EP2243934A1 - Thermodynamic multi-phase method for gaining exergy - Google Patents
Thermodynamic multi-phase method for gaining exergy Download PDFInfo
- Publication number
- EP2243934A1 EP2243934A1 EP08021689A EP08021689A EP2243934A1 EP 2243934 A1 EP2243934 A1 EP 2243934A1 EP 08021689 A EP08021689 A EP 08021689A EP 08021689 A EP08021689 A EP 08021689A EP 2243934 A1 EP2243934 A1 EP 2243934A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- steam
- working medium
- power plant
- steam power
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K21/00—Steam engine plants not otherwise provided for
- F01K21/005—Steam engine plants not otherwise provided for using mixtures of liquid and steam or evaporation of a liquid by expansion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/02—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/08—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K27/00—Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K3/00—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
- F01K3/18—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
- F01K3/185—Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using waste heat from outside the plant
Definitions
- the invention describes a method in which in an evaporator in front of a steam power plant, e.g. a steam turbine, in addition to the steam mechanical or electrical energy is generated.
- a steam power plant e.g. a steam turbine
- the exergy content of a heat-delivering medium e.g. Thermal water
- Steam power plants draw their thermal energy from specially provided, or the plants supplied, energy. For example, they are fed by the energy of a combustion.
- the heat energy for producing the working medium vapor is usually obtained by cooling a heat transfer medium, e.g. Flue gases or in special cases, thermal water, based.
- the supply of energy is dimensioned so that a sufficient amount of steam is produced as a working medium at a given temperature and vapor pressure.
- the height of the temperature are generally set technological limits, but this does not apply to thermal water as a heat carrier, here the steam temperature can be selected thermodynamically meaningful.
- the working medium can absorb heat at the highest possible temperature, which results in a high degree of thermodynamic efficiency, only a correspondingly small amount of heat energy can then be removed by cooling the heat transfer medium.
- thermodynamic cycle The maximum efficiency of a thermodynamic cycle is described by the so-called Carnot efficiency. It depends only on the absolute temperature at which the heat is absorbed, and the absolute temperature at which the heat is released from the cycle again. The part of the heat energy that can be converted into mechanical energy is called exergy.
- thermodynamic machines and system solutions have been known for over 200 years to extract the exergy, e.g. in the form of propulsion, compressed air or electric power.
- a liquid working medium located therein is vaporized at a predetermined pressure in the simplest case by supplying heat energy in steam boilers or suitable evaporator systems.
- a thermally highly stressed vaporous working medium is generated which is conveyed via the steam engine, e.g. a steam turbine, is relaxed.
- the steam engine gains the mechanical workability of the steam and decouples it from the process.
- the condensation of the expanded steam is again to the liquid, which is then fed by means of feed pumps to the pressure level of the steam generator this again.
- the cycle is closed.
- shell boilers steamboat, steam locomotive
- the firing was carried out by means of smoke or flame pipes.
- the feed water is conveyed by the feed pump into the boiler and, in succession, the feedwater pre-heater, the evaporator and the superheater are flowed through, e.g. consist of tube bundles.
- This steam generator has certain common construction elements with the method presented here and also with the convection generator, s. in Renewable Energy, August 2008, 18 Volume S. 56-59, "Geothermal Energy: Energy Source with Perspective ".
- the liquid working medium to be evaporated rises while boiling continuously in boiling and rising pipes. At the top, the vapor is separated from the remaining liquid in the so-called drum.
- the steam is supplied after passing the superheater of the steam engine and the unevaporated liquid flows through unheated downcomers in the lower part of the natural circulation boiler.
- the liquid medium in the downpipe has a higher density than the liquid under boiling heat in the boiling riser located liquid-vapor mixture, which under the effect of the gravitational field of the earth, the so-called convective natural circulation in the boiler comes even without an additional pump to conditions.
- thermodynamic cycle or the heat engine increases Rankine cycle (see eg: W. Beitz, K.-H. kuttner: Dubbel, Springer Verlag, Berlin 1990 )
- Rankine cycle see eg: W. Beitz, K.-H. kuttner: Dubbel, Springer Verlag, Berlin 1990
- ORC systems O rganic C R ankine ircle
- a low boiling organic working fluid for example, be used in the production of electricity from thermal water at Geothermalkraftmaschineen.
- the Rankine cycle is usually used in all modern steam power plants even in the supercritical range of water as a working medium.
- the supercritical region analogous to the boiling point there is a clear maximum of the heat capacity at which a predominant part of the heat has to be transferred for heating.
- the steam temperature of the working medium is anyway chosen to be lower than the combustion temperature for technological reasons.
- the heat energy of the heat transfer medium is transferred to the working medium without phase change.
- the working medium is now directed into the lower end of a boiling riser.
- the pressure in the boiling riser increases due to the hydrostatic or geodetic pressure component of the working medium from the top down.
- the working medium falls below the boiling pressure and evaporates as you continue to rise, it cools down further and further.
- the resulting amount of steam ensures the transport of the mixture against gravity upwards. Part of the thermal energy or part of the exergy contained is thus converted into lifting.
- the mixture At the end of the boiling riser pipe, the mixture ideally reached the live steam temperature and pressure for the steam power plant. Now, with the vapor fraction, which is separated from the liquid working medium in a separator, the steam power plant operated.
