EP2242931A1 - Circulation structure for a turbo compressor - Google Patents

Circulation structure for a turbo compressor

Info

Publication number
EP2242931A1
EP2242931A1 EP09711862A EP09711862A EP2242931A1 EP 2242931 A1 EP2242931 A1 EP 2242931A1 EP 09711862 A EP09711862 A EP 09711862A EP 09711862 A EP09711862 A EP 09711862A EP 2242931 A1 EP2242931 A1 EP 2242931A1
Authority
EP
European Patent Office
Prior art keywords
chambers
annular chamber
circulation structure
main flow
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09711862A
Other languages
German (de)
French (fr)
Other versions
EP2242931B1 (en
Inventor
Giovanni Brignole
Carsten Zscherp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP2242931A1 publication Critical patent/EP2242931A1/en
Application granted granted Critical
Publication of EP2242931B1 publication Critical patent/EP2242931B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/522Casings; Connections of working fluid for axial pumps especially adapted for elastic fluid pumps
    • F04D29/526Details of the casing section radially opposing blade tips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/164Sealings between pressure and suction sides especially adapted for elastic fluid pumps of an axial flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/685Inducing localised fluid recirculation in the stator-rotor interface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • Y10S415/914Device to control boundary layer

Definitions

  • the invention relates to a circulation structure for a turbocompressor according to the preamble of patent claim 1. Furthermore, the invention relates to a turbocompressor and an aircraft engine and a stationary gas turbine.
  • Circulation structures or recirculation structures for turbocompressors are known in the form of so-called “Casing Treatments” and "Hub Treatments".
  • the "Casing Treatments” and “Hub Treatments” mentioned circulation structures have the primary task to increase the aerodynamically stable operating range of the compressor by optimizing the surge margin.
  • An optimized surge margin allows higher compressor pressures and thus a higher compressor load.
  • the faults responsible for a local flow rupture and ultimately for pumping the compressor occur at the housing-side ends of the rotor blades of one or more compressor stages or at the hub-side, radially inner ends of the stator vanes, since in these regions the aerodynamic load in the compressor on the compressor highest.
  • By circulation structures the flow is stabilized in the region of the blade ends.
  • Stator-side circulation structures in the area of the housing-side ends of the blades are referred to as "casing treatments”.
  • Rotor-side circulation structures in the area of the hub-side ends of the guide vanes are referred to as "
  • a plurality of chambers which can be flowed through in the axial direction are positioned upstream of the or each annular chamber in the main flow direction of the main flow channel.
  • the circulation structure according to the invention therefore combines axially permeable chambers, which have no circumferential connection, with at least one annular chamber, which can be flowed through in the circumferential direction, wherein the or each annular chamber is positioned in the main flow direction downstream of the axially permeable chamber without circumferential connection.
  • a forming recirculation flow uses high-loss fluid in order to influence the inflow of rotor-side assemblies, wherein the geometric properties of the chambers, which can be flowed through in the axial direction, generate a counter-rotation without circumferential connection. Further flow obstruction areas are shifted into the annular chambers with circumferential connection.
  • the circulation structure according to the invention ensures very low losses due to its simplicity. Loss-producing, three-dimensional flow phenomena can be effectively inhibited. As a result, positive effects on the operating stability of the turbocompressor at part load and full load with an overall positive change in the efficiency, in particular at full load, can be coupled. The simplicity of the circulation structure is associated with low production costs. Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Exemplary embodiments of the invention will be explained in more detail with reference to the drawing, without being limited thereto. Showing:
  • FIG. 1 shows a partial longitudinal section through a compressor in the region of a housing-side circulation structure according to the invention according to an embodiment
  • FIG. 2 an enlarged detail of the representation of Fig. 1;
  • Fig. 3 the detail of Figure 2 in Axialblickraum.
  • FIG. 4 shows the detail of FIG. 2 in the radial direction
  • Fig. 19 the detail of Fig. 3 according to another variant.
  • the invention relates to a circulation structure for a turbocompressor, in particular for a compressor of a gas turbine, which can be designed as a "casing treatment” or as a "stroke treatment”.
  • a "casing treatment” formed in a stator housing which defines a main flow channel of the turbocompressor radially outward and at free blade ends of blades of a rotor-side Blade wreath connects.
  • FIGS. 1 to 4 show different views of a housing-side circulation structure 20 according to the invention, designed as a "casing treatment”, which is introduced into a stator-side housing 21 of a compressor of a gas turbine.
  • the housing 21 radially outwardly delimits a main flow passage 22, rotor blades 23 of a rotor blade ring 24 rotating in the main flow passage 22.
  • Radially inside the main flow channel 22 is bounded by a hub 25 of the rotor.
  • the circulation structure 20 comprises an annular chamber 26, which can be flowed through in the circumferential direction and is arranged concentrically to an axis of the compressor in the region of free blade ends of the rotor blades 24 of the rotor blade ring 24.
  • the annular chamber 26 adjoins radially to the main flow channel 22.
  • the annular chamber 26 allows a flow in the circumferential direction and thus has a peripheral connection.
  • the annular chamber 26 is formed as a circumferential groove, wherein inside the annular chamber 26 guide elements may be positioned for Strömungsssel.
  • the annular chamber 26 extends in the axial direction completely in the region of the free blade ends of the blades 23 of the blade ring 24.
  • the axial extent of the annular chamber 26 is characterized in FIG. 2 by the parameter b.
  • the radial extent of the annular chamber 26 is characterized by the parameter t.
  • An upstream edge of the annular chamber 26, as seen in the main flow direction, is indicated by e k and a downstream positioned edge of the annular chamber 26 by ak, as shown in FIG.
  • a plurality of axially permeable chambers 27 are positioned.
