EP2236532A1 - Polyisocyanates hydrophiles à nanoparticules modifiées - Google Patents

Polyisocyanates hydrophiles à nanoparticules modifiées Download PDF

Info

Publication number
EP2236532A1
EP2236532A1 EP09004630A EP09004630A EP2236532A1 EP 2236532 A1 EP2236532 A1 EP 2236532A1 EP 09004630 A EP09004630 A EP 09004630A EP 09004630 A EP09004630 A EP 09004630A EP 2236532 A1 EP2236532 A1 EP 2236532A1
Authority
EP
European Patent Office
Prior art keywords
polyisocyanates
polyisocyanate
modified
group
emulsifiers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09004630A
Other languages
German (de)
English (en)
Inventor
Arno Dr. Nennemann
Oliver Dr. Pyrlik
Hans-Josef Dr. Laas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Bayer MaterialScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG filed Critical Bayer MaterialScience AG
Priority to EP09004630A priority Critical patent/EP2236532A1/fr
Priority to PCT/EP2010/001806 priority patent/WO2010112156A1/fr
Priority to JP2012502493A priority patent/JP5547273B2/ja
Priority to ES10712002.4T priority patent/ES2524821T3/es
Priority to CN2010800240147A priority patent/CN102449015A/zh
Priority to KR1020117025623A priority patent/KR20120009474A/ko
Priority to EP10712002.4A priority patent/EP2414419B1/fr
Priority to US13/259,311 priority patent/US20120041142A1/en
Publication of EP2236532A1 publication Critical patent/EP2236532A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0828Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing sulfonate groups or groups forming them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/288Compounds containing at least one heteroatom other than oxygen or nitrogen
    • C08G18/289Compounds containing at least one heteroatom other than oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/703Isocyanates or isothiocyanates transformed in a latent form by physical means
    • C08G18/705Dispersions of isocyanates or isothiocyanates in a liquid medium
    • C08G18/706Dispersions of isocyanates or isothiocyanates in a liquid medium the liquid medium being water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/7806Nitrogen containing -N-C=0 groups
    • C08G18/7818Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
    • C08G18/7837Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing allophanate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2150/00Compositions for coatings
    • C08G2150/90Compositions for anticorrosive coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to novel nanoparticle-modified hydrophilic polyisocyanates, a process for their preparation and their use as starting components in the production of polyurethane plastics, especially as crosslinkers for water-soluble or -dispersible paint binders or binder components with isocyanate-reactive groups, and their use in coatings and adhesives.
  • water-dispersible polyisocyanates have gained importance in recent years for various fields of application.
  • nanoparticle-containing polyisocyanates which are obtained by modifying polyisocyanates with aminoalkoxysilanes or aminoalkoxysilanes and polydimethylsiloxanes and addition of nanoparticles.
  • hydrophilic polyisocyanates for use in aqueous dispersions are not described.
  • hydrophilic polyisocyanates are advantageous in order to ensure good incorporability and homogeneity of the coating.
  • the polyisocyanates modified in this way should be characterized by viscosity and agglomeration stability during storage with the lowest possible solvent content and should be easy to incorporate into aqueous dispersions. It was advantageous here to achieve low solvent contents. Furthermore, the goal was that from these polyisocyanates haze-free coatings in aqueous applications with advantageous properties by polyol or Polyaminvemetzung produce.
  • the invention furthermore relates to the polyisocyanates or polyisocyanate mixtures obtainable in this way and their use as starting components in the production of polyurethane plastics, in particular as crosslinking component for water-soluble or -dispersible paint binders or paint binder components.
  • Suitable hydrophilic polyisocyanates A) for the preparation of the nanoparticle-modified polyisocyanates according to the invention include starting polyisocyanates A1) and at least one ionic and / or nonionic emulsifier D).
  • Suitable starting polyisocyanates A1) for the preparation of the hydrophilic polyisocyanates A are polyisocyanates having aliphatically, cycloaliphatically, aromatically and / or araliphatically bonded isocyanate groups. These polyisocyanates are monomer-poor, obtainable by modification of the corresponding diisocyanates polyisocyanates with uretdione, isocyanurate, allophanate, biuret, Iminooxadiazindion- and / or Oxadiazintrion Modell as they are for example in J. Prakt. Chem. 336 (1994) 185-200 and EP-A 0 798 299 are exemplified or any mixtures of such polyisocyanates. "Low monomer” in this context means a residual content of monomeric starting isocyanates of less than 1% by weight.
  • the starting polyisocyanates A1) are preferably those polyisocyanates having exclusively aliphatically and / or cycloaliphatically bonded isocyanate groups, very particularly preferably polyisocyanates having an isocyanurate structure based on HDI, IPDI and / or 4,4'-diisocyanatodicyclohexylmethane.
  • any by phosgenation or by phosgene-free processes such as. B. by thermal urethane cleavage, accessible monomeric diisocyanates and triisocyanates.
  • Preferred diisocyanates are those the molecular weight range 140 to 400 with aliphatic, cycloaliphatic, araliphatic and / or aromatically bound isocyanate groups, such as. B.
