EP2257399A1 - Blade for a gas turbine - Google Patents

Blade for a gas turbine

Info

Publication number
EP2257399A1
EP2257399A1 EP09726863A EP09726863A EP2257399A1 EP 2257399 A1 EP2257399 A1 EP 2257399A1 EP 09726863 A EP09726863 A EP 09726863A EP 09726863 A EP09726863 A EP 09726863A EP 2257399 A1 EP2257399 A1 EP 2257399A1
Authority
EP
European Patent Office
Prior art keywords
blade
gas turbine
core
turbine
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09726863A
Other languages
German (de)
French (fr)
Inventor
Beat Von Arx
Roland DÜCKERSHOFF
Brian Kenneth Wardle
Christoph Nagler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2257399A1 publication Critical patent/EP2257399A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D31/00Cutting-off surplus material, e.g. gates; Cleaning and working on castings
    • B22D31/002Cleaning, working on castings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/21Manufacture essentially without removing material by casting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods

Definitions

  • the present invention relates to the field of gas turbine technology. It relates to a blade for a gas turbine according to the preamble of claim 1.
  • Such a gas turbine which has become known in the art as GT24 / 26, for example, from an article by Joos, F. et al., "Field Experience of the Sequential Combustion System for the ABB GT24 / GT26 gas turbine family, IG TI / ASME 98-GT-220, 1998 Sweden. 1 shows the basic structure of such a gas turbine, wherein the local Fig. 1 in the present application as Fig. 1 is reproduced. Furthermore, such a gas turbine is known from EP-B1 -0 620 362.
  • FIG. 1 shows a gas turbine 10 with sequential combustion, in which along an axis 19 a compressor 11, a first combustion chamber 14, a high-pressure turbine (HDT) 15, a second combustion chamber 17 and a low-pressure turbine (NDT) 18 are arranged.
  • the compressor 1 1 and the two turbines 15, 18 are part of a rotor which rotates about the axis 19.
  • the compressor 1 1 sucks in air and compresses it.
  • the compressed air flows into a plenum, and from there into premix burners, where this air is mixed with at least one fuel, fuel supplied at least via the fuel feed 12.
  • premix burners are fundamentally apparent from EP-A1-0 321 809 or EP-A2-0 704 657.
  • the compressed air flows into the premix burners, where the mixing, as stated above, takes place with at least one fuel.
  • This fuel / air mixture then flows into the first combustion chamber 14, into which this mixture passes to form a stable flame front for combustion.
  • the hot gas provided in this way is partially expanded in the subsequent high-pressure turbine 15 under working power and then flows into the second combustion chamber 17, where a further fuel supply 16 takes place. Due to the high temperatures, which still has the hot gas partially released in the high-pressure turbine 15, combustion takes place in the second combustion chamber 17, which combustion is based on autoignition.
  • the hot gas reheated in the second combustion chamber 17 is then expanded in a multistage low-pressure turbine 18.
  • the low-pressure turbine 18 comprises in the flow direction arranged one behind the other a plurality of rows of blades and vanes, which are arranged alternately.
  • the guide vanes of the third row of guide vanes in the direction of flow are designated in FIG. 1 by the reference numeral 20 '.
  • the guide vanes are provided in their interior with a mostly serpentine manner between the ends of the airfoil guided back and forth cooling channel through which a cooling medium, usually cooling air, flows. This also applies to all thermally highly loaded blades.
  • a casting method is predominantly used in which a casting core is used to form the cooling channel.
  • the casting core projects out of the blade at one or both ends and, after completion of the casting process, leaves one or more core exits correspondingly which must later be closed.
  • a method for closing such openings is described for example in the document US-B2-6, 837,417.
  • the opening in the blade is closed with a sintered cap, which connects flush neither to the inside nor on the outside of the respective wall surface. This leads to uneven, stepped surfaces, which the Prevent flow of the medium used for cooling and thus affect the effectiveness of the cooling, sometimes even questioned.
  • the invention aims to remedy this situation. It is therefore an object of the invention to provide a blade of the type mentioned, which avoids the disadvantages of known blades and is characterized by an optimized, undisturbed flow of the cooling medium in the blade.
  • the object is solved by the entirety of the features of claim 1.
  • Essential for the invention is that the closure elements are designed and inserted into the core exits, that they connect flush to the wall surface of the cooling channel. As a result, a negative influence on the flow of the cooling medium is reliably avoided by the closure elements.
  • closure elements are designed as prefabricated sealing plugs. These can be easily inserted into the core exits and fixed there quickly and securely. This is preferably done by the closure elements or sealing plugs are soldered hard into the core exits.
  • the closure element or the closure stopper can be positioned in a particularly simple manner if connecting surfaces are formed in the core exits on which the closure elements or sealing plugs rest.
  • the closure elements or sealing plugs are inserted into the core exits in such a way that they are flush with the outer surfaces of the platforms. This results in aerodynamic advantages also in the outer space of the blade.
  • the blade according to the invention is advantageously used in a gas turbine.
  • the gas turbine can be a gas turbine with sequential combustion, which has a first combustion chamber with a downstream high-pressure turbine and a second combustion chamber with a downstream low-pressure turbine, wherein the blades are arranged both in the low-pressure turbine or in the high-pressure turbine.
  • the low-pressure turbine in such a gas turbine in the flow direction behind one another several rows of guide and moving blades.
  • Fig. 1 shows the basic structure of a gas turbine with sequential
  • FIG. 2 is a perspective side view of a vane
  • Fig. 3 is a top plan view of the outer platform with a first
  • Fig. 4 shows the section through the closed core exit in the plane
  • Fig. 5 in plan view from below the inner platform with a second
  • Fig. 2 is a perspective side view of a vane, which can be used for example in the low-pressure turbine of a gas turbine with sequential combustion of Fig. 1, and is suitable for the realization of the invention.
  • the guide vane 20 used here comprises an aerofoil blade 22 which curved in space and extends in the longitudinal direction (in the radial direction of the gas turbine) between a vane head 23 and a cover plate 21 and extends in the direction of the hot gas stream 30 from a front edge 27 to a trailing edge 28. Between the two edges 27 and 28, the blade 22 is outwardly bounded by a pressure side 31 (in Fig. 2 facing the viewer) and a (opposite) suction side.
  • the vane 20 is secured by means of the formed on the top of the cover plate 21 hook-shaped fastening elements 24 and 25 on the turbine housing, while it rests sealingly with the blade head 23 on the rotor.
  • a serpentine manner between the platforms 21, 23 reciprocating cooling channel (39 in Fig. 4, 6) is provided for cooling the blade 20, as shown for example in the document WO-A1 - 2006029983.
  • a core is necessary, which in the present example in the platforms 21 and 23 leaves the core exits 40 in the cover plate (FIGS. 3, 4) or 41 in the blade head (FIGS. 5, 6) ,
  • the core exits 40, 41 are formed as shown in FIG. 4 and FIG. 6 and closed with corresponding plugs 32 and 36, that the outer surfaces of the sealing plug 32, 26 at least there flush with the wall surfaces of the environment, where the wall surfaces with the flowing cooling medium are acted upon. This is the case above all in the cooling channel 39, through which the cooling medium is conducted in the interior of the blade.
  • annular attachment surface 33 is provided in the core exit by a diameter step, on which the closure stopper 32 is seated with a corresponding shoulder (FIG. 4).
  • the sealing plug 32 is dimensioned and shaped such that after its insertion into the core outlet 40 both the outer surface of the cover plate 21 is continuous and the surface 35 of the inner wall of the cooling channel 39.
  • the sealing plug 32 is preferably by means of a brazed joint 34 in the core exit 40 fixed.
  • connecting surfaces 37 are provided on opposite sides at a predetermined depth, onto which the sealing plug 36 inserted into the core exit 41 and adapted in the edge contour is seated (FIG. 6). Again, the sealing plug 36 is fixed by means of brazed joints 38 in the core exit 41 and connects flush with the surrounding surface.
  • the invention which can be used in principle in all cooled blades of turbines, the disturbing influence of the closure elements is minimized to the flow of the cooling medium. As a result, the walls of the blade are optimally cooled, which leads to an extension of the blade life.
  • a preferred use of the inventive blade is to be found in large stationary gas turbines, for example, in gas turbines with sequential combustion, which have become known in the art under the name GT24 / 26. In the latter gas turbine, the preferred Use of such a blade in the low-pressure turbine find. For other gas turbine types, such a blade can also be used.