  • the chambers 27 which can be flowed through in the axial direction are formed as slots or axial grooves and are not connected to one another in the circumferential direction; the chambers 27 which can be flowed through in the axial direction therefore have no peripheral connection.
  • An edge of the chambers 27 positioned upstream in the main flow direction of the main flow channel 22 is identified in FIG. 4 by vk. 1, a downstream edge of the chambers 27 seen in the main flow direction of the main flow channel 22 is marked hk in FIG.
  • a suction-side edge of the chambers 27 is indicated by sk and a pressure-side edge by dk in FIG. 4, with FIGS. 3 and 4 showing a suction side 28 and a pressure side 29 of a blade 23 of the blade ring 24.
  • FIG. 2 shows with the parameter o the section of the chambers 27 which can be flowed through in the axial direction and which extends in the region of the free blade ends of the rotor blades 23 and thus overlaps the rotor blade rim 24.
  • the parameter v shows the portion of the axially permeable chambers 27, which extends completely upstream of the blade ring 24.
  • FIG. 2 illustrates the radial extension or depth of the chambers 27 which can be flowed through in the axial direction.
  • a contour of the chambers 27 adjoining the upstream edge vk is shown in FIG sloping.
  • a contiguous to the downstream edge hk contour of the chambers 27 is inclined relative to the radially outer contouring of the main flow channel 22 by the angle ß. Furthermore, according to FIG. 3, the chambers 27, which can be flowed through in the axial direction, are inclined relative to the radial direction by the angle .gamma. Viewed in the circumferential direction, the chambers 27, which can be flowed through in the axial direction, have the width c, wherein immediately adjacent chambers 27 have the spacing s in the circumferential direction.
  • Connections or orifices 30 of the chambers 27, which can be flowed through in the axial direction, into the main flow channel 22 are axially spaced or axially separated from a connection or mouth opening 31 of the annular chamber 26, wherein, according to FIG axial distance between these orifices 30 and 31 is characterized by the parameter a.
  • edges ak and ek of the annular chamber 26 as well as the edges vk, hk, dk and sk of the chambers 27 which can be flowed through in the axial direction and thus the entry surfaces thereof can be described by any curves or splines.
  • Edge surfaces of the annular chamber 26 adjoining these edges and of the chambers 27 which can be flowed through in the axial direction can be defined by generic Nurbs surfaces.
  • the geometry of each individual chamber 27 may differ from the other chambers 27. This applies in particular to the inclination angle ⁇ of the chambers 27, the circumferential distance s of the chambers 27 and the circumferential width c of the chambers 27.
  • edge edges ak and ek of the annular chamber 26 and edge surfaces or outer surfaces adjoining the edges vk, hk, dk and sk of the chambers 27 are generated by rotation of continuously differentiable curves.
  • these edge surfaces or outer surfaces are generated by a polyline, in FIG. 6 by a straight line and circle segments, and in FIG. 7 by simple geometric shapes, such as an ellipse and a rectangle.
  • FIG. 8 shows an embodiment with a contouring of the housing 21 to form a radial projection 32 or a radial recess to the main flow passage 22 in the region of the chambers 27 which can be flowed through in the axial direction.
  • the parameters ⁇ , ⁇ , h, t and b can assume any value.
  • the parameters o, v and a can assume any desired value, in particular to ensure an overlap of the chambers 27, which can be flowed through in the axial direction, with the free blade ends of the rotor blades 23 of FIG
  • Blade 24 the parameters o and v assume a value greater than zero have to. Furthermore, a pre-stretching of the chambers 27 which can be flowed through in the axial direction can thereby be realized upstream of an inlet edge of the rotor blades 23. For an axial separation of the axially permeable chambers 27 of the annular chamber 26 and for an axial separation of the corresponding orifice openings 30, 31, the parameter a must assume a value greater than zero.
  • FIGS. 9 to 15 show a different contouring of the suction-side edges sk and the pressure-side edges dk of the chambers 27 which can be flowed through in the axial direction.
  • edges sk and dk of the chambers 27, which can be flowed through in the axial direction are inclined relative to the axial direction.
  • the edges sk and dk of the chambers 27 which can be flowed through in the axial direction are bent in the circumferential direction, wherein in FIG. 15 the edges sk and dk of the chambers 27 are approximately tangential to the suction side and pressure side in the region of the downstream edge hk run of the blades 23.
  • Fig. 16 shows an embodiment of the invention with two annular chambers 26, both seen in the main flow direction of the flow channel 22, are positioned downstream of the axially permeable chambers 27.
  • FIG. 17 shows an embodiment of the invention in which the chambers 27 which can be flowed through in the axial direction are connected to the annular chamber 26 positioned downstream thereof via discrete connections 33. These discrete connections 33 can be actively closed and opened via corresponding control elements so as to set an active regulation of a flow passage between the annular chamber 26 and the chambers 27 which can be flowed through in the axial direction.
  • Fig. 18 shows an exemplary embodiment of the invention, in which the downstream edge ak of the annular chamber 26 has discrete projections 34, so as to increase the axial extent of the mouth opening 31 of the annular chamber 26 in sections.
  • FIG. 19 shows a contour of an edge surface or circumferential surface nw of the annular chamber 26 with discrete radial projections 35, which reduce the radial extent t of the annular chamber 26 in sections.
  • the invention can also be used when the turbocompressor has a tandem rotor with two directly successive blade rings and / or two directly successive guide blade rings.
  • the circulation structure according to the invention is used in turbocompressors, in particular compressors of a gas turbine designed as an aircraft engine or a stationary gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The invention relates to a circulation structure for a turbo compressor, in particular for a compressor of a gas turbine, comprising at least one annular chamber (26) that can be traversed in a circumferential direction, is concentric with a shaft of the turbo compressor in the region of the free blade ends of a blade ring (24) and radially borders a main flow channel (22). According to the invention, several chambers (27) that can be traversed in an axial direction are situated upstream of the or each annular chamber (26), when viewed from the main flow direction of the main flow channel (22).