  • the starting polyisocyanates A1) are preferably polyisocyanates of the type mentioned with exclusively aliphatically and / or cycloaliphatically bonded isocyanate groups having an average NCO functionality of from 2.0 to 5.0, preferably from 2.3 to 4.5 Content of isocyanate groups from 8.0 to 27.0 wt .-%, preferably 14.0 to 24.0 wt .-% and a content of monomeric diisocyanates of less than 1 wt .-%, preferably less than 0.5 wt .-% exhibit.
  • Suitable hydrophilic polyisocyanates A) for the preparation of the nanoparticle-modified polyisocyanates according to the invention comprise, in addition to the starting polyisocyanates A1), at least one ionic and / or nonionic emulsifier D).
  • nonionic emulsifiers D are, for example, reaction products D1) of the polyisocyanates A1) with hydrophilic polyether alcohols.
  • Suitable hydrophilic polyether alcohols are monohydric or polyhydric polyalkylene oxide polyether alcohols containing on average from 5 to 50 ethylene oxide units per molecule, as are obtainable in a manner known per se by alkoxylation of suitable starter molecules (see, for example, US Pat. Ullmann's Encyclopedia of Industrial Chemistry, 4th Edition, Volume 19, Verlag Chemie, Weinheim pp. 31-38 ).
  • suitable starter molecules may be, for example, any monohydric or polyhydric alcohols of molecular weight range 32 to 300, such as.
  • Alkylene oxides which are suitable for the alkoxylation reaction are, in particular, ethylene oxide and propylene oxide, which can be used in any desired order or even as a mixture in the alkoxylation reaction.
  • Suitable polyether alcohols are either pure polyethylene oxide polyether alcohols or mixed polyalkylene oxide polyethers whose alkylene oxide units consist of at least 70 mol%, preferably at least 80 mol% of ethylene oxide units.
  • Preferred polyalkylene oxide polyether alcohols are those prepared by using the above-mentioned monoalcohols having the molecular weight range of 32 to 150 as starter molecules.
  • Particularly preferred polyether alcohols are pure Polyethylenglycolmonomethyletheralkohole having on average 5 to 50, most preferably 5 to 25 ethylene oxide units.
  • nonionic emulsifiers D1 The preparation of such nonionic emulsifiers D1) is known in principle and, for example, in EP-B 0 206 059 and EP-B 0 540 985 described.
  • the preparation can be carried out by reacting the polyisocyanate components A1) with the mentioned palyether alcohols either in a separate reaction step with subsequent mixing with the polyisocyanate components A1) to be converted into a hydrophilic form or by mixing the polyisocyanate components A1) with an appropriate amount of Polyether alcohols is mixed, spontaneously forming a hydrophilic polyisocyanate according to the invention, which in addition to unreacted polyisocyanate A1) containing in situ from the polyether alcohol and a part of component A1) emulsifier D1).
  • the preparation of this type of nonionic emulsifiers D1) is generally carried out at temperatures of 40 to 180 ° C, preferably 50 to 150 ° C, while maintaining an NCO / OH equivalent ratio of 2: 1 to 400: 1, preferably from 4 : 1 to 140: 1.
  • nonionic emulsifiers D1 these are preferably prepared while maintaining an NCO / OH equivalent ratio of 2: 1 to 6: 1.
  • NCO / OH equivalent ratio of 2: 1 to 6: 1.
  • a high excess of isocyanate groups can be used within the broad range mentioned above.
  • reaction of the polyisocyanate component A1) with the stated hydrophilic polyether alcohols to form nonionic emulsifiers D1) can be carried out according to the method described in EP-B 0 959 087 described methods are also performed so that the urethane groups primarily formed by NCO / OH reaction at least partially, preferably at least 60 mol%, are further converted to allophanate groups.
  • reactants are reacted in the abovementioned NCO / OH equivalent ratio at temperatures of 40 to 180 ° C., preferably 50 to 150 ° C., generally in the presence of the catalysts mentioned in the cited patents, suitable for accelerating the allophanatization reaction ,
  • nonionic emulsifiers D are, for example, also reaction products of monomeric diisocyanates or diisocyanate mixtures with the abovementioned monohydric or polyhydric hydrophilic polyether alcohols, in particular with pure polyethylene glycol monomethyl ether alcohols which have on average 5 to 50, preferably 5 to 25, ethylene oxide units.
  • the preparation of such emulsifiers D2) is also known and, for example, in EP-B 0 486 881 described.
  • the polyetherurethane emulsifiers D2) but also after the mixing of the components in the proportions described above in the presence of suitable catalysts with the polyisocyanates A1) are reacted with allophanatization.
  • hydrophilic polyisocyanate mixtures according to the invention are also formed which, in addition to unreacted polyisocyanate A1), contain a further nonionic emulsifier type D3) with allophanate structure which forms in situ from the emulsifier D2) and a part of component A1).
  • the in situ preparation of such emulsifiers D3) is already known and, for example, in WO 2005/047357 described.
  • nanoparticle-modified hydrophilic polyisocyanate mixtures according to the invention may also contain emulsifiers with ionic, in particular anionic groups, instead of the nonionic emulsifiers described by way of example.