Abstract

A blade (20) for a gas turbine, in particular for the low-pressure turbine of a gas turbine with sequential combustion, is produced by a casting process and has an aerofoil which extends in a radial direction between an inner platform and an outer platform (21) and in the interior of which there is a cooling duct, which runs past the platforms (21) and through which there flows a cooling medium, in particular cooling air, for cooling the blade (20), wherein the outer and/or inner platform (21) has core outlets (40), which originate from the use of a casting core, connect the cooling duct to the space outside and are closed by a closure element (32).  In the case of such a blade (20), optimum cooling is ensured by the closure elements (32) being formed and fitted into the core outlets (40) in such a way that they finish flush with the wall surface of the cooling duct.

Description

SCHAUFEL FÜR EINE GASTURBINE SHOVEL FOR A GAS TURBINE
Technisches GebietTechnical area
Die vorliegende Erfindung bezieht sich auf das Gebiet der Gasturbinentechnik. Sie betrifft eine Schaufel für eine Gasturbine gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to the field of gas turbine technology. It relates to a blade for a gas turbine according to the preamble of claim 1.
Stand der TechnikState of the art
Gasturbinen mit sequentieller Verbrennung sind bekannt und haben sich im indus- triellen Betrieb bewährt.Gas turbines with sequential combustion are known and have proven themselves in industrial operation.
Eine solche Gasturbine, welche in Fachkreisen als GT24/26 bekannt geworden ist, geht beispielsweise aus einem Aufsatz von Joos, F. et al., „Field Experience of the Sequential Combustion System for the ABB GT24/GT26 Gasturbine Family, IG- TI/ASME 98-GT-220, 1998 Stockholm. Die dortige Fig. 1 zeigt den grundsätzli- chen Aufbau einer solchen Gasturbine, wobei die dortige Fig. 1 in der vorliegenden Anmeldung als Fig. 1 wiedergegeben ist. Des Weiteren geht eine solche Gasturbine aus EP-B1 -0 620 362 hervor.Such a gas turbine, which has become known in the art as GT24 / 26, for example, from an article by Joos, F. et al., "Field Experience of the Sequential Combustion System for the ABB GT24 / GT26 gas turbine family, IG TI / ASME 98-GT-220, 1998 Stockholm. 1 shows the basic structure of such a gas turbine, wherein the local Fig. 1 in the present application as Fig. 1 is reproduced. Furthermore, such a gas turbine is known from EP-B1 -0 620 362.
Fig. 1 zeigt eine Gasturbine 10 mit sequentieller Verbrennung, bei der entlang ei- ner Achse 19 ein Verdichter 11 , eine erste Brennkammer 14, eine Hochdruckturbine (HDT) 15, eine zweite Brennkammer 17 und eine Niederdruckturbine (NDT) 18 angeordnet sind. Der Verdichter 1 1 und die beiden Turbinen 15, 18 sind Teil eines Rotors, der um die Achse 19 dreht. Der Verdichter 1 1 saugt Luft an und verdichtet sie. Die verdichtete Luft strömt in ein Plenum ein, und von dort in Vor- mischbrenner, wo diese Luft mit mindestens einem Brennstoff, mindestens über die Brennstoffzufuhr 12 herangeführten Brennstoff vermischt wird. Solche Vor- mischbrenner gehen grundsätzlich aus EP-A1 -0 321 809 oder EP-A2-0 704 657 hervor. Die verdichtete Luft strömt in die Vormischbrenner, wo die Vermischung, wie oben ausgeführt, mit mindestens einem Brennstoff stattfindet. Dieses Brennstoff/Luft- Gemisch strömt dann in die erste Brennkammer 14 ein, in welche dieses Gemisch unter Bildung einer stabilen Flammenfront zur Verbrennung gelangt. Das so bereit gestellte Heissgas wird in der anschliessenden Hochdruckturbine 15 unter Arbeitsleistung teilweise entspannt und strömt sodann in die zweite Brennkammer 17 ein, wo eine weitere Brennstoffzufuhr 16 stattfindet. Durch die hohen Temperaturen, welche das in der Hochdruckturbine 15 teilentspannte Heissgas immer noch aufweist, findet in der zweiten Brennkammer 17 eine Verbrennung statt, welche auf Selbstzündung beruht. Das in der zweiten Brennkammer 17 nacherhitzte Heissgas wird dann in einer mehrstufigen Niederdruckturbine 18 entspannt.FIG. 1 shows a gas turbine 10 with sequential combustion, in which along an axis 19 a compressor 11, a first combustion chamber 14, a high-pressure turbine (HDT) 15, a second combustion chamber 17 and a low-pressure turbine (NDT) 18 are arranged. The compressor 1 1 and the two turbines 15, 18 are part of a rotor which rotates about the axis 19. The compressor 1 1 sucks in air and compresses it. The compressed air flows into a plenum, and from there into premix burners, where this air is mixed with at least one fuel, fuel supplied at least via the fuel feed 12. Such premix burners are fundamentally apparent from EP-A1-0 321 809 or EP-A2-0 704 657. The compressed air flows into the premix burners, where the mixing, as stated above, takes place with at least one fuel. This fuel / air mixture then flows into the first combustion chamber 14, into which this mixture passes to form a stable flame front for combustion. The hot gas provided in this way is partially expanded in the subsequent high-pressure turbine 15 under working power and then flows into the second combustion chamber 17, where a further fuel supply 16 takes place. Due to the high temperatures, which still has the hot gas partially released in the high-pressure turbine 15, combustion takes place in the second combustion chamber 17, which combustion is based on autoignition. The hot gas reheated in the second combustion chamber 17 is then expanded in a multistage low-pressure turbine 18.
