EP2255174A1 - Dispositif et procédé pour déterminer un indice de réfraction d un objet mesuré - Google Patents

Dispositif et procédé pour déterminer un indice de réfraction d un objet mesuré

Info

Publication number
EP2255174A1
EP2255174A1 EP09721047A EP09721047A EP2255174A1 EP 2255174 A1 EP2255174 A1 EP 2255174A1 EP 09721047 A EP09721047 A EP 09721047A EP 09721047 A EP09721047 A EP 09721047A EP 2255174 A1 EP2255174 A1 EP 2255174A1
Authority
EP
European Patent Office
Prior art keywords
refractive index
sensor
integrated
layer structure
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09721047A
Other languages
German (de)
English (en)
Inventor
Wladimir Tschekalinskij
Norbert Weber
Stephan Junger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2255174A1 publication Critical patent/EP2255174A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1226Basic optical elements, e.g. light-guiding paths involving surface plasmon interaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/414Correcting temperature effect in refractometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays

Definitions

  • the refractometer shown in Fig. 1 is generally referred to as Abbe refractometer. From the light source 11 outgoing beam 15, 16, 17 meet an interface 18 of the prism 12 with the refractive index n (l) where a liquid to be examined with a refractive index n (2) is applied. The beam 17 continues in the medium with refractive index n (2), resulting in a beam 17 '. For the beam 16, total reflection occurs. The beam 15 is reflected from the boundary surface 18 of the prism 12 to the object to be measured 19 to a black painted surface 20 (15 ') - Due to this light distribution creates two fields that are light or dark.
  • the light which has passed through the measurement object with the desired refractive index and which strikes the layer structure of the integrated sensor element can generate electromagnetic fields in the layer structure which can be detected by the optoelectronic sensor located below the layer structure.
  • the detected electromagnetic fields are dependent on the refractive index of the measurement object, which is located on the chip surface of the integrated sensor element. That is, an output signal of the optoelectronic sensor, such as a photocurrent of a photodiode, is dependent on the desired refractive index.
  • an output signal of the optoelectronic sensor such as a photocurrent of a photodiode
  • the layer structures have structure or microelements whose dimensions and distances from each other are of the order of the predetermined wavelength, in particular the wavelength of the monochromatic light of the light source, for which the integrated spectral filter structure is in the form of at least one photonic crystal ,
  • the microelements of the structured layers of metal and / or polycrystalline semiconductor material may be periodically arranged three-dimensionally. According to embodiments, adjacent microelements of adjacent layers are formed identically for the predetermined wavelength and lie on a common optical axis.
  • Microelements may according to embodiments be micro-openings with dimensions and distances in the respectively provided transmission wavelength range. According to embodiments, the microelements may comprise so-called split-ring resonators with dimensions and distances in the respective predetermined transmission range.
  • a single sensor element is formed from an optoelectronic sensor and a metal structure covering the optoelectronic sensor, for example one or more structured metal layers which are structured in such a way that for a predetermined wavelength range or a predetermined wavelength can form a plasmon-polariton resonance effect. Due to a sub-wavelength opening in the patterned metal layer may be due to the predetermined wavelength of the plasmon-polariton resonance effect in the vicinity of the opto-electronic sensor form an electromagnetic field concentration, which can then be detected by the opto-electronic sensor.
  • the means for holding together with the integrated sensor element is integrated together on the semiconductor substrate.
  • the means for holding may comprise a frame structure on the surface of the integrated sensor element, such that a receptacle results, for example, for a liquid to be analyzed.
  • the frame structure can be formed by the passivation of the chip, so that the passivation with frame a kind of analysis basin for Liquids is formed, in which to be examined fluids can be given.
  • a refractometer system according to the invention thus requires no further optical components except for external illumination.
  • a refractometer system may even be fully integrated into a single chip.
  • an optoelectronic component is additionally provided on the substrate as an exposure source, such as e.g. an LED or a laser, so that no external components are necessary at all.
  • Embodiments of the present invention further enable simultaneous measurement with multiple monochromatic light sources.
  • a plurality of sensor elements can be used whose layer structures are adapted to the respective wavelength.
  • the number of wavelengths or measuring points can be freely defined in a system design.
  • FIG. 3 shows a side view of a layer stack of optoelectronic sensor, metal layers and dielectric layers produced by CMOS technology according to one exemplary embodiment of the present invention
  • TC ( ⁇ ) AK ⁇ ; n (object); Pl; d ⁇ ) TH ( ⁇ ; r7 H; d; t) A2 ( ⁇ n2; P2; d2) fC ( ⁇ , NA; P2; d2);
  • Pl and P2 give lattice constants or repeat distances of structures around an aperture or nano-opening, dl and d2 lateral dimensions of the nano-openings, NA the numerical aperture, t the layer thickness of the metal layer, n H the refractive index of the medium within the nano-openings.
  • n the refractive index in front of the metal layer, ie the refractive index n (object) of the specimen or of the object or the known refractive index n (reference) of a reference object, such as air