  • Such ionic emulsifiers D represent sulfonate-containing emulsifiers D4), as they are, for example, according to the method of WO 01/88006 by reaction of the polyisocyanates A1) with 2- (cyclohexylamino) ethanesulfonic acid and / or 3- (cyclohexylamino) amino) -propanesulfonic acid are obtainable.
  • This reaction is generally carried out at temperatures of 40 to 150 ° C, preferably 50 to 130 ° C, while maintaining an equivalent ratio of NCO groups to amino groups of 2: 1 to 400: 1, preferably from 4: 1 to 250 Instead of using tertiary amines to neutralize the sulfonic acid groups.
  • Suitable neutralization amines are, for example, tertiary monoamines, such as. Trimethylamine, triethylamine, tripropylamine, tributylamine, dimethylcyclohexylamine, diisopropylcthylamine, N-methylmorpholine, N-ethylmorpholine, N-methylpiperidine, or N-ethylpiperidine, tertiary diamines, such as. B. 1,3-bis (dimethylamino) -propane, 1,4-bis (dimethylamino) -butane or N, N'-dimethylpiperazine, or, although less preferably, alkanolamines, such as.
  • tertiary monoamines such as. Trimethylamine, triethylamine, tripropylamine, tributylamine, dimethylcyclohexylamine, diisopropylcthylamine, N-methylmorpholine, N-eth
  • the preparation of these ionic emulsifiers D4) can also be carried out either in a separate reaction step with subsequent mixing with the polyisocyanate components A1) to be converted into a hydrophilic form or in situ in these polyisocyanate components, with direct forms a hydrophilic polyisocyanate mixture according to the invention which, in addition to unreacted polyisocyanate A1), contains the emulsifier D4) which is formed in situ from the aminosulphonic acids, the neutralization amine and a part of components A1).
  • emulsifiers D are those which simultaneously contain ionic and nonionic structures in a molecule.
  • These emulsifiers D5) are, for. B. with tertiary amines, such as. B. the neutralization amines neutralized above Alkylphenolpolyglyklether phosphate and phosphonates or fatty alcohol polyglycol ether phosphates and phosphonates, as described for example in WO 97/31960 for the hydrophilization of polyisocyanates are described, or even with such tertiary amines neutralized alkylphenol polyglycol ether sulfates or fatty alcohol polyglycol ether sulfates.
  • the amount thereof or the amount of the ionic and / or nonionic components added to the polyisocyanates A1) in the in situ preparation of the emulsifier is generally such that the hydrophilic polyisocyanate mixtures of the invention obtained in the end an amount which ensures the dispersibility of the polyisocyanate mixture, preferably 1 to 50% by weight, more preferably 2 to 30% by weight, based on the total amount of components A1) and D,
  • R is hydrogen or a methyl group and p is 1 to 300.
  • the polyether units of the formula (II) are preferably bonded to the polyisocyanate skeleton via urethane groups.
  • the reaction of the starting polyisocyanates A1) with the ionic or nonionic emulsifiers D) can be carried out solvent-free or optionally in a suitable solvent which is inert toward isocyanate groups.
  • suitable solvents are, for example, the known conventional lacquer solvents, such as.
  • Suitable starting components B) for carrying out the process according to the invention are any alkoxysilanes of the formula (I) in which Q, Z, X, Y and a have the abovementioned meaning.
  • Preferred alkoxysilanes are those of the formula (I) in which the group X is an alkoxy or hydroxy group, more preferably methoxy, ethoxy, propoxy or butoxy.
  • Y in formula (I) preferably represents a linear or branched C 1 -C 4 -alkyl group, preferably methyl or ethyl.
  • Z in formula (I) is preferably a linear or branched C 1 -C 4 -alkylene group.
  • a in formula (I) is 1 or 2.
  • the group Q is preferably a group which reacts with isocyanates with urethane, urea or thiourea formation. These are preferably OH, SH or primary or secondary amino groups.
  • Preferred amino groups correspond to the formula -NHR 1 , where R 1 is hydrogen, a C 1 -C 12 -alkyl group or a C 6 -C 20 -aryl group or an aspartic acid ester radical of the formula R 2 OOC-CH 2 -CH (COOR 3 ) -, wherein R 2 , R 3 are preferably identical or different alkyl radicals, which may optionally also be branched, having 1 to 22 carbon atoms, preferably 1 to 4 carbon atoms. Particularly preferably, R 2 , R 3 are each methyl or ethyl radicals.
  • alkoxysilane-functional aspartic acid esters are as in US 5364955 described, obtainable in a conventional manner by addition of amino-functional alkoxysilanes to maleic or fumaric acid ester.
  • Amino-functional alkoxysilanes such as can be used as compounds of the formula (I) or for the preparation of the alkoxysilyl-functional aspartic esters, are, for example, 2-aminoethyldimethylmethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, aminopropylmethyldiethoxysilane.
  • aminoalkoxysilanes with secondary amino groups of formula (I) in B) also N-methyl-3-aminopropyltrimethoxysilane, N-methyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, bis (gamma-trimethoxysilylpropyl) amine, N Butyl-3-aminopropyltrimethoxysilane, N-butyl-3-aminopropyltriethoxysilane, N-ethyl-3-aminoisobutyltrimethoxysilane, N-ethyl-3-aminoisobutyltriethoxysilane or N-ethyl-3-aminoisobutylmethyldimethoxysilane, N-ethyl-3-aminoisobutylmethyldiethoxysilane and the analogous C C 2 -C 4 alkoxysilanes.
