EP2256578A1 - Low-dropout voltage regulator with low quiescent current - Google Patents

Low-dropout voltage regulator with low quiescent current Download PDF

Info

Publication number
EP2256578A1
EP2256578A1 EP10004211A EP10004211A EP2256578A1 EP 2256578 A1 EP2256578 A1 EP 2256578A1 EP 10004211 A EP10004211 A EP 10004211A EP 10004211 A EP10004211 A EP 10004211A EP 2256578 A1 EP2256578 A1 EP 2256578A1
Authority
EP
European Patent Office
Prior art keywords
voltage
control
transistor
current
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10004211A
Other languages
German (de)
French (fr)
Inventor
Claude Renous
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics Grenoble 2 SAS
Original Assignee
STMicroelectronics Grenoble 2 SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics Grenoble 2 SAS filed Critical STMicroelectronics Grenoble 2 SAS
Publication of EP2256578A1 publication Critical patent/EP2256578A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit

Definitions

  • the present invention relates to a low voltage drop voltage regulator circuit, or LDO. More particularly, the present invention relates to a circuit configuration for minimizing quiescent current in an LDO.
  • LDOs are DC regulators that receive an input voltage from a voltage source, such as a battery, and provide a stable output voltage at an electrical load.
  • the voltage source may vary or become depleted over time, but the load requires a constant supply voltage to operate.
  • the minimum difference between the input and output voltages that still allows the low-voltage regulator to regulate the output voltage is known as the "drop out voltage".
  • This waste voltage should be as low as possible to maximize efficiency while minimizing energy dissipation, and is thus between 1.0 and 1.5 V. For example, if the waste voltage is 0.7 V, the input voltage must be at least 4.0 V to provide an output voltage of 3.3 V.
  • Low voltage drop regulators are particularly useful in battery-powered portable applications, such as mobile phones, digital music players, personal digital assistants, cameras, and so on.
  • the LDO1 controller comprises an IN input node and an OUT output node.
  • the input node receives a Vin input voltage provided by a PS power source, such as a battery.
  • the output node OUT is connected to a load LD and provides a regulated output voltage Vreg and an output current Iout to the load LD.
  • the regulator LDO1 comprises a regulation transistor TREG, a GCS gate control stage and an EAMP error amplifier.
  • the regulation transistor TREG here a PMOS transistor, has its source S connected to the input node IN and its drain D connected to the output node OUT.
  • the gate G of the transistor is driven by a gate voltage Vg supplied by the GCS gate control stage.
  • the GCS gate control stage comprises a high-gate bias resistor RG1 ("pull-up gate resistor") and a control transistor TQ, here an NPN bipolar transistor.
  • the resistor RG1 has a terminal connected to the input node IN and a terminal connected to the gate G of the transistor TREG.
  • the transistor TQ has a collector C connected to the gate G of the transistor TREG and an emitter E connected to ground by a resistor RG2.
  • the base B of the transistor TQ receives a control voltage Vc supplied by the error amplifier EAMP.
  • the EAMP amplifier includes a negative input and a positive input.
  • the negative input receives a stable voltage Vref provided by a stable voltage source BG, such as a bandgap voltage source.
  • the positive input receives a feedback voltage Vf.
  • the feedback voltage is a percentage of the output voltage Vreg, provided by a voltage divider comprising resistors R1, R2.
  • the error amplifier compares the reference voltage Vref and the feedback voltage Vf, and supplies the control voltage Vc to the GCS gate control stage.
  • the quiescent current Iq is defined as the current that is used to bias the GCS gate control stage, and is equal to a current Iin at the input node IN of the controller minus a current Iout supplied to the load LD and an Iamp current supplied to the EAMP error amplifier.
  • the quiescent current is considered to consist essentially of the current flowing in the gate resistor RG1.
  • the reference voltage Vref is assumed to be 1.8V and R2 is assumed to be 0.
  • the horizontal axis represents time and it is assumed that the voltage Vin gradually decreases as the source of power is discharging.
  • the quiescent current Iq is substantially constant in the region on the left side of the dashed line and begins to increase when the ohmic region is reached, particularly when the current consumption in the load is high. For both current consumption (50 nA and 50 mA), the quiescent current increases abruptly and reaches a maximum value when the output voltage Vreg is almost equal to the input voltage Vin (Vin-Vreg ⁇ 0, 2 V).
  • the error amplifier EAMP tries to maintain the output voltage at its nominal value (Vref) and draws the gate voltage Vg downwards. Assuming that the voltage V CE flowing through the transistor TQ is very low, the maximum value of the quiescent current is approximately equal to Vin / (RG1 + RG2).
  • Iamp current flowing through the error amplifier is in general constant and it will therefore be considered that nothing can be done to control its value.
  • US Pat. No. 7,312,598 discloses a low waste voltage regulator having a quiescent current control circuit including a PMOS detecting transistor capable of detecting a low charge current, for example 0.5 mA.
  • a voltage Vqc is set to a high value.
  • the controller when it detects the low charge current state, generates a relatively low quiescent current by disabling some components, and so less power is consumed.
  • the voltage Vqc is set to a low value so that all components disabled for the low charge state are quickly enabled for full operation.
  • Embodiments of the invention provide a low voltage dropout voltage regulator comprising a regulating transistor for providing a regulated output voltage from an input voltage, a gate control stage including a gate circuit high-bias gate resistor and a control transistor, for supplying a gate voltage to the control transistor, an error amplifier for supplying a control voltage to a control transistor control terminal, and a quiescent current control circuit for limiting a quiescent current flowing through the gate control stage as the input voltage approaches the output voltage and inputs the control transistor into an ohmic conduction mode .
  • the quiescent current control circuit includes a current source providing a current of reference and is configured to control the quiescent current by mirror effect based on the reference current.
  • the current control circuit is also configured to simultaneously control the control voltage supplied by the error amplifier to the control terminal of the control transistor.
  • the current control circuit comprises an output which is connected to the control terminal of the control transistor and is configured to change the control voltage supplied by the error amplifier to the control terminal.
  • the quiescent current control circuit comprises a first transistor having a first conduction terminal connected to the current source, a second conduction terminal arranged to receive the output voltage and a terminal control circuit arranged to receive the gate voltage, and the gate resistance circuit comprises a transistor which is coupled in current mirror configuration with the first transistor of the idle current control circuit.
  • the low-voltage voltage regulator comprises a Miller compensation branch connected between a conduction terminal of the control transistor and the first conduction terminal of the control transistor.
  • the quiescent current control circuit comprises a second transistor having a control terminal connected to the first conduction terminal of the first transistor, a first conduction terminal connected to the ground, and a second conduction terminal connected to the control terminal of the control transistor.
  • the gate resistance circuit comprises a gate transistor interacting with a transistor of the quiescent current control circuit to create a current mirror between the quiescent current control circuit and the grid control stage.
  • the gate resistance circuit also comprises a first resistor in parallel with the gate transistor and a second resistor in series with the first resistor.
  • the quiescent current control circuit is configured to be in a deactivated state in which it does not consume current when the control transistor has not entered ohmic conduction mode.
  • the regulation transistor is in ohmic conduction mode when the voltage difference between the input voltage and the regulated output voltage is less than or equal to 2.0 V.
  • Embodiments of the invention also relate to a portable device comprising a battery for providing an input voltage, a circuit powered by a regulated voltage, and a low voltage voltage regulator according to one of the embodiments. described above, to provide the regulated output voltage from the input voltage.
  • the figure 3 illustrates a LDO2 low voltage regulator according to one embodiment of the invention.
  • the LDO2 regulator comprises an input node IN and an output node OUT.
  • the input node receives an input voltage Vin supplied by a PS power source, such as a battery.
  • the output node OUT is connected to a load LD schematically represented by a resistor RL and a capacitor CL in parallel, and provides a regulated output voltage Vreg and an output current Iout to the load LD.
  • the regulator LDO2 comprises a regulation transistor TREG, a gate control stage GCS, an amplifier amplifier EAMP (differential amplifier) and a current control circuit CCT.
  • the regulation transistor TREG here a PMOS transistor, has its source S connected to the node IN and its drain D connected to the node OUT.
  • the gate G of the transistor is driven by a gate voltage Vg supplied by the GCS gate control stage.
  • the GCS gate control stage comprises a gate resistance circuit RG10 and a control transistor TQ, here an NPN bipolar transistor.
  • the resistance circuit RG10 has a terminal connected to the input node IN and a terminal connected to the gate G of the transistor TREG.
  • the transistor TQ has a collector C connected to the gate G of the transistor TREG and a transmitter E connected to ground (GND) by a resistor RG2.
  • the base B of the transistor TQ receives a control voltage Vc supplied by the error amplifier EAMP.
  • the EAMP amplifier includes a negative input and a positive input.
  • the negative input receives a stable voltage Vref provided by a stable voltage source BG, such as a bandgap voltage source.
  • the positive input receives a feedback voltage Vf.
  • the feedback voltage is a percentage of the output voltage Vreg provided by a voltage divider comprising resistors R1, R2.
  • the error amplifier compares the reference voltage Vref and the feedback voltage Vf, and supplies the control voltage Vc to the gate control stage GCS.
  • the quiescent current control circuit CCT has two inputs respectively connected to the gate G of the transistor TREG and to the output node OUT of the regulator, and an output connected to the base B of the transistor TQ.
  • the quiescent current control circuit CCT has an internal current source CS10, and is arranged to detect the gate voltage Vg applied by the gate control stage GCS to the transistor TREG. When the gate voltage Vg reaches a value which indicates that the transistor TREG has entered ohmic conduction mode, the quiescent current control circuit CCT activates and controls the quiescent current Iq passing through the gate control stage GCS so to prevent the quiescent current from reaching excessive values. Also, the quiescent current control circuit CCT "takes over" the error amplifier EAMP and takes control of the voltage Vc applied to the base B of the transistor TQ in order to control the gate voltage Vg of the transistor TREG regulation.
  • the control of the quiescent current Iq by the control circuit CCT is carried out by means of a current mirror mechanism between the current source CS10 and the gate control stage GCS.
  • a transistor may be added to the GCS gate control stage.
  • a PMOS transistor TG is arranged in the gate resistance circuit RG10, i.e. in the pull-up section of the GCS gate control stage. which receives the input voltage Vin and supplies the gate voltage Vg.
  • the gate resistance circuit RG10 comprises two resistors RG11, RG12 in series and a transistor TG is diode-connected in parallel with the resistor RG11, its drain D being connected to its gate G.
  • the resistor RG11 has a high value, for example 1 M ⁇ , and is provided as a leakage resistor to ensure that the gate voltage Vg of the regulating transistor TREG receives the input voltage Vin in the absence of control by the error amplifier, for example when the circuit is switched on.
  • the resistance RG12 has a low value, for example 10 K ⁇ .
  • the figure 4 illustrates an example of implementation of the quiescent current control circuit CCT and an example of implementation of the error amplifier EAMP.
  • the quiescent current control circuit CCT comprises a PMOS transistor T10, an NMOS transistor T11, and the current source CS10.
  • a branch Miller compensation comprising, for example, a resistor R10 and a capacitor C10 may also be provided.
  • the transistor T10 has its source S connected to the output node OUT of the regulator LDO2, its drain D connected to ground (GND) by the current source CS10, and its gate G connected to the gate G of the regulation transistor TREG in order to detect the gate voltage Vg.
  • the transistor T11 has its gate connected to the drain D of the transistor T10, its drain D connected to the base B of the transistor TQ, and its source S connected to ground.
  • the compensation branch Miller comprising the resistor R10 and the capacitor C10, is connected between the emitter E of the transistor TQ and the drain D of the transistor T10.
  • the error amplifier EAMP conventionally comprises a current source CS1, PMOS transistors TE1, TE2, NPN bipolar transistors TE3, TE4 and resistors RE1, RE2.
  • the current source CS1 has a first terminal connected to the input node IN of the regulator, and a second terminal connected to the sources S of the transistors TE1, TE2.
  • the drains D of the transistors TE1, TE2 are respectively connected to the collectors C of the transistors TE3, TE4.
  • Transmitters E of transistors TE3, TE4 are respectively connected to ground by resistors RE1, RE2.
  • the collector C of the transistor TE4 is connected to the base B of the transistor TQ and supplies the control voltage Vc when the quiescent current control circuit CCT is in the non-conductive state.
  • the bases B of the transistors TE3, TE4 are both connected to the collector C of the transistor TE3.
  • the gate G of the transistor TE1 receives the reference voltage Vref and the gate G of the transistor TE2
  • the quiescent current control circuit CCT is arranged to monitor the voltage difference between the gate voltage Vg and the output voltage Vreg.
  • the transistor T10 of the current control circuit CCT is in the non-conducting state because the voltage difference Vgs between its gate G and its source S is positive and therefore higher than its negative threshold voltage (Vg> Vreg).
  • Current source CS10 also prevents transistor T11 from driving. Therefore, the quiescent current control circuit CCT is in the off state and does not interfere with the normal operation of the EAMP error amplifier. In addition, it does not consume power.
  • the LDO2 regulator functions as the conventional LDO1 regulator of the figure 1 .
  • the error amplifier EAMP When the input voltage Vin decreases, for example as the power source PS discharges if it is a battery, the error amplifier EAMP tries to maintain the output voltage Vreg necessary, as explained above.
  • the gate voltage Vg begins to decrease and the difference between the gate voltage and the source voltage of the transistor T10, which is equal to Vg-Vreg, becomes negative and lower than its negative threshold voltage (Vg ⁇ Vreg).
  • the transistor TQ is highly conductive and the transistor T10 begins to become conductive.
  • the current source CS10 imposes a current Iref by the transistor T10 and also limits the quiescent current by a current mirror effect.
  • the ratio between the controlled quiescent current Iq and the current Iref is determined by the respective dimensions of the transistors T10 and TG, that is to say their respective W / L ratios (W being the width of the gate and L being the length of the gate of the transistors).
  • W being the width of the gate
  • L being the length of the gate of the transistors.
  • the drain voltage of the transistor T10 causes the transistor T11 to begin to become conductive, and thus to control the base voltage Vb of the transistor TQ and to prevent the error amplifier EAMP from pulling the control voltage Vc upwards. .
  • the base B of the transistor TQ is pulled to ground, and the transistor T11 regulates the conduction of the transistor TQ.
  • the transistor T11 controls the base B of the transistor TQ to ensure that Iref is equal to the current flowing through the current source CS10, so that an additional control mechanism appears.
  • Iref is equal to the through current CS10
  • the current Iq is controlled and is equal to Iref or proportional to Iref as a function of the W / L ratios.
  • the reference voltage Vref is assumed to be 1.8V, and R2 is assumed to be 0.
  • the horizontal axis represents time and it is assumed that the voltage Vin gradually decreases.
  • the quiescent current Iq is substantially constant in the region to the left of the dashed line.
  • Vin approaches the nominal value the output voltage Vreg and Vin-Vreg becomes equal to 0.2 V.
  • the quiescent current control circuit CCT prevents the gate control stage GCS from rapidly pulling the gate voltage Vg towards the gate. low while preventing the quiescent current Iq from decreasing abruptly.
  • the quiescent current Iq is approximately maintained at the same value it had before reaching the ohmic conduction mode.
  • the figure 6 illustrates schematically an example of application of a LDO2 low voltage regulator according to the invention.
  • the low voltage LDO2 regulator is arranged in a portable HDV device having a BT battery forming its PS power source, and circuitry on MBD motherboard.
  • the circuitry may include, for example, a BBP baseband processor configured to establish a telephone communication over a cellular network.
  • the battery provides the Vin input voltage of the LDO2 regulator and the regulated voltage Vreg provided by the LDO2 regulator powers all or some of the components of the motherboard, in particular the BBP baseband processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