- the steam fraction passes through the normal Rankine process: it passes through a turbine, possibly a recuperator, is condensed out in the condenser and the heat is condensed at low temperature, for example. delivered to a cooling circuit. Then this part of the liquefied working medium is e.g. brought back to the live steam pressure with the help of a feed pump. Before this liquefied portion is returned to the evaporator circuit, it is expedient to increase its temperature to the level of the liquid fraction in the separator.
- the vapor content can therefore be a suitable steam power plant, e.g. be fed to an ORC turbine plant.
- the evaporator section used here has innovations over the known evaporator systems. Not only live steam for the steam power plant is produced but also mechanical or electrical energy. Because the lifting work, which was done on the working medium, can now be obtained with a liquid turbine, which works on the height of the boiled ear.
- the evaporator part is therefore also called evaporator generator.
- the process described here is called the SCHWARK-BECKER process, abbreviated SBP.
- the boiling temperature is increasing progressively from top to bottom in the boiling riser. So it corresponds better to the ideal of the highest possible boiling temperature.
- the riser pipes in the natural circulation boiler serve to absorb heat and not to specifically convert thermal energy under relaxation and cooling into lifting work. Accordingly, the boiling riser pipes typically overcome large differences in altitude at the SBP, while the riser pipes in the natural circulation boiler only go through the height of the firing. The natural circulation boiler therefore also eliminates the liquid turbine in the downpipe.
- This suitably selected position is selected for structural reasons, especially for thermodynamic reasons so that the registered heat under the action of the geodetic pressure of the liquid column in the downpipe no longer causes the downwardly flowing medium to boil.
- the liquid turbine In the lower part of the evaporator generator is the liquid turbine.
- the working medium heated on the way down flows through the turbine and then enters the boiling riser. As it flows through the liquid turbine, the working fluid undergoes a pressure drop, which leads to falling below its vapor pressure on entering the boiling riser.
- the working medium begins a boiling climb upwards. It now flows a multiphase mixture, consisting of vapor and liquid content upwards. With increasing ascent, the volume fraction of the vapor phase increases. The heat of vaporization comes from the liquid content, which thereby permanently cools on the way up.
- the temperature of the vapor-liquid mixture Upon reaching the phase separator, the temperature of the vapor-liquid mixture has decreased so much that it corresponds to the live steam temperature for the steam turbine.
- the ascended volumetric flow of the multiphase mixture is split into the vapor and liquid fractions.
- the former is fed to the steam turbine and the ascending liquid content is immediately returned to the descent process, whereby the circulation process in the evaporator generator is closed again.
- the evaporator generator thus not only produces the live steam for the steam turbine but also additional energy.
- the branched off in the phase separator steam flow is sent through the steam turbine, where it undergoes a pressure reduction from the inlet pressure to the vapor pressure of the vapor condensation temperature in the cooler.
- the condensed vapor is brought to the pressure level of the inlet pressure with a feed pump, then reheated to the temperature of the working medium in the downcomer, and e.g. injected at the outlet of the phase separator in the descending liquid flow.
- the feed pump can be saved.
- the vertical course of gravity and gravity riser would be e.g. in the upper part of a tower open into the phase separator.
- the steam turbine and the steam condenser are also on top.
- the condensed liquid now flows down.
- the partial stream may be e.g. be preheated to ground level and is fed without feed pump back to the working medium flow.
- the working medium stream in the evaporator generator can be added suitable solid or liquid additives. If these additives have a lower specific heat capacity and a higher density than the working medium can be realized with the same performance characteristics of the power plant smaller sizes of the evaporator, or it can be exergeto be used with the same size with an evaporator generator a larger temperature ranges.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
Die Erfindung beschreibt ein Verfahren, bei dem in einem Verdampfer vor einer Dampfkraftanlage, z.B. einer Dampfturbine, zusätzlich zum Dampf mechanische bzw. elektrische Energie erzeugt wird. Dadurch wird der Exergiegehalt eines Wärme liefernden Mediums, z.B. Thermalwasser, optimal genutzt.The invention describes a method in which in an evaporator in front of a steam power plant, e.g. a steam turbine, in addition to the steam mechanical or electrical energy is generated. Thereby, the exergy content of a heat-delivering medium, e.g. Thermal water, optimally used.
Dampfkraftanlagen beziehen ihre thermische Energie aus eigens bereitgestellten, bzw. den Anlagen zugeführten, Energien. Zum Beispiel werden sie aus der Energie einer Verbrennung gespeist. Die Wärmeenergie zur Erzeugung des Arbeitsmediumsdampfes wird in der Regel aus dem Abkühlen eines Wärmeträgermediums, z.B. Rauchgasen oder in besonderen Fällen auch Thermalwasser, bezogen. Die Zuführung der Energie ist so dimensioniert, dass eine ausreichende Menge an Dampf als Arbeitsmedium bei gegebener Temperatur und Dampfdruck erzeugt wird. Der Höhe der Temperatur sind im Allgemeinen technologische Grenzen gesetzt, das gilt jedoch nicht bei Thermalwasser als Wärmeträger, hier kann die Dampftemperatur thermodynamisch sinnvoll gewählt werden.Steam power plants draw their thermal energy from specially provided, or the plants supplied, energy. For example, they are fed by the energy of a combustion. The heat energy for producing the working medium vapor is usually obtained by cooling a heat transfer medium, e.g. Flue gases or in special cases, thermal water, based. The supply of energy is dimensioned so that a sufficient amount of steam is produced as a working medium at a given temperature and vapor pressure. The height of the temperature are generally set technological limits, but this does not apply to thermal water as a heat carrier, here the steam temperature can be selected thermodynamically meaningful.