  • Suitable maleic or fumaric acid esters for preparing the aspartic acid esters are dimethyl maleate, diethyl maleate, di-n-butyl maleate and the corresponding fumaric esters.
  • Dimethyl maleate and diethyl maleate are particularly preferred.
  • Preferred aminosilane for preparing the aspartic acid esters is 3-aminopropyltrimethoxysilane or 3-aminopropyltriethoxysilane.
  • the reaction of the maleic or fumaric acid esters with the aminoalkylalkoxysilanes takes place within a temperature range from 0 to 100 ° C., the proportions generally being selected such that the starting compounds are used in a molar ratio of 1: 1.
  • the reaction may be carried out neat or in the presence of solvents, e.g. Dioxane be carried out. However, the incorporation of solvents is less preferred.
  • solvents e.g. Dioxane be carried out.
  • Preferred alkoxysilanes for modifying the polyisocyanates are secondary aminosilanes of the type described by way of example, particularly preferably aspartic acid esters of the type described above and di- or monoalkoxysilanes.
  • alkoxysilanes can be used individually but also in mixtures for modification.
  • the ratio of free NCO groups of the isocyanate to be modified to the NCO-reactive groups Q of the alkoxysilane of the formula (1) is preferably 1: 0.01 to 1: 0.75, particularly preferably 1: 0.01 to 1: 0.4, most preferably 1: 0.02 to 1: 0.2.
  • the reaction of aminosilane and polyisocyanate takes place at 0-100 ° C., preferably at 0-50 ° C., particularly preferably at 15-40 ° C.
  • an exothermic reaction can be controlled by cooling.
  • the free NCO groups can be modified even further after the silane modification of the polyisocyanates modified in this way.
  • This may, for example, be a partial or complete blockage of the free NCO groups with the blocking agents of polyurethane chemistry known to those skilled in the art (to block isocyanate groups, see DE-A 10226927 .
  • Suitable blocking agents are, for example, diethyl malonate, acetoacetic ester, acetone oxime, butanone oxime, methyl ethyl ketoxime, ⁇ -caprolactam, secondary amines and triazole and pyrazole derivatives such as, for example, 3,5-dimethylpyrazole, 1,2,4-triazole, dimethyl-1, 2,4-triazole, imidazole, diisopropylamine, dicyclohexylamine, N-tert-butyl-benzylamine cyclopentanone-2-carboxymethyl ester, cyclopentanone-2-carboxyethyl ester or any mixtures of these blocking agents.
  • Correspondingly blocked hydrophilic polyisocyanate mixtures can be used in combination with the abovementioned aqueous lacquer binders or lacquer binder components in the sense of aqueous one-component PU stoving systems.
  • the solvents which are known per se to the person skilled in the art and which are inert toward NCO groups can be added at any time.
  • these are solvents such as butyl acetate, methyl ethyl ketone, 1-methoxy-2-propyl acetate, ethyl acetate, toluene, xylene, solvent naphtha and mixtures thereof.
  • the optionally surface-modified nanoparticles are introduced. This can be done by simply stirring in the particles. However, it is also conceivable to use increased dispersing energy, as can be done, for example, by ultrasound, jet dispersion or high-speed stirrer according to the rotor-stator principle. Preferred is simple mechanical stirring.
  • the particles can in principle be used both in powder form and in the form of suspensions or dispersions in suitable, preferably isocyanate-inert solvents.
  • suitable, preferably isocyanate-inert solvents preferably isocyanate-inert solvents.
  • the use of the particles in the form of dispersions in organic solvents is preferred, the solvents preferably being inert toward isocyanates.
  • Suitable solvents for the organosols are methanol, ethanol, i-propanol, acetone, 2-butanone, methyl isobutyl ketone, and the solvents commonly used in polyurethane chemistry, such as butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, 2- Butanone, xylene, 1,4-dioxane, diacetone alcohol, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, methyl ethyl ketone or any mixtures of such solvents.
  • Preferred solvents here are the conventional per se in polyurethane chemistry solvents such as butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, 2-butanone, xylene, 1,4-dioxane, diacetone alcohol, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide , Methyl ethyl ketone or any mixtures of such solvents.
  • solvents such as butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, 2-butanone, xylene, 1,4-dioxane, diacetone alcohol, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide , Methyl ethyl ketone or any mixtures of such solvents.
  • solvents such as butyl acetate, 1-methoxy-2-propyl acetate, ethyl acetate, toluene, xylene, solvent naphtha (hydrocarbon mixture) and mixtures thereof.
  • Ketonic solvents such as methyl ethyl ketone are useful as a pro-solvent, but not as a solvent for the finished product.
  • inorganic oxides, mixed oxides, hydroxides, sulfates, carbonates, carbides, borides and nitrides of elements of main groups 11 to IV and / or elements of subgroups 1 to VIII of the Periodic Table, including the lanthanides are used as particles in C) .