The LDO voltage regulator (LDO2) has regulation transistor (TREG) that supplies regulated output voltage from input voltage (Vin), and gate control stage (GCS) that supplies gate voltage (Vg) to regulation transistor. A quiescent current control circuit (CCT) limits quiescent current (Iq) flowing through gate control stage when input voltage approaches output voltage (Vreg) and causes regulation transistor to enter into ohmic conduction mode. The quiescent current control circuit is also configured to control quiescent current by current-mirror effect based on reference current (Iref). The gate control stage includes a pull-up gate resistor circuit (RG10) and a control transistor (TQ). The quiescent current control circuit includes a current source (CS10) configured to provide the reference current. An error amplifier (EAMP) is configured to supply a control voltage to a control terminal of the control transistor.

Description

La présente invention concerne un circuit de régulateur de tension à faible tension de déchet, ou LDO. Plus particulièrement, la présente invention concerne une configuration de circuit permettant de minimiser le courant de repos dans un LDO.The present invention relates to a low voltage drop voltage regulator circuit, or LDO. More particularly, the present invention relates to a circuit configuration for minimizing quiescent current in an LDO.

Les LDO sont des régulateurs de courant continu qui reçoivent une tension d'entrée d'une source de tension, telle qu'une batterie, et fournissent une tension de sortie stable à une charge électrique. La source de tension peut varier ou s'épuiser avec le temps, mais la charge nécessite une tension d'alimentation constante pour fonctionner.LDOs are DC regulators that receive an input voltage from a voltage source, such as a battery, and provide a stable output voltage at an electrical load. The voltage source may vary or become depleted over time, but the load requires a constant supply voltage to operate.

La différence minimale entre les tensions d'entrée et de sortie qui permet encore au régulateur à faible tension de déchet de réguler la tension de sortie est connue sous le nom de "tension de déchet" ("drop out voltage"). Cette tension de déchet doit être la plus basse possible afin de maximiser l'efficacité tout en minimisant la dissipation d'énergie, et elle est ainsi comprise entre 1,0 et 1,5 V. Par exemple, si la tension de déchet est de 0,7 V, la tension d'entrée doit être d'au moins 4,0 V pour fournir une tension de sortie de 3,3 V.The minimum difference between the input and output voltages that still allows the low-voltage regulator to regulate the output voltage is known as the "drop out voltage". This waste voltage should be as low as possible to maximize efficiency while minimizing energy dissipation, and is thus between 1.0 and 1.5 V. For example, if the waste voltage is 0.7 V, the input voltage must be at least 4.0 V to provide an output voltage of 3.3 V.

Les régulateurs à faible tension de déchet sont particulièrement utiles dans les applications portables fonctionnant sur batterie, par exemple les téléphones portables, les baladeurs numériques, les assistants numériques personnels, les appareils photos, etc.Low voltage drop regulators are particularly useful in battery-powered portable applications, such as mobile phones, digital music players, personal digital assistants, cameras, and so on.