Description

Zirkulationsstruktur für einen Turboverdichter Circulation structure for a turbocompressor
Die Erfindung betrifft eine Zirkulationsstruktur für einen Turboverdichter nach dem Oberbegriff des Patentanspruchs 1. Des Weiteren betrifft die Erfindung einen Turboverdichter sowie ein Flugtriebwerk und eine stationäre Gasturbine.The invention relates to a circulation structure for a turbocompressor according to the preamble of patent claim 1. Furthermore, the invention relates to a turbocompressor and an aircraft engine and a stationary gas turbine.
Zirkulationsstrukturen bzw. Rezirkulationsstrukturen für Turboverdichter sind in Form sogenannter "Casing Treatments" und "Hub Treatments" bekannt. Die "Casing Treatments" und "Hub Treatments" genannten Zirkulationsstrukturen haben primär die Aufgabe, den ae- rodynamisch stabilen Betriebsbereich des Verdichters durch eine Optimierung des Pumpgrenzabstandes zu erhöhen. Ein optimierter Pumpgrenzabstand ermöglicht höhere Verdichterdrücke und somit eine höhere Verdichterbelastung. Die für einen örtlichen Strömungsab- riss und letztendlich für das Pumpen des Verdichters verantwortlichen Störungen treten an gehäuseseitigen Enden der Laufschaufeln einer bzw. mehrerer Verdichterstufen bzw. an den nabenseitigen, radial innenliegenden Enden der Leitschaufeln auf, da in diesen Bereichen die aerodynamische Belastung im Verdichter am höchsten ist. Durch Zirkulationsstrukturen wird die Strömung im Bereich der Schaufelenden stabilisiert. Statorseitige Zir- kulationsstrukturen im Bereich der gehäuseseitigen Enden der Laufschaufeln bezeichnet man als "Casing Treatments". Rotorseitige Zirkulationsstrukturen im Bereich der nabensei- tigen Enden der Leitschaufeln bezeichnet man als "Hub Treatments".Circulation structures or recirculation structures for turbocompressors are known in the form of so-called "Casing Treatments" and "Hub Treatments". The "Casing Treatments" and "Hub Treatments" mentioned circulation structures have the primary task to increase the aerodynamically stable operating range of the compressor by optimizing the surge margin. An optimized surge margin allows higher compressor pressures and thus a higher compressor load. The faults responsible for a local flow rupture and ultimately for pumping the compressor occur at the housing-side ends of the rotor blades of one or more compressor stages or at the hub-side, radially inner ends of the stator vanes, since in these regions the aerodynamic load in the compressor on the compressor highest. By circulation structures, the flow is stabilized in the region of the blade ends. Stator-side circulation structures in the area of the housing-side ends of the blades are referred to as "casing treatments". Rotor-side circulation structures in the area of the hub-side ends of the guide vanes are referred to as "hub treatments".
Aus der DE 103 30 084 Al sind als "Casing Treatments" und "Hub Treatments" ausgebildete Strömungsstrukturen für einen Turboverdichter bekannt, die in Umfangsrichtung durchströmbare Ringkammern aufweisen. Die in Umfangsrichtung durchströmbaren Ring- kammern sind konzentrisch zu einer Achse des Turboverdichters im Bereich von freien Schaufelenden eines Laufschaufelkranzes oder eines Leitschaufelkranzes angeordnet, wobei die Ringkammern radial an einen Hauptströmungskanal des Turboverdichters angrenzen. Innerhalb der in Umfangsrichtung durchströmbaren Ringkammern können Leitelemente angeordnet sein. Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, eine neuartige Zirkulationsstruktur für einen Turboverdichter zu schaffen.DE 103 30 084 A1 discloses flow structures designed as "casing treatments" and "lift treatments" for a turbocompressor which have annular chambers through which flow is possible in the circumferential direction. The annular chambers, which can be flowed through in the circumferential direction, are arranged concentrically with respect to an axis of the turbocompressor in the region of free blade ends of a blade ring or of a stator ring, the annular chambers being radially adjacent to a main flow channel of the turbocompressor. Within the circumferentially permeable annular chambers guide elements can be arranged. On this basis, the present invention based on the problem to provide a novel circulation structure for a turbocompressor.
Dieses Problem wird dadurch gelöst, dass die eingangs genannte Zirkulationsstruktur für einen Turboverdichter durch die Merkmale des kennzeichnenden Teils des Patentanspruchs 1 weitergebildet ist.This problem is solved in that the above-mentioned circulation structure for a turbocompressor is further developed by the features of the characterizing part of patent claim 1.
Erfmdungsgemäß sind in Hauptströmungsrichtung des Hauptströmungskanals gesehen stromaufwärts der oder jeder Ringkammer mehrere in Axialrichtung durchströmbare Kammern positioniert.According to the invention, a plurality of chambers which can be flowed through in the axial direction are positioned upstream of the or each annular chamber in the main flow direction of the main flow channel.
Mit der hier vorliegenden Erfindung wird erstmals vorgeschlagen, in Hauptströmungsrichtung des Hauptströmungskanals gesehen stromaufwärts der oder jeder in Umfangsrichtung durchströmbaren Ringkammern mehrere in Axialrichtung durchströmbare Kammern anzu- ordnen. Die erfindungsgemäße Zirkulationsstruktur kombiniert demnach in Axialrichtung durchströmbare Kammern, die keine Umfangsverbindung aufweisen, mit mindestens einer Ringkammer, die in Umfangsrichtung durchströmbar ist, wobei die oder jede Ringkammer in Hauptströmungsrichtung gesehen stromabwärts der in Axialrichtung durchströmbaren Kammer ohne Umfangsverbindung positioniert ist. Hierdurch wird die Ausbildung eines Spaltwirbels in seiner Entstehungen pulsierend gehemmt. Eine sich ausbildende Rezirkula- tionsströmung nutzt verlustreiches Fluid, um die Zuströmung rotorseitiger Baugruppen zu beeinflussen, wobei die geometrischen Eigenschaften der in Axialrichtung durchströmbaren Kammern ohne Umfangsverbindung einen Gegendrall erzeugen. Weitere Strömungs- versperrungsgebiete werden in die Ringkammern mit Umfangsverbindung verlagert.With the present invention, it is proposed for the first time to arrange a plurality of chambers which can be flowed through in the axial direction upstream of the or each annular chamber through which flow can be made in the main flow direction of the main flow channel. The circulation structure according to the invention therefore combines axially permeable chambers, which have no circumferential connection, with at least one annular chamber, which can be flowed through in the circumferential direction, wherein the or each annular chamber is positioned in the main flow direction downstream of the axially permeable chamber without circumferential connection. As a result, the formation of a crevice vertebra is inhibited pulsating in its formation. A forming recirculation flow uses high-loss fluid in order to influence the inflow of rotor-side assemblies, wherein the geometric properties of the chambers, which can be flowed through in the axial direction, generate a counter-rotation without circumferential connection. Further flow obstruction areas are shifted into the annular chambers with circumferential connection.