Die Niederdruckturbine 18 umfasst in Strömungsrichtung hintereinander angeordnet mehrere Reihen von Lauf- und Leitschaufeln, die alternierend angeordnet sind. Beispielsweise die Leitschaufeln der in Strömungsrichtung dritten Leitschaufelreihe sind in Fig. 1 mit dem Bezugszeichen 20' versehen.The low-pressure turbine 18 comprises in the flow direction arranged one behind the other a plurality of rows of blades and vanes, which are arranged alternately. For example, the guide vanes of the third row of guide vanes in the direction of flow are designated in FIG. 1 by the reference numeral 20 '.
Die Leitschaufeln sind in ihrem Inneren mit einem meist serpentinenartig zwischen den Enden des Schaufelblattes hin- und her geführten Kühlkanal versehen, durch den ein Kühlmedium, meist Kühlluft, strömt. Dies gilt auch für alle thermisch hochbelasteten Laufschaufeln.The guide vanes are provided in their interior with a mostly serpentine manner between the ends of the airfoil guided back and forth cooling channel through which a cooling medium, usually cooling air, flows. This also applies to all thermally highly loaded blades.
Zur Herstellung einer solchen Schaufel wird überwiegend ein Giessverfahren eingesetzt, bei dem zur Ausbildung des Kühlkanals ein Gusskern eingesetzt wird. Der Gusskern ragt aus herstellungstechnischen Gründen an einem oder beiden Enden aus der Schaufel heraus und hinterlässt nach Beendigung des Giessvorgangs entsprechend einen oder mehrere Kernausgänge, die später verschlossen werden müssen. Ein Verfahren zum Verschliessen derartiger Öffnungen ist beispielsweise in der Druckschrift US-B2-6, 837,417 beschrieben. Bei diesem Verfahren wird die Öffnung in der Schaufel mit einer gesinterten Kappe verschlossen, die weder auf der Innenseite noch auf der Aussenseite bündig an die jeweilige Wandoberfläche anschliesst. Dies führt zu ungleichmässigen, stufigen Oberflächen, welche die Strömung des zur Kühlung verwendeten Mediums behindern und so die Effektivität der Kühlung beeinträchtigen, teilweise sogar in Frage stellt.To produce such a blade, a casting method is predominantly used in which a casting core is used to form the cooling channel. For manufacturing reasons, the casting core projects out of the blade at one or both ends and, after completion of the casting process, leaves one or more core exits correspondingly which must later be closed. A method for closing such openings is described for example in the document US-B2-6, 837,417. In this method, the opening in the blade is closed with a sintered cap, which connects flush neither to the inside nor on the outside of the respective wall surface. This leads to uneven, stepped surfaces, which the Prevent flow of the medium used for cooling and thus affect the effectiveness of the cooling, sometimes even questioned.
Darstellung der ErfindungPresentation of the invention
Hier will die Erfindung Abhilfe schaffen. Es ist daher Aufgabe der Erfindung, eine Schaufel der eingangs genannten Art zu schaffen, welche die Nachteile bekannter Schaufeln vermeidet und sich durch eine optimierte, ungestörte Strömung des Kühlmediums in der Schaufel auszeichnet.The invention aims to remedy this situation. It is therefore an object of the invention to provide a blade of the type mentioned, which avoids the disadvantages of known blades and is characterized by an optimized, undisturbed flow of the cooling medium in the blade.
Die Aufgabe wird durch die Gesamtheit der Merkmale des Anspruchs 1 gelöst. Wesentlich für die Erfindung ist, dass die Verschlusselemente so ausgebildet und in die Kernausgänge eingesetzt sind, dass sie bündig an die Wandoberfläche des Kühlkanals anschliessen. Hierdurch wird eine negative Beeinflussung der Strömung des Kühlmediums durch die Verschlusselemente sicher vermieden.The object is solved by the entirety of the features of claim 1. Essential for the invention is that the closure elements are designed and inserted into the core exits, that they connect flush to the wall surface of the cooling channel. As a result, a negative influence on the flow of the cooling medium is reliably avoided by the closure elements.
Eine Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Verschlusselemente als vorgefertigte Verschlussstopfen ausgebildet sind. Diese kön- nen auf einfache Weise in die Kernausgänge eingesetzt und dort schnell und sicher fixiert werden. Dies geschieht vorzugsweise dadurch, dass die Verschlusselemente bzw. Verschlussstopfen in die Kernausgänge hart eingelötet sind.An embodiment of the invention is characterized in that the closure elements are designed as prefabricated sealing plugs. These can be easily inserted into the core exits and fixed there quickly and securely. This is preferably done by the closure elements or sealing plugs are soldered hard into the core exits.
Besonders einfach lässt sich das Verschlusselement bzw. der Verschlussstopfen positionieren, wenn in den Kernausgängen Anschlussflächen ausgebildet sind, auf denen die Verschlusselemente bzw. Verschlussstopfen aufliegen.The closure element or the closure stopper can be positioned in a particularly simple manner if connecting surfaces are formed in the core exits on which the closure elements or sealing plugs rest.
Gemäss einer anderen Ausgestaltung der Erfindung sind die Verschlusselemente bzw. Verschlussstopfen so in die Kernausgänge eingesetzt, dass sie an die äus- seren Oberflächen der Plattformen bündig anschliessen. Hierdurch ergeben sich auch im Aussenraum der Schaufel strömungstechnische Vorteile.According to another embodiment of the invention, the closure elements or sealing plugs are inserted into the core exits in such a way that they are flush with the outer surfaces of the platforms. This results in aerodynamic advantages also in the outer space of the blade.