Das Arbeitsmedium kann hier zwar bei einer möglichst hohen Temperatur Wärme aufnehmen, woraus einen hoher thermodynamischer Wirkungsgrad folgt, aber dann kann eben nur entsprechend wenig Wärmeenergie durch Abkühlen des Wärmeträgermediums entnommen werden.Although the working medium can absorb heat at the highest possible temperature, which results in a high degree of thermodynamic efficiency, only a correspondingly small amount of heat energy can then be removed by cooling the heat transfer medium.
Der maximale Wirkungsgrad eines thermodynamischen Kreisprozesses wird durch den so genannten Carnot-Wirkungsgrad beschrieben. Er hängt nur von der absoluten Temperatur, bei der die Wärme aufgenommen wird, und der absoluten Temperatur ab, bei der die Wärmemenge vom Kreisprozess wieder abgegeben wird. Der Teil der Wärmeenergie, der hierbei in mechanische Energie gewandelt werden kann, wird als Exergie bezeichnet.The maximum efficiency of a thermodynamic cycle is described by the so-called Carnot efficiency. It depends only on the absolute temperature at which the heat is absorbed, and the absolute temperature at which the heat is released from the cycle again. The part of the heat energy that can be converted into mechanical energy is called exergy.
Entsprechend des Standes der Technik sind seit über 200 Jahren eine Vielzahl von thermodynamischen Maschinen und Systemlösungen bekannt, um aus geeigneten Wärmeressourcen die Exergie, z.B. in Form von Antriebsvermögen, Druckluft oder Elektroenergie, zu nutzen.In accordance with the state of the art, a variety of thermodynamic machines and system solutions have been known for over 200 years to extract the exergy, e.g. in the form of propulsion, compressed air or electric power.
Stellvertretend soll auf einige Verfahren und ihre Nachteile gegenüber der erfindungsgemäßen Lösung eingegangen werden.By way of example, some methods and their disadvantages compared with the solution according to the invention will be discussed.
Bei den bekannten Dampfkraftanlagen wird im einfachsten Fall durch Wärmeenergiezufuhr in Dampfkesseln oder geeigneten Verdampferanlagen ein darin befindliches flüssiges Arbeitsmedium bei vorgegebenem Druck verdampft. Es wird ein thermisch hochgespanntes dampfförmiges Arbeitsmedium erzeugt, welches über die Dampfkraftmaschine, z.B. einer Dampfturbine, entspannt wird. Die Dampfkraftmaschine gewinnt das mechanische Arbeitsvermögen des Dampfes und koppelt es aus dem Prozess aus. Anschließend erfolgt die Kondensation des entspannten Dampfes wieder zur Flüssigkeit, die dann mittels Speisepumpen auf das Druck-Niveau des Dampferzeugers diesem erneut zugeführt wird. Damit ist der Kreislauf geschlossen ist.In the known steam power plants, a liquid working medium located therein is vaporized at a predetermined pressure in the simplest case by supplying heat energy in steam boilers or suitable evaporator systems. A thermally highly stressed vaporous working medium is generated which is conveyed via the steam engine, e.g. a steam turbine, is relaxed. The steam engine gains the mechanical workability of the steam and decouples it from the process. Subsequently, the condensation of the expanded steam is again to the liquid, which is then fed by means of feed pumps to the pressure level of the steam generator this again. Thus the cycle is closed.
Als geeignete Verdampferanlagen sind je nach Kraftwerkstyp verschiedene Anlagen bekannt. Zu früheren Zeiten wurde zur Erzeugung von Wasserdampf mit Druck höher als der Atmosphärendruck Großwasserraumkessel (Dampfschiff, Dampflokomotive) eingesetzt. Sie wurden zunächst durch Feuer unter dem Kessel erhitzt, später wurde die Befeuerung mittels Rauch- oder Flammrohre durchgeführt.Depending on the type of power plant, various systems are known as suitable evaporator systems. In earlier times, to produce steam at pressure higher than the atmospheric pressure, shell boilers (steamboat, steam locomotive) were used. They were first heated by fire under the boiler, later the firing was carried out by means of smoke or flame pipes.
Heute dominieren bei den
Das Speisewasser wird von der Speisepumpe in den Kessel befördert und hintereinander werden der Speisewasservorwärmer, der Verdampfer und der Überhitzer durchströmt, die z.B. aus Rohrbündeln bestehen.The feed water is conveyed by the feed pump into the boiler and, in succession, the feedwater pre-heater, the evaporator and the superheater are flowed through, e.g. consist of tube bundles.
Die älteste Bauart eines Wasserrohrkessels, der zum Ende des 19. Jahrhundert entwickelt worden ist, ist der Naturumlaufkessel. Siehe z.B: Helmut Effenberger: Dampferzeuger. Springer Verlag, ISBN 3-540-64175-0.The oldest type of water tube boiler, developed at the end of the 19th century, is the natural circulation boiler. See, for example: Helmut Effenberger: steam generator. Springer publishing house, ISBN 3-540-64175-0.