Une structure conventionnelle d'un régulateur à faible tension de déchet LDO1 est illustrée sur la figure 1. Le régulateur LDO1 comprend un noeud d'entrée IN et un noeud de sortie OUT. Le noeud d'entrée reçoit une tension d'entrée Vin fournie par une source d'alimentation PS, telle qu'une batterie. Le noeud de sortie OUT est connecté à une charge LD et fournit une tension de sortie régulée Vreg et un courant de sortie Iout à la charge LD.A conventional structure of a low voltage LDO1 regulator is illustrated on the figure 1 . The LDO1 controller comprises an IN input node and an OUT output node. The input node receives a Vin input voltage provided by a PS power source, such as a battery. The output node OUT is connected to a load LD and provides a regulated output voltage Vreg and an output current Iout to the load LD.

Le régulateur LDO1 comprend un transistor de régulation TREG, un étage de contrôle de grille GCS et un amplificateur d'erreur EAMP.The regulator LDO1 comprises a regulation transistor TREG, a GCS gate control stage and an EAMP error amplifier.

Le transistor de régulation TREG, ici un transistor PMOS, a sa source S connectée au noeud d'entrée IN et son drain D connecté au noeud de sortie OUT. La grille G du transistor est pilotée par une tension de grille Vg fournie par l'étage de contrôle de grille GCS.The regulation transistor TREG, here a PMOS transistor, has its source S connected to the input node IN and its drain D connected to the output node OUT. The gate G of the transistor is driven by a gate voltage Vg supplied by the GCS gate control stage.

L'étage de contrôle de grille GCS comprend une résistance de grille de polarisation à l'état haut RG1 ("pull-up gate resistor") et un transistor de contrôle TQ, ici un transistor bipolaire NPN. La résistance RG1 présente une borne connectée au noeud d'entrée IN et une borne connectée à la grille G du transistor TREG. Le transistor TQ présente un collecteur C connecté à la grille G du transistor TREG et un émetteur E relié à la masse par une résistance RG2.The GCS gate control stage comprises a high-gate bias resistor RG1 ("pull-up gate resistor") and a control transistor TQ, here an NPN bipolar transistor. The resistor RG1 has a terminal connected to the input node IN and a terminal connected to the gate G of the transistor TREG. The transistor TQ has a collector C connected to the gate G of the transistor TREG and an emitter E connected to ground by a resistor RG2.

La base B du transistor TQ reçoit une tension de contrôle Vc fournie par l'amplificateur d'erreur EAMP. L'amplificateur EAMP comprend une entrée négative et une entrée positive. L'entrée négative reçoit une tension stable Vref fournie par une source de tension stable BG, telle une source de tension à bande interdite ("bandgap"). L'entrée positive reçoit une tension de rétroaction Vf. La tension de rétroaction est un pourcentage de la tension de sortie Vreg, fournie par un diviseur de tension comprenant des résistances R1, R2.The base B of the transistor TQ receives a control voltage Vc supplied by the error amplifier EAMP. The EAMP amplifier includes a negative input and a positive input. The negative input receives a stable voltage Vref provided by a stable voltage source BG, such as a bandgap voltage source. The positive input receives a feedback voltage Vf. The feedback voltage is a percentage of the output voltage Vreg, provided by a voltage divider comprising resistors R1, R2.

L'amplificateur d'erreur compare la tension de référence Vref et la tension de rétroaction Vf, et fournit la tension de contrôle Vc à l'étage de contrôle de grille GCS.The error amplifier compares the reference voltage Vref and the feedback voltage Vf, and supplies the control voltage Vc to the GCS gate control stage.

Le courant de repos Iq est défini comme le courant qui est utilisé pour polariser l'étage de contrôle de grille GCS, et il est égal à un courant Iin au noeud d'entrée IN du régulateur moins un courant Iout fourni à la charge LD et un courant Iamp fourni à l'amplificateur d'erreur EAMP. Le courant de repos est considéré comme étant essentiellement constitué par le courant circulant dans la résistance de grille RG1.The quiescent current Iq is defined as the current that is used to bias the GCS gate control stage, and is equal to a current Iin at the input node IN of the controller minus a current Iout supplied to the load LD and an Iamp current supplied to the EAMP error amplifier. The quiescent current is considered to consist essentially of the current flowing in the gate resistor RG1.

L'efficacité en termes de puissance d'un régulateur à faible tension de déchet dépend ainsi de la valeur des courants Iq et Iamp et des tensions d'entrée et de sortie, comme l'illustre l'équation suivante : P o w e r E f f = I o u t * V r eg / I o u t + I q + I a mp * V i n V r e g / V i n

Figure imgb0001
The efficiency in terms of the power of a low-voltage regulator thus depends on the value of currents Iq and Iamp and the input and output voltages, as illustrated by the following equation: P o w e r E f f = I o u t * V r eg / I o u t + I q + I at mp * V i not V r e boy Wut / V i not
Figure imgb0001

En mode de fonctionnement normal, dans lequel la tension d'entrée Vin est supérieure à la tension de sortie Vreg, l'efficacité d'un LDO est en général satisfaisante. Cependant, le courant de repos Iq augmente de façon importante et l'efficacité diminue d'autant lorsque la tension d'entrée Vin s'approche de la tension de sortie Vreg. Cela provient du fait que le transistor de régulation TREG entre en mode de conduction ohmique et que la tension de grille Vg tend vers zéro, ce qui augmente de manière significative le courant de repos Iq. Cela pose un problème lorsque le régulateur de tension est alimenté par une batterie, puisque plus la batterie se décharge, plus le courant de repos Iq est élevé et décharge la batterie rapidement.In normal operating mode, in which the input voltage Vin is greater than the output voltage Vreg, the efficiency of an LDO is generally satisfactory. However, the quiescent current Iq increases significantly and the efficiency decreases as the input voltage Vin approaches the output voltage Vreg. This is because the control transistor TREG goes into ohmic conduction mode and the gate voltage Vg tends to zero, which significantly increases the quiescent current Iq. This is a problem when the voltage regulator is powered by a battery, since the more the battery discharges, the higher the quiescent current Iq is high and discharges the battery quickly.

A titre d'illustration, les figures 2A et 2B représentent des courbes caractéristiques C1, C2 des tensions Vin, Vreg, des courbes correspondantes C3, C4 de la tension de grille Vg pour deux valeurs différentes de Iout, respectivement 50 nA et 50 mA, et des courbes correspondantes C5, C6 du courant de repos Iq pour Iout=50 nA et Iout=50 mA, respectivement. La tension de référence Vref est supposée être égale à 1,8 V et R2 est supposée être égale à 0. L'axe horizontal représente le temps et il est supposé que la tension Vin diminue progressivement au fur et à mesure que la source d'alimentation se décharge.By way of illustration, Figures 2A and 2B represent characteristic curves C1, C2 of the voltages Vin, Vreg, corresponding curves C3, C4 of the gate voltage Vg for two different values of Iout, respectively 50 nA and 50 mA, and corresponding curves C5, C6 of the quiescent current Iq for Iout = 50 nA and Iout = 50 mA, respectively. The reference voltage Vref is assumed to be 1.8V and R2 is assumed to be 0. The horizontal axis represents time and it is assumed that the voltage Vin gradually decreases as the source of power is discharging.

Une ligne verticale en pointillés indique la limite où Vin-Vreg = 0,2 V (0,2 V étant la tension de seuil du transistor de régulation TREG) et le côté à droite de la ligne en pointillés représente une région de fonctionnement du transistor de régulation où Vin-Vreg < 0,2 V, correspondant à un mode de conduction ohmique. On peut voir que le courant de repos Iq est sensiblement constant dans la région située sur le côté gauche de la ligne en pointillés et commence à augmenter lorsque la région ohmique est atteinte, en particulier lorsque la consommation de courant dans la charge est élevée. Pour les deux consommations de courant (50 nA et 50 mA), le courant de repos augmente de façon abrupte et atteint une valeur maximale lorsque la tension de sortie Vreg est presque égale à la tension d'entrée Vin (Vin-Vreg < 0,2 V). En effet, l'amplificateur d'erreur EAMP essaye de maintenir la tension de sortie à sa valeur nominale (Vref) et tire la tension de grille Vg vers le bas. En supposant que la tension VCE traversant le transistor TQ soit très basse, la valeur maximale du courant de repos est environ égale à Vin/(RG1+RG2).A dashed vertical line indicates the limit where Vin-Vreg = 0.2 V (0.2 V is the threshold voltage of the regulating transistor TREG) and the right side of the dotted line represents a region of operation of the transistor where Vin-Vreg <0.2 V, corresponding to an ohmic conduction mode. It can be seen that the quiescent current Iq is substantially constant in the region on the left side of the dashed line and begins to increase when the ohmic region is reached, particularly when the current consumption in the load is high. For both current consumption (50 nA and 50 mA), the quiescent current increases abruptly and reaches a maximum value when the output voltage Vreg is almost equal to the input voltage Vin (Vin-Vreg <0, 2 V). Indeed, the error amplifier EAMP tries to maintain the output voltage at its nominal value (Vref) and draws the gate voltage Vg downwards. Assuming that the voltage V CE flowing through the transistor TQ is very low, the maximum value of the quiescent current is approximately equal to Vin / (RG1 + RG2).

Il peut être noté que le courant Iamp traversant l'amplificateur d'erreur est en général constant et il sera donc considéré que rien ne peut être fait pour contrôler sa valeur.It can be noted that the Iamp current flowing through the error amplifier is in general constant and it will therefore be considered that nothing can be done to control its value.