  • n 2 is the refractive index of the medium behind the metal layer
  • the wavelength.
  • TC is in turn proportional or at least uniquely dependent on the sensor output of the sensor.
  • a structure element 140 of the layer structure 37 comprises a region of a metal layer which has a periodically structured surface of the period A with depressions 142 and elevations 144 and a sub-wavelength opening 118 which lies in the center of the structure 140.
  • a predetermined resonant wavelength ⁇ res of an incident on the structure 140 e- lektromagnetician radiation 33
  • the plasmon-polariton resonance effect causes for the resonant wavelength ⁇ res through the sub-wavelength opening 118, for example, more than 15% of the incident electromagnetic radiation, although an area ratio of the opening 118 to the surface of the entire element 140 is very small.
  • the period A which allows the highest transmission depends inter alia on the thickness (t + h) of the structured metal layer.
  • the width or diameter b of the aperture 118 could be chosen to be 110 nm
  • the area ratio of the area of the aperture 118 to the area of the entire element 340 could be 0.01
  • A could be to 90 nm and t to 20 nm.
  • A is in a range of 10 nm to 2110 nm.
  • non-rotationally symmetric surface structures of the layer structure 37 are also conceivable, which can cause the plasmon-polariton resonance effect, such as a slot-shaped opening with grooves arranged parallel thereto (FIG. 12) or a matrix-like arrangement of sub-wavelength openings, as shown in FIG 13 is shown.
  • the layer structure 37 thus has, for example, according to exemplary embodiments, a structured metal layer with an opening 118 with sub-wavelength dimensions, hereinafter also referred to as sub-wavelength opening, and rotationally symmetrical or parallel grooves or corresponding projections or elevations arranged periodically around the sub-wavelength opening are embedded in a dielectric in order to generate the surface plasmon-polariton resonance effect for the predetermined wavelength range in the layer structure 37.
  • a sub-wavelength opening is a circular or slot-shaped opening having a width or a diameter smaller than the predefined wavelength of the light or the electromagnetic radiation 33.
  • FIG. 3 An intermediate product of an integrated sensor element 35 of a refractometer system according to exemplary embodiments is shown schematically in FIG. 3.
  • a temperature sensor 47 is additionally integrated in the integrated sensor element 35. With this additionally integrated temperature sensor 47 can be accurately determine which temperature the measurement object 31 has to make a corresponding correction of the determined refractive index n (object) depending on the temperature detected by the temperature sensor 47.
  • the above-mentioned calibration procedure only needs to be carried out once for a specific height h of the measurement object 31.
  • a first resonance curve 61 describes a resonance behavior at a first refractive index n (b) of a first test object to be examined (eg calibration object).
  • a second resonance curve 62 results when the first measurement object is replaced by a second measurement object with a refractive index n (unb).
  • FIG. 7 shows another possible structure of an integrated sensor element 35 according to an embodiment of the present invention.
  • the integrated sensor element 35 has a structured metal layer 44 above the photodetector 36, wherein the metal of the structured metal layer 44 has a refractive index n (Me).
  • a dielectric material having a refractive index n (D) is arranged.
  • FIG. 10 shows a schematic structure of a refractometer system based on the sensor chip 90 shown in FIG. 9.
  • CMOS metal layers such as, for example, the CMOS metal layer
  • CMOS metal layer can have electrical connections or interconnects in addition to the openings for forming the layer structures, the electrical connections between circuit elements (eg transistors) of the manufacture integrated sensor element. This also applies to the post shown above. silicon layer. Also, the laterally spaced apart from the actual opto-electronic sensors can be used to form interconnects or components.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L’invention concerne un système (30) pour déterminer un indice de réfraction (n(Objet)) d’un objet mesuré (31), comprenant une source de lumière (32) pour émettre de la lumière (33) à une longueur d’onde prédéfinie, un élément de détection intégré (35) qui comprend un détecteur optoélectronique (36) et une structure stratifiée (37) constituée d’au moins une couche métallique structurée (44). Selon l’invention, le détecteur optoélectronique (36) et la structure stratifiée (37) sont intégrés conjointement sur un substrat en semiconducteur (38). L’objet de l’invention comprend également un dispositif (39) pour maintenir l’objet mesuré (31) entre l’élément de détection intégré (35) et la source de lumière (32), de telle sorte que la structure stratifiée (37) est disposée entre l’objet mesuré (31) et le détecteur optoélectronique (36) et de telle sorte qu’un signal de sortie du détecteur optoélectronique (36) résultant de la lumière (33) ayant la longueur d’onde prédéfinie varie en fonction de l’indice de réfraction (n(Objet)) de l’objet mesuré (31), et un dispositif (40) pour déterminer l’indice de réfraction (n(Objet)) de l’objet mesuré (31) en se basant sur le signal de sortie du détecteur optoélectronique (36).
EP09721047A 2008-03-14 2009-03-16 Dispositif et procédé pour déterminer un indice de réfraction d un objet mesuré Withdrawn EP2255174A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008014335A DE102008014335B4 (de) 2008-03-14 2008-03-14 Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts
PCT/EP2009/001893 WO2009112288A1 (fr) 2008-03-14 2009-03-16 Dispositif et procédé pour déterminer un indice de réfraction d’un objet mesuré