Dieser Dampferzeuger besitzt gewisse gemeinsame Konstruktionselemente mit dem hier vorgestellten Verfahren und auch mit dem Konvektionsgenerators, s. in
Beim Naturumlaufkessel steigt das zu verdampfende flüssige Arbeitsmedium unter permanenter Wärmezufuhr in Siedeaufstiegsrohren kochend nach oben. Oben wird der Dampf von der restlichen Flüssigkeit in der so genannten Trommel getrennt. Der Dampf wird nach Passieren des Überhitzers der Dampfkraftmaschine zugeführt und die nicht verdampfte Flüssigkeit strömt über nicht beheizte Fallrohre in den unteren Teil des Naturumlaufkessels. Das flüssige Medium im Abstiegsrohr hat eine höhere Dichte als das unter Wärmezufuhr siedend im Siedeaufstiegsrohr befindliche Flüssigkeits-Dampfgemisch, wodurch unter Wirkung des Schwerefeldes der Erde der so genannte konvektive Naturumlauf im Kessel auch ohne zusätzliche Pumpe zu Stande kommt.In the natural circulation boiler, the liquid working medium to be evaporated rises while boiling continuously in boiling and rising pipes. At the top, the vapor is separated from the remaining liquid in the so-called drum. The steam is supplied after passing the superheater of the steam engine and the unevaporated liquid flows through unheated downcomers in the lower part of the natural circulation boiler. The liquid medium in the downpipe has a higher density than the liquid under boiling heat in the boiling riser located liquid-vapor mixture, which under the effect of the gravitational field of the earth, the so-called convective natural circulation in the boiler comes even without an additional pump to conditions.
Alle diese beschrieben Dampferzeuger liefern lediglich Dampf als Arbeitsmedium für den eigentlichen Kreisprozess und es wird ein Exergieverlust akzeptiert, denn die Wärmemenge wird nicht bei der Temperatur des Wärmeträgermediums, sondern vorwiegend bei deutlich geringeren Temperaturen an das Arbeitsmedium übergeben. Es ergibt sich so ein Exergieverlust.All of these described steam generators deliver only steam as a working medium for the actual cycle and it is accepted exergy loss, because the amount of heat is not transferred to the temperature of the heat transfer medium, but mainly at significantly lower temperatures to the working fluid. This results in an exergy loss.
Der thermodynamische Kreisprozess bzw. die Wärmekraftmaschine nimmt z.B. beim
Der Rankine-Kreisprozess wird in der Regel bei allen modernen Dampfkraftwerken genutzt auch bis in den überkritischen Bereich von Wasser als Arbeitsmedium. Im überkritischen Bereich existiert analog zum Siedepunkt ein deutliches Maximum der Wärmekapazität bei der zum Erhitzen ein überwiegender Teil der Wärme übergeben werden muss. In der Regel wird bei den normalen Kraftwerken, auch bei denen im überkritischen Bereich des Arbeitsmediums, ohnehin die Dampftemperatur des Arbeitsmediums aus technologischen Gründen geringer als die Verbrennungstemperatur gewählt.The Rankine cycle is usually used in all modern steam power plants even in the supercritical range of water as a working medium. In the supercritical region analogous to the boiling point there is a clear maximum of the heat capacity at which a predominant part of the heat has to be transferred for heating. As a rule, in the normal power plants, even those in the supercritical region of the working medium, the steam temperature of the working medium is anyway chosen to be lower than the combustion temperature for technological reasons.
Der Verlust an Exergie ergibt sich letztlich, da die Wärmekraftanlagen, z.B. eine Dampfturbine, keine Mehrphasengemische wie z.B. Tropfen im Frischdampf vertragen. Die Tropfen folgen der Dampfströmung nicht ausreichend, um die Turbinenschaufeln, sondern prallen auf die Oberfläche, wobei die kinetische Energie des Tröpfchens dissipiert, d.h. mechanisch verloren geht. Darüber hinaus kann es durch Verschleiß zur Zerstörung der Turbinenschaufeln kommen. Ähnliches gilt auch für Kolbenmaschinen. Für einen dauerhaften Betrieb muss also komplett verdampftes Arbeitsmedium an die Dampfkraftanlage weitergeleitet werden.The loss of exergy ultimately results because the thermal power plants, e.g. a steam turbine, no multiphase mixtures such as e.g. Tolerated drops in live steam. The droplets do not follow the steam flow sufficiently to the turbine blades, but impinge on the surface, dissipating the kinetic energy of the droplet, i. lost mechanically. In addition, wear can destroy the turbine blades. The same applies to piston engines. For a permanent operation so completely evaporated working fluid must be forwarded to the steam turbine.
Diese Nachteile bezüglich der Exergieverluste werden bei dem erfindungsgemäßen Verfahren vermieden.These disadvantages with regard to exergy losses are avoided in the method according to the invention.