Par conséquent, il peut être souhaité de prévoir un régulateur de tension à faible tension de déchet dans lequel le courant de repos Iq n'augmente pas de manière significative lorsque le transistor de régulation est en mode de conduction ohmique.Therefore, it may be desired to provide a low voltage voltage regulator of waste in which the quiescent current Iq does not increase significantly when the control transistor is in ohmic conduction mode.

Le brevet américain N° 7,312,598 décrit un régulateur à faible tension de déchet présentant un circuit de contrôle de courant de repos comprenant un transistor de détection PMOS pouvant détecter un faible courant de charge, par exemple de 0,5 mA. Dans un état de faible courant de charge, une tension Vqc est réglée à une valeur élevée. Le régulateur, lorsqu'il détecte l'état de faible courant de charge, génère un courant de repos relativement bas en désactivant certains composants, et ainsi moins de puissance est consommée. Lorsque qu'un état de courant de charge élevé est détecté, la tension Vqc est réglée à une valeur basse de telle sorte que tous les composants désactivés pour l'état de faible courant de charge sont rapidement activés pour un fonctionnement complet.US Pat. No. 7,312,598 discloses a low waste voltage regulator having a quiescent current control circuit including a PMOS detecting transistor capable of detecting a low charge current, for example 0.5 mA. In a low charge current state, a voltage Vqc is set to a high value. The controller, when it detects the low charge current state, generates a relatively low quiescent current by disabling some components, and so less power is consumed. When a high load current state is detected, the voltage Vqc is set to a low value so that all components disabled for the low charge state are quickly enabled for full operation.

Des modes de réalisation de l'invention prévoient un régulateur de tension à faible tension de déchet comprenant un transistor de régulation pour fournir une tension de sortie régulée à partir d'une tension d'entrée, un étage de contrôle de grille comprenant un circuit de résistance de grille de polarisation à l'état haut et un transistor de contrôle, pour fournir une tension de grille au transistor de régulation, un amplificateur d'erreur pour fournir une tension de contrôle à une borne de contrôle du transistor de contrôle, et un circuit de contrôle de courant de repos pour limiter un courant de repos circulant à travers l'étage de contrôle de grille lorsque la tension d'entrée s'approche de la tension de sortie et fait entrer le transistor de régulation dans un mode de conduction ohmique. Le circuit de contrôle de courant de repos comprend une source de courant fournissant un courant de référence et est configuré pour contrôler le courant de repos par effet miroir de courant basé sur le courant de référence.Embodiments of the invention provide a low voltage dropout voltage regulator comprising a regulating transistor for providing a regulated output voltage from an input voltage, a gate control stage including a gate circuit high-bias gate resistor and a control transistor, for supplying a gate voltage to the control transistor, an error amplifier for supplying a control voltage to a control transistor control terminal, and a quiescent current control circuit for limiting a quiescent current flowing through the gate control stage as the input voltage approaches the output voltage and inputs the control transistor into an ohmic conduction mode . The quiescent current control circuit includes a current source providing a current of reference and is configured to control the quiescent current by mirror effect based on the reference current.

Selon un mode de réalisation de l'invention, le circuit de contrôle de courant est également configuré pour contrôler simultanément la tension de contrôle fournie par l'amplificateur d'erreur à la borne de contrôle du transistor de contrôle.According to one embodiment of the invention, the current control circuit is also configured to simultaneously control the control voltage supplied by the error amplifier to the control terminal of the control transistor.

Selon un mode de réalisation de l'invention, le circuit de contrôle de courant comprend une sortie qui est reliée à la borne de contrôle du transistor de contrôle et est configuré pour modifier la tension de contrôle fournie par l'amplificateur d'erreur à la borne de contrôle.According to one embodiment of the invention, the current control circuit comprises an output which is connected to the control terminal of the control transistor and is configured to change the control voltage supplied by the error amplifier to the control terminal.

Selon un mode de réalisation de l'invention, le circuit de contrôle de courant de repos comprend un premier transistor présentant une première borne de conduction reliée à la source de courant, une seconde borne de conduction agencée pour recevoir la tension de sortie et une borne de contrôle agencée pour recevoir la tension de grille, et le circuit de résistance de grille comprend un transistor qui est couplé en configuration de miroir de courant avec le premier transistor du circuit de contrôle de courant de repos.According to one embodiment of the invention, the quiescent current control circuit comprises a first transistor having a first conduction terminal connected to the current source, a second conduction terminal arranged to receive the output voltage and a terminal control circuit arranged to receive the gate voltage, and the gate resistance circuit comprises a transistor which is coupled in current mirror configuration with the first transistor of the idle current control circuit.

Selon un mode de réalisation de l'invention, le régulateur de tension à faible tension de déchet comprend une branche de compensation Miller connectée entre une borne de conduction du transistor de contrôle et la première borne de conduction du transistor de contrôle.According to one embodiment of the invention, the low-voltage voltage regulator comprises a Miller compensation branch connected between a conduction terminal of the control transistor and the first conduction terminal of the control transistor.

Selon un mode de réalisation de l'invention, le circuit de contrôle de courant de repos comprend un second transistor présentant une borne de contrôle reliée à la première borne de conduction du premier transistor, une première borne de conduction reliée à la masse, et une seconde borne de conduction reliée à la borne de contrôle du transistor de contrôle.According to one embodiment of the invention, the quiescent current control circuit comprises a second transistor having a control terminal connected to the first conduction terminal of the first transistor, a first conduction terminal connected to the ground, and a second conduction terminal connected to the control terminal of the control transistor.

Selon un mode de réalisation de l'invention, le circuit de résistance de grille comprend un transistor de grille interagissant avec un transistor du circuit de contrôle de courant de repos afin de créer un miroir de courant entre le circuit de contrôle de courant de repos et l'étage de contrôle de grille.According to one embodiment of the invention, the gate resistance circuit comprises a gate transistor interacting with a transistor of the quiescent current control circuit to create a current mirror between the quiescent current control circuit and the grid control stage.

Selon un mode de réalisation de l'invention, le circuit de résistance de grille comprend également une première résistance en parallèle avec le transistor de grille et une seconde résistance en série avec la première résistance.According to one embodiment of the invention, the gate resistance circuit also comprises a first resistor in parallel with the gate transistor and a second resistor in series with the first resistor.

Selon un mode de réalisation de l'invention, le circuit de contrôle de courant de repos est configuré pour être dans un état désactivé dans lequel il ne consomme pas de courant lorsque le transistor de régulation n'est pas entré en mode de conduction ohmique.According to one embodiment of the invention, the quiescent current control circuit is configured to be in a deactivated state in which it does not consume current when the control transistor has not entered ohmic conduction mode.

Selon un mode de réalisation de l'invention, le transistor de régulation est en mode de conduction ohmique lorsque la différence de tension entre la tension d'entrée et la tension de sortie régulée est inférieure ou égale à 2,0 V.According to one embodiment of the invention, the regulation transistor is in ohmic conduction mode when the voltage difference between the input voltage and the regulated output voltage is less than or equal to 2.0 V.

Des modes de réalisation de l'invention concernent également un dispositif portable comprenant une batterie pour fournir une tension d'entrée, un circuit alimenté par une tension régulée, et un régulateur de tension à faible tension de déchet selon l'un des modes de réalisation décrits ci-dessus, pour fournir la tension de sortie régulée à partir de la tension d'entrée.Embodiments of the invention also relate to a portable device comprising a battery for providing an input voltage, a circuit powered by a regulated voltage, and a low voltage voltage regulator according to one of the embodiments. described above, to provide the regulated output voltage from the input voltage.

Un mode de réalisation d'un régulateur de tension à faible tension de déchet selon l'invention sera exposé dans la description suivante, faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :

  • la figure 1 précédemment décrite illustre une structure conventionnelle d'un régulateur à faible tension de déchet ;
  • les figures 2A et 2B précédemment décrites illustrent une tension et un courant caractéristiques du régulateur de la figure 1 ;
  • la figure 3 illustre un régulateur à faible tension de déchet selon un mode de réalisation de l'invention ;
  • la figure 4 illustre un exemple de mise en oeuvre du régulateur de la figure 3 ;
  • les figures 5A et 5B illustrent des caractéristiques de tension et de courant du régulateur à faible tension de déchet selon un mode de réalisation de l'invention ; et
  • la figure 6 illustre schématiquement un dispositif portable comprenant un régulateur à faible tension de déchet selon un mode de réalisation de l'invention.
An embodiment of a voltage regulator with a low voltage of waste according to the invention will be set forth in the following description, given as a non-limiting example in relation to the appended figures among which:
  • the figure 1 previously described illustrates a conventional structure of a low voltage regulator of waste;
  • the Figures 2A and 2B previously described illustrate a voltage and a current characteristic of the regulator of the figure 1 ;
  • the figure 3 illustrates a low voltage regulator of waste according to one embodiment of the invention;
  • the figure 4 illustrates an example of implementation of the regulator of the figure 3 ;
  • the Figures 5A and 5B illustrate voltage and current characteristics of the low-loss regulator according to one embodiment of the invention; and
  • the figure 6 schematically illustrates a portable device comprising a low voltage regulator waste according to one embodiment of the invention.

La figure 3 illustre un régulateur à faible tension de déchet LDO2 selon un mode de réalisation de l'invention. Le régulateur LDO2 comprend un noeud d'entrée IN et un noeud de sortie OUT. Le noeud d'entrée reçoit une tension d'entrée Vin fournie par une source d'alimentation PS, telle qu'une batterie. Le noeud de sortie OUT est connecté à une charge LD schématiquement représentée par une résistance RL et un condensateur CL en parallèle, et fournit une tension de sortie régulée Vreg et un courant de sortie Iout à la charge LD.The figure 3 illustrates a LDO2 low voltage regulator according to one embodiment of the invention. The LDO2 regulator comprises an input node IN and an output node OUT. The input node receives an input voltage Vin supplied by a PS power source, such as a battery. The output node OUT is connected to a load LD schematically represented by a resistor RL and a capacitor CL in parallel, and provides a regulated output voltage Vreg and an output current Iout to the load LD.

