Signalverlauf bestimmende Einflussparameter eine Oberwellenzeigermessgröße mit der dominierende Frequenz fm, die Abklingkonstante τ und eine Nullspannungszeigermessgröße mit der Grundfrequenz der Nullspannung. Nach einem vorgegebenen Schätzverfahren passt die Schätzeinrichtung 140 unter Heranziehung dieses Signalmodells den Betrag und die Phase der Oberwellenzeigermessgröße derart bzw. solange an, bis die Abweichung zwischen dem zeitlichen Signalverlauf des nachgebildeten Signals des Signalsmodells und dem gemessenen zeitlichen Signalverlauf der Messwerte der Nullspannung minimal ist. In dieser Weise wird ausgangsseitig mit dem Oberschwingungsanteil und der Abklingkonstante τ eine Oberwellenzeigermessgröße nach Betrag und Phase für die Spannung und in entsprechender Weise für den Strom gebildet, wobei sich der zeitliche Bezugspunkt der Phase der Oberwellenzeigermessgröße auf den Zeitpunkt der Erdschlussdetektion an dem jeweiligen Leitungsende bezieht. Die Oberwellenzeigermessgrößen für Strom und Spannung sind mit den Bezugszeichen U0C und I0C gekennzeichnet.In the estimator 140, a signal model is stored, which simulates the time course of the zero voltage in the event of a ground fault. The signal model takes into account as influencing parameters determining the signal progression a harmonic generator measuring variable with the dominant frequency fm, the decay constant τ and a zero voltage indicator measured value the fundamental frequency of the zero voltage. According to a predetermined estimation method, the estimation means 140 adjusts the amount and phase of the harmonic generator measured value by using this signal model until the deviation between the temporal waveform of the simulated signal of the signal model and the measured temporal waveform of the measured values of the zero voltage is minimum. In this way, on the output side with the harmonic component and the decay constant τ a harmonic generator measured magnitude and phase for the voltage and correspondingly formed for the current, wherein the time reference point of the phase of the harmonic generator measurement refers to the time of ground fault detection at the respective line end. The harmonic current measurement quantities for current and voltage are identified by the reference symbols U0C and I0C.

Die Oberwellenzeigermessgrößen U0C und I0C sowie die Oberwellenzeigermessgrößen U0A und I0A gelangen zu der Fehlerortbestimmeinrichtung 170, die die in der beschriebenen Weise gebildeten Oberwellenzeigermessgrößen mathematisch ausgehend von ihrem jeweiligen Leitungsende A bzw. C aus zeitlich in die Vergangenheit dreht und ermittelt, zu welchem Zeitpunkt in der Vergangenheit und an welcher Stelle auf der Leitung 60 die beiden zurückgedrehten Oberwellenzeigermessgrößen U0C und U0A sowie die beiden zurückgedrehten Oberwellenzeigermessgrößen I0A und I0C zumindest annäherungsweise den gleichen Betrag und zumindest annäherungsweise die gleiche Phase aufweisen. Der in dieser Weise ermittelte Ort wird als Ort des Erdschlusses angesehen und mit dem Fehlersignal F ausgegeben.The harmonic generator measuring quantities U0C and I0C as well as the harmonic current measuring quantities U0A and I0A reach the fault locating device 170, which chronologically rotates and determines the harmonic generator measured quantities formed in the manner described from their respective line end A or C, at which point in time in the past and at which point on the line 60 the two back-rotated harmonic measures U0C and U0A and the two back-rotated harmonic readings I0A and I0C have at least approximately the same amount and at least approximately the same phase. The location determined in this way is regarded as the location of the ground fault and output with the error signal F.

Das mathematische Zurückdrehen der Oberwellenzeigermessgrößen kann beispielsweise unter Berücksichtigung der die Ausbreitung elektromagnetischer Wellen auf Leitungen beschreibenden Telegraphengleichung erfolgen. Hierbei wird für einen wählbaren Ort der Betrag und die Phase der Oberwellenzeigermessgröße der Nullspannung für einen um die Ausbreitungszeit zum wählbaren Ort in der Vergangenheit liegenden Zeitpunkt aus den Oberwellenzeigermeßgrößen von Nullstrom und Nullspannung des jeweils eigenen Leitungsendes in Richtung des anderen Leitungsendes berechnet. Die in dieser Weise berechneten Zeiger der Nullspannung - ausgehend von jedem der beiden Leiterenden - werden miteinander verglichen und es wird derjenige Ort ausgewählt, an dem die berechneten Zeiger am besten übereinstimmen.The mathematical turning back of the harmonic generator magnitudes can be described, for example, taking into account the propagation of electromagnetic waves on lines Telegraph equation. Here, for a selectable location, the magnitude and phase of the harmonic generator measurement value of the zero voltage for a time lying around the propagation time to the selectable location in the past is calculated from the harmonic generator magnitudes of zero current and zero voltage of its own line end toward the other line end. The zero voltage hands calculated in this way - starting from each of the two conductor ends - are compared with each other and the location where the calculated hands best match is selected.

Die Komponenten 120, 125, 130, 135, 140 und 170 des Feldgeräts 42 bilden eine Auswerteinrichtung 200; diese kann beispielsweise durch eine Datenverarbeitungsanlage gebildet sein.The components 120, 125, 130, 135, 140 and 170 of the field device 42 form an evaluation device 200; this can be formed for example by a data processing system.