Die Wärmeenergie des Wärmeträgermediums wird hierbei auf das Arbeitsmedium ohne Phasenwechsel übertragen. Z.B. mit Hilfe eines Gegenstrom-Wärmeübertrages. Das Arbeitsmedium wird nun in das untere Ende eines Siedeaufstiegsrohrs geleitet. Der Druck im Siedeaufstiegsrohr nimmt aufgrund des hydrostatischen bzw. geodätischen Druckanteils des Arbeitsmediums nach oben hin ab. Das Arbeitsmedium unterschreitet den Siededruck und verdampft beim weiteren Aufstieg zusehends, dabei kühlt es sich immer weiter ab. Die entstehende Dampfmenge sorgt für den Transport des Gemisches gegen die Schwerkraft nach oben. Ein Teil der Wärmeenergie bzw. ein Teil der enthaltenen Exergie wird somit in Hubarbeit umgewandelt. Am Ende des Siedeaufstiegsrohres hat das Gemisch idealerweise die Frischdampftemperatur und Druck für die Dampfkraftanlage erreicht. Nun wird mit dem Dampfanteil, der von dem flüssigen Arbeitsmedium in einem Separator getrennt wird, die Dampfkraftanlage betrieben.The heat energy of the heat transfer medium is transferred to the working medium without phase change. For example, with the help of a countercurrent heat transfer. The working medium is now directed into the lower end of a boiling riser. The pressure in the boiling riser increases due to the hydrostatic or geodetic pressure component of the working medium from the top down. The working medium falls below the boiling pressure and evaporates as you continue to rise, it cools down further and further. The resulting amount of steam ensures the transport of the mixture against gravity upwards. Part of the thermal energy or part of the exergy contained is thus converted into lifting. At the end of the boiling riser pipe, the mixture ideally reached the live steam temperature and pressure for the steam power plant. Now, with the vapor fraction, which is separated from the liquid working medium in a separator, the steam power plant operated.
Der Dampfanteil durchläuft z.B.- je nach Dampfkraftanlage- den normalen Rankine-Prozess: Er durchströmt eine Turbine, eventuell einen Rekuparator, wird im Kondensator auskondensiert und die Wärme bei geringer Temperatur z.B. an einen Kühlkreislauf abgegeben. Dann wird dieser Teil des verflüssigten Arbeitsmediums z.B. mit Hilfe einer Speisepumpe wieder auf den Frischdampfdruck gebracht. Bevor dieser verflüssigte Anteil wieder dem Verdampferkreislauf zugeführt wird, erfolgt zweckmäßig Weise seine Temperaturerhöhung auf das Niveau des Flüssiganteils im Separator.For example, depending on the steam power plant, the steam fraction passes through the normal Rankine process: it passes through a turbine, possibly a recuperator, is condensed out in the condenser and the heat is condensed at low temperature, for example. delivered to a cooling circuit. Then this part of the liquefied working medium is e.g. brought back to the live steam pressure with the help of a feed pump. Before this liquefied portion is returned to the evaporator circuit, it is expedient to increase its temperature to the level of the liquid fraction in the separator.
Der Dampfanteil kann also einer geeigneten Dampfkraftanlage z.B. einer ORC-Turbinenanlage zugeführt werden. Der hier verwendete Verdampferteil besitzt gegenüber den bekannten Verdampferanlagen Neuerungen. Es wird nicht nur Frischdampf für die Dampfkraftanlage produziert sondern auch noch mechanische bzw. elektrische Energie. Denn die Hubarbeit, die an dem Arbeitsmedium verrichtet wurde, kann nun mit einer Flüssigkeitsturbine, die über die Höhe des Siederohres arbeitet, gewonnen werden.The vapor content can therefore be a suitable steam power plant, e.g. be fed to an ORC turbine plant. The evaporator section used here has innovations over the known evaporator systems. Not only live steam for the steam power plant is produced but also mechanical or electrical energy. Because the lifting work, which was done on the working medium, can now be obtained with a liquid turbine, which works on the height of the boiled ear.
Der Verdampferteil wird deshalb auch als Verdampfergenerator bezeichnet. Der hier beschriebene Prozess sei als SCHWARK-BECKER-Prozess bezeichnet, abgekürzt: SBP.The evaporator part is therefore also called evaporator generator. The process described here is called the SCHWARK-BECKER process, abbreviated SBP.
Diese Zusatzenergie stammt aus dem höheren Exergiegehalt des Wärmeträgermediums, das primär eine deutlich höhere Temperatur als die feste Siedetemperatur eines Speisekessels eines normalen Dampferzeugers besitzt.This additional energy comes from the higher exergy content of the heat transfer medium, which primarily has a much higher temperature than the solid boiling point of a feed boiler of a normal steam generator.
Beim Verdampfergenerator ist die Siedetemperatur gleitend von oben nach unten im Siedeaufstiegsrohr zunehmend. Sie entspricht also besser dem Ideal der möglichst hohen Siedetemperatur.In the case of the evaporator generator, the boiling temperature is increasing progressively from top to bottom in the boiling riser. So it corresponds better to the ideal of the highest possible boiling temperature.
Im Gegensatz zum Siedeaufstiegsrohr des Verdampfergenerators beim SBP, dienen die Steigrohre beim Naturumlaufkessel zur Wärmeaufnahme und nicht um thermische Energie gezielt unter Entspannung und Abkühlung in Hubarbeit umzuwandeln. Entsprechend überwinden die Siedeaufstiegsrohre beim SBP typischer Weise große Höheunterschiede, während die Steigrohre beim Naturumlaufkessel nur die Bauhöhe der Befeuerung durchlaufen. Beim Naturumlaufkessel entfällt deshalb auch die Flüssigkeitsturbine im Fallrohr.In contrast to the boiling riser pipe of the evaporator generator in the SBP, the riser pipes in the natural circulation boiler serve to absorb heat and not to specifically convert thermal energy under relaxation and cooling into lifting work. Accordingly, the boiling riser pipes typically overcome large differences in altitude at the SBP, while the riser pipes in the natural circulation boiler only go through the height of the firing. The natural circulation boiler therefore also eliminates the liquid turbine in the downpipe.