  • Particularly preferred particles of component C) are silicon oxide, aluminum oxide, cerium oxide, zirconium oxide, niobium oxide and titanium oxide. Very particular preference is given to silica nanoparticles.
  • the particles used in C) preferably have average particle sizes determined by dynamic light scattering in dispersion as the Z average of 5 to 100 nm, more preferably 5 to 50 nm.
  • At least 75%, more preferably at least 90%, most preferably at least 95% of all the particles used in C) have the sizes defined above.
  • the particles are preferably used surface-modified. If the particles used in C) are to be surface-modified, they are reacted before incorporation into the modified polyisocyanate, for example with silanization. This method is known from the literature and, for example, in DE-A 19846660 or WO 03/44099 described.
  • the surfaces may be adsorptively / associatively modified by surfactants having head groups of appropriate interactions with the particle surfaces or block copolymers, such as in US Pat WO 2006/008120 respectively. Foerster, S. & Antonietti, M., Advanced Materials, 10, no. 3, (1998) 195 be modified.
  • Preferred surface modification is the silanization with alkoxysilanes and / or chlorosilanes. Very particular preference is given to silanes which, in addition to the alkoxy groups, bear inert alkyl or aralkyl radicals but no further functional groups.
  • Organosilicasol TM (Nissan Chemical America Corporation, USA), Nanobyk ® (3650 BYK Chemie, Wesel, Germany), Hanse XP21 / 1264 or Hanse XP21 / 1184 (Hanse Chemie, Hamburg, Germany), HIGH LINK ® NanO G (Clariant GmbH, Sulzbach, Germany).
  • Suitable organosols have a solids content of 10 to 60 wt .-%, preferably 15 to 50 wt .-% to.
  • the content of the particles used in C) (calculated as solids) based on the total system of modified polyisocyanate and particles is typically 1 to 70 wt .-%, preferably 5 to 60, particularly preferably 5 to 40 wt .-%, most preferably 5 to 20 wt .-%.
  • the solids content of the nanoparticle-containing PIC according to the invention is from 20 to 100% by weight, preferably from 60 to 100% by weight, particularly preferably from 80 to 100% by weight. A most preferred form gives 90 to 100%.
  • the content of the particles used in C) (calculated as solids) is based on the total system of modified polyisocyanate and particles ⁇ 30% by weight, preferably ⁇ 20% by weight, completely particularly preferably ⁇ 12% by weight.
  • the nanoparticle-modified, hydrophilic polyisocyanate mixtures according to the invention are transparent products of the abovementioned composition, which may also be present in solvents, such as, for example, As the above-mentioned conventional paint solvents, dissolved form may be present. As a rule, they can easily be converted into dispersion-stable dispersions by mere stirring in water without the use of high shear forces.
  • the excellent dispersibility is an advantage, in particular for the use of the nanoparticle-modified, hydrophilic polyisocyanates according to the invention in aqueous 2K PU paints, since in this way it is possible to obtain highly crosslinked coatings which are additionally distinguished by property improvements due to the inorganic nanoparticles.
  • the paint films obtainable using the nanoparticle-modified, hydrophilic polyisocyanate mixtures according to the invention are distinguished by high hardness and elasticity, excellent weathering and chemical resistance and high gloss.
  • the scratch resistance in clearcoats, and, surprisingly, the corrosion protection resistance in primers and monolayer topcoats are improved by inventive nanoparticle-modified, hydrophilic polyisocyanates in comparison to the hitherto known hydrophilic polyisocyanates.
  • the nanoparticle-modified hydrophilic polyisocyanate mixtures according to the invention assume the function of an emulsifier for the post-admixed fraction of non-hydrophilic polyisocyanates.
  • nanoparticle-modified hydrophilic polyisocyanate mixtures according to the invention are valuable starting materials for the production of polyurethane plastics by the isocyanate polyaddition process.
  • the invention further provides the nanoparticle-modified polyisocyanates obtainable according to the invention and also polyurethane systems which contain them.
  • the invention therefore also relates to coating compositions comprising the nanoparticle-modified hydrophilic polyisocyanate mixtures according to the invention.
  • the hydrophilic polyisocyanate mixtures are preferably used in the form of aqueous emulsions, in combination with water-dispersed polyhydroxyl compounds in unblocked form in the sense of aqueous two-component systems, in blocked with blocking agents of the above type in the sense of aqueous one-component systems implemented can be.
  • hydrophilic polyisocyanate mixtures according to the invention have been particularly preferred as crosslinkers for paint binders or paint binder components dissolved or dispersed in water with isocyanate-reactive groups, in particular alcoholic hydroxyl groups, used in the production of coatings using aqueous coating compositions based on such binders or binder components.
  • the combination of the crosslinker, optionally in emulsified form, with the binders or binder components can be carried out by simple stirring prior to processing the coating materials by any methods, by using known in the art mechanical aids or using two-component spray guns.
  • suitable reactants for the polyisocyanate mixtures according to the invention are all binders which are dissolved or dispersed in water and have isocyanate-reactive groups.