Die oben beschriebene Vorgehensweise zum Bestimmen des Fehlerorts kann beispielsweise im Detail wie folgt aussehen:

  • Wenn davon ausgegangen wird, dass die Messwerte von Nullsystemspannung und Nullsystemstrom für die Netzknoten A und C zur Verfügung stehen, kann für eine fehlerbehaftete Leitung ein Ersatzschaltbild des Nullsystems aufgestellt werden, wie es in der Figur 5 dargestellt ist.
For example, the procedure for determining the fault location described above may be as follows in detail:
  • If it is assumed that the measured values of zero system voltage and zero system current are available for the network nodes A and C, an equivalent circuit diagram of the zero system can be set up for a faulty line, as described in US Pat FIG. 5 is shown.

In der Figur 5 sind zwei Maschen zu erkennen, die an der Fehlerstelle F eine gemeinsame Spannung für die Spannung im Nullsystem an der Fehlerstelle U0F enthalten. Die beiden Vierpole KA und KC repräsentieren das Leitungsmodell des Nullsystems von den Leitungsenden der Knoten A bzw. C bis zur Fehlerstelle F. Die folgende Gleichung zeigt die Kettenmatrix für die Vierpole: U 2 I 2 = k 11 k 12 k 21 k 22 U 1 I 1

Figure imgb0001

mit : K = cosh γ l Z W sinh γ l 1 Z W sinh γ l cosh γ l
Figure imgb0002

und : Z W = + +
Figure imgb0003
γ = + +
Figure imgb0004
In the FIG. 5 two loops are to be recognized, which contain a common voltage at the fault point F for the voltage in the zero system at the fault point U0F. The two four-poles KA and KC represent the line model of the zero system from the line ends of the nodes A and C to the error point F. The following equation shows the chain matrix for the four poles: U 2 I 2 = k 11 k 12 k 21 k 22 U 1 I 1
Figure imgb0001

with : K = cosh γ l Z W sinh γ l 1 Z W sinh γ l cosh γ l
Figure imgb0002

and : Z W = R ' + L' G + C '
Figure imgb0003
γ = R ' + L' G + C '
Figure imgb0004

Die Größen R', L',G' und C' stellen die kilometrischen Größen von Serienresistanz, Serieninduktivität, Parallelleitwert und Parallelkapazität der Leitung dar. Für die Fehlerstelle lassen sich nun folgende beiden Gleichungen aufstellen: U 0 rA = U 0 rC = U 0 F

Figure imgb0005

mit U 0 F = U 0 rA = k 11 l U 0 A + k 12 l I 0 A
Figure imgb0006
U 0 F = U 0 rC = k 11 , 1 - l U 0 C + k 12 , 1 - l I 0 C
Figure imgb0007
The quantities R ', L', G 'and C' represent the kilometric quantities of series resistance, series inductance, parallel conductance and parallel capacitance of the line. The following two equations can now be set up for the error location: U 0 rA = U 0 rC = U 0 F
Figure imgb0005

With U 0 F = U 0 rA = k 11 l U 0 A + k 12 l I 0 A
Figure imgb0006
U 0 F = U 0 rC = k 11 . 1 - l U 0 C + k 12 . 1 - l I 0 C
Figure imgb0007

Die Funktionen k in Abhängigkeit der Frequenz für eine gegebene Leitungslänge können als bekannt vorausgesetzt werden. Damit bleibt für das oben aufgestellte Gleichungssystem nur die Fehlerentfernung l als unbekannte Größe. Diese Größe kann durch direkte Lösung der angegebenen Gleichung ermittelt werden, wenn die komplexen Zeiger für U0A, I0A, U0C und I0C vorliegen.The functions k as a function of the frequency for a given line length can be assumed to be known. This leaves only the error distance l as an unknown quantity for the system of equations set up above. This size can be determined by directly solving the given equation when the complex pointers are for U0A, I0A, U0C, and I0C.

Durch Aufstellung einer Kostenfunktion kann die oben dargestellte Funktion in ein nichtlineares Optimierungsproblem umgewandelt werden. In diesem Fall können zusätzlich die Parameter der kilometrischen Impedanzen in den Vektor der zu optimierenden Größen aufgenommen werden. Als Kostenfunktion kann der Quadratische Modellfehler der Spannung am Fehlerort verwendet werden: e l = Re U 0 rA - Re U 0 rC 2 + Im U 0 rA - Im U 0 rC 2

Figure imgb0008

mit U 0 rF = k 11 l U 0 A + k 12 l I 0 A
Figure imgb0009
U 0 rC = k 11 , 1 - l U 0 C + k 12 , 1 - l I 0 C
Figure imgb0010
By setting up a cost function, the above function can be transformed into a nonlinear optimization problem. In this case, in addition, the parameters of the kilometric impedances can be included in the vector of the quantities to be optimized. As a cost function the square model error of the voltage at the fault location can be used: e l R ' L' G C ' = re U 0 rA - re U 0 rC 2 + in the U 0 rA - in the U 0 rC 2
Figure imgb0008

With U 0 rh = k 11 l U 0 A + k 12 l I 0 A
Figure imgb0009
U 0 rC = k 11 . 1 - l U 0 C + k 12 . 1 - l I 0 C
Figure imgb0010

Durch Anwendung eines z.B. aus der Schrift " A Fast Algorithm For Fast Nonlinearly Constrained Optimization Calculations" (Powell, M.J.D., Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978 ) bekannten nichtlinearen Optimierungsverfahrens wird die folgende Optimierungsaufgabe gelöst: min l e l

Figure imgb0011

mit l 01
Figure imgb0012
By applying an example from the scripture " A Fast Algorithm For Fast Nonlinearly Constrained Optimization Calculations "(Powell, MJD, Numerical Analysis, GA Watson ed., Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978 ) known nonlinear optimization method, the following optimization task is solved: min l e l R ' L' G C '
Figure imgb0011