Publications (1)

Publication Number Publication Date
EP2255174A1 true EP2255174A1 (fr) 2010-12-01

Family

ID=40668475

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09721047A Withdrawn EP2255174A1 (fr) 2008-03-14 2009-03-16 Dispositif et procédé pour déterminer un indice de réfraction d un objet mesuré

Country Status (3)

Country Link
EP (1) EP2255174A1 (fr)
DE (1) DE102008014335B4 (fr)
WO (1) WO2009112288A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2375242A1 (fr) 2010-04-06 2011-10-12 FOM Institute for Atomic and Moleculair Physics Dispositif intégré de détection de nanocavité plasmonique
DE102013015065A1 (de) * 2013-09-09 2015-03-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Anordnung zum Erfassen von optischen Brechzahlen oder deren Änderung
DE102017126708A1 (de) 2017-11-14 2019-05-16 Universität Ulm Institut Für Optoelektronik Verfahren und Vorrichtung zur Bestimmung des Brechungsindex eines Mediums
EP4180796A1 (fr) * 2021-11-11 2023-05-17 IHP GmbH - Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Dispositif de capteur d'indice de réfraction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014505A1 (en) * 2005-07-13 2007-01-18 Kazuhiko Hosomi Micro sensor device
WO2008030666A2 (fr) * 2006-07-25 2008-03-13 The Board Of Trustees Of The University Of Illinois Capteurs à cristaux plasmoniques multispectraux

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909143A1 (de) * 1989-03-21 1990-09-27 Basf Ag Verfahren zur untersuchung von oberflaechenstrukturen
JP2005016963A (ja) * 2003-06-23 2005-01-20 Canon Inc 化学センサ、化学センサ装置
GB0413082D0 (en) * 2004-06-11 2004-07-14 Medical Biosystems Ltd Method
WO2006130164A2 (fr) 2004-08-19 2006-12-07 University Of Pittsburgh Analyseurs de spectre optiques, de la dimension d'une puce, a resolution accrue
EP2278301A1 (fr) * 2004-11-04 2011-01-26 Renishaw Diagnostics Limited Cristal photonique nano vide de métal pour spectroscopie de raman améliorée

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014505A1 (en) * 2005-07-13 2007-01-18 Kazuhiko Hosomi Micro sensor device
WO2008030666A2 (fr) * 2006-07-25 2008-03-13 The Board Of Trustees Of The University Of Illinois Capteurs à cristaux plasmoniques multispectraux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2009112288A1 *

Also Published As

Publication number Publication date
DE102008014335A1 (de) 2009-09-24
WO2009112288A1 (fr) 2009-09-17
DE102008014335B4 (de) 2009-12-17