  • paint binders or paint binder components polyacrylates containing hydroxyl groups dissolved or dispersed in water, in particular those in the molecular weight range from 1,000 to 10,000 g / mol, which are valuable two-component binders with organic polyisocyanates as crosslinkers or dispersed in water, optionally urethane-modified, hydroxyl-containing polyester resins known in polyester and Alkydharzchemie Art.
  • the binders include, for example, water-dispersed polyurethanes or polyureas, which are crosslinkable with polyisocyanates due to the present in the urethane or urea groups active hydrogen atoms.
  • the hydrophilic polyisocyanate mixtures according to the invention are generally used in amounts corresponding to an equivalent ratio of NCO groups to NCO-reactive groups, in particular alcoholic hydroxyl groups, of 0.5: 1 to 2: 1 correspond.
  • hydrophilic polyisocyanate mixtures according to the invention may also be admixed in minor amounts with non-functional aqueous lacquer binders to achieve very specific properties, for example as an additive for adhesion improvement.
  • Suitable substrates for the aqueous coatings formulated with the aid of the hydrophilic polyisocyanate mixtures according to the invention are any desired substrates, such as, for example, As metal, wood, glass, stone, ceramic materials, concrete, hard and flexible plastics, textiles, leather and paper, which may optionally be provided with conventional primers prior to coating.
  • aqueous coating compositions where appropriate, the customary in the paint sector auxiliaries and admixtures such.
  • flow control agents color pigments, fillers, matting agents, inorganic or organic pigments, light stabilizers, coating additives, such as dispersing, leveling, thickening, defoaming and other aids, adhesives, fungicides, bactericides, stabilizers or inhibitors and catalysts or emulsifiers added can be, even at room temperature drying good paint properties.
  • solvents such as butyl acetate, ethyl acetate, 1-methoxy-2-propyl acetate, toluene, 2-butanone, xylene, 1,4-dioxane, diacetone alcohol, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide or any mixtures of such solvents be used.
  • Preferred solvents are butyl acetate, 2-ethyl acetate and diacetone alcohol.
  • the nanoparticle-modified, hydrophilic polyisocyanate mixtures according to the invention and the polyurethane systems based thereon are generally suitable for the production of polyurethane adhesives, polyurethane coatings and polyurethane coatings and also outstanding as crosslinkers for aqueous dispersion adhesives, leather and textile coatings or textile printing pastes , as AOX-free paper auxiliaries or as additives for mineral building materials, such as concrete or mortar compounds.
  • the application of the crHs according to polyurethane systems on substrates is carried out according to the usual in coating technology application method, such. As spraying, flooding, diving, spin or knife.
  • the viscosity was determined by means of a rotational viscometer "RotoVisco 1" from Haake, Germany in accordance with DIN EN ISO 3219 / A.3.
  • the color number determination (APHA) was carried out in accordance with DIN EN 1557.
  • Organosilicasol TM MEK-ST colloidal silica dispersed in methyl ethyl ketone, particle size 10-15 ⁇ m, 30 wt% SiO 2 , ⁇ 0.5 wt% H 2 O, ⁇ 5 mPa s Viscosity, Nissan Chemical America Corporation, USA.
  • Dynasylan ® 1189 N- (n-butyl) -3-aminopropyltrimethoxysilane, manufactured by Degussa / Evonik AG, Germany.
  • Surfynol ® 104 BC nonionic surface-active surfactant, from Air Products, Germany..
  • Baysilone® ® LA 200 defoamers / deaerators, from Borchers GmbH, Germany.
  • Baysilone® ® 3468 wetting agents, from Borchers GmbH, Germany.
  • Borchigen ® SN 95 wetting and dispersing additive, from Borchers GmbH, Germany.
  • Tinuvin ® 292, 1130 Light stabilizers, Ciba AG, Switzerland.
  • Dynasylan ® GLYMO 3-Glycidyloxypropyltrimothoxysilan, Degussa / Evonik AG, Germany..
  • Bayhydrol ® XP 2470 Water, OH-functional polyacrylate dispersion, as supplied 45% in water / solvent naphtha 100 / Dowanol PnB ®, neutralized with dimethylethanolamine / triethanolamine, Viscosity at 23 ° C. 2000 ⁇ 500 mPa.s, OH content about 3.9%, acid number about 10 mg KOH / g (Bayer MaterialScience AG / Leverkusen, Germany)
  • Bayhydrg ® XP 2645 Water- dilutable , OH-functional polyacrylate dispersion , approx. Approx. 43% in water / solvent naphtha 100 / Dowanol® PnB, neutralized with dimethylethanolamine, viscosity at 23 ° C 500 - 4,000 mPa ⁇ s, OH content approx. 4.5%, acid number about 9 mg KOH / g (Bayer MaterialScience AG / Leverkusen, Germany)
  • Bayhydrol ® XP 2695 Water- dilutable , OH-functional polyacrylate dispersion , approx. Approx. 41% in water / 1-butoxy-2-propanol, neutralized with triethanolamine / dimethylethanolamine (3: 1),, viscosity at 23 ° C approx. 2500 mPa ⁇ s, OH content about 5.0%, acid number about 9.4 mg KOH / g (Bayer MaterialScience AG / Leverkusen, Germany)
  • Particle sizes were determined by dynamic light scattering with an HPPS particle size analyzer (Malvern, Worcestershire, UK). The evaluation took place via the Dispersion Technology Software 4.10. In order to avoid multiple scattering, a highly diluted dispersion of the nanoparticles was prepared. One drop of a diluted Nanopartikeidispersion (about 0.1 - 10%) was placed in a cuvette containing about 2 ml of the same solvent as the dispersion, shaken and measured in HPPS analyzer at 20 to 25 ° C. As is well known to those skilled in the art, the relevant parameters of the dispersing medium - temperature, viscosity and refractive index - were previously entered into the software. In the case of organic solvents, a glass cuvette was used. As a result, an intensity-volume particle diameter curve and the Z-average particle diameter were obtained. Care was taken that the polydispersity index was ⁇ 0.5.