Le régulateur LDO2 comprend un transistor de régulation TREG, un étage de contrôle de grille GCS, un amplificateur d'erreur EAMP (amplificateur différentiel) et un circuit de contrôle de courant de repos CCT.The regulator LDO2 comprises a regulation transistor TREG, a gate control stage GCS, an amplifier amplifier EAMP (differential amplifier) and a current control circuit CCT.

Le transistor de régulation TREG, ici un transistor PMOS, a sa source S connectée au noeud IN et son drain D connecté au noeud OUT. La grille G du transistor est pilotée par une tension de grille Vg fournie par l'étage de contrôle de grille GCS.The regulation transistor TREG, here a PMOS transistor, has its source S connected to the node IN and its drain D connected to the node OUT. The gate G of the transistor is driven by a gate voltage Vg supplied by the GCS gate control stage.

L'étage de contrôle de grille GCS comprend un circuit de résistance de grille RG10 et un transistor de contrôle TQ, ici un transistor bipolaire NPN. Le circuit de résistance RG10 présente une borne connectée au noeud d'entrée IN et une borne connectée à la grille G du transistor TREG. Le transistor TQ présente un collecteur C connecté à la grille G du transistor TREG et un émetteur E relié à la masse (GND) par une résistance RG2.The GCS gate control stage comprises a gate resistance circuit RG10 and a control transistor TQ, here an NPN bipolar transistor. The resistance circuit RG10 has a terminal connected to the input node IN and a terminal connected to the gate G of the transistor TREG. The transistor TQ has a collector C connected to the gate G of the transistor TREG and a transmitter E connected to ground (GND) by a resistor RG2.

La base B du transistor TQ reçoit une tension de contrôle Vc fournie par l'amplificateur d'erreur EAMP. L'amplificateur EAMP comprend une entrée négative et une entrée positive. L'entrée négative reçoit une tension stable Vref fournie par une source de tension stable BG, telle qu'une source de tension à bande interdite. L'entrée positive reçoit une tension de rétroaction Vf. La tension de rétroaction est un pourcentage de la tension de sortie Vreg fournie par un diviseur de tension comprenant des résistances R1, R2.The base B of the transistor TQ receives a control voltage Vc supplied by the error amplifier EAMP. The EAMP amplifier includes a negative input and a positive input. The negative input receives a stable voltage Vref provided by a stable voltage source BG, such as a bandgap voltage source. The positive input receives a feedback voltage Vf. The feedback voltage is a percentage of the output voltage Vreg provided by a voltage divider comprising resistors R1, R2.

L'amplificateur d'erreur compare la tension de référence Vref et la tension de rétroaction Vf, et fournit la tension de contrôle Vc à l'étage de contrôle de grille GCS.The error amplifier compares the reference voltage Vref and the feedback voltage Vf, and supplies the control voltage Vc to the gate control stage GCS.

Le circuit de contrôle de courant de repos CCT présente deux entrées connectées respectivement à la grille G du transistor TREG et au noeud de sortie OUT du régulateur, et une sortie connectée à la base B du transistor TQ. Le circuit de contrôle de courant de repos CCT présente une source de courant interne CS10, et est agencé pour détecter la tension de grille Vg appliquée par l'étage de contrôle de grille GCS au transistor TREG. Lorsque la tension de grille Vg atteint une valeur qui indique que le transistor TREG est entré en mode de conduction ohmique, le circuit de contrôle de courant de repos CCT active et contrôle le courant de repos Iq traversant l'étage de contrôle de grille GCS afin d'empêcher le courant de repos d'atteindre des valeurs excessives. Egalement, le circuit de contrôle de courant de repos CCT "prend le dessus" sur l'amplificateur d'erreur EAMP et prend le contrôle de la tension Vc appliquée à la base B du transistor TQ afin de contrôler la tension de grille Vg du transistor de régulation TREG.The quiescent current control circuit CCT has two inputs respectively connected to the gate G of the transistor TREG and to the output node OUT of the regulator, and an output connected to the base B of the transistor TQ. The quiescent current control circuit CCT has an internal current source CS10, and is arranged to detect the gate voltage Vg applied by the gate control stage GCS to the transistor TREG. When the gate voltage Vg reaches a value which indicates that the transistor TREG has entered ohmic conduction mode, the quiescent current control circuit CCT activates and controls the quiescent current Iq passing through the gate control stage GCS so to prevent the quiescent current from reaching excessive values. Also, the quiescent current control circuit CCT "takes over" the error amplifier EAMP and takes control of the voltage Vc applied to the base B of the transistor TQ in order to control the gate voltage Vg of the transistor TREG regulation.

Le contrôle du courant de repos Iq par le circuit de contrôle CCT est effectué au moyen d'un mécanisme de miroir de courant entre la source de courant CS10 et l'étage de contrôle de grille GCS.The control of the quiescent current Iq by the control circuit CCT is carried out by means of a current mirror mechanism between the current source CS10 and the gate control stage GCS.

Afin de mettre en oeuvre un tel mécanisme de miroir de courant, un transistor peut être ajouté à l'étage de contrôle de grille GCS. Par exemple, un transistor PMOS TG est agencé dans le circuit de résistance de grille RG10, c'est-à-dire dans la section de tirage à l'état haut ("pull up") de l'étage de contrôle de grille GCS, qui reçoit la tension d'entrée Vin et fournit la tension de grille Vg. Dans un mode de réalisation le circuit de résistance de grille RG10 comprend deux résistances RG11, RG12 en série et un transistor TG est monté en diode en parallèle avec la résistance RG11, son drain D étant connecté à sa grille G. La résistance RG11 présente une valeur élevée, par exemple 1 MΩ, et est prévue comme une résistance de fuite pour garantir que la tension de grille Vg du transistor de régulation TREG reçoit la tension d'entrée Vin en l'absence de contrôle par l'amplificateur d'erreur, par exemple lorsque le circuit est mis sous tension. D'autre part, la résistance RG12 présente une valeur basse, par exemple 10 KΩ.In order to implement such a current mirror mechanism, a transistor may be added to the GCS gate control stage. For example, a PMOS transistor TG is arranged in the gate resistance circuit RG10, i.e. in the pull-up section of the GCS gate control stage. which receives the input voltage Vin and supplies the gate voltage Vg. In one embodiment the gate resistance circuit RG10 comprises two resistors RG11, RG12 in series and a transistor TG is diode-connected in parallel with the resistor RG11, its drain D being connected to its gate G. The resistor RG11 has a high value, for example 1 MΩ, and is provided as a leakage resistor to ensure that the gate voltage Vg of the regulating transistor TREG receives the input voltage Vin in the absence of control by the error amplifier, for example when the circuit is switched on. On the other hand, the resistance RG12 has a low value, for example 10 KΩ.

La figure 4 illustre un exemple de mise en oeuvre du circuit de contrôle de courant de repos CCT et un exemple de mise en oeuvre de l'amplificateur d'erreur EAMP.The figure 4 illustrates an example of implementation of the quiescent current control circuit CCT and an example of implementation of the error amplifier EAMP.

Le circuit de contrôle de courant de repos CCT comprend un transistor PMOS T10, un transistor NMOS T11, et la source de courant CS10. De préférence, une branche de compensation Miller comprenant par exemple une résistance R10 et un condensateur C10 peut également être prévue.The quiescent current control circuit CCT comprises a PMOS transistor T10, an NMOS transistor T11, and the current source CS10. Preferably, a branch Miller compensation comprising, for example, a resistor R10 and a capacitor C10 may also be provided.

Le transistor T10 a sa source S connectée au noeud de sortie OUT du régulateur LDO2, son drain D relié à la masse (GND) par la source de courant CS10, et sa grille G connectée à la grille G du transistor de régulation TREG afin de détecter la tension de grille Vg. Le transistor T11 a sa grille connectée au drain D du transistor T10, son drain D relié à la base B du transistor TQ, et sa source S reliée à la masse. La branche de compensation Miller, comprenant la résistance R10 et le condensateur C10, est connectée entre l'émetteur E du transistor TQ et le drain D du transistor T10.The transistor T10 has its source S connected to the output node OUT of the regulator LDO2, its drain D connected to ground (GND) by the current source CS10, and its gate G connected to the gate G of the regulation transistor TREG in order to detect the gate voltage Vg. The transistor T11 has its gate connected to the drain D of the transistor T10, its drain D connected to the base B of the transistor TQ, and its source S connected to ground. The compensation branch Miller, comprising the resistor R10 and the capacitor C10, is connected between the emitter E of the transistor TQ and the drain D of the transistor T10.