Die erfindungsgemässe Schaufel wird mit Vorteil in einer Gasturbine eingesetzt. Die Gasturbine kann dabei eine Gasturbine mit sequentieller Verbrennung sein, die eine erste Brennkammer mit einer nachgeschalteten Hochdruckturbine und eine zweite Brennkammer mit einer nachgeschalteten Niederdruckturbine auf- weist, wobei die Schaufeln sowohl in der Niederdruckturbine oder in der Hochdruckturbine angeordnet sind. Insbesondere weist die Niederdruckturbine in einer solchen Gasturbine in Strömungsrichtung hintereinander mehrere Reihen von Leit- und Laufschaufeln auf.The blade according to the invention is advantageously used in a gas turbine. The gas turbine can be a gas turbine with sequential combustion, which has a first combustion chamber with a downstream high-pressure turbine and a second combustion chamber with a downstream low-pressure turbine, wherein the blades are arranged both in the low-pressure turbine or in the high-pressure turbine. In particular, the low-pressure turbine in such a gas turbine in the flow direction behind one another several rows of guide and moving blades.
Kurze Erläuterung der FigurenBrief explanation of the figures
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit der Zeichnung näher erläutert werden. Alle für das unmittelbare Ver- ständnis der Erfindung nicht wesentlichen Elemente sind fortgelassen worden. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben. Es zeigen:The invention will be explained in more detail with reference to embodiments in conjunction with the drawings. All elements not essential to the instant understanding of the invention have been omitted. The same elements are provided in the various figures with the same reference numerals. The flow direction of the media is indicated by arrows. Show it:
Fig. 1 den prinzipiellen Aufbau einer Gasturbine mit sequentiellerFig. 1 shows the basic structure of a gas turbine with sequential
Verbrennung nach dem Stand der Technik,Combustion according to the prior art,
Fig. 2 in einer perspektivischen Seitenansicht eine Leitschaufel,2 is a perspective side view of a vane,
Fig. 3 in der Draufsicht von oben die äussere Plattform mit einem erstenFig. 3 is a top plan view of the outer platform with a first
Kernausgang,Core output,
Fig. 4 den Schnitt durch den verschlossenen Kernausgang in der EbeneFig. 4 shows the section through the closed core exit in the plane
IV-IV der Fig. 3 gemäss einem Ausführungsbeispiel der Erfindung,IV-IV of Fig. 3 according to an embodiment of the invention,
Fig. 5 in der Draufsicht von unten die innere Plattform mit einem zweitenFig. 5 in plan view from below the inner platform with a second
Kernausgang und Fig. 6 den Schnitt durch den verschlossenen Kernausgang in der EbeneCore output and Fig. 6 shows the section through the closed core exit in the plane
Vl-Vl der Fig. 5 gemäss einem anderen Ausführungsbeispiel der Erfindung.VI-VI of Fig. 5 according to another embodiment of the invention.
Wege zur Ausführung der ErfindungWays to carry out the invention
In Fig. 2 ist in einer perspektivischen seitlichen Ansicht eine Leitschaufel, welche beispielsweise in der Niederdruckturbine einer Gasturbine mit sequentieller Verbrennung nach Fig. 1 zum Einsatz gelangen kann, und sich zur Verwirklichung der Erfindung eignet. Der Einsatz des erfindungsgemässen Gegenstandes ist aber weder auf die genannte Gasturbinenart noch auf eine spezielle Leit- oder Laufschaufel noch auf eine bestimmte Schaufelreihe beschränkt. Die hier zugrundegelegte Leitschaufel 20 umfasst ein im Raum gekrümmtes Schaufelblatt 22, dass sich in Längsrichtung (in radialer Richtung der Gasturbine) zwischen einem Schaufelkopf 23 und einer Deckplatte 21 erstreckt und in Richtung des Heissgasstromes 30 von einer Vorderkante 27 bis zu einer Hinterkante 28 reicht. Zwischen den beiden Kanten 27 und 28 ist das Schaufelblatt 22 nach aussen durch eine Druckseite 31 (in Fig. 2 dem Betrachter zugewandt) und eine (gegenüberliegende) Saugseite begrenzt.In Fig. 2 is a perspective side view of a vane, which can be used for example in the low-pressure turbine of a gas turbine with sequential combustion of Fig. 1, and is suitable for the realization of the invention. However, the use of the article according to the invention is not limited to the type of gas turbine mentioned, nor to a special guide blade or blade, nor to a specific blade row. The guide vane 20 used here comprises an aerofoil blade 22 which curved in space and extends in the longitudinal direction (in the radial direction of the gas turbine) between a vane head 23 and a cover plate 21 and extends in the direction of the hot gas stream 30 from a front edge 27 to a trailing edge 28. Between the two edges 27 and 28, the blade 22 is outwardly bounded by a pressure side 31 (in Fig. 2 facing the viewer) and a (opposite) suction side.
Die Leitschaufel 20 ist mittels der auf der Oberseite der Deckplatte 21 ausgebildeten hakenförmigen Befestigungselemente 24 und 25 am Turbinengehäuse befestigt, während sie mit dem Schaufelkopf 23 dichtend am Rotor anliegt.The vane 20 is secured by means of the formed on the top of the cover plate 21 hook-shaped fastening elements 24 and 25 on the turbine housing, while it rests sealingly with the blade head 23 on the rotor.