Die erfindungsgemäße Zirkulationsstruktur gewährleistet aufgrund ihrer Einfachheit sehr niedrige Verluste. Verlusterzeugende, dreidimensionale Strömungsphänomene können effektiv gehemmt werden. Hierdurch können positive Effekte auf die Betriebsstabilität des Turboverdichters bei Teillast und Volllast mit einer insgesamt positiven Veränderung des Wirkungsgrads, insbesondere bei Volllast, gekoppelt werden. Die Einfachheit der Zirkulationsstruktur ist mit geringen Herstellkosten verbunden. Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausfuhrungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:The circulation structure according to the invention ensures very low losses due to its simplicity. Loss-producing, three-dimensional flow phenomena can be effectively inhibited. As a result, positive effects on the operating stability of the turbocompressor at part load and full load with an overall positive change in the efficiency, in particular at full load, can be coupled. The simplicity of the circulation structure is associated with low production costs. Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Exemplary embodiments of the invention will be explained in more detail with reference to the drawing, without being limited thereto. Showing:
Fig. 1 einen Teillängsschnitt durch einen Verdichter im Bereich einer erfindungsgemäßen, gehäuseseitigen Zirkulationsstruktur nach einem Ausführungsbeispiel;1 shows a partial longitudinal section through a compressor in the region of a housing-side circulation structure according to the invention according to an embodiment;
Fig. 2: ein vergrößertes Detail aus der Darstellung der Fig. 1; Fig. 3 : das Detail der Fig. 2 in Axialblickrichtung;Fig. 2: an enlarged detail of the representation of Fig. 1; Fig. 3: the detail of Figure 2 in Axialblickrichtung.
Fig. 4: das Detail der Fig. 2 in Radialblickrichtung;FIG. 4 shows the detail of FIG. 2 in the radial direction; FIG.
Fig. 5 bis 8: Teillängsschnitte durch Verdichter in Axialbauweise im Bereich einer erfindungsgemäßen, gehäuseseitigen Zirkulationsstruktur nach weiteren Ausführungsbeispielen; Fig. 9 bis 18: Darstellungen in Radialblickrichtung von Varianten erfindungsgemäßer, gehäuseseitiger Zirkulationsstrukturen; und5 to 8: partial longitudinal sections through compressors in axial construction in the region of a housing-side circulation structure according to the invention according to further exemplary embodiments; 9 to 18: representations in the radial direction of variants of inventive, housing-side circulation structures; and
Fig. 19: das Detail der Fig. 3 nach einer anderen Variante.Fig. 19: the detail of Fig. 3 according to another variant.
Die Erfindung betrifft eine Zirkulationsstruktur für einen Turboverdichter, insbesondere für einen Verdichter einer Gasturbine, die als "Casing Treatment" oder als "Hub Treatment" ausgebildet sein kann. Nachfolgend wird die Erfindung unter Bezugnahme auf Fig. 1 bis 19 an einer als "Casing Treatment" ausgebildeten Zirkulationsstruktur beschrieben, die in ein statorseitiges Gehäuse eingebracht ist, welches einen Hauptströmungskanal des Turboverdichters radial außen begrenzt und sich an freie Schaufelenden von Laufschaufeln eines ro- torseitigen Laufschaufelkranzes anschließt. Die erfindungsgemäße Zirkulationsstruktur ist jedoch analog auch als "Hub Treatment" einsetzbar, wobei dieselbe dann in eine rotorseiti- ge Nabe eingebracht ist, die den Hauptströmungskanal des Turboverdichters radial innen begrenzt und sich an freie Schaufelenden von Leitschaufeln eines statorseitigen Leitschaufelkranzes anschließt. Fig. 1 bis 4 zeigen unterschiedliche Ansichten einer erfindungsgemäßen, als "Casing Treatment" ausgebildeten, gehäuseseitigen Zirkulationsstruktur 20, die in ein statorseitiges Gehäuse 21 eines Verdichters einer Gasturbine eingebracht ist. Das Gehäuse 21 begrenzt radial außen einen Hauptströmungskanal 22, wobei im Hauptströmungskanal 22 rotorseiti- ge Laufschaufeln 23 eines Laufschaufelkranzes 24 rotieren. Radial innen wird der Hauptströmungskanal 22 von einer Nabe 25 des Rotors begrenzt.The invention relates to a circulation structure for a turbocompressor, in particular for a compressor of a gas turbine, which can be designed as a "casing treatment" or as a "stroke treatment". The invention will be described below with reference to FIGS. 1 to 19 on a "casing treatment" formed in a stator housing which defines a main flow channel of the turbocompressor radially outward and at free blade ends of blades of a rotor-side Blade wreath connects. However, the circulation structure according to the invention can also be used analogously as a "stroke treatment", wherein the same is then introduced into a rotor-side hub which radially inwardly delimits the main flow channel of the turbocompressor and adjoins free blade ends of guide vanes of a stator vane ring. FIGS. 1 to 4 show different views of a housing-side circulation structure 20 according to the invention, designed as a "casing treatment", which is introduced into a stator-side housing 21 of a compressor of a gas turbine. The housing 21 radially outwardly delimits a main flow passage 22, rotor blades 23 of a rotor blade ring 24 rotating in the main flow passage 22. Radially inside the main flow channel 22 is bounded by a hub 25 of the rotor.
Im Ausfuhrungsbeispiel der Fig. 1 bis 4 umfasst die Zirkulationsstruktur 20 eine in Um- fangsrichtung durchströmbare Ringkammer 26, die konzentrisch zu einer Achse des Ver- dichters im Bereich von freien Schaufelenden der Laufschaufeln 23 des Laufschaufelkranzes 24 angeordnet ist. Die Ringkammer 26 grenzt dabei radial an den Hauptströmungskanal 22 an. Die Ringkammer 26 erlaubt eine Durchströmung in Umfangsrichtung und verfugt demnach über eine Umfangsverbindung. Die Ringkammer 26 ist als Umfangsnut ausgebildet, wobei innerhalb der Ringkammer 26 Leitelemente zur Strömungsfuhrung positioniert sein können.In the exemplary embodiment of FIGS. 1 to 4, the circulation structure 20 comprises an annular chamber 26, which can be flowed through in the circumferential direction and is arranged concentrically to an axis of the compressor in the region of free blade ends of the rotor blades 24 of the rotor blade ring 24. The annular chamber 26 adjoins radially to the main flow channel 22. The annular chamber 26 allows a flow in the circumferential direction and thus has a peripheral connection. The annular chamber 26 is formed as a circumferential groove, wherein inside the annular chamber 26 guide elements may be positioned for Strömungsfuhrung.
Die Ringkammer 26 erstreckt sich in Axialrichtung gesehen vollständig im Bereich der freien Schaufelenden der Laufschaufeln 23 des Laufschaufelkranzes 24. Die Axialerstreckung der Ringkammer 26 ist dabei gemäß Fig. 2 durch den Parameter b gekennzeichnet. Die Radialerstreckung der Ringkammer 26 ist durch den Parameter t gekennzeichnet. Eine in Hauptströmungsrichtung gesehen stromaufwärts positionierte Kante der Ringkammer 26 ist gemäß Fig. 4 durch ek und eine stromabwärts positionierte Kante der Ringkammer 26 durch ak gekennzeichnet.The annular chamber 26 extends in the axial direction completely in the region of the free blade ends of the blades 23 of the blade ring 24. The axial extent of the annular chamber 26 is characterized in FIG. 2 by the parameter b. The radial extent of the annular chamber 26 is characterized by the parameter t. An upstream edge of the annular chamber 26, as seen in the main flow direction, is indicated by e k and a downstream positioned edge of the annular chamber 26 by ak, as shown in FIG.