L'amplificateur d'erreur EAMP comprend de manière conventionnelle une source de courant CS1, des transistors PMOS TE1, TE2, des transistors bipolaires NPN TE3, TE4 et des résistances RE1, RE2. La source de courant CS1 présente une première borne connectée au noeud d'entrée IN du régulateur, et une seconde borne connectée aux sources S des transistors TE1, TE2. Les drains D des transistors TE1, TE2 sont respectivement connectés aux collecteurs C des transistors TE3, TE4. Les émetteurs E des transistors TE3, TE4 sont respectivement reliés à la masse par les résistances RE1, RE2. Le collecteur C du transistor TE4 est connecté à la base B du transistor TQ et fournit la tension de contrôle Vc lorsque le circuit de contrôle de courant de repos CCT est dans l'état non conducteur. Les bases B des transistors TE3, TE4 sont toutes deux connectées au collecteur C du transistor TE3. Enfin, la grille G du transistor TE1 reçoit la tension de référence Vref et la grille G du transistor TE2 reçoit la tension de rétroaction Vf.The error amplifier EAMP conventionally comprises a current source CS1, PMOS transistors TE1, TE2, NPN bipolar transistors TE3, TE4 and resistors RE1, RE2. The current source CS1 has a first terminal connected to the input node IN of the regulator, and a second terminal connected to the sources S of the transistors TE1, TE2. The drains D of the transistors TE1, TE2 are respectively connected to the collectors C of the transistors TE3, TE4. Transmitters E of transistors TE3, TE4 are respectively connected to ground by resistors RE1, RE2. The collector C of the transistor TE4 is connected to the base B of the transistor TQ and supplies the control voltage Vc when the quiescent current control circuit CCT is in the non-conductive state. The bases B of the transistors TE3, TE4 are both connected to the collector C of the transistor TE3. Finally, the gate G of the transistor TE1 receives the reference voltage Vref and the gate G of the transistor TE2 receives the feedback voltage Vf.

Le circuit de contrôle de courant de repos CCT est agencé pour surveiller la différence de tension entre la tension de grille Vg et la tension de sortie Vreg. Lorsque la différence entre la tension d'entrée Vin et la tension de sortie Vreg est importante, par exemple lorsque la source d'alimentation PS est une batterie complètement chargée, le transistor T10 du circuit de contrôle de courant de repos CCT est dans l'état non conducteur car la différence de tension Vgs entre sa grille G et sa source S est positive et par conséquent supérieure à sa tension de seuil négative (Vg>Vreg). La source de courant CS10 empêche également le transistor T11 de conduire. Par conséquent, le circuit de contrôle de courant de repos CCT est dans l'état désactivé et n'interfère pas avec le fonctionnement normal de l'amplificateur d'erreur EAMP. De plus, il ne consomme pas de courant. Le régulateur LDO2 fonctionne comme le régulateur conventionnel LDO1 de la figure 1.The quiescent current control circuit CCT is arranged to monitor the voltage difference between the gate voltage Vg and the output voltage Vreg. When the difference between the input voltage Vin and the output voltage Vreg is large, for example when the power source PS is a fully charged battery, the transistor T10 of the current control circuit CCT is in the non-conducting state because the voltage difference Vgs between its gate G and its source S is positive and therefore higher than its negative threshold voltage (Vg> Vreg). Current source CS10 also prevents transistor T11 from driving. Therefore, the quiescent current control circuit CCT is in the off state and does not interfere with the normal operation of the EAMP error amplifier. In addition, it does not consume power. The LDO2 regulator functions as the conventional LDO1 regulator of the figure 1 .

Lorsque la tension d'entrée Vin diminue, par exemple au fur et à mesure que la source d'alimentation PS se décharge s'il s'agit d'une batterie, l'amplificateur d'erreur EAMP essaye de maintenir la tension de sortie Vreg nécessaire, comme cela a été expliqué ci-dessus. La tension de grille Vg commence à diminuer et la différence entre la tension de grille et la tension de source du transistor T10, qui est égale à Vg-Vreg, devient négative et inférieure à sa tension de seuil négative (Vg<Vreg). Le transistor TQ est fortement conducteur et le transistor T10 commence à devenir conducteur. La source de courant CS10 impose un courant Iref par le transistor T10 et limite également le courant de repos par effet de miroir de courant.When the input voltage Vin decreases, for example as the power source PS discharges if it is a battery, the error amplifier EAMP tries to maintain the output voltage Vreg necessary, as explained above. The gate voltage Vg begins to decrease and the difference between the gate voltage and the source voltage of the transistor T10, which is equal to Vg-Vreg, becomes negative and lower than its negative threshold voltage (Vg <Vreg). The transistor TQ is highly conductive and the transistor T10 begins to become conductive. The current source CS10 imposes a current Iref by the transistor T10 and also limits the quiescent current by a current mirror effect.

Le rapport entre le courant de repos Iq contrôlé et le courant Iref est déterminé par les dimensions respectives des transistors T10 et TG, c'est-à-dire leurs rapports W/L respectifs (W étant la largeur de la grille et L étant la longueur de la grille des transistors). Par conséquent, le courant de repos ne peut dépasser une valeur fixée par le miroir de courant. La résistance R10 et le condensateur C10 aident à stabiliser le miroir de courant.The ratio between the controlled quiescent current Iq and the current Iref is determined by the respective dimensions of the transistors T10 and TG, that is to say their respective W / L ratios (W being the width of the gate and L being the length of the gate of the transistors). By therefore, the quiescent current can not exceed a value set by the current mirror. Resistor R10 and capacitor C10 help stabilize the current mirror.

Simultanément, la tension de drain du transistor T10 amène le transistor T11 à commencer à devenir conducteur, et ainsi à contrôler la tension de base Vb du transistor TQ et empêcher l'amplificateur d'erreur EAMP de tirer la tension de contrôle Vc vers le haut. La base B du transistor TQ est tirée vers la masse, et le transistor T11 régule la conduction du transistor TQ. Le transistor T11 contrôle la base B du transistor TQ afin de garantir que Iref est égal au courant traversant la source de courant CS10, de telle sorte qu'un mécanisme de régulation supplémentaire apparaît. Lorsque Iref est égal au courant traversant CS10, le courant Iq est contrôlé et est égal à Iref ou proportionnel à Iref en fonction des rapports W/L.Simultaneously, the drain voltage of the transistor T10 causes the transistor T11 to begin to become conductive, and thus to control the base voltage Vb of the transistor TQ and to prevent the error amplifier EAMP from pulling the control voltage Vc upwards. . The base B of the transistor TQ is pulled to ground, and the transistor T11 regulates the conduction of the transistor TQ. The transistor T11 controls the base B of the transistor TQ to ensure that Iref is equal to the current flowing through the current source CS10, so that an additional control mechanism appears. When Iref is equal to the through current CS10, the current Iq is controlled and is equal to Iref or proportional to Iref as a function of the W / L ratios.

A titre d'illustration, les figures 5A et 5B représentent des courbes caractéristiques C1, C2' des tensions Vin, Vreg et des courbes correspondantes C4' de la tension de grille Vg et C6' du courant de repos Iq pour Iout=50 mA. La tension de référence Vref est supposée être égale à 1,8 V, et R2 est supposée être égale à 0. L'axe horizontal représente le temps et il est supposé que la tension Vin diminue progressivement.By way of illustration, Figures 5A and 5B represent characteristic curves C1, C2 'of the voltages Vin, Vreg and corresponding curves C4' of the gate voltage Vg and C6 'of the quiescent current Iq for Iout = 50 mA. The reference voltage Vref is assumed to be 1.8V, and R2 is assumed to be 0. The horizontal axis represents time and it is assumed that the voltage Vin gradually decreases.

Une ligne verticale en pointillés indique la limite où Vin-Vreg = 0,2 V et la zone à droite de la ligne en pointillés représente une région de fonctionnement du transistor de régulation où Vin-Vreg < 0,2 V (mode de conduction ohmique). Comme dans le régulateur conventionnel LDO1, le courant de repos Iq est sensiblement constant dans la région située à gauche de la ligne en pointillés. Lorsque le mode de conduction ohmique est atteint, Vin s'approche de la valeur nominale de la tension de sortie Vreg et Vin-Vreg devient égal à 0,2 V. On peut voir que le circuit de contrôle de courant de repos CCT empêche l'étage de contrôle de grille GCS de tirer rapidement la tension de grille Vg vers le bas tout en empêchant le courant de repos Iq de diminuer de façon abrupte. Le courant de repos Iq est approximativement maintenu à la même valeur qu'il avait avant d'atteindre le mode de conduction ohmique.A dashed vertical line indicates the limit where Vin-Vreg = 0.2 V and the area to the right of the dotted line represents an operating region of the regulating transistor where Vin-Vreg <0.2 V (ohmic conduction mode ). As in the conventional regulator LDO1, the quiescent current Iq is substantially constant in the region to the left of the dashed line. When the ohmic conduction mode is reached, Vin approaches the nominal value the output voltage Vreg and Vin-Vreg becomes equal to 0.2 V. It can be seen that the quiescent current control circuit CCT prevents the gate control stage GCS from rapidly pulling the gate voltage Vg towards the gate. low while preventing the quiescent current Iq from decreasing abruptly. The quiescent current Iq is approximately maintained at the same value it had before reaching the ohmic conduction mode.