Im Inneren des Schaufelblattes 22 ist zur Kühlung der Schaufel 20 ein serpentinenartig zwischen den Plattformen 21 , 23 hin- und herlaufender Kühlkanal (39 in Fig. 4, 6) vorgesehen, wie er beispielsweise in der Druckschrift WO-A1 - 2006029983 gezeigt ist. Zur giesstechnischen Herstellung eines solchen Kühlka- nals ist ein Kern notwendig, der im vorliegenden Beispiel in den Plattformen 21 und 23 die Kernausgänge 40 in der Deckplatte (Fig. 3, 4) bzw. 41 in dem Schaufelkopf (Fig. 5, 6) zurücklässt. Die Kernausgänge 40, 41 werden gemäss Fig. 4 und Fig. 6 so ausgebildet und mit entsprechenden Verschlussstopfen 32 bzw. 36 verschlossen, dass die aussen liegenden Flächen der Verschlussstopfen 32, 26 zumindest dort bündig an die Wandoberflächen der Umgebung anschliessen, wo die Wandflächen mit dem strömenden Kühlmedium beaufschlagt sind. Dies ist vor allem im Kühlkanal 39 der Fall, durch den das Kühlmedium im Inneren der Schaufel geleitet wird.In the interior of the airfoil 22, a serpentine manner between the platforms 21, 23 reciprocating cooling channel (39 in Fig. 4, 6) is provided for cooling the blade 20, as shown for example in the document WO-A1 - 2006029983. For the casting production of such a cooling channel, a core is necessary, which in the present example in the platforms 21 and 23 leaves the core exits 40 in the cover plate (FIGS. 3, 4) or 41 in the blade head (FIGS. 5, 6) , The core exits 40, 41 are formed as shown in FIG. 4 and FIG. 6 and closed with corresponding plugs 32 and 36, that the outer surfaces of the sealing plug 32, 26 at least there flush with the wall surfaces of the environment, where the wall surfaces with the flowing cooling medium are acted upon. This is the case above all in the cooling channel 39, through which the cooling medium is conducted in the interior of the blade.
Im Fall des kreisrunden Kernausgangs 40, der in der Deckplatte 21 vorgesehen ist, wird im Kernausgang durch eine Durchmesserstufe eine ringförmige An- Schlussfläche 33 geschaffen, auf welcher der Verschlussstopfen 32 mit einem entsprechenden Absatz aufsitzt (Fig. 4). Der Verschlussstopfen 32 ist dabei so bemessen und geformt, dass nach seinem Einsetzen in den Kernausgang 40 sowohl die Aussenfläche der Deckplatte 21 durchgehend ist als auch die Oberfläche 35 der Innenwand des Kühlkanals 39. Der Verschlussstopfen 32 wird bevorzugt mit- tels einer Hartlötverbindung 34 im Kernausgang 40 fixiert.In the case of the circular core exit 40, which is provided in the cover plate 21, an annular attachment surface 33 is provided in the core exit by a diameter step, on which the closure stopper 32 is seated with a corresponding shoulder (FIG. 4). The sealing plug 32 is dimensioned and shaped such that after its insertion into the core outlet 40 both the outer surface of the cover plate 21 is continuous and the surface 35 of the inner wall of the cooling channel 39. The sealing plug 32 is preferably by means of a brazed joint 34 in the core exit 40 fixed.
Ein ähnliches Vorgehen wird bei dem viereckigen Kernausgang 41 in dem Schaufelkopf 23 angewendet: In dem Kernausgang 41 sind an gegenüberliegenden Seiten in einer vorbestimmten Tiefe Anschlussflächen 37 bereitgestellt, auf welchen der in den Kernausgang 41 eingesetzte und in der Randkontur angepasste Verschlussstopfen 36 aufsitzt (Fig. 6). Auch hier wird der Verschlussstopfen 36 mittels Hartlötverbindungen 38 im Kernausgang 41 fixiert und schliesst bündig an die umgebende Oberfläche an.A similar procedure is used in the square core exit 41 in the blade head 23: In the core exit 41, connecting surfaces 37 are provided on opposite sides at a predetermined depth, onto which the sealing plug 36 inserted into the core exit 41 and adapted in the edge contour is seated (FIG. 6). Again, the sealing plug 36 is fixed by means of brazed joints 38 in the core exit 41 and connects flush with the surrounding surface.
Durch die Erfindung, die grundsätzlich in allen gekühlten Schaufeln von Turbinen eingesetzt werden kann, wird der störende Einfluss der Verschlusselemente auf die Strömung des Kühlmediums minimiert. Dadurch werden die Wände der Schaufel optimal gekühlt, was zu einer Verlängerung der Schaufellebensdauer führt. Ein bevorzugter Einsatz der erfindungsgemässen Schaufel ist in grossen stationären Gasturbinen anzutreffen, beispielsweise bei Gasturbinen mit sequentieller Verbrennung, welche in Fachkreisen unter der Bezeichnung GT24/26 bekannt geworden sind. Bei den letztgenannten Gasturbinen lässt der bevorzugte Einsatz einer solchen Schaufel in der Niederdruckturbine finden. Bei anderen Gasturbinenarten lässt sich eine solche Schaufel ebenfalls einsetzen.The invention, which can be used in principle in all cooled blades of turbines, the disturbing influence of the closure elements is minimized to the flow of the cooling medium. As a result, the walls of the blade are optimally cooled, which leads to an extension of the blade life. A preferred use of the inventive blade is to be found in large stationary gas turbines, for example, in gas turbines with sequential combustion, which have become known in the art under the name GT24 / 26. In the latter gas turbine, the preferred Use of such a blade in the low-pressure turbine find. For other gas turbine types, such a blade can also be used.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
10 Gasturbine10 gas turbine
1 1 Verdichter1 1 compressor
12,16 Brennstoffzufuhr12,16 fuel supply
13 EV-Brenner13 EV burners
14,17 Brennkammer14,17 combustion chamber
15 Hochdruckturbine15 high-pressure turbine
18 Niederdruckturbine18 low-pressure turbine
19 Achse19 axis
20,20' Schaufel20.20 'shovel
21 Deckplatte21 cover plate
22 Schaufelblatt22 airfoil
23 Schaufelkopf23 bucket head
24,25 Befestigungselement (hakenförmig)24,25 fastener (hook-shaped)
27 Vorderkante27 leading edge
28 Hinterkante28 trailing edge
29 Drosselelement29 throttle element
30 Heissgasstrom30 hot gas stream
31 Druckseite31 print side
32,36 Verschlussstopfen32.36 sealing plugs
33,37 Anschlussfläche33.37 interface
34,38 Hartlötverbindung34.38 braze joint
35 Oberfläche (Kühlkanal)35 surface (cooling channel)
39 Kühlkanal39 cooling channel
40,41 Kernausgang 40.41 core output