Im Sinne der hier vorliegenden Erfindung sind in Hauptströmungsrichtung des Hauptströmungskanals 22 gesehen stromaufwärts der Ringkammer 26 mehrere in Axialrichtung durchströmbare Kammern 27 positioniert. Die in Axialrichtung durchströmbaren Kammern 27 sind als Schlitze bzw. Axialnuten ausgebildet und in Umfangsrichtung nicht miteinander verbunden, die in Axialrichtung durchströmbaren Kammern 27 verfugen demnach über keine Umfangsverbindung. Eine in Hauptströmungsrichtung des Hauptströmungskanals 22 gesehen stromaufwärts positionierte Kante der Kammern 27 ist in Fig. 4 mit vk gekenn- zeichnet, eine in Hauptströmungsrichtung des Hauptströmungskanals 22 gesehen stromab- wärtige Kante der Kammern 27 ist in Fig. 4 mit hk gekennzeichnet. Eine saugseitige Kante der Kammern 27 ist in Fig. 4 mit sk und eine druckseitige Kante mit dk gekennzeichnet, wobei Fig. 3 und 4 eine Saugseite 28 und eine Druckseite 29 einer Laufschaufel 23 des Laufschaufelkranzes 24 zeigen.For the purposes of the present invention, seen in the main flow direction of the main flow passage 22 upstream of the annular chamber 26 a plurality of axially permeable chambers 27 are positioned. The chambers 27 which can be flowed through in the axial direction are formed as slots or axial grooves and are not connected to one another in the circumferential direction; the chambers 27 which can be flowed through in the axial direction therefore have no peripheral connection. An edge of the chambers 27 positioned upstream in the main flow direction of the main flow channel 22 is identified in FIG. 4 by vk. 1, a downstream edge of the chambers 27 seen in the main flow direction of the main flow channel 22 is marked hk in FIG. A suction-side edge of the chambers 27 is indicated by sk and a pressure-side edge by dk in FIG. 4, with FIGS. 3 and 4 showing a suction side 28 and a pressure side 29 of a blade 23 of the blade ring 24.
Die in Axialrichtung durchströmbaren Kammern 27 sind in Axialrichtung gesehen abschnittsweise im Bereich der freien Schaufelenden der Laufschaufeln 23 des Laufschaufelkranzes 24 positioniert. So zeigt Fig. 2 mit dem Parameter o den Abschnitt der in Axial- richtung durchströmbaren Kammern 27, der sich im Bereich der freien Schaufelenden der Laufschaufeln 23 erstreckt und demnach den Laufschaufelkranz 24 überlappt. Der Parameter v zeigt hingegen den Abschnitt der in Axialrichtung durchströmbaren Kammern 27, der sich vollständig stromaufwärts des Laufschaufelkranzes 24 erstreckt.The chambers 27, which can be flowed through in the axial direction, are positioned in sections in the region of the free blade ends of the rotor blades 24 of the rotor blade ring 24 viewed in the axial direction. Thus, FIG. 2 shows with the parameter o the section of the chambers 27 which can be flowed through in the axial direction and which extends in the region of the free blade ends of the rotor blades 23 and thus overlaps the rotor blade rim 24. The parameter v, however, shows the portion of the axially permeable chambers 27, which extends completely upstream of the blade ring 24.
Fig. 2 verdeutlicht mit dem Parameter h die radiale Erstreckung bzw. Tiefe der in Axialrichtung durchströmbaren Kammern 27. Eine sich an die stromaufwärtige Kante vk anschließende Kontur der Kammern 27 ist gemäß Fig. 2 um den Winkel α gegenüber der radial äußeren Kontur des Hauptströmungskanals 22 schräggestellt.FIG. 2 illustrates the radial extension or depth of the chambers 27 which can be flowed through in the axial direction. A contour of the chambers 27 adjoining the upstream edge vk is shown in FIG sloping.
Eine sich an die stromabwärtige Kante hk anschließende Kontur der Kammern 27 ist gegenüber der radial äußeren Konturierung des Hauptströmungskanals 22 um den Winkel ß schräggestellt. Weiterhin sind gemäß Fig. 3 die in Axialrichtung durchströmbaren Kammern 27 gegenüber der Radialrichtung um den Winkel γ schräggestellt. In Umfangsrich- tung gesehen verfügen die in Axialrichtung durchströmbaren Kammern 27 über das Breite c, wobei in Umfangsrichtung unmittelbar benachbarte Kammern 27 den Abstand s aufweisen.A contiguous to the downstream edge hk contour of the chambers 27 is inclined relative to the radially outer contouring of the main flow channel 22 by the angle ß. Furthermore, according to FIG. 3, the chambers 27, which can be flowed through in the axial direction, are inclined relative to the radial direction by the angle .gamma. Viewed in the circumferential direction, the chambers 27, which can be flowed through in the axial direction, have the width c, wherein immediately adjacent chambers 27 have the spacing s in the circumferential direction.
Verbindungen bzw. Mündungsöffnungen 30 der in Axialrichtung durchströmbaren Kammern 27 in den Hauptströmungskanal 22 sind von einer Verbindung bzw. Mündungsöff- nung 31 der Ringkammer 26 axial beabstandet bzw. axial getrennt, wobei gemäß Fig. 2 der axiale Abstand zwischen diesen Mündungsöffhungen 30 und 31 durch den Parameter a gekennzeichnet ist.Connections or orifices 30 of the chambers 27, which can be flowed through in the axial direction, into the main flow channel 22 are axially spaced or axially separated from a connection or mouth opening 31 of the annular chamber 26, wherein, according to FIG axial distance between these orifices 30 and 31 is characterized by the parameter a.
An dieser Stelle sei darauf hingewiesen, dass die Kanten ak und ek der Ringkammer 26 sowie die Kanten vk, hk, dk, und sk der in Axialrichtung durchströmbaren Kammern 27 und damit die Eintrittsflächen derselben durch beliebige Kurven oder Splines beschrieben werden können. Sich an diese Kanten anschließende Randflächen der Ringkammer 26 sowie der in Axialrichtung durchströmbaren Kammern 27 können durch generische Nurbs- Flächen definiert sein. Die Geometrie jeder einzelnen Kammer 27 kann von den anderen Kammern 27 abweichen. Dies gilt insbesondere für die Neigungswinkel γ der Kammern 27, den Umfangsabstand s der Kammern 27 und die Umfangsbreite c der Kammern 27.It should be noted at this point that the edges ak and ek of the annular chamber 26 as well as the edges vk, hk, dk and sk of the chambers 27 which can be flowed through in the axial direction and thus the entry surfaces thereof can be described by any curves or splines. Edge surfaces of the annular chamber 26 adjoining these edges and of the chambers 27 which can be flowed through in the axial direction can be defined by generic Nurbs surfaces. The geometry of each individual chamber 27 may differ from the other chambers 27. This applies in particular to the inclination angle γ of the chambers 27, the circumferential distance s of the chambers 27 and the circumferential width c of the chambers 27.
Im Ausfuhrungsbeispiel der Fig. 1 bis 4 (siehe insbesondere Fig. 1 und 2) sind sich an die Kanten ak und ek der Ringkammer 26 und sich an die Kanten vk, hk, dk und sk der Kam- mern 27 anschließende Randflächen bzw. Außenflächen durch Rotation von stetig differenzierbaren Kurven generiert. Im Unterschied hierzu sind in Fig. 5 diese Randflächen bzw. Außenflächen von einer Polyline, in Fig. 6 aus einer Geraden und Kreissegmenten und in Fig. 7 von einfachen geometrischen Formen, wie einer Ellipse und einem Rechteck, generiert.In the exemplary embodiment of FIGS. 1 to 4 (see in particular FIGS. 1 and 2), edge edges ak and ek of the annular chamber 26 and edge surfaces or outer surfaces adjoining the edges vk, hk, dk and sk of the chambers 27 are generated by rotation of continuously differentiable curves. In contrast to this, in FIG. 5, these edge surfaces or outer surfaces are generated by a polyline, in FIG. 6 by a straight line and circle segments, and in FIG. 7 by simple geometric shapes, such as an ellipse and a rectangle.