An einigen Ausführungsbeispielen und der
Entsprechend des Patentanspruches 1 zirkuliert durch die gesamte Anlage, also sowohl durch den Verdampfergenerator als auch durch die Dampfturbinenanlage, das gleiche Arbeitsmedium. Im Phasenseparator (s.
Der als Verdampfergenerator bezeichnete Teil der Anlage besitzt in vertikaler Richtung die größte geometrische Ausdehnung. Der Verdampfergenerator ist entsprechend
- oben der Phasenseparator,
- daran anschließend in absteigender Richtung das Fallrohr,
- im unteren Bereich die Flüssigkeitsturbine,
- daran anschließend in aufsteigender Richtung das Siedeaufstiegsrohr, welches oben in den Phasenseparator mündet und
- im Flüssigkeitsfallrohr befindet sich an einer anlagentechnisch- und thermodynamisch zweckmäßig gewählten Position der Thermalwasser Wärmetauscher zum Eintragen der Wärmeenergie in das Arbeitsmedium.
- above the phase separator,
- then in descending direction the downpipe,
- in the lower area the liquid turbine,
- then in ascending direction the Siedstiegstiegsrohr, which opens up into the phase separator and
- in the liquid downpipe is located at a plant technically and thermodynamically appropriately selected position of the thermal water heat exchanger for entering the heat energy in the working medium.
Diese zweckmäßig gewählte Position ist neben baulichen Gründen besonders aus thermodynamischen Belangen so gewählt, dass die eingetragene Wärme unter Wirkung des geodätischen Druckes der Flüssigkeitssäule im Fallrohr das nach unten fließende Medium nicht mehr zum Sieden bringt.This suitably selected position is selected for structural reasons, especially for thermodynamic reasons so that the registered heat under the action of the geodetic pressure of the liquid column in the downpipe no longer causes the downwardly flowing medium to boil.
Im unteren Bereich des Verdampfergenerators befindet sich die Flüssigkeitsturbine.In the lower part of the evaporator generator is the liquid turbine.
Das auf dem Weg nach unten erhitzte Arbeitsmedium durchströmt die Turbine und tritt danach in das Siedeaufstiegsrohr ein. Beim Durchströmen der Flüssigkeitsturbine erfährt das Arbeitsmedium einen Druckabfall, der beim Eintritt in das Siedeaufstiegsrohr zur Unterschreitung seines Dampfdruckes führt.The working medium heated on the way down flows through the turbine and then enters the boiling riser. As it flows through the liquid turbine, the working fluid undergoes a pressure drop, which leads to falling below its vapor pressure on entering the boiling riser.
Das Arbeitsmedium beginnt einen siedenden Aufstieg nach oben. Es strömt nun ein mehrphasiges Gemisch, bestehend aus Dampf- und Flüssigkeitsanteil nach oben. Mit zunehmendem Aufstieg nimmt der Volumenanteil der Dampfphase zu. Die Verdampfungswärme entstammt dabei dem Flüssigkeitsanteil, der dadurch auf dem Weg nach oben permanent abkühlt.The working medium begins a boiling climb upwards. It now flows a multiphase mixture, consisting of vapor and liquid content upwards. With increasing ascent, the volume fraction of the vapor phase increases. The heat of vaporization comes from the liquid content, which thereby permanently cools on the way up.
Mit Erreichen des Phasenseparators hat sich die Temperatur des Dampf-Flüssigkeitsgemisches soweit verringert, dass sie der Frischdampftemperatur für die Dampfturbine entspricht.Upon reaching the phase separator, the temperature of the vapor-liquid mixture has decreased so much that it corresponds to the live steam temperature for the steam turbine.
Im Phasenseparator wird der aufgestiegene Volumenstrom des Mehrphasengemisches in den Dampf- und Flüssigkeitsanteil aufgespalten. Ersterer wird der Dampfturbine zugeleitet und der mit aufgestiegene Flüssigkeitsanteil wird sofort wieder in den Abstiegsprozess geführt, womit der Zirkulationsprozess im Verdampfergenerator wieder geschlossen ist.In the phase separator, the ascended volumetric flow of the multiphase mixture is split into the vapor and liquid fractions. The former is fed to the steam turbine and the ascending liquid content is immediately returned to the descent process, whereby the circulation process in the evaporator generator is closed again.
Die Zirkulation im Verdampfergenerator erfolgt infolge des unterschiedlichen geodätischen Druckes, der über das Fallrohr und das Siedeaufstiegsrohr herrscht. Denn die siedende und zunehmend verdampfende Phase im Aufstieg weist eine geringere Dichte auf als die absteigende Flüssigphase, weswegen es unter Wirkung der Schwerkraft zum konvektiven Selbst-Umlauf des Mehrphasengemisches kommt.The circulation in the evaporator generator is due to the different geodetic pressure, which prevails over the downpipe and the Siedstiegstiegsrohr. Because the boiling and increasingly evaporating phase in the ascent has a lower density than the descending liquid phase, which is why it comes under the action of gravity to the convective self-circulation of the multiphase mixture.