Claims

Patentansprüche claims
1. Schaufel (20) für eine Gasturbine (10), welche Schaufel (20) nach einem Giessverfahren hergestellt ist und ein sich in radialer Richtung zwischen einem Schaufelkopf (23) und einer Deckplatte (21 ) erstreckendes Schaufelblatt (22) aufweist, in dessen Innerem ein an den Plattformen (21 , 23) vorbei führender Kühlkanal (39) verläuft, durch den ein Kühlmedium, zum Kühlen der Schaufel (20) strömt, wobei in den endseitigen Enden (21 bzw. 23) der Schaufel (20) vom Einsatz eines Gusskerns herrührende KernausgängeA blade (20) for a gas turbine (10), which blade (20) is produced by a casting process and in the radial direction between a blade head (23) and a cover plate (21) extending airfoil (22), in whose Inside a cooling channel (39) leading past the platforms (21, 23) passes, through which a cooling medium flows to cool the blade (20), wherein in the end ends (21 or 23) of the blade (20) of the insert core outputs resulting from a casting core
(40 bzw. 41 ) vorhanden sind, welche den Kühlkanal (39) mit dem Aussen- raum verbinden und durch ein Verschlusselement (32 bzw. 36) verschlossen sind, dadurch gekennzeichnet, dass die Verschlusselemente (32, 36) so ausgebildet und in die Kernausgänge (40, 41 ) eingesetzt sind, dass sie bündig an die Wandoberfläche des Kühlkanals (39) anschliessen.(40 or 41) are present, which connect the cooling channel (39) with the outer space and are closed by a closure element (32 or 36), characterized in that the closure elements (32, 36) are formed and in the Core exits (40, 41) are inserted, that they connect flush to the wall surface of the cooling channel (39).
2. Schaufel nach Anspruch 1 , dadurch gekennzeichnet, dass die Verschlusselemente als vorgefertigte Verschlussstopfen (32, 36) ausgebildet sind.2. Shovel according to claim 1, characterized in that the closure elements are designed as prefabricated sealing plugs (32, 36).
3. Schaufel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verschlusselemente bzw. Verschlussstopfen (32, 36) in die Kernausgänge (40, 41 ) hart eingelötet sind.3. A blade according to claim 1 or 2, characterized in that the closure elements or sealing plugs (32, 36) in the core exits (40, 41) are soldered hard.
4. Schaufel nach Anspruch 3, dadurch gekennzeichnet, dass in den Kernaus- gangen (40, 41 ) Anschlussflächen (33, 37) ausgebildet sind, auf denen die4. blade according to claim 3, characterized in that in the core outputs (40, 41) connecting surfaces (33, 37) are formed, on which the
Verschlusselemente bzw. Verschlussstopfen (32, 36) aufliegen.Cover elements or sealing plugs (32, 36) rest.
5. Schaufel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verschlusselemente bzw. Verschlussstopfen (32, 36) so in die Kern- ausgänge (40, 41 ) eingesetzt sind, dass sie an die äusseren Oberflächen der Plattformen (21 , 23) bündig anschliessen. 5. Blade according to one of claims 1 to 4, characterized in that the closure elements or sealing plugs (32, 36) are inserted into the core exits (40, 41) in such a way that they contact the outer surfaces of the platforms (21, 23) flush.
6. Gasturbine mit einer Schaufel (20) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Schaufel (20) in einer Turbine (15, 18) der Gasturbine (10) angeordnet ist.6. Gas turbine with a blade (20) according to one of claims 1 to 5, characterized in that the blade (20) in a turbine (15, 18) of the gas turbine (10) is arranged.
7. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Gasturbine (10) eine Gasturbine mit sequentieller Verbrennung ist, die eine erste Brennkammer (14) mit einer nachgeschalteten Hochdruckturbine (15) und eine zweite Brennkammer (17) mit einer nachgeschalteten Niederdruckturbine (18) aufweist, und dass die Schaufel (20) eine Leitschaufel ist, welche in der Niederdruckturbine (18) angeordnet ist.7. Gas turbine according to claim 6, characterized in that the gas turbine (10) is a gas turbine with sequential combustion, a first combustion chamber (14) with a downstream high-pressure turbine (15) and a second combustion chamber (17) with a downstream low-pressure turbine (18 ), and that the blade (20) is a vane disposed in the low pressure turbine (18).
8. Gasturbine nach Anspruch 7, dadurch gekennzeichnet, dass die Niederdruckturbine in Strömungsrichtung hintereinander mehrere Reihen von Leitschaufeln aufweist, und dass die Leitschaufel (20) in einer mittleren Leit- schaufelreihe angeordnet ist.8. Gas turbine according to claim 7, characterized in that the low-pressure turbine in the flow direction behind one another has a plurality of rows of guide vanes, and that the guide vane (20) is arranged in a middle row of guide vanes.
9. Gasturbine nach Anspruch 6, dadurch gekennzeichnet, dass die Schaufel (20) eine Laufschaufel ist. 9. Gas turbine according to claim 6, characterized in that the blade (20) is a blade.
EP09726863A 2008-03-31 2009-03-17 Blade for a gas turbine Withdrawn EP2257399A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4702008 2008-03-31
PCT/EP2009/053116 WO2009121716A1 (en) 2008-03-31 2009-03-17 Blade for a gas turbine