With l 01
Figure imgb0012

Für die komplexen Zeiger U0A, I0A, U0C und I0C werden dabei nicht die Zeiger der Grundwelle, sondern Zeiger für die dominante Einschwingfrequenz verwendet. Diese können beispielsweise wie folgt bestimmt werden: Im Nullsystem entsteht aus der Reaktanz der im Sternpunkt des Einspeisetransformators befindlichen Petersen-Spule und der Kapazität des Gesamtnetzes gegen Erde ein Parallelschwingkreis, der auf die Netzfrequenz abgestimmt ist. Dieses Signal liefert bei einem guten Abgleich einen korrelierten Anteil zum Grundwellenzeiger und kann damit erhebliche Messfehler bei der Zeigerbestimmung hervorrufen. Die Längsinduktivitäten des Netzes bilden jedoch mit den Erdkapazitäten der Leitung weitere Serien- und Parallelresonanzkreise, die bei Erdschlusseintritt durch das Entladen des vom Erdschluss betroffenen Leiters und dem Aufladen der nicht betroffenen Leiter zu Einschwingvorgängen auf ihrer Eigenfrequenz angeregt werden.For the complex pointers U0A, I0A, U0C and I0C not the pointers of the fundamental wave are used, but pointers for the dominant transient frequency. These can be determined, for example, as follows: In the zero system, the reactance of the Petersen coil located in the neutral point of the feed transformer and the capacitance of the overall network to ground produces a parallel resonant circuit which is tuned to the mains frequency. This signal provides a good balance with a correlated proportion to the fundamental wave pointer and can thus cause significant measurement errors in the pointer determination. However, the longitudinal inductances of the network form, with the earth capacitances of the line, further series and parallel resonant circuits which, in the case of ground fault, discharge by discharging the conductor affected by the ground fault and charging it the unaffected conductors are excited to transient phenomena at their natural frequency.

Die Figur 6 zeigt einen typischen Verlauf von Nullstrom und -spannung bei einem Erdschlusseintritt. In der Figur 6 ist deutlich der Einschwingvorgang der Nullspannung (oberes Diagramm) und des Nullstroms (unteres Diagramm) zu erkennen. Hier ist ersichtlich, dass die Amplitude des Nullstroms während des Einschwingvorganges ein Mehrfaches der Stromamplitude während des eingeschwungenen Zustands beträgt.The FIG. 6 shows a typical course of zero current and voltage at a Erdschlusseintritt. In the FIG. 6 clearly shows the transient of the zero voltage (upper diagram) and the zero current (lower diagram). Here it can be seen that the amplitude of the zero current during the transient is a multiple of the current amplitude during the steady state.

Die Figur 7 zeigt einen Ausschnitt des Einschwingvorgangs der Spannung; dabei bezeichnen u0 die gemessene Nullspannung, u0eff den Effektivwert der Nullspannung, u0hp die hochpassgefilterte Nullspannung und u0eff-hp den hochpassgefilterten Effektivwert der Nullspannung.The FIG. 7 shows a section of the transient of the voltage; where u0 is the measured zero voltage, u0eff is the rms value of the zero voltage, u0hp is the high-pass filtered zero voltage, and u0eff-hp is the high-pass filtered rms value of the zero voltage.

Zur Bestimmung des Datenfensterbeginns wird beispielsweise die Überschreitung eines U0-Schwellwertes als Startwert verwendet. Zur Synchronisation der Datenfenster von beiden Leitungsenden können zum Beispiel Vorfehlergrößen in Verbindung mit einem Nullsystem-Modell der gesunden Leitung verwendet werden. Alternativ kann die Zeitdifferenz der Datenfenster mit in die Lösung der nichtlinearen Optimierung einbezogen werden. Dazu werden die Laufzeiten der Welle von der Fehlerstelle bis zu den Messorten zum Beispiel wie folgt berücksichtigt (vgl. Figur 13): Mit Hilfe der Ausbreitungszeitkonstante der Telegraphengleichung kann die Entfernung der Messorte von der Fehlerstelle in eine Laufzeit der Welle von Fehlerort zu den Messorten umgerechnet werden: T A = Im γ l

Figure imgb0013
T C = Im γ 1 - l
Figure imgb0014
To determine the start of the data window, for example, the exceeding of a U0 threshold value is used as the starting value. For example, to synchronize the data windows from both ends of the line, pre-fault sizes may be used in conjunction with a healthy-line null-system model. Alternatively, the time difference of the data windows can be included in the solution of the nonlinear optimization. For this purpose, the propagation times of the wave from the point of failure to the measuring locations, for example, are considered as follows (cf. FIG. 13 ): With the aid of the propagation time constant of the telegraph equation, the distance of the measuring locations from the fault location to a transit time of the wave from fault location to the measuring locations can be converted: T A = in the γ l
Figure imgb0013
T C = in the γ 1 - l
Figure imgb0014

Werden die Zeitpunkte des Eintreffens der Welle an den Messorten nun aus dem Anstiegsbeginn der Nullspannung exakt ermittelt, kann der Zeitversatz dieser Zeitpunkte gegenüber dem Fehlereintrittszeitpunkt an der Messstelle A durch TA und an der Messstelle C durch TC angegeben werden. Diese Zeitverschiebungen können nun wie folgt im Ansatz berücksichtigt werden: e l = Re U 0 rA - Re U 0 rC 2 + Im U 0 rA - Im U 0 rC 2