Die dabei über die vertikale Ausdehnung verrichtete Hubarbeit wird durch die Flüssigkeitsturbine als Exergie gewonnen. Es handelt sich um den Exergieanteil, der zwischen dem thermischen Fixpunkt des Betriebes der Dampfturbine und der Eingangstemperatur des Wärmeträgermediums in den Verdampfergenerator liegt. Dieser Exergieanteil konnte ja durch die dem Stand der Technik entsprechenden Dampfkraftanlagen nicht genutzt werden.The doing over the vertical extent of lifting work is obtained by the liquid turbine as exergy. It is the Exergieanteil, which lies between the thermal fixed point of the operation of the steam turbine and the inlet temperature of the heat transfer medium in the evaporator generator. This Exergieanteil could indeed not be used by the state of the art steam power plants.
Der Verdampfergenerator produziert somit nicht nur den Frischdampf für die Dampfturbine sondern auch zusätzlich Energie.The evaporator generator thus not only produces the live steam for the steam turbine but also additional energy.
Der im Phasenseparator abgezweigte Dampfvolumenstrom wird durch die Dampfturbine geschickt, wo er eine Druckreduzierung vom Einlassdruck auf den Dampfdruck der Dampfkondensationstemperatur im Kühler durchläuft.The branched off in the phase separator steam flow is sent through the steam turbine, where it undergoes a pressure reduction from the inlet pressure to the vapor pressure of the vapor condensation temperature in the cooler.
Der kondensierte Dampf wird mit einer Speisepumpe auf das Druckniveau des Einlassdruckes gebracht, dann wieder auf die Temperatur des Arbeitsmediums im Fallrohr vorgewärmt und z.B. am Ausgang des Phasenseparators in den absteigenden Flüssigkeitsstrom injiziert.The condensed vapor is brought to the pressure level of the inlet pressure with a feed pump, then reheated to the temperature of the working medium in the downcomer, and e.g. injected at the outlet of the phase separator in the descending liquid flow.
Damit ist der gesamte Kreisprozess inklusive der Dampfstromschleife als SBP wieder geschlossen.This closes the entire cycle including the steam flow loop as SBP.
Spezielle anlagen- und verfahrenstechnische Auslegungen am SBP können das verfahren weiter optimieren.Special plant and process engineering designs at the SBP can further optimize the process.
Wird beispielsweise der Verdampfergenerator nicht nur unterhalb des Erdoberflächenniveaus errichtet, sondern auch nach oben, dann kann, wie im Anspruch 3 aufgeführt, entsprechend des ersten Ausführungsbeispiel zum SBP die Speisepumpe eingespart werden.If, for example, the evaporator generator is erected not only below the surface level of the earth, but also upwards, then, as stated in claim 3, according to the first exemplary embodiment of the SBP, the feed pump can be saved.
In diesem Fall würde der vertikale Verlauf von Fall- und Siedeaufstiegsrohr z.B. im oberen Bereich eines Turmes in den Phasenseparator münden. Die Dampfturbine und der Dampfkondensator befinden sich ebenfalls oben. Die kondensierte Flüssigkeit fließt nun nach unten. Unter Wirkung des geodätischen Druckes kann der Teilstrom z.B. zu ebener Erde vorgewärmt werden und wird ohne Speisepumpe wieder dem Arbeitsmedienstrom zugeführt.In this case, the vertical course of gravity and gravity riser would be e.g. in the upper part of a tower open into the phase separator. The steam turbine and the steam condenser are also on top. The condensed liquid now flows down. Under the action of the geodesic pressure, the partial stream may be e.g. be preheated to ground level and is fed without feed pump back to the working medium flow.
Dem Arbeitsmediumsstrom im Verdampfergenerator können geeignete Feststoff- oder und Flüssigkeitszusätze zugefügt werden. Wenn diese Zusätze eine geringere spezifische Wärmekapazität und eine höhere Dichte als das Arbeitsmedium haben, lassen sich bei gleichen Leistungskenndaten der Kraftanlage geringere Baugrößen des Verdampfergenerators realisieren, oder es kann bei gleicher Baugröße mit einem Verdampfergenerator ein größerer Temperaturbereiche exergetisch genutzt werden.The working medium stream in the evaporator generator can be added suitable solid or liquid additives. If these additives have a lower specific heat capacity and a higher density than the working medium can be realized with the same performance characteristics of the power plant smaller sizes of the evaporator, or it can be exergeto be used with the same size with an evaporator generator a larger temperature ranges.
Abschließend sei noch erwähnt, dass zur exergetischen Ausbeutung eines großen Temperaturbereiches des Wärmeträgermediums, beispielsweise vom Eingangstemperaturwert bei 150°C bis auf 10 K über Umwelttemperatur oder und eines großen Volumenstromes mehrere SBP-Anlagen zu thermisch und strömungsmechanisch in Reihe und parallel geschalteten Anlagen gruppiert werden.Finally, it should be mentioned that for the exergetic exploitation of a large temperature range of the heat transfer medium, for example, from the input temperature value at 150 ° C to 10 K above ambient temperature or and a large volume flow several SBP systems are grouped thermally and fluidically in series and parallel systems.