  • the resistance of a cured paint film was determined against various solvents.
  • the solvents are allowed to act on the paint surface for a certain time. Subsequently, it is judged visually and by manual palpation whether and which changes have occurred on the test area.
  • the paint film is usually on a glass plate, other substrates are also possible.
  • the test tube rack with the solvents xylene, 1-Methoxypropylacctat-2, ethyl acetate and acetone (see below) is placed on the paint surface so that the openings of the test tubes with the cotton wool pads rest on the film. Important is the resulting wetting of the paint surface by the solvent.
  • test tube rack is removed from the paint surface. Subsequently, the solvent residues are removed immediately by means of a saugtähigen paper or textile fabric. Immediately examine the test surface after careful scratching with the fingernail visually for changes.
  • the scratching is carried out with a hammer (weight: 800 g without handle), on the flat side of which steel wool 00 is fastened.
  • the hammer is carefully placed at right angles to the coated surface and without tilting and out without additional physical force in a track on the coating. There will be 10 double strokes.
  • the test surface is cleaned with a soft cloth and then the gloss measured according to DIN EN ISO 2813 across the direction of scratching. Only homogeneous areas may be measured. Usual information on scratching then in% gloss retention or loss relative to the initial gloss
  • Salt spray test according to DIN EN ISO 9227 NSS: "Corrosion tests in artificial atmospheres - saturated spray tests"
  • CAM 180 UV accelerated weathering according to SAE J2527 CAM 180, "Performance Based Standard for Accelerated Exposure of Automotive Exterior Materials Using a Controlled Irradiance Xenon-Arc Apparatus"
  • 870 g (4.50 eq) of the isocyanurate-group-containing polyisocyanate based on HDI described in the preparation of the starting polyisocyanate A) -1 are introduced at 100 ° C. under dry nitrogen and with stirring, within 30 minutes with 130 g (0.37 val) of a methanol-started monofunctional polyethylene oxide polyether having an average molecular weight of 350 and stirred at this temperature until the NCO content of the mixture has fallen after about 2 h to a value of 17.4%.
  • 890 g (4.60 eq) of the starting polyisocyanate in the preparation of A) are polyisocyanate containing isocyanurate groups described -1 based on HDI 12 hours at 80 ° C with 110 g of an emulsifier mixture consisting of 97 g of an ethoxylated Tridecylalkoholphosphats (Rhodafac ® RS-710, Rhodia) and 13 g of dimethylcyclohexylamine as the neutralization amine.
  • an emulsifier mixture consisting of 97 g of an ethoxylated Tridecylalkoholphosphats (Rhodafac ® RS-710, Rhodia) and 13 g of dimethylcyclohexylamine as the neutralization amine.
  • Isocyanurate group-containing polyisocyanates based on 1,6-diisocyanatohexane (HDI) with an NCO content of 23 ⁇ 0.5%, a content of monomeric HDI of ⁇ 0.2%, a color index ⁇ 40 and a viscosity of 1200 ⁇ 300 mPas (23 ° C).
  • HDI 1,6-diisocyanatohexane
  • N- (3-trimethoxysilylpropyl) aspartic acid diethyl ester was prepared according to the teaching US Pat. No. 5,364,955 Example 5, prepared by reacting equimolar amounts of 3-aminopropyltrimethoxysilane with diethyl maleate.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO C content 15.99%, viscosity 12,700 mPas (23 ° C.), particle size 54.2 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 13.22%, viscosity 7,400 mPas (23 ° C.), particle size 31.4 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 13.5%, viscosity 17,100 mPas (23 ° C.), particle size 46.7 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 12.55%, viscosity 16,300 mPas (23 ° C.), particle size 34.6 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 16.14%, viscosity 17,700 mPas (23 ° C.), particle size 68.9 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 13.16%, viscosity 7400 mPas (23 ° C.), particle size 21.4 nm, 10% SiO 2 content.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 12.3%, viscosity 8100 mPas (23 ° C.), particle size 32.8 nm, 10% SiO 2 content in the solid state.
  • a transparent, liquid polyisocyanate having the following characteristics was obtained: solids content 100% by weight, NCO content 15.9%, viscosity 3250 mPas (23 ° C.), particle size 40.2 nm, 10% SiO 2 content in the solid state.