Figure imgb0015

mit U 0 rA = k 11 l U 0 A e - j Im γ l + k 12 l I 0 A e - j Im γ l
Figure imgb0016
U 0 rC = k 11 , 1 - l U 0 C e - j Im γ 1 - l + k 12 , 1 - l I 0 C e - j Im γ 1 - l
Figure imgb0017
If the times of the arrival of the wave at the measuring locations are now determined exactly from the starting point of the zero voltage, the time offset of these times with respect to the error entry time at the measuring point A can be indicated by TA and at the measuring point C by TC. These time shifts can now be considered in the approach as follows: e l R ' L' G C ' = re U 0 rA - re U 0 rC 2 + in the U 0 rA - in the U 0 rC 2
Figure imgb0015

With U 0 rA = k 11 l U 0 A e - j in the γ l + k 12 l I 0 A e - j in the γ l
Figure imgb0016
U 0 rC = k 11 . 1 - l U 0 C e - j in the γ 1 - l + k 12 . 1 - l I 0 C e - j in the γ 1 - l
Figure imgb0017

Die Zeiger der auf den Datenfensterbeginn bezogenen komplexen Zeiger werden auf den Fehlereintrittszeitpunkt zurückgedreht.The pointers of the complex pointers related to the data window start are turned back to the error entry time.

Mittels Hochpassfilterung kann der Anteil der Grundschwingung eliminiert werden. Wird dieses Signal einer Effektivwertbildung unterzogen, entsteht ein der Hüllkurve des Einschwingvorgangs proportionales Signal. Aus diesem Signal kann mittels Koeffizientenvergleiches die Zeitkonstante der abklingenden e-Funktion ermittelt werden: τ = t 2 - t 1 ln f t 1 f t 2

Figure imgb0018

mit: f t 1 Hüllkurve zum Zeitpunkt t 1
Figure imgb0019
f t 2 Hüllkurve zum Zeitpunkt t 2
Figure imgb0020
By means of high-pass filtering, the proportion of the fundamental can be eliminated. If this signal is subjected to RMS, a signal proportional to the envelope of the transient is produced. From this signal, the time constant of the decaying e-function can be determined by means of coefficient comparison: τ = t 2 - t 1 ln f t 1 f t 2
Figure imgb0018

With: f t 1 Envelope at the time t 1
Figure imgb0019
f t 2 Envelope at the time t 2
Figure imgb0020

Die Figur 8 zeigt die mittels einer FFT (Fourier-Transformation) bestimmten Spektren von Nullstrom und Nullspannung. Aus dem Spektrum der Spannung wird im Bereich oberhalb der Nennfrequenz der Maximalwert gesucht.The FIG. 8 shows the spectra of zero current and zero voltage determined by an FFT (Fourier transform). From the spectrum of the voltage, the maximum value is searched in the range above the nominal frequency.

Unter Ausnutzung der Symmetrie des Leakage-Effektes kann mittels linearer Interpolation die Mittenfrequenz aus den mittels FFT berechneten Abtastwerten des Spannungsspektrums ermittelt werden. Mit den nun bekannten Signalparametern Mittenfrequenz der dominanten Oberschwingung fm und der Abklingzeitkonstante der Hüllkurve lässt sich folgender Least-Squares-Schätzer für die Parameter eines wie folgt definierten Signalmodells aufstellen: δ = e - t 1 τ sin 2 π f m t 1 e - t 1 τ cos 2 π f m t 1 sin 2 π f m t 1 cos 2 π f m t 1 e - t 1 τ e - t N τ sin 2 π f m t N e - t N τ cos 2 π f m t N sin 2 π f m t N cos 2 π f m t N e - t N τ

Figure imgb0021
k = inv δ δ T δ
Figure imgb0022
Θ = k I 0
Figure imgb0023

mit I 0 = i 0 1 i 0 N
Figure imgb0024
Taking advantage of the symmetry of the leakage effect, the center frequency can be determined from the voltage spectrum samples calculated by FFT by means of linear interpolation. With the now known signal parameters center frequency of the dominant harmonic fm and the decay time constant of the envelope, the following least squares estimator for the parameters of a signal model defined as follows can be established: δ = e - t 1 τ sin 2 π f m t 1 e - t 1 τ cos 2 π f m t 1 sin 2 π f m t 1 cos 2 π f m t 1 e - t 1 τ e - t N τ sin 2 π f m t N e - t N τ cos 2 π f m t N sin 2 π f m t N cos 2 π f m t N e - t N τ
Figure imgb0021
k = inv δ δ T δ
Figure imgb0022
Θ = k I 0
Figure imgb0023

With I 0 = i 0 1 i 0 N
Figure imgb0024

Der Schätzer berechnet ein Optimalfilter k. Für die Berechnung des komplexen Zeigers von Nullstrom oder Nullspannung reicht es aus, die ersten beiden Elemente des Parametervektors zu berechnen. Diese Elemente repräsentieren Real- und Imaginärteil des komplexen Zeigers der dominanten Ausgleichsschwingung.The estimator calculates an optimal filter k. To calculate the zero or zero voltage complex pointer, it is sufficient to calculate the first two elements of the parameter vector. These elements represent the real and imaginary parts of the complex vector of the dominant equalizing vibration.

Die Figuren 9 und 10 zeigen die Approximation des gemessenen Signals von Nullspannung u0 und Nullstrom i0 durch das geschätzte Signal u0est und i0est (gebildet aus dem Signalmodell des Schätzers unter Verwendung der geschätzten Parameter) in jeweils anderer Zeitauflösung: Dabei zeigt die Figur 9 die Übereinstimmung von gemessenen und geschätzten Signalen im kompletten Datenfenster und die Figur 10 die Übereinstimmung von gemessenen und geschätzten Signalen im Ausschnitt.The Figures 9 and 10 show the approximation of the measured signal from zero voltage u0 and zero current i0 by the estimated signal u0est and i0est (formed from the signal model of the estimator using the estimated parameters) in each other's time resolution FIG. 9 the agreement of measured and estimated signals in the complete data window and the FIG. 10 the match of measured and estimated signals in the clipping.