Claims (5)
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
dadurch gekennzeichnet,
characterized,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08021689A EP2243934A1 (en) | 2008-12-13 | 2008-12-13 | Thermodynamic multi-phase method for gaining exergy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP08021689A EP2243934A1 (en) | 2008-12-13 | 2008-12-13 | Thermodynamic multi-phase method for gaining exergy |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2243934A1 true EP2243934A1 (en) | 2010-10-27 |
Family
ID=42635895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08021689A Withdrawn EP2243934A1 (en) | 2008-12-13 | 2008-12-13 | Thermodynamic multi-phase method for gaining exergy |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2243934A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109063227A (en) * | 2018-06-13 | 2018-12-21 | 中国农业大学 | A kind of multi-energy generating system equivalence * source model construction method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58106109A (en) * | 1981-12-18 | 1983-06-24 | Chiyoda Chem Eng & Constr Co Ltd | Power recovery method from LNG using a turbine |
US4760706A (en) * | 1986-04-23 | 1988-08-02 | Nasser Gamal E | Method and system for current generation |
DE4035870A1 (en) * | 1990-11-12 | 1992-05-14 | Priebe Klaus Peter | Work process and equipment - uses thermal energy from heat sources evaporating easily boiled medium in heat exchanger |
WO2004038218A1 (en) * | 2002-10-23 | 2004-05-06 | Viktor Vladimirovich Kushin | Gravitational steam power hydroelectric plant |
WO2006078419A1 (en) * | 2004-12-22 | 2006-07-27 | Hines, Garold, Paul | System and method for in-line geothermal and hydroelectric generation |
DE202006019285U1 (en) * | 2006-01-05 | 2007-03-22 | Schmid, Josef | Energy optimizing device for turbine has two different operating temperatures kept stable by full insulation covering condenser, heat pump and energy supply |
-
2008
- 2008-12-13 EP EP08021689A patent/EP2243934A1/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58106109A (en) * | 1981-12-18 | 1983-06-24 | Chiyoda Chem Eng & Constr Co Ltd | Power recovery method from LNG using a turbine |
US4760706A (en) * | 1986-04-23 | 1988-08-02 | Nasser Gamal E | Method and system for current generation |
DE4035870A1 (en) * | 1990-11-12 | 1992-05-14 | Priebe Klaus Peter | Work process and equipment - uses thermal energy from heat sources evaporating easily boiled medium in heat exchanger |
WO2004038218A1 (en) * | 2002-10-23 | 2004-05-06 | Viktor Vladimirovich Kushin | Gravitational steam power hydroelectric plant |
WO2006078419A1 (en) * | 2004-12-22 | 2006-07-27 | Hines, Garold, Paul | System and method for in-line geothermal and hydroelectric generation |
DE202006019285U1 (en) * | 2006-01-05 | 2007-03-22 | Schmid, Josef | Energy optimizing device for turbine has two different operating temperatures kept stable by full insulation covering condenser, heat pump and energy supply |
Non-Patent Citations (4)
Title |
---|
"Helmut Effenberger: Dampferzeuger", SPRINGER VERLAG |
ERNEUERBARE ENERGIEN, August 2008 (2008-08-01), pages 56 - 59 |
W. BEITZ; K.-H. KÜTTNER: "Dubbel", 1990, SPRINGER VERLAG |
W. BEITZ; K.-H. KÜTTNER: "Dubbel", 1990, SPRINGER VERLAG, article "Kraftwerken Zwangsdurchlaufkessel" |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109063227A (en) * | 2018-06-13 | 2018-12-21 | 中国农业大学 | A kind of multi-energy generating system equivalence * source model construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2188499B1 (en) | Method and device for converting thermal energy of a low temperature heat source into mechanical energy | |
EP1649146B1 (en) | Method for increasing the efficiency of a gas turbine system, and gas turbine system suitable therefor | |
EP2342458B1 (en) | Solar hybrid power plant with gas and steam power plant | |
DE69517623T2 (en) | Steam injection gas turbine system with high pressure steam turbine | |
WO2009027302A2 (en) | Method and device for converting thermal energy into mechanical energy | |
EP2368021B1 (en) | Waste heat steam generator and method for improved operation of a waste heat steam generator | |
EP1613841A1 (en) | Method and device for carrying out a thermodynamic cyclic process | |
DE19645322A1 (en) | Combined power plant with a once-through steam generator as a gas turbine cooling air cooler | |
DE2227435A1 (en) | Process for vaporizing a flowing cryogenic medium | |
WO2010054911A1 (en) | Method and device for resuperheating in a solar thermal power station with indirect evaporation | |
EP2399071B1 (en) | Feed water degasifier for a solar thermal power station | |
DE19916684A1 (en) | Heat transformation using vortex installation; involves guiding steam into vortex stream, to produce temperature zones, in which steam is evaporated and cooled to operate turbine | |
EP0158629B1 (en) | Steam cycle for a steam power plant | |
EP3232023B1 (en) | Method and installation for energy conversion of pressure energy to electrical energy | |
WO2007144285A2 (en) | Steam power plant | |
DE102009043720A1 (en) | Heat engine for performing solar energy conversion process, has expansion turbine isothermally operated, where heat transfer medium passes through guide blades and housing of turbine such that blades and housing function as heat exchanger | |
EP2243934A1 (en) | Thermodynamic multi-phase method for gaining exergy | |
WO2015003898A1 (en) | Pre-heating system and method with such a pre-heating system | |
WO2019001645A1 (en) | Power plant for generating electrical energy | |
EP0134431B1 (en) | Thermodynamic process approximating the ericsson cycle | |
DE890190C (en) | Steam cycle process with recompression | |
EP3728800B1 (en) | Power plant | |
DE102013223661B4 (en) | Method and device for energy conversion | |
EP2385223A1 (en) | Procedure for the increase of the efficiency of gas and steam turbine power plants | |
AT521050B1 (en) | Process for increasing energy efficiency in Clausius-Rankine cycle processes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
AKY | No designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20110701 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110428 |