Publications (1)

Publication Number Publication Date
EP2257399A1 true EP2257399A1 (en) 2010-12-08

Family

ID=39592112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09726863A Withdrawn EP2257399A1 (en) 2008-03-31 2009-03-17 Blade for a gas turbine

Country Status (4)

Country Link
US (1) US20110058957A1 (en)
EP (1) EP2257399A1 (en)
JP (1) JP2011516269A (en)
WO (1) WO2009121716A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9403208B2 (en) 2010-12-30 2016-08-02 United Technologies Corporation Method and casting core for forming a landing for welding a baffle inserted in an airfoil
US9249917B2 (en) 2013-05-14 2016-02-02 General Electric Company Active sealing member
US9713838B2 (en) 2013-05-14 2017-07-25 General Electric Company Static core tie rods
DE102013214932A1 (en) * 2013-07-30 2015-02-05 MTU Aero Engines AG Method for producing a turbomachine blade
US20150122450A1 (en) * 2013-11-07 2015-05-07 Ching-Pang Lee Ceramic casting core having an integral vane internal core and shroud backside shell for vane segment casting
EP3129473B8 (en) * 2014-04-11 2020-12-23 Cellectis Method for generating immune cells resistant to arginine and/or tryptophan depleted microenvironment
US9771816B2 (en) 2014-05-07 2017-09-26 General Electric Company Blade cooling circuit feed duct, exhaust duct, and related cooling structure
US9638045B2 (en) 2014-05-28 2017-05-02 General Electric Company Cooling structure for stationary blade
US9909436B2 (en) 2015-07-16 2018-03-06 General Electric Company Cooling structure for stationary blade
US9822653B2 (en) 2015-07-16 2017-11-21 General Electric Company Cooling structure for stationary blade
GB202213804D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane
GB202213805D0 (en) * 2022-09-22 2022-11-09 Rolls Royce Plc Platform for stator vane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2061400A (en) * 1979-10-26 1981-05-13 Snecma Cooled hollow turbine blade
EP1027943A1 (en) * 1999-02-11 2000-08-16 ABB Alstom Power (Schweiz) AG Hollow casting and method for producing the same
EP1332824A2 (en) * 2002-01-30 2003-08-06 Hitachi Ltd. Method for manufacturing turbine blade and manufactured turbine blade
EP1416225A1 (en) * 2002-10-30 2004-05-06 ALSTOM Technology Ltd Emergency cooling system and plug for a thermally loaded component, as well as thermally loaded component
US20050238488A1 (en) * 2004-04-27 2005-10-27 General Electric Company Turbulator on the underside of a turbine blade tip turn and related method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB895615A (en) * 1960-02-05 1962-05-02 Rolls Royce A method and apparatus for forming non-circular holes
US3626568A (en) * 1969-04-23 1971-12-14 Avco Corp Method for bonding pins into holes in a hollow turbine blade
US3982854A (en) * 1971-12-20 1976-09-28 General Electric Company Friction welded metallic turbomachinery blade element
GB2028928B (en) * 1978-08-17 1982-08-25 Ross Royce Ltd Aerofoil blade for a gas turbine engine
FR2511908A1 (en) * 1981-08-26 1983-03-04 Snecma BRAZING-DIFFUSION PROCESS FOR PIECES IN SUPERALLOYS
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
FR2695163B1 (en) * 1992-09-02 1994-10-28 Snecma Hollow blade for a turbomachine and its manufacturing process.
CH687269A5 (en) * 1993-04-08 1996-10-31 Abb Management Ag Gas turbine group.
US5465780A (en) * 1993-11-23 1995-11-14 Alliedsignal Inc. Laser machining of ceramic cores
DE4435266A1 (en) * 1994-10-01 1996-04-04 Abb Management Ag burner
US5679270A (en) * 1994-10-24 1997-10-21 Howmet Research Corporation Method for removing ceramic material from castings using caustic medium with oxygen getter
JPH08229819A (en) * 1994-12-22 1996-09-10 Mitsubishi Heavy Ind Ltd Brazing method by two-stage blasting process
US5957657A (en) * 1996-02-26 1999-09-28 Mitisubishi Heavy Industries, Ltd. Method of forming a cooling air passage in a gas turbine stationary blade shroud
US5716192A (en) * 1996-09-13 1998-02-10 United Technologies Corporation Cooling duct turn geometry for bowed airfoil
JPH10184309A (en) * 1996-12-26 1998-07-14 Mitsubishi Heavy Ind Ltd Plug cover installation method for cooling groove
JPH10306701A (en) * 1997-05-08 1998-11-17 Toshiba Corp Turbine bucket and its manufacture
JP2961091B2 (en) * 1997-07-08 1999-10-12 三菱重工業株式会社 Gas turbine split ring cooling hole structure
JPH11229806A (en) * 1998-02-12 1999-08-24 Mitsubishi Heavy Ind Ltd Rotor blade for cooling
US6199746B1 (en) * 1999-08-02 2001-03-13 General Electric Company Method for preparing superalloy castings using a metallurgically bonded tapered plug
JP2001107701A (en) * 1999-10-08 2001-04-17 Mitsubishi Heavy Ind Ltd Gas turbine moving blade
US6454156B1 (en) * 2000-06-23 2002-09-24 Siemens Westinghouse Power Corporation Method for closing core printout holes in superalloy gas turbine blades
JP3999482B2 (en) * 2001-07-25 2007-10-31 三菱重工業株式会社 Protection method for brazed parts on moving and stationary blades
JP2003065068A (en) * 2001-08-29 2003-03-05 Mitsubishi Heavy Ind Ltd Method for closing used hole on top of gas turbine blade
EP1321214A1 (en) * 2001-12-21 2003-06-25 Siemens Aktiengesellschaft Workpiece comprising a cavity covered by a soldering foil and method for covering a cavity using a soldering foil
US6837417B2 (en) * 2002-09-19 2005-01-04 Siemens Westinghouse Power Corporation Method of sealing a hollow cast member
CN100516469C (en) * 2003-04-07 2009-07-22 阿尔斯通技术有限公司 Turbomachine
US7144215B2 (en) * 2004-07-30 2006-12-05 General Electric Company Method and apparatus for cooling gas turbine engine rotor blades
EP1789654B1 (en) * 2004-09-16 2017-08-23 General Electric Technology GmbH Turbine engine vane with fluid cooled shroud