Die Figur 11 zeigt die aus den Parametern gebildeten komplexen Zeiger. In der Figur 11 sind deutlich die Größenverhältnisse zwischen den Grundwellenzeigern U50 und I50 und den Zeigern Uos und Ios der dominanten Frequenz fm des Einschwingvorgangs zu erkennen. Die Oberschwingungszeiger Uos und Ios gestatten eine wesentlich zuverlässigere Richtungsbestimmung und Fehlerortung, da der Betrag des Stromzeigers Ios deutlich größer als der Grundstromzeiger 150 ist.The FIG. 11 shows the complex pointers formed from the parameters. In the FIG. 11 are clearly the size ratios between the fundamental wave pointers U50 and I50 and the hands Uos and Ios the dominant frequency fm of the transient response to recognize. The harmonic pointers Uos and Ios allow a much more reliable direction determination and fault location, since the magnitude of the current vector Ios is significantly greater than the basic current vector 150.

Die Figur 12 zeigt beispielhaft die mit den Zeigern berechnete Kostenfunktion e(d) = (ΔUf)2. Die Funktion zeigt die Differenz der mit den komplexen Zeigern der dominanten Einschwingfrequenz berechneten Spannung am Fehlerort. Für die dem Fehler entsprechende Fehlerentfernung stimmt die von beiden Seiten berechnete Fehlerspannung überein und die Kostenfunktion erreicht ihr Minimum. Das Minimum der Kostenfunktion kann beispielsweise mit Hilfe der Matlab- Funktion "fmin-search" berechnet werden. Dieser Funktion liegt der Simplex-Algorithmus zugrunde. Es lässt sich erkennen, dass die Fehlerentfernung bei d = 0,04 (d = 39,86 %) liegt.The FIG. 12 shows by way of example the cost function e (d) = (ΔUf) 2 calculated with the pointers. The function shows the difference of the voltage at the fault location calculated with the complex phasors of the dominant transient frequency. For the error removal corresponding to the error, the error voltage calculated by both sides coincides and the cost function reaches its minimum. The minimum of the cost function can be calculated, for example, using the Matlab function "fmin-search". This function is based on the simplex algorithm. It can be seen that the error removal is at d = 0.04 (d = 39.86%).

Nachfolgend soll ein zweites Ausführungsbeispiel für eine Erdschlusserkennung näher beschrieben werden.A second exemplary embodiment for a ground fault detection will be described in more detail below.

Das zweite Ausführungsbeispiel nutzt die bei einem Erdschluss entstehenden Einschwingvorgänge aus und berechnet die komplexen Zeiger für Nullstrom und Nullspannung für diesen Ein-schwingvorgang mit exponentiell abklingender Hüllkurve. Es wird dazu die in der Nullspannung vorhandene dominante Eigenfrequenz des Erdschluss-Einschwingvorgangs verwendet. Aus der Phasenlage dieser komplexen Zeiger von Nullstrom und Null-Spannung wird die Erdschlussrichtung ermittelt. Weiterhin werden die auf diese Weise ermittelten komplexen Zeiger über eine Kommunikationseinrichtung zum Schutzgerät übertragen, das das andere Ende der zu überwachenden Leitung schützt. Dazu kann eine IP-basierte Netzwerktechnik verwendet werden, die eine Verbindung zum anderen Umspannwerk nur bei Bedarf kurzzeitig aufbaut und nach einer definierten Zeit wieder beendet.The second embodiment exploits the transients arising in the event of a ground fault and calculates the zero and zero voltage complex phasors for this one-swing operation with an exponentially decaying envelope. For this purpose, the dominant natural frequency of the ground fault transient present in the zero voltage is used. From the phase of these complex pointers of zero current and zero voltage the earth fault direction is determined. Furthermore, the complex pointers determined in this way are transmitted via a communication device to the protective device, which protects the other end of the line to be monitored. For this purpose, an IP-based network technology can be used, which establishes a connection to the other substation briefly only when needed and terminated after a defined time.

Die komplexen Zeiger der beiden Leitungsenden werden mittels Vorfehlerdaten oder mittels Erkennen des Eintrittszeitpunktes durch ein Signalmodell für die Signale im fehlerbehafteten Zustand auf eine gemeinsame Zeitbasis synchronisiert. Aus den komplexen Zeigern der Nullgrößen wird der prozentuale Abstand des Erdschlussorts von einem Leitungsende zum anderen durch Lösung der Maschengleichungen nach Figur 5 berechnet. Diese Lösung kann direkt oder unter Anwendung eines an sich bekannten Algorithmus zur nichtlinearen Optimierung erfolgen.The complex pointers of the two line ends are synchronized by means of pre-fault data or by detecting the entry time by a signal model for the signals in the faulty state to a common time base. From the complex pointers of the zero magnitudes, the percentage distance of the ground-fault location from one end of the line to the other is determined by solving the mesh equations FIG. 5 calculated. This solution can be done directly or using a non-linear optimization algorithm known per se.

Die für die Lösung der Maschengleichungen erforderlichen Leitungsdaten des Nullsystems werden mit einem Schätzwert der Leitungsdaten ursprünglich eingestellt und bei einem außen liegenden Erdschluss automatisch gemessen und für spätere Anwendung gespeichert. Die Lösung der Maschengleichung des Nullsystems kann auch mit den 50Hz-Zeigern der Nullsystemgrößen durchgeführt werden.The line data of the zero system required for solving the mesh equations are originally set with an estimate of the line data and automatically measured at an external ground fault and stored for later use. The solution of the mesh equation of the zero system can also be carried out with the 50Hz-pointers of the zero system quantities.