Similar Documents

Publication Publication Date Title
EP0788615B1 (fr) Procede et dispositif de determination de parametres specifiques d' une substance comportant une ou plusieurs molecules par spectroscopie de correlation
DE102007033124B4 (de) Vorrichtung zur optischen Detektion von Substanzen in einem flüssigen oder gasförmigen Medium
DE102018214617A1 (de) Sensoreinrichtung
DE102007016588B4 (de) Mikroskop mit Subwellenlängenauflösung und Verfahren zum Erzeugen eines Bilds eines Objekts
EP3265779A1 (fr) Procédé et dispositif de détection optique d'un mouvement dans un échantillon biologique à expansion spatiale
EP3347687B1 (fr) Spectromètre miniature et procédé spectroscopique
EP2226648A2 (fr) Système de construction d'images en 3D avec capteur multispectral
WO1998057151A1 (fr) Dispositif de detection de substances chimiques et biochimiques par excitation de lumiere fluorescente et son procede de production
DE112008003430T5 (de) Oberflächenplasmonenresonanz benutzendes Fluoreszenzmikroskop
DE10392315B4 (de) Optische Konfiguration und Verfahren für differentielle Brechungskoeffizientenmessungen
DE19955556A1 (de) Meßanordnung zum parallelen Auslesen von SPR-Sensoren
DE602004013236T2 (de) Messgerät
EP1347284B1 (fr) Porte-échantillon avec optique intégrée
DE102008014335B4 (de) Vorrichtung und Verfahren zur Bestimmung einer Brechzahl eines Messobjekts
DE112013001138B4 (de) Vorrichtung zum Messen der Wärmeabstrahlung eines Messobjekts, Verfahren zum Messen der Wärmeabstrahlung eines Messobjekts und Zelle zum Messen der Wärmeabstrahlung
DE112013005632T5 (de) Rastersondenmikroskop und Probenbeobachtungsverfahren unter Verwendung desselben
EP3172542B1 (fr) Ensemble de détection avec résolution de position et de longueur d'onde d'un rayonnement lumineux qui est émis par au moins une oled ou une led
EP1805502B1 (fr) Procede d'examen d'interactions biochimiques
EP2686664B1 (fr) Détection de milieux optiques plans en au moins deux couches à séparation optique
EP2271961A1 (fr) Procédé pour étalonner une unité de déviation dans un microscope tirf, microscope tirf et procédé pour le faire fonctionner
EP3968008A1 (fr) Capteur optique, système et procédé de détection des germes pathogènes
DE19751403A1 (de) Kombinierte Absorptions- und Reflektanzspektroskopie zur synchronen Ermittlung der Absorption, Fluoreszenz, Streuung und Brechung von Flüssigkeiten, Gasen und Festkörpern
DE102015205699B4 (de) Spektrometer mit Monomodewellenleiter
WO2022144102A1 (fr) Puce optoélectronique
DE102016211471B4 (de) Anordnung und Verfahren zur winkelaufgelösten Streulichtmessung mittels einer Wellenleiter-Sonde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JUNGER, STEPHAN

Inventor name: TSCHEKALINSKIJ, WLADIMIR

Inventor name: WEBER, NORBERT

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/552 20140101ALI20190624BHEP

Ipc: G01N 21/41 20060101AFI20190624BHEP

Ipc: G02B 5/00 20060101ALI20190624BHEP

Ipc: G02B 1/00 20060101ALI20190624BHEP

Ipc: B82Y 20/00 20110101ALI20190624BHEP

Ipc: G02B 5/20 20060101ALN20190624BHEP

Ipc: G02B 6/122 20060101ALI20190624BHEP

Ipc: G02B 5/18 20060101ALN20190624BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/41 20060101AFI20190701BHEP

Ipc: G02B 5/20 20060101ALN20190701BHEP

Ipc: B82Y 20/00 20110101ALI20190701BHEP

Ipc: G02B 5/18 20060101ALN20190701BHEP

Ipc: G02B 6/122 20060101ALI20190701BHEP

Ipc: G02B 1/00 20060101ALI20190701BHEP

Ipc: G02B 5/00 20060101ALI20190701BHEP

Ipc: G01N 21/552 20140101ALI20190701BHEP

INTG Intention to grant announced

Effective date: 20190718

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

INTG Intention to grant announced

Effective date: 20191211

RIC1 Information provided on ipc code assigned before grant

Ipc: G02B 5/20 20060101ALN20191202BHEP

Ipc: G01N 21/41 20060101AFI20191202BHEP

Ipc: G02B 1/00 20060101ALI20191202BHEP

Ipc: B82Y 20/00 20110101ALI20191202BHEP

Ipc: G02B 5/00 20060101ALI20191202BHEP

Ipc: G02B 5/18 20060101ALN20191202BHEP

Ipc: G02B 6/122 20060101ALI20191202BHEP

Ipc: G01N 21/552 20140101ALI20191202BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200603