Compte tenu de ce qui précède, il sera noté que, bien que des modes de réalisation spécifiques de l'invention ont été décrits ici à des fins d'illustration, de nombreuses modifications peuvent être apportées sans pour autant s'écarter de l'esprit et de la portée de l'invention telle que définie dans les revendications jointes. En particulier, il est à la portée de l'homme de l'art d'ajouter des composants aux modes de réalisation décrits, de supprimer et de remplacer certains composants, d'utiliser un autre type de source de tension de référence plutôt qu'une référence à bande interdite, d'utiliser un type différent de transistor de régulation, de remplacer certains transistors bipolaires par des transistors MOS et vice-versa, de remplacer des transistors NPN par des transistors bipolaires PNP et vice-versa, de remplacer des transistors NMOS par des transistors PMOS et vice-versa, etc.In view of the foregoing, it will be appreciated that while specific embodiments of the invention have been described herein for purposes of illustration, many modifications may be made without departing from the spirit of the invention. and the scope of the invention as defined in the appended claims. In particular, it is within the abilities of those skilled in the art to add components to the described embodiments, to delete and replace certain components, to use another type of reference voltage source rather than to a forbidden band reference, to use a different type of regulation transistor, to replace certain bipolar transistors with MOS transistors and vice versa, to replace NPN transistors with PNP bipolar transistors and vice versa, to replace transistors NMOS by PMOS transistors and vice versa, etc.

La figure 6 illustre schématiquement un exemple d'application d'un régulateur à faible tension de déchet LDO2 selon l'invention. Le régulateur à faible tension de déchet LDO2 est agencé dans un dispositif portable HDV présentant une batterie BT formant sa source d'alimentation PS, et une circuiterie sur carte mère MBD. La circuiterie peut comprendre, par exemple, un processeur de bande de base BBP configuré pour établir une communication téléphonique par un réseau cellulaire. La batterie fournit la tension d'entrée Vin du régulateur LDO2 et la tension régulée Vreg fournie par le régulateur LDO2 alimente tout ou partie des composants de la carte mère, en particulier le processeur de bande de base BBP.The figure 6 illustrates schematically an example of application of a LDO2 low voltage regulator according to the invention. The low voltage LDO2 regulator is arranged in a portable HDV device having a BT battery forming its PS power source, and circuitry on MBD motherboard. The circuitry may include, for example, a BBP baseband processor configured to establish a telephone communication over a cellular network. The battery provides the Vin input voltage of the LDO2 regulator and the regulated voltage Vreg provided by the LDO2 regulator powers all or some of the components of the motherboard, in particular the BBP baseband processor.

Claims (11)

Régulateur de tension à faible tension de déchet comprenant : - un transistor de régulation (TREG) pour fournir une tension de sortie régulée (Vreg) à partir d'une tension d'entrée (Vin), - un étage de contrôle de grille (GCS) comprenant un circuit de résistance de grille de polarisation à l'état haut (RG10) et un transistor de contrôle (TQ), pour fournir une tension de grille (Vg) au transistor de régulation (TREG), et - un amplificateur d'erreur (EAMP) pour fournir une tension de contrôle (Vc) à une borne de contrôle du transistor de contrôle (TQ),
caractérisé en ce qu'il comprend un circuit de contrôle de courant de repos (CCT) pour limiter un courant de repos circulant dans l'étage de contrôle de grille (GCS) lorsque la tension d'entrée (Vin) s'approche de la tension de sortie (Vreg) et fait entrer le transistor de régulation (TREG) dans un mode de conduction ohmique, et en ce que le circuit de contrôle de courant de repos (CCT) comprend une source de courant (CS10) fournissant un courant de référence (Iref) et est configuré pour contrôler le courant de repos par effet miroir de courant basé sur le courant de référence (Iref).
Low voltage voltage regulator of waste comprising: a regulation transistor (TREG) for supplying a regulated output voltage (Vreg) from an input voltage (Vin), a gate control stage (GCS) comprising a high-level bias gate resistance circuit (RG10) and a control transistor (TQ), for supplying a gate voltage (Vg) to the control transistor ( TREG), and an error amplifier (EAMP) for supplying a control voltage (Vc) to a control transistor control terminal (TQ),
characterized in that it comprises a quiescent current control circuit (CCT) for limiting a quiescent current flowing in the gate control stage (GCS) when the input voltage (Vin) approaches the output voltage (Vreg) and inputs the control transistor (TREG) into an ohmic conduction mode, and in that the quiescent current control circuit (CCT) comprises a current source (CS10) supplying a current of reference (Iref) and is configured to control the current mirror current based on the reference current (Iref).
Régulateur de tension à faible tension de déchet selon la revendication 1, dans lequel le circuit de contrôle de courant (CCT) est également configuré pour contrôler simultanément la tension de contrôle (Vc) fournie par l'amplificateur d'erreur (EAMP) à la borne de contrôle du transistor de contrôle (TQ).A low-loss voltage regulator according to claim 1, wherein the current control circuit (CCT) is also configured to simultaneously control the control voltage (Vc) supplied by the error amplifier (EAMP) to the control transistor (TQ) control terminal. Régulateur de tension à faible tension de déchet selon la revendication 2, dans lequel le circuit de contrôle de courant (CCT) comprend une sortie qui est reliée à la borne de contrôle (B) du transistor de contrôle (TQ) et est configuré pour modifier la tension de contrôle (Vc) fournie par l'amplificateur d'erreur (EAMP) à la borne de contrôle.A low-loss voltage regulator according to claim 2, wherein the current control circuit (CCT) comprises an output which is connected to the control terminal (B) of the control transistor (TQ) and is configured to modify the control voltage (Vc) supplied by the error amplifier (EAMP) to the control terminal. Régulateur de tension à faible tension de déchet selon l'une des revendications 1 à 3, dans lequel : - le circuit de contrôle de courant de repos (CCT) comprend un premier transistor (T10) présentant une première borne de conduction (D) reliée à la source de courant (CS10), une seconde borne de conduction (S) agencée pour recevoir la tension de sortie (Vreg) et une borne de contrôle (G) agencée pour recevoir la tension de grille (Vg), et - le circuit de résistance de grille (RG10) comprend un transistor (TG) qui est couplé en configuration miroir de courant avec le premier transistor (T10) du circuit de contrôle de courant de repos. Low voltage voltage regulator according to one of claims 1 to 3, wherein: - The quiescent current control circuit (CCT) comprises a first transistor (T10) having a first conduction terminal (D) connected to the current source (CS10), a second conduction terminal (S) arranged to receive the an output voltage (Vreg) and a control terminal (G) arranged to receive the gate voltage (Vg), and - The gate resistance circuit (RG10) comprises a transistor (TG) which is coupled in current mirror configuration with the first transistor (T10) of the quiescent current control circuit. Régulateur de tension à faible tension de déchet selon la revendication 4, comprenant une branche de compensation Miller (R10, C10) connectée entre une borne de conduction (E) du transistor de contrôle (TQ) et la première borne de conduction (D) du transistor de contrôle (TQ).A low-loss voltage regulator according to claim 4, comprising a Miller compensation branch (R10, C10) connected between a conduction terminal (E) of the control transistor (TQ) and the first conduction terminal (D) of the control transistor (TQ). Régulateur de tension à faible tension de déchet selon les revendications 3 et 4, dans lequel le circuit de contrôle de courant de repos (CCT) comprend un second transistor (T11) présentant une borne de contrôle reliée à la première borne de conduction du premier transistor (T10), une première borne de conduction reliée à la masse, et une seconde borne de conduction reliée à la borne de contrôle du transistor de contrôle (TQ).A low voltage drop voltage regulator according to claims 3 and 4, wherein the quiescent current control circuit (CCT) comprises a second transistor (T11) having a control terminal connected to the first conduction terminal of the first transistor (T10), a first conduction terminal connected to the mass, and a second conduction terminal connected to the control terminal of the control transistor (TQ). Régulateur de tension à faible tension de déchet selon l'une des revendications 1 à 6, dans lequel le circuit de résistance de grille (RG10) comprend un transistor de grille (TG) interagissant avec un transistor (T10) du circuit de contrôle de courant de repos (CCT) afin de créer un miroir de courant entre le circuit de contrôle de courant de repos (CCT) et l'étage de contrôle de grille (GCS).A low-loss voltage regulator according to one of claims 1 to 6, wherein the gate resistance circuit (RG10) comprises a gate transistor (TG) interacting with a transistor (T10) of the current control circuit (CCT) to create a current mirror between the quiescent current control circuit (CCT) and the gate control stage (GCS). Régulateur de tension à faible tension de déchet selon la revendication 7, dans lequel le circuit de résistance de grille comprend également une première résistance (RG11) en parallèle avec le transistor de grille (TG), et une seconde résistance (RG12) en série avec la première résistance.A low-loss voltage regulator according to claim 7, wherein the gate resistance circuit also comprises a first resistor (RG11) in parallel with the gate transistor (TG), and a second resistor (RG12) in series with the first resistance. Régulateur de tension à faible tension de déchet selon l'une des revendications 1 à 8, dans lequel le circuit de contrôle de courant de repos (CCT) est configuré pour être dans un état désactivé dans lequel il ne consomme pas de courant lorsque le transistor de régulation (TREG) n'est pas entré en mode de conduction ohmique.A low-loss voltage regulator according to one of claims 1 to 8, wherein the quiescent current control circuit (CCT) is configured to be in a disabled state in which it does not consume current when the transistor control (TREG) has not entered ohmic conduction mode. Régulateur de tension à faible tension de déchet selon l'une des revendications 1 à 9, dans lequel le transistor de régulation (TREG) est en mode de conduction ohmique lorsque la différence de tension entre la tension d'entrée (Vin) et la tension de sortie régulée (Vreg) est inférieure ou égale à 2,0 V.Low-voltage voltage regulator according to one of claims 1 to 9, wherein the control transistor (TREG) is in ohmic conduction mode when the voltage difference between the input voltage (Vin) and the voltage regulated output (Vreg) is less than or equal to 2.0 V. Dispositif portable comprenant : - une batterie (BT, PS) pour fournir une tension d'entrée (Vin), - un circuit (MBD, BBP) alimenté par une tension régulée (Vreg), et - un régulateur de tension à faible tension de déchet selon l'une des revendications 1 à 10, pour fournir la tension de sortie régulée (Vreg) à partir de la tension d'entrée (Vin). Portable device comprising: a battery (BT, PS) for supplying an input voltage (Vin), a circuit (MBD, BBP) powered by a regulated voltage (Vreg), and - A low voltage voltage regulator of waste according to one of claims 1 to 10 for providing the regulated output voltage (Vreg) from the input voltage (Vin).
EP10004211A 2009-05-15 2010-04-21 Low-dropout voltage regulator with low quiescent current Withdrawn EP2256578A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0902363 2009-05-15