In jedem Feldgerät wird bei einem Anstieg der Nullspannung über einen einstellbaren Schwellwert ein Triggersignal erzeugt, dass eine Aufzeichnung von Nullstrom und Nullspannung des an das Feldgerät angeschlossenen Abgangs auslöst. Von diesem Zeitpunkt an wird ein Datenfenster gewählt und mittels einer FFT das Signalspektrum der Nullspannung ermittelt.In each field device, with a rise in the zero voltage over an adjustable threshold value, a trigger signal is generated which triggers a recording of zero current and zero voltage of the outgoer connected to the field device. From this point on, a data window is selected and the signal spectrum of the zero voltage is determined by means of an FFT.

Durch Bestimmung der Symmetrieachse des Maximalwertes der dominanten Oberschwingung im Spektrum wird die Frequenz der dominanten Oberschwingung bestimmt.By determining the symmetry axis of the maximum value of the dominant harmonic in the spectrum, the frequency of the dominant harmonic is determined.

Durch Hochpassfilterung wird der Oberschwingungsanteil des Einschwingvorgangs von der Grundwelle getrennt und der Effektivwert des Oberschwingungsanteils bestimmt. Die Abklingzeitkonstante des Oberschwingungsanteils wird durch Koeffizientenvergleich oder mittels eines Least-Squares-Schätzverfahrens aus dem gefilterten Effektivwertsignal bestimmt.High-pass filtering separates the harmonic component of the transient from the fundamental and determines the rms value of the harmonic component. The decay time constant of the harmonic content is determined by coefficient comparison or by a least squares estimation method from the filtered RMS signal.

Mit den nun bekannten Signalparametern Einschwingfrequenz und Abklingzeitkonstante der Hüllkurve wird mittels eines Least-Squares-Schätzers der komplexe Zeiger des Einschwingvorgangs berechnet.With the now known signal parameters transient frequency and decay time constant of the envelope, the complex pointer of the transient response is calculated by means of a least-squares estimator.

Die Absolutzeit des Fehlereintrittes und der komplexe Zeiger des Einschwingvorgangs werden wechselseitig zum Gerät am anderen Leitungsende übertragen.The absolute time of the fault entry and the complex pointer of the transient are transmitted alternately to the device at the other end of the line.

Bei gleicher Richtungsanzeige beider Leitungsenden wird der Fehlerort nach dem bereits im Zusammenhang mit den Figuren 1 bis 14 geschilderten Verfahren berechnet.With the same direction indication of both line ends the error location after the already in connection with the FIGS. 1 to 14 calculated method.

Bei unterschiedlicher Richtungsanzeige werden die Vierpolparameter des Nullsystems berechnet und für die Verwendung bei einem Erdschluss auf der eigenen Leitung gespeichert.If the direction is different, the quadripole parameters of the zero system are calculated and stored for use in a ground fault on the own line.

Durch die Ermittlung der komplexen Zeiger des Einschwingvorgangs kann die vom Erdschluss betroffene Leitung auch mit nicht speziell abgeglichenen Wandlern festgestellt werden. Es können also sehr geringe Anforderungen an die Messgenauigkeit der eingesetzten Wandler gestellt werden.By determining the complex phasing of the transient, the line affected by the ground fault can also be detected with non-specially tuned transducers. So it can be made very low demands on the accuracy of the converter used.

Claims (15)