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2061400A (en) * 1979-10-26 1981-05-13 Snecma Cooled hollow turbine blade
EP1027943A1 (en) * 1999-02-11 2000-08-16 ABB Alstom Power (Schweiz) AG Hollow casting and method for producing the same
EP1332824A2 (en) * 2002-01-30 2003-08-06 Hitachi Ltd. Method for manufacturing turbine blade and manufactured turbine blade
EP1416225A1 (en) * 2002-10-30 2004-05-06 ALSTOM Technology Ltd Emergency cooling system and plug for a thermally loaded component, as well as thermally loaded component
US20050238488A1 (en) * 2004-04-27 2005-10-27 General Electric Company Turbulator on the underside of a turbine blade tip turn and related method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009121716A1 *

Also Published As

Publication number Publication date
US20110058957A1 (en) 2011-03-10
WO2009121716A1 (en) 2009-10-08
JP2011516269A (en) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2257399A1 (en) Blade for a gas turbine
EP2255072B1 (en) Guide vane for a gas turbine and gas turbine comprising such a guide vane
EP1113145B1 (en) Blade for gas turbines with metering section at the trailing edge
DE1476796C3 (en) A component of a gas turbine system made integrally from a high-strength material
DE102009026052B4 (en) Cooling device for the aft end of a combustor transition piece and associated method
DE60224339T2 (en) Cooling insert with tangential outflow
DE602004000633T2 (en) turbine blade
EP2260180B1 (en) Guide vane for a gas turbine
DE60018817T2 (en) Chilled gas turbine blade
DE2840336C2 (en) Seal for an adjustable turbine blade
EP2300686B1 (en) Gas turbine comprising a guide vane
DE69831109T2 (en) Cooling air supply system for the blades of a gas turbine
EP2350441B1 (en) Guide blade for a gas turbine and associated gas turbine
EP2320030B1 (en) Rotor and rotor blade for an axial turbomachine
CH698400A2 (en) Fuel nozzle.
DE102011054880A1 (en) Apparatus, systems and methods for cooling the platform region of turbine blades
EP1766192A1 (en) Vane wheel of a turbine comprising a vane and at least one cooling channel
DE102011053761B4 (en) Device for cooling platform areas of turbine rotor blades
EP3064706A1 (en) Guide blade assembly for a flow engine with axial flow
DE102011120691A1 (en) A built-up blade assembly for a gas turbine and method of operating such a blade assembly
EP1456505A1 (en) Thermally loaded component
EP1917419B1 (en) Guide vane arrangement of a turbo-machine
CH701031A1 (en) The method for refurbishing a turbine blade.
DE602004006035T2 (en) Cooling device for turbine disks
WO2010028913A1 (en) Turbine blade having a modular, stepped trailing edge

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUECKERSHOFF, ROLAND

Inventor name: VON ARX, BEAT

Inventor name: WARDLE, BRIAN KENNETH

Inventor name: NAGLER, CHRISTOPH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUECKERSHOFF, ROLAND

Inventor name: WARDLE, BRIAN KENNETH

Inventor name: VON ARX, BEAT

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160511

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171003