Publications (1)

Publication Number Publication Date
EP2256578A1 true EP2256578A1 (en) 2010-12-01

Family

ID=41268188

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10004211A Withdrawn EP2256578A1 (en) 2009-05-15 2010-04-21 Low-dropout voltage regulator with low quiescent current

Country Status (2)

Country Link
US (1) US20100289472A1 (en)
EP (1) EP2256578A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060304A (en) * 2010-09-07 2012-03-22 Toshiba Corp Digital/analog converter
US9035641B1 (en) * 2011-06-06 2015-05-19 Altera Corporation Startup circuit
US9535439B2 (en) * 2013-11-08 2017-01-03 Texas Instruments Incorporated LDO current limit control with sense and control transistors
US9665111B2 (en) * 2014-01-29 2017-05-30 Semiconductor Components Industries, Llc Low dropout voltage regulator and method
CN105446403A (en) 2014-08-14 2016-03-30 登丰微电子股份有限公司 Low dropout linear voltage regulator
EP3051378B1 (en) * 2015-01-28 2021-05-12 ams AG Low dropout regulator circuit and method for controlling a voltage of a low dropout regulator circuit
US9575498B2 (en) 2015-01-29 2017-02-21 Qualcomm Incorporated Low dropout regulator bleeding current circuits and methods
US9813056B2 (en) 2015-09-21 2017-11-07 Analog Devices Global Active device divider circuit with adjustable IQ
CN108508954A (en) * 2018-06-11 2018-09-07 贵州道森集成电路科技有限公司 A kind of super low-power consumption low pressure difference linear voltage regulator
US10788848B2 (en) * 2019-02-26 2020-09-29 Stmicroelectronics Design And Application S.R.O. Voltage regulator with controlled current consumption in dropout mode
CN109992036B (en) * 2019-04-28 2021-05-25 南京英锐创电子科技有限公司 Chip applying LDO circuit and electronic equipment
US11392155B2 (en) 2019-08-09 2022-07-19 Analog Devices International Unlimited Company Low power voltage generator circuit
US11086343B2 (en) 2019-11-20 2021-08-10 Winbond Electronics Corp. On-chip active LDO regulator with wake-up time improvement
EP3951551B1 (en) * 2020-08-07 2023-02-22 Scalinx Voltage regulator and method
CN114460994A (en) * 2020-11-09 2022-05-10 扬智科技股份有限公司 Voltage regulator
CN114625206A (en) * 2020-12-11 2022-06-14 意法半导体(格勒诺布尔2)公司 Inrush current of at least one low dropout voltage regulator
US11687104B2 (en) * 2021-03-25 2023-06-27 Qualcomm Incorporated Power supply rejection enhancer
US11656643B2 (en) * 2021-05-12 2023-05-23 Nxp Usa, Inc. Capless low dropout regulation
CN114740947B (en) * 2022-04-26 2023-10-20 思瑞浦微电子科技(苏州)股份有限公司 LDO-based dynamic current response circuit, dynamic current control method and chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906913A (en) * 1989-03-15 1990-03-06 National Semiconductor Corporation Low dropout voltage regulator with quiescent current reduction
US5867015A (en) * 1996-12-19 1999-02-02 Texas Instruments Incorporated Low drop-out voltage regulator with PMOS pass element
US7312598B1 (en) * 2006-08-25 2007-12-25 National Semiconductor Corporation Capacitor free low drop out regulator
US20080191670A1 (en) * 2005-07-21 2008-08-14 Freescale Semiconductor, Inc. Voltage Regulator With Pass Transistors Carrying Different Ratios Of The Total Load Current And Method Of Operation Therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315230A (en) * 1992-09-03 1994-05-24 United Memories, Inc. Temperature compensated voltage reference for low and wide voltage ranges
US6285246B1 (en) * 1998-09-15 2001-09-04 California Micro Devices, Inc. Low drop-out regulator capable of functioning in linear and saturated regions of output driver
US7095257B2 (en) * 2004-05-07 2006-08-22 Sige Semiconductor (U.S.), Corp. Fast low drop out (LDO) PFET regulator circuit
US7446514B1 (en) * 2004-10-22 2008-11-04 Marvell International Ltd. Linear regulator for use with electronic circuits
US8604762B2 (en) * 2006-05-25 2013-12-10 Texas Instruments Incorporated Low noise, low dropout regulators
ATE497202T1 (en) * 2007-08-30 2011-02-15 Austriamicrosystems Ag VOLTAGE REGULATOR AND METHOD FOR VOLTAGE REGULATION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906913A (en) * 1989-03-15 1990-03-06 National Semiconductor Corporation Low dropout voltage regulator with quiescent current reduction
US5867015A (en) * 1996-12-19 1999-02-02 Texas Instruments Incorporated Low drop-out voltage regulator with PMOS pass element
US20080191670A1 (en) * 2005-07-21 2008-08-14 Freescale Semiconductor, Inc. Voltage Regulator With Pass Transistors Carrying Different Ratios Of The Total Load Current And Method Of Operation Therefor
US7312598B1 (en) * 2006-08-25 2007-12-25 National Semiconductor Corporation Capacitor free low drop out regulator

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AL-SHYOUKH M ET AL: "A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation", IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 42, no. 8, 1 August 2007 (2007-08-01), pages 1732 - 1742, XP011188648, ISSN: 0018-9200 *
GABRIEL A RINCON-MORA ET AL: "A Low-Voltage, Low Quiescent Current, Low Drop-Out Regulator", IEEE JOURNAL OF SOLID-STATE CIRCUITS, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, vol. 33, no. 1, 1 January 1998 (1998-01-01), XP011060653, ISSN: 0018-9200 *
MOHAMMAD AL-SHYOUKH ET AL: "A Transient-Enhanced 20 A-Quiescent 200mA-Load Low-Dropout Regulator With Buffer Impedance Attenuation", CONFERENCE 2006, IEEE CUSTOM INTEGRATED CIRCUITS, IEEE, PISCATAWAY, NJ, USA, 1 September 2006 (2006-09-01), pages 615 - 618, XP031052546, ISBN: 978-1-4244-0075-1 *
SHAN YUAN ET AL: "Low dropout voltage regulator for wireless applications", 33RD.ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE. PESC 2002. CONFERENCE PROCEEDINGS. CAIRNS, QUEENSLAND, AUSTRALIA, JUNE 23 - 27, 2002; [ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE], NEW YORK, NY : IEEE, US, vol. 2, 23 June 2002 (2002-06-23), pages 421 - 424, XP010747488, ISBN: 978-0-7803-7262-7 *
ZUSHU YAN ET AL: "A low-voltage CMOS low-dropout regulator with novel capacitor-multiplier frequency compensation", CIRCUITS AND SYSTEMS, 2008. ISCAS 2008. IEEE INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, 18 May 2008 (2008-05-18), pages 2685 - 2688, XP031392565, ISBN: 978-1-4244-1683-7 *

Also Published As

Publication number Publication date
US20100289472A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
EP2256578A1 (en) Low-dropout voltage regulator with low quiescent current
EP3249491B1 (en) Low drop out regulator, in particular capable to be supplied with supply voltages compatible with type c usb standard
EP1148405B1 (en) Linear regulator with low over-voltage in transient-state
CN109992032B (en) Voltage regulator with voltage difference detector and bias current limiter and related method
JP4628176B2 (en) Power supply device and electronic device
US7402987B2 (en) Low-dropout regulator with startup overshoot control
EP0892332B1 (en) Low power consumption linear voltage regulator having a fast response with respect to the load transients
US7683592B2 (en) Low dropout voltage regulator with switching output current boost circuit
TWI345863B (en)
US7274176B2 (en) Regulator circuit having a low quiescent current and leakage current protection
FR2881537A1 (en) Voltage regulator circuit for cellular phone, has amplifier stage having pole-inducing and compensating transistors which are connected to respective current mirrors of another amplifier stage
KR20060126393A (en) Creating additional phase margin in the open loop gain of a negative feedback amplifier system
TW201248350A (en) Voltage regulator having current and voltage foldback based upon load impedance
US9608508B2 (en) Integrated limiter and active filter
US11874680B2 (en) Power supply with integrated voltage regulator and current limiter and method
EP1231529B1 (en) Precise reference voltage generating device
EP2293165B1 (en) Multi-current-source and method for regulating current
FR2818761A1 (en) DEVICE AND METHOD FOR VOLTAGE REGULATION
US10551863B2 (en) Voltage regulators
CN110165889A (en) A kind of low dropout voltage regulator device
CN114860014B (en) Voltage regulating circuit
EP4358384A1 (en) Voltage regulator and corresponding control method
FR3140683A1 (en) Electronic device
EP1464197A2 (en) Voltage regulator for electronic device
JPH0217803B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA ME RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121031

R18D Application deemed to be withdrawn (corrected)

Effective date: 20121101