  1. Method for producing a fault signal (F) which identifies the location of a ground fault on a line (60) between two line ends (A, C) wherein, in the method, the voltage and the current are measured at each of the two line ends, with measured values being formed, and, after or on detection of a ground fault, the location of the ground fault is determined,
    characterized in that
    - the harmonic component contained in the zero phase-sequence voltage or the zero phase-sequence current, as well as its decay time constant (τ) is determined for each of the two line ends, using the measured values,
    - the magnitude and phase of a harmonic vector measurement variable (U0A, I0A, U0C, I0C) are in each case formed using the harmonic component and the decay constant for each line end, wherein the time reference point of the phase of the harmonic vector measurement variable relates to the time of the ground fault detection at the respective line end,
    - the harmonic vector measurement variables formed in this way are rotated, starting from their respective line end, to a time in the past, and the time in the past and the point on the line at which the rotated-back harmonic vector measurement variables have at least approximately the same magnitude and at least approximately the same phase are determined,
    - and the location determined in this way is regarded as the location of the ground fault, and is output with the fault signal.
  2. Method according to Claim 1,
    characterized in that
    - taking account of the telegraph equation, which describes the propagation of electromagnetic waves on lines, a first and a second zero phase-sequence voltage vector are calculated for a selectable point on the line, for a time which is located in the past corresponding to the propagation time to the selectable location, using the harmonic vector measurement variables of zero phase-sequence current and zero phase-sequence voltage at the two line ends, wherein the first zero phase-sequence voltage vector is calculated starting from the first line end in the direction of the second line end, and the second zero phase-sequence voltage vector is calculated starting from the second line end in the direction of the first line end,
    - the two zero phase-sequence voltage vectors calculated in this way are compared with one another, and that location is selected at which the calculated zero phase-sequence voltage vectors best match, and
    - the line location determined in this way is regarded as the location of the ground fault.
  3. Method according to Claim 1 or 2,
    characterized in that
    - the magnitude and phase of the two harmonic vector measurement variables are in each case determined by means of an estimation method on the basis of a predetermined signal model, which models the time profile of the zero phase-sequence voltage in the case of a ground fault,
    - wherein the predetermined signal model takes account at least of the harmonic vector measurement variable to be determined at a defined vector angular frequency, the determined decay time constant of the harmonic component and a zero phase-sequence voltage vector measurement variable at the fundamental frequency of the zero phase-sequence voltage, and
    - wherein, during the course of the estimation method, the magnitude and the phase of the harmonic vector measurement variable are adapted such that the discrepancy between the time signal profile of the modeled signal of the signal model and the measured time signal profile of the measured values of the zero phase-sequence voltage is a minimum.
  4. Method according to Claim 3, characterized in that a least squares estimation method, a Kalman filter algorithm or an ARMAX estimation method is used as the estimation method.
  5. Method according to one of the preceding claims, characterized in that
    - a frequency which is dominant for the harmonic component is selected from the frequency spectrum of the harmonic component, and
    - the vector angular frequency of the two harmonic vector measurement variables is in each case defined such that it corresponds to the dominant frequency.
  6. Method according to one of the preceding claims, characterized in that
    - that harmonic frequency whose amplitude is a maximum is determined in the harmonic component, and
    - the vector angular frequency of the two harmonic vector measurement variables is in each case defined such that it corresponds to this harmonic frequency.
  7. Method according to one of the preceding claims, characterized in that
    the time window for the data used to determine the harmonic vector measurement variables is determined such that the time window start is fixed at the start of the rise of the zero phase-sequence voltage after a predetermined threshold value has been exceeded.
  8. Method according to one of the preceding claims, characterized in that
    the harmonic component is determined in that
    - a measurement window for which the frequency spectrum of the zero phase-sequence voltage is determined by means of a Fourier transformation is in each case opened for each line end after the detection of the ground fault, and
    - the frequency spectrum is subjected to high-pass filtering, in which the harmonics of the fundamental frequency of the zero phase-sequence voltage are separated, forming the harmonic component.
  9. Method according to one of the preceding claims, characterized in that
    the decay constant is determined in that
    - the root mean square value of the harmonic component is determined and the decay time constant of the root mean square value is determined, and
    - the determined decay time constant of the root mean square value is regarded as the decay time constant of the harmonic component.
  10. Method according to one of the preceding claims, characterized in that
    the measurement of the voltage at the two line ends is carried out free of synchronization, and the voltage measured values at the two line ends are unsynchronized.
  11. Arrangement for producing a fault signal, which identifies the location of a ground fault on a line (60) between a first and a second line end (A, C), wherein the arrangement has:
    - a first measurement instrument (40) at the first line end (A) of the line,
    - a second measurement instrument (42) at the second line end (C) of the line, and
    - an evaluation device (200), which is connected to the two measurement instruments and is suitable for using the measured values from the two measurement instruments to carry out a method according to one of the preceding Claims 1-10.
  12. Arrangement according to Claim 11,
    characterized in that
    the evaluation device is formed by a programmed data processing installation.
  13. Arrangement according to Claim 11 or 12,
    characterized in that
    the evaluation device is arranged in a central device to which the two measurement instruments are connected.
  14. Arrangement according to Claim 11 or 12,
    characterized in that
    - the two measurement instruments are connected to one another and
    - the evaluation device is implemented in one of the measurement instruments.
  15. Field device (42), in particular a protective device, for connection to one line end (C) of an electrical line (60) and for identification of a ground fault on the line, having
    - an evaluation device (200) which is suitable for carrying out a method according to one of the preceding Claims 1-10, and
    - a data connection (D42) for connection to another measurement instrument (40) for receiving measured values (U0A, I0A) which relate to the other line end of the line.
EP08735072.4A 2008-04-03 2008-04-03 Method and arrangement for generating an error signal Not-in-force EP2260556B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/002752 WO2009121382A1 (en) 2008-04-03 2008-04-03 Method and arrangement for generating an error signal

Publications (2)

Publication Number Publication Date
EP2260556A1 EP2260556A1 (en) 2010-12-15
EP2260556B1 true EP2260556B1 (en) 2015-10-14

Family

ID=40030230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08735072.4A Not-in-force EP2260556B1 (en) 2008-04-03 2008-04-03 Method and arrangement for generating an error signal

Country Status (4)