Als Alternative zur Rotation kann auch eine lokale Translation zur Erzeugung der Randflächen bzw. Außenflächen der Kammern 26 sowie 27 angewendet werden. Fig. 8 zeigt eine Ausführungsform mit einer Konturierung des Gehäuses 21 unter Ausbildung eines radialen Vorsprungs 32 bzw. einer radialen Aussparung zum Hauptströmungskanal 22 im Bereich der in Axialrichtung durchströmbaren Kammern 27.As an alternative to rotation, a local translation for generating the edge surfaces or outer surfaces of the chambers 26 and 27 can also be used. FIG. 8 shows an embodiment with a contouring of the housing 21 to form a radial projection 32 or a radial recess to the main flow passage 22 in the region of the chambers 27 which can be flowed through in the axial direction.
Im Ausführungsbeispiel der Fig. 1 bis 4 können die Parameter α, ß, h, t und b einen beliebigen Wert annehmen. Ebenfalls können die Parameter o, v und a einen beliebigen Wert annehmen, wobei insbesondere zur Gewährleistung einer Überlappung der in Axialrich- tung durchströmbaren Kammern 27 mit den freien Schaufelenden der Laufschaufeln 23 desIn the embodiment of FIGS. 1 to 4, the parameters α, β, h, t and b can assume any value. Likewise, the parameters o, v and a can assume any desired value, in particular to ensure an overlap of the chambers 27, which can be flowed through in the axial direction, with the free blade ends of the rotor blades 23 of FIG
Laufschaufelkranzes 24 die Parameter o und v einen Wert von größer als Null annehmen müssen. Weiterhin kann hierdurch eine Vorstreckung der in Axialrichtung durchströmbaren Kammern 27 stromaufwärts einer Eintrittskante der Laufschaufeln 23 realisiert werden. Für eine axiale Trennung der in Axialrichtung durchströmbaren Kammern 27 von der Ringkammer 26 bzw. für eine axiale Trennung der entsprechenden Mündungsöffhungen 30, 31 muss der Parameter a einen Wert von größer als Null annehmen.Blade 24 the parameters o and v assume a value greater than zero have to. Furthermore, a pre-stretching of the chambers 27 which can be flowed through in the axial direction can thereby be realized upstream of an inlet edge of the rotor blades 23. For an axial separation of the axially permeable chambers 27 of the annular chamber 26 and for an axial separation of the corresponding orifice openings 30, 31, the parameter a must assume a value greater than zero.
Im Ausführungsbeispiel der Fig. 1 bis 4 (siehe insbesondere Fig. 4) erstrecken sich die Kanten sk und dk der in Axialrichtung durchströmbaren Kammern 27 gerade in Axialrichtung des Turboverdichters. Demgegenüber zeigen Fig. 9 bis 15 eine hiervon abweichende Konturierung der saugseitigen Kanten sk und der druckseitigen Kanten dk der in Axialrichtung durchströmbaren Kammern 27.In the exemplary embodiment of FIGS. 1 to 4 (see in particular FIG. 4), the edges sk and dk of the chambers 27 which can be flowed through in the axial direction extend straight in the axial direction of the turbocompressor. In contrast, FIGS. 9 to 15 show a different contouring of the suction-side edges sk and the pressure-side edges dk of the chambers 27 which can be flowed through in the axial direction.
So sind in Fig. 9 und 10 diese Kanten sk und dk der in Axialrichtung durchströmbaren Kammern 27 gegenüber der Axialrichtung schräggestellt. IQ Fig. 11 bis 14 sind die Kanten sk und dk der in Axialrichtung durchströmbaren Kammern 27 in Umfangsrichtung gebogen, wobei in Fig. 15 die Kanten sk und dk der Kammern 27 im Bereich der stromabwärti- gen Kante hk in etwa tangential zur Saugseite und Druckseite der Laufschaufeln 23 verlaufen.Thus, in FIGS. 9 and 10, these edges sk and dk of the chambers 27, which can be flowed through in the axial direction, are inclined relative to the axial direction. In FIGS. 11 to 14, the edges sk and dk of the chambers 27 which can be flowed through in the axial direction are bent in the circumferential direction, wherein in FIG. 15 the edges sk and dk of the chambers 27 are approximately tangential to the suction side and pressure side in the region of the downstream edge hk run of the blades 23.
Fig. 16 zeigt ein Ausführungsbeispiel der Erfindung mit zwei Ringkammern 26, die beide in Hauptströmungsrichtung des Strömungskanals 22 gesehen, stromabwärts der in Axialrichtung durchströmbaren Kammern 27 positioniert sind.Fig. 16 shows an embodiment of the invention with two annular chambers 26, both seen in the main flow direction of the flow channel 22, are positioned downstream of the axially permeable chambers 27.
Fig. 17 zeigt ein Ausführungsbeispiel der Erfindung, in welcher die in Axialrichtung durchströmbaren Kammern 27 mit der stromabwärts derselben positionierten Ringkammer 26 über diskrete Verbindungen 33 verbunden sind. Diese diskreten Verbindungen 33 können über entsprechende Steuerelemente aktiv geschlossen und geöffnet werden, um so eine aktive Regelung eines Strömungsübertritts zwischen der Ringkammer 26 und den in Axialrichtung durchströmbaren Kammern 27 einzustellen. Fig. 18 zeigt ein Ausfuhrungsbeispiel der Erfindung, bei welcher die stromabwärtige Kante ak der Ringkammer 26 diskrete Vorsprünge 34 aufweist, um so die Axialerstreckung der Mündungsöffnung 31 der Ringkammer 26 abschnittsweise zu vergrößern. Demgegenüber zeigt Fig. 19 eine fconturierang einer Randfläche bzw. Mantelfläche nw der Ringkammer 26 mit diskreten radialen Vorsprüngen 35, welche die radiale Erstreckung t der Ringkammer 26 abschnittsweise verringern.FIG. 17 shows an embodiment of the invention in which the chambers 27 which can be flowed through in the axial direction are connected to the annular chamber 26 positioned downstream thereof via discrete connections 33. These discrete connections 33 can be actively closed and opened via corresponding control elements so as to set an active regulation of a flow passage between the annular chamber 26 and the chambers 27 which can be flowed through in the axial direction. Fig. 18 shows an exemplary embodiment of the invention, in which the downstream edge ak of the annular chamber 26 has discrete projections 34, so as to increase the axial extent of the mouth opening 31 of the annular chamber 26 in sections. In contrast, FIG. 19 shows a contour of an edge surface or circumferential surface nw of the annular chamber 26 with discrete radial projections 35, which reduce the radial extent t of the annular chamber 26 in sections.
Die Erfindung kann auch dann zum Einsatz kommen, wenn der Turboverdichter einen Tandem-Rotor mit zwei unmittelbar aufeinander folgenden Laufschaufelkränzen und/oder zwei unmittelbar aufeinander folgenden Leitschaufelkränzen aufweist.The invention can also be used when the turbocompressor has a tandem rotor with two directly successive blade rings and / or two directly successive guide blade rings.
Vorzugsweise findet die erfindungsgemäße Zirkulationsstruktur bei Turboverdichtern, insbesondere Verdichtern einer als Flugtriebwerk ausgebildeten Gasturbine oder einer stationären Gasturbine Verwendung. Preferably, the circulation structure according to the invention is used in turbocompressors, in particular compressors of a gas turbine designed as an aircraft engine or a stationary gas turbine.