Country Link
US (1) US8462004B2 (en)
EP (1) EP2260556B1 (en)
CN (1) CN101981774B (en)
WO (1) WO2009121382A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051102A1 (en) * 2006-10-25 2008-04-30 Endress + Hauser Gmbh + Co. Kg Process e.g. analytic process, automaton system, has field device providing measuring device-specific measuring and position values as information to remaining devices, where information is provided as process state vector
CN102508100B (en) * 2011-11-04 2015-12-09 天津智联恒信电力设备股份有限公司 A kind of node current that base is synchronous when utilizing judges the method for line fault
EP2985613B1 (en) * 2013-03-29 2022-02-09 Beijing Inhand Networks Technology Co., Ltd. Method and system for detecting and locating single-phase ground fault on low current grounded power-distribution network
WO2014194941A1 (en) * 2013-06-05 2014-12-11 Siemens Aktiengesellschaft Detection of ground faults in energy supply networks with a compensated star point
CN106155980B (en) * 2015-04-01 2019-03-22 中国电力科学研究院 Overhead transmission line field wire coupling modeling method based on inhomogeneous excitation electric field
CN104914391B (en) * 2015-05-05 2017-09-26 国家电网公司 A kind of one-phase earthing failure in electric distribution network simulation and positioning performance test platform and method
EP3193420B1 (en) * 2016-01-13 2022-07-20 Siemens Aktiengesellschaft Method, device and system for determining the location a fault on a line of an electrical energy supply network
CN105510772A (en) * 2016-01-21 2016-04-20 广州思泰信息技术有限公司 10kv power distribution fault indicator test platform
DE102016208322B4 (en) * 2016-05-13 2020-11-26 Bender Gmbh & Co. Kg Method and device for arc fault detection in an ungrounded power supply system
CN106093591B (en) * 2016-06-27 2019-09-06 国网河南省电力公司新乡供电公司 A kind of isolated neutral capacitance current of distribution network measuring system and method
CN106199336A (en) * 2016-07-06 2016-12-07 国网山东省电力公司无棣县供电公司 For the method and apparatus positioning electrical network phase fault position
EP3379273B1 (en) 2017-03-22 2019-09-18 Siemens Aktiengesellschaft Method, device and system for determining the location a fault on a line of an electrical energy supply network
DE102018102959A1 (en) 2018-02-09 2019-08-14 Bender Gmbh & Co. Kg Device and method for insulation monitoring with detection of a faulty outer conductor in a 3-phase ungrounded power supply system
CN108627741B (en) * 2018-06-29 2020-06-16 广东电网有限责任公司清远英德供电局 Fault indicator-based fault positioning method for power distribution network with double ends and branch circuits based on traveling wave-impedance method
AT524958B1 (en) * 2021-06-01 2022-11-15 Sprecher Automation Gmbh Procedure for determining network parameters for controlling a Petersen coil
CN113533861A (en) * 2021-06-10 2021-10-22 中国电建集团华东勘测设计研究院有限公司 Dynamic harmonic phasor measurement method based on attenuation exponential function model

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3750004A (en) * 1972-02-23 1973-07-31 Esb Inc Instantaneous current control for static inverters
EP0933643A1 (en) 1998-02-02 1999-08-04 Trench Austria GmbH Procedure for fault localisation in AC networks
WO2003073312A1 (en) * 2002-02-25 2003-09-04 General Electric Company Method and apparatus for minimally invasive network monitoring
CN1327235C (en) * 2002-03-24 2007-07-18 淄博科汇电气有限公司 Method for detecting ground fault in DC system
CN101523680B (en) * 2005-11-30 2013-05-22 穆昆达拉·马达哈弗拉·乔希 Electrical fault restricting system
EP1909369B1 (en) * 2006-10-06 2020-05-20 Schmidhauser AG Switching assembly and method for insulation monitoring for converter applications in operation
US7894169B2 (en) * 2008-06-02 2011-02-22 Rockwell Automation Technologies, Inc. High resistance ground protection employing AC drive characteristics
EP2289137A1 (en) * 2008-06-18 2011-03-02 Siemens Aktiengesellschaft Method and arrangement for generating an error signal
US8335062B2 (en) * 2010-03-08 2012-12-18 Pass & Seymour, Inc. Protective device for an electrical supply facility

Also Published As

Publication number Publication date
WO2009121382A1 (en) 2009-10-08
CN101981774A (en) 2011-02-23
US20110109465A1 (en) 2011-05-12
EP2260556A1 (en) 2010-12-15
US8462004B2 (en) 2013-06-11
CN101981774B (en) 2014-06-25

Similar Documents

Publication Publication Date Title
EP2260556B1 (en) Method and arrangement for generating an error signal
EP3351949B1 (en) Method and device for determining the error location of an earth fault relating to a line of a three phase electrical energy supply network with non-grounded star point
EP1857825B1 (en) Measuring apparatus
EP3193420B1 (en) Method, device and system for determining the location a fault on a line of an electrical energy supply network
EP3223026B1 (en) Method, device and system for determining the location a fault on a line of an electrical energy supply network
EP3660523B1 (en) Method, device and system for determining the location of a fault on a line of an electrical energy supply network
US11114843B2 (en) Method and system for protection in a mixed line
AT517620B1 (en) Method and test device for testing a wiring of transducers
DE4329382A1 (en) Method and device for detecting earth faults on the conductors of an electrical machine
DE2155470B2 (en) Method for digitally determining the position of the zero crossings of a sinusoidal alternating current signal
WO2011029464A1 (en) Fault detection in energy supply networks having an unearthed or resonant-earthed star point
DE10151775A1 (en) Method for calculating a distance of a fault location of a single-pole earth fault from a measuring location in an electrical power supply network
DE2263594B2 (en) Device for localizing loop errors in electrical communication paths
EP3719510B1 (en) Method, device and system for determining the location of a fault on a line of an electrical energy supply network
DE19545267C2 (en) Method for obtaining faulty loops in signals characterizing a multi-phase electrical power supply network
DE102011006979A1 (en) Electrical power supply network protecting method, involves computing distance between midpoint of fault current and point on origin of impedance plane, and adjusting current threshold value in accordance with formula
EP3171185A1 (en) Method and device for determining the fault location in the event of a fault on an electric line
DE102018106200B4 (en) Harmonics measurement in power grids
DE102021112016B3 (en) Method and device for determining a ground fault direction
EP1001270B1 (en) Method for testing a ground connection
EP0996244A2 (en) Device and method for location of interference sources in electrical distribution networks
EP0745862A2 (en) Method and apparatus for determining insulating properties of test objects
EP4099531B1 (en) Method for determining network parameters for controlling a petersen coil
EP3472635A1 (en) Testing device and method for testing a monitoring device with travelling wave capture
EP4276480A1 (en) Method and device for detecting a single phase ground fault

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 755739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013475

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160115

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013475

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

26N No opposition filed

Effective date: 20160715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160403

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160502

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170412

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170619

Year of fee payment: 10

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170703

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151014

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180306

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008013475

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 755739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190403