Claims

Patentansprüche claims
1. Zirkulationsstruktur für einen Turboverdichter, insbesondere für einen Verdichter ei- ner Gasturbine, mit mindestens einer in Umfangrichtung durchströmbaren Ringkammer (26), die konzentrisch zu einer Achse des Turboverdichters im Bereich von freien Schaufelenden eines Schaufelkranzes (24) angeordnet ist und die radial an einen Hauptströmungskanal (22) angrenzt, dadurch gekennzeichnet, dass in Hauptströmungsrichtung des Hauptströmungskanals (22) gesehen stromaufwärts der oder jeder Ringkammer (26) mehrere in Axialrichtung durchströmbare Kammern (27) positioniert sind.1. Circulation structure for a turbocompressor, in particular for a compressor of a gas turbine, with at least one circumferentially permeable annular chamber (26) which is arranged concentrically to an axis of the turbocompressor in the region of free blade ends of a blade ring (24) and radially a main flow channel (22) adjacent, characterized in that seen in the main flow direction of the main flow channel (22) upstream of the or each annular chamber (26) a plurality of axially permeable chambers (27) are positioned.
2. Zirkulationsstruktur nach Anspruch 1 , dadurch gekennzeichnet, dass die stromaufwärts der oder jeder Ringkammer (26) positionierten Kammern (27) als Schlitze oder Axialnuten ausgebildet sind, die in Umfangrichtung nicht miteinander verbunden sind.2. circulation structure according to claim 1, characterized in that the upstream of the or each annular chamber (26) positioned chambers (27) are formed as slots or axial grooves which are not connected to each other in the circumferential direction.
3. Zirkulationsstruktur nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die oder jede Ringkammer (26) als Umfangsnut ausgebildet ist, wobei vorzugsweise in mindestens einer Ringkammer Leitelemente positioniert sind.3. circulation structure according to claim 1 or 2, characterized in that the or each annular chamber (26) is formed as a circumferential groove, wherein preferably in at least one annular chamber guide elements are positioned.
4. Zirkulationsstruktur nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Verbindungen bzw. Mündungsöffhungen (30) der in Axialrichtung durchströmbaren Kammern (27) in den Hauptströmungskanal (22) von einer Verbindung bzw. Mündungsöffhung (31) der oder jeder Ringkammer (26) in den Hauptströmungskanal (22) axial beabstandet und damit axial getrennt sind. 4. circulation structure according to one of claims 1 to 3, characterized in that connections or Mündungsöffhungen (30) of the axially permeable chambers (27) in the main flow channel (22) of a connection or mouth opening (31) of the or each annular chamber ( 26) are axially spaced in the main flow channel (22) and thus axially separated.
5. Zirkulationsstruktur nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in Axialrichtung durchströmbaren Kammern (27) von der oder jeder Ringkammer (26) derart getrennt sind, dass keine Verbindung zwischen den in Axialrich- tung durchströmbaren Kammern (27) und der stromabwärts der Kammern (27) positionierten Ringkammer (26) besteht.5. Circulation structure according to one of claims 1 to 4, characterized in that the axially permeable chambers (27) of the or each annular chamber (26) are so separated that no connection between the axially permeable chambers in the axial direction (27) and the annular chamber (26) positioned downstream of the chambers (27).
6. Zirkulationsstruktur nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Axialrichtung durchströmbare Kammern (27) mit der stromabwärts der6. Circulation structure according to one of claims 1 to 4, characterized in that axially permeable chambers (27) with the downstream of the
Kammern (27) positionierten Ringkammer (26) über diskrete Verbindungen (33) verbunden sind.Chambers (27) positioned annular chamber (26) via discrete connections (33) are connected.
7. Zirkulationsstruktur nach Anspruch 56 dadurch gekennzeichnet, dass die diskreten Verbindungen (33) über Steuerungselemente aktiv geschlossen und geöffnet werden können.7. circulation structure according to claim 56, characterized in that the discrete connections (33) can be actively closed and opened via control elements.
8. Zirkulationsstruktur nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass sich die oder jede Ringkammer (26) in Axialrichtung gesehen vollständig im Bereich von freien Schaufelenden des Schaufelkranzes (24) erstreckt.8. Circulation structure according to one of claims 1 to 7, characterized in that the or each annular chamber (26) seen in the axial direction extends completely in the region of free blade ends of the blade ring (24).
9. Zirkulationsstruktur nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sich die in Axialrichtung durchströmbaren Kammern (27) in Axialrichtung gesehen abschnittsweise im Bereich von freien Schaufelenden des Schaufelkranzes (24) erstrecken.9. Circulation structure according to one of claims 1 to 8, characterized in that seen in the axial direction chambers (27) extend in the axial direction in sections in the range of free blade ends of the blade ring (24) extend.
10. Zirkulationsstruktur nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die in Axialrichtung durchströmbaren Kammern (27) in Hauptströmungsrichtung des Hauptströmungskanals (22) gesehen stromaufwärts von Eintrittskanten der Schaufeln des Schaufelkranzes (24) vorgestreckt sind.10. Circulation structure according to one of claims 1 to 9, characterized in that the chambers (27) which can be flowed through in the axial direction in the main flow direction of the main flow channel (22) are pre-stretched upstream of the inlet edges of the blades of the blade ring (24).
11. Turboverdichter, mit mindestens einer Zirkulationsstruktur nach einem oder mehreren der Ansprüche 1 bis 10.11. A turbocompressor, with at least one circulation structure according to one or more of claims 1 to 10.
12. Flugtriebwerk, mit einem Turboverdichter nach Anspruch 11.12. aircraft engine, with a turbocompressor according to claim 11.
13. Stationäre Gasturbine, mit einem Turboverdichter nach Anspruch 11. 13. Stationary gas turbine, with a turbocompressor according to claim 11.
EP09711862.4A 2008-02-21 2009-02-19 Circulation structure for a turbo compressor Active EP2242931B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008010283A DE102008010283A1 (en) 2008-02-21 2008-02-21 Circulation structure for a turbocompressor
PCT/DE2009/000230 WO2009103278A1 (en) 2008-02-21 2009-02-19 Circulation structure for a turbo compressor

Publications (2)

Publication Number Publication Date
EP2242931A1 true EP2242931A1 (en) 2010-10-27
EP2242931B1 EP2242931B1 (en) 2016-11-02

Family

ID=40673507

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09711862.4A Active EP2242931B1 (en) 2008-02-21 2009-02-19 Circulation structure for a turbo compressor

Country Status (6)

Country Link
US (1) US8915699B2 (en)
EP (1) EP2242931B1 (en)
CN (1) CN101946094A (en)
CA (1) CA2716417A1 (en)
DE (1) DE102008010283A1 (en)
WO (1) WO2009103278A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375984A1 (en) 2017-03-17 2018-09-19 MTU Aero Engines GmbH Casing treatment for a flow machine, method for producing a casing treatment and flow machine

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2929349B1 (en) * 2008-03-28 2010-04-16 Snecma CARTER FOR MOBILE WHEEL TURBOMACHINE WHEEL
US8678740B2 (en) * 2011-02-07 2014-03-25 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
FR2989742B1 (en) * 2012-04-19 2014-05-09 Snecma UPRIGHT CAVITY COMPRESSOR HOUSING OPTIMIZED
CN102817873B (en) * 2012-08-10 2015-07-15 势加透博(北京)科技有限公司 Ladder-shaped gap structure for gas compressor of aircraft engine
WO2014158236A1 (en) * 2013-03-12 2014-10-02 United Technologies Corporation Cantilever stator with vortex initiation feature
EP2818724B1 (en) 2013-06-27 2020-09-23 MTU Aero Engines GmbH Fluid flow engine and method
JP6111912B2 (en) * 2013-07-10 2017-04-12 ダイキン工業株式会社 Turbo compressor and turbo refrigerator
DE102013216392A1 (en) 2013-08-19 2015-02-19 MTU Aero Engines AG Device and method for controlling the temperature of a component of a turbomachine
EP2927503B1 (en) * 2014-04-03 2023-05-17 MTU Aero Engines AG Gas turbine compressor, aircraft engine and design method
CN105298923B (en) * 2014-06-17 2018-01-02 中国科学院工程热物理研究所 Slot type treated casing expands stabilization device after being stitched before compressor
US20160153465A1 (en) * 2014-12-01 2016-06-02 General Electric Company Axial compressor endwall treatment for controlling leakage flow therein
US10539154B2 (en) 2014-12-10 2020-01-21 General Electric Company Compressor end-wall treatment having a bent profile
US10047620B2 (en) 2014-12-16 2018-08-14 General Electric Company Circumferentially varying axial compressor endwall treatment for controlling leakage flow therein
US9926806B2 (en) 2015-01-16 2018-03-27 United Technologies Corporation Turbomachine flow path having circumferentially varying outer periphery
US10294862B2 (en) 2015-11-23 2019-05-21 Rolls-Royce Corporation Turbine engine flow path
US10487847B2 (en) 2016-01-19 2019-11-26 Pratt & Whitney Canada Corp. Gas turbine engine blade casing
DE102018116062A1 (en) * 2018-07-03 2020-01-09 Rolls-Royce Deutschland Ltd & Co Kg Structure assembly for a compressor of a turbomachine
US10914318B2 (en) * 2019-01-10 2021-02-09 General Electric Company Engine casing treatment for reducing circumferentially variable distortion
JP2021124069A (en) * 2020-02-06 2021-08-30 三菱重工業株式会社 Compressor housing, compressor with compressor housing, and turbocharger with compressor
DE102020203966A1 (en) 2020-03-26 2021-09-30 MTU Aero Engines AG Compressors for a gas turbine and a gas turbine
FR3109959B1 (en) * 2020-05-06 2022-04-22 Safran Helicopter Engines Turbomachine compressor comprising a fixed wall provided with a shaped treatment
CN113107903B (en) * 2021-05-06 2022-11-29 西北工业大学 Self-circulation casing treatment device capable of circumferentially deflecting counter-rotating compressor
US20230151825A1 (en) * 2021-11-17 2023-05-18 Pratt & Whitney Canada Corp. Compressor shroud with swept grooves
CN114857086A (en) * 2022-04-20 2022-08-05 新奥能源动力科技(上海)有限公司 Axial flow compressor and gas turbine
US11970985B1 (en) 2023-08-16 2024-04-30 Rolls-Royce North American Technologies Inc. Adjustable air flow plenum with pivoting vanes for a fan of a gas turbine engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1329480A (en) * 1918-08-01 1920-02-03 Earl H Sherbondy Turbo-compressor mounting
US4239452A (en) * 1978-06-26 1980-12-16 United Technologies Corporation Blade tip shroud for a compression stage of a gas turbine engine
US5984625A (en) * 1996-10-15 1999-11-16 California Institute Of Technology Actuator bandwidth and rate limit reduction for control of compressor rotating stall
US6231301B1 (en) * 1998-12-10 2001-05-15 United Technologies Corporation Casing treatment for a fluid compressor
US6527509B2 (en) * 1999-04-26 2003-03-04 Hitachi, Ltd. Turbo machines
US6290458B1 (en) * 1999-09-20 2001-09-18 Hitachi, Ltd. Turbo machines
CN1190597C (en) * 2000-03-20 2005-02-23 株式会社日立制作所 Turbine machine
US6585479B2 (en) * 2001-08-14 2003-07-01 United Technologies Corporation Casing treatment for compressors
RU2293221C2 (en) * 2002-02-28 2007-02-10 Мту Аэро Энджинз Гмбх Recirculation structure for turbine compressor
ATE325939T1 (en) * 2002-08-23 2006-06-15 Mtu Aero Engines Gmbh RECIRCULATION STRUCTURE FOR TURBO COMPRESSORS
DE10330084B4 (en) 2002-08-23 2010-06-10 Mtu Aero Engines Gmbh Recirculation structure for turbocompressors
GB2408546B (en) 2003-11-25 2006-02-22 Rolls Royce Plc A compressor having casing treatment slots
DE102004055439A1 (en) * 2004-11-17 2006-05-24 Rolls-Royce Deutschland Ltd & Co Kg Fluid flow machine with dynamic flow control
GB0600532D0 (en) * 2006-01-12 2006-02-22 Rolls Royce Plc A blade and rotor arrangement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009103278A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375984A1 (en) 2017-03-17 2018-09-19 MTU Aero Engines GmbH Casing treatment for a flow machine, method for producing a casing treatment and flow machine

Also Published As

Publication number Publication date
DE102008010283A1 (en) 2009-08-27
US8915699B2 (en) 2014-12-23
WO2009103278A1 (en) 2009-08-27
EP2242931B1 (en) 2016-11-02
CN101946094A (en) 2011-01-12
CA2716417A1 (en) 2009-08-27
US20100329852A1 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
EP2242931B1 (en) Circulation structure for a turbo compressor
EP2096260B1 (en) Turbo machine comprising rotor assemblies with small outlet flow deviation angle
EP2993357B1 (en) Radial compressor stage
EP2824282A1 (en) Gas turbine with high pressure turbine cooling system
CH710476B1 (en) Compressor with an axial compressor end wall device for controlling the leakage flow in this.
EP2947270B1 (en) Rotor series group
EP1723339A1 (en) Compressor of a gas turbine and gas turbine
DE102014012764A1 (en) Radial compressor stage
DE102009033593A1 (en) Engine blade with excessive leading edge load
EP2913479B1 (en) Tandem blades of a turbo-machine
EP3388626B1 (en) Contouring of a blade row platform
EP2913481B1 (en) Tandem blades of a turbo-machine
EP2514975B1 (en) Flow engine
DE102007012119A1 (en) Throttling degree dependent blade adjustment in turbomachines
EP1865148B1 (en) Flow machine with rotors with a high specific energy transfer
DE10205363A1 (en) gas turbine
EP3309359A1 (en) Blade assembly for a gas turbine engine
EP1531233B1 (en) Gasturbine with vanes having different radial curvature
EP3109407A1 (en) Stator device for a turbo engine with a housing device and multiple guide vanes
EP2913480B1 (en) Tandem blades of a turbo-machine
EP3369892B1 (en) Contouring of a blade row platform
DE102012207727B4 (en) centrifugal compressors
EP3043022B1 (en) Turbomachine with ring room extension and blade
WO2023180071A1 (en) Nozzle ring for a radial turbine, exhaust turbine, and turbocharger
DE102020117944A1 (en) Impeller assembly, pump, rocket engine and method of making an impeller assembly

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZSCHERP, CARSTEN

Inventor name: BRIGNOLE, GIOVANNI

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160822

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZSCHERP, CARSTEN

Inventor name: BRIGNOLE, GIOVANNI

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 842139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013301

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161102

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013301

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170202

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20170803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 842139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 16

Ref country code: GB

Payment date: 20240222

Year of fee payment: 16