  • the polyol mixture was presented in each case, added additives and Lichtschulzsch and mixed well with stirring. Subsequently, with demineralized water at outlet viscosity was set 40 sec (DIN 6 cup). After a day of rest (for venting), the polyisocyanate / solvent mixture were added, stirred well again and with demin. Water to spray viscosity 25 sec. (DIN 4 cup) set.
  • the paint was then applied to the prepared substrate using a Sata Digital RP 2 (spray nozzle 1.4 mm) spray gun in 1.5 cross recesses. After a drying time of 30 min. the paint was at 60 ° C for 30 min. dried. The dry layer thickness was in each case about 50-60 ⁇ m.
  • Example 13 Paint Technological Testing Clearcoats from Example 12
  • H2O DIN 6 20 s 15.0 20.7 11.0 14.7 11.4 20.1 10.0 10.1 14.7 14.7 Total Comp.1 532.3 499.5 504.9 475.6 510.7 542.8 495.3 462.5 528.6 499.5
  • the polyol mixture was presented in each case, additives and pigment weighed and mixed well with stirring.
  • the subsequent trituration of the pigment can be carried out in a powder mill or by means of a Skandex apparatus, grinding time 30-60 min. It was then adjusted with demineralized water to outlet viscosity 20 sec (DIN 6 cup). After a day of rest (for venting), the polyisocyanate / solvent mixture were added, stirred well again and with demin. Water to spray viscosity 25 sec. (DIN 4 cup) set.
  • the paint was then applied to the prepared substrate using a Sata Digital RP 2 (spray nozzle 1.4 mm) spray gun in 1.5 cross recesses. After a drying time of 30 min. the paint was at 60 ° C for 30 min. dried. The dry film thickness was about 50 ⁇ m in each case.
  • the paint technology tests were carried out after 7 days, the corrosion protection tests after 10 d RT storage.
  • Example 15 Coating Technique Testing Single coat topcoat white from example 14 - Corrosioas protection properties
  • topcoats containing nano-modified hydrophilic polyisocyanates can be processed without difficulty, the nanoparticles have no negative effect on film appearance and gloss.
  • nanomodified polyisocyanates according to the invention leads here in comparison to the unmodified to significantly lower damage patterns at the same load, and thus allows significantly longer exposure times until a corresponding damage pattern is present.
  • Example 17 Viscosity behavior of nanoparticle-modified hydrophobic or inventive, hydrophilic polyisocyanates
  • nanoparticles increase the viscosity in polymers.
  • nanoparticle-modified hydrophilic polyisocyanates according to the invention (Examples 2, 4, 6, 7) have a lower relative viscosity increase after modification of the starting polyisocyanates compared to analogous nanoparticle-modified polyisocyanates DE 10 2006 054289 (Comparative Examples 10 and 11).
  • a cloudy, partially crosslinked polyisocyanate containing precipitates with the following characteristics was obtained: solids content about 90% by weight, NCO content 14.5%, viscosity: not measurable, particle size 623 nm, 10% SiO 2 content in the solid state.
  • Comparative Example 18 shows that nanoparticles can not be prepared as stable, nanoparticulate dispersions in polyether-modified polyisocyanates alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
EP09004630A 2009-03-31 2009-03-31 Polyisocyanates hydrophiles à nanoparticules modifiées Withdrawn EP2236532A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP09004630A EP2236532A1 (fr) 2009-03-31 2009-03-31 Polyisocyanates hydrophiles à nanoparticules modifiées
PCT/EP2010/001806 WO2010112156A1 (fr) 2009-03-31 2010-03-23 Polyisocyanates hydrophiles modifiés par des nanoparticules
JP2012502493A JP5547273B2 (ja) 2009-03-31 2010-03-23 ナノ粒子変性親水性ポリイソシアネート
ES10712002.4T ES2524821T3 (es) 2009-03-31 2010-03-23 Poliisocianatos hidrófilos modificados con nanopartículas
CN2010800240147A CN102449015A (zh) 2009-03-31 2010-03-23 纳米颗粒改性的亲水性多异氰酸酯
KR1020117025623A KR20120009474A (ko) 2009-03-31 2010-03-23 나노입자-개질된 친수성 폴리이소시아네이트
EP10712002.4A EP2414419B1 (fr) 2009-03-31 2010-03-23 Polyisocyanates hydrophiles à nanoparticules modifiées
US13/259,311 US20120041142A1 (en) 2009-03-31 2010-03-23 Nanoparticle-modified hydrophilic polyisocyanates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09004630A EP2236532A1 (fr) 2009-03-31 2009-03-31 Polyisocyanates hydrophiles à nanoparticules modifiées

Publications (1)

Publication Number Publication Date
EP2236532A1 true EP2236532A1 (fr) 2010-10-06

Family

ID=40958087

Family Applications (2)

Application Number Title Priority Date Filing Date
EP09004630A Withdrawn EP2236532A1 (fr) 2009-03-31 2009-03-31 Polyisocyanates hydrophiles à nanoparticules modifiées
EP10712002.4A Not-in-force EP2414419B1 (fr) 2009-03-31 2010-03-23 Polyisocyanates hydrophiles à nanoparticules modifiées

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10712002.4A Not-in-force EP2414419B1 (fr) 2009-03-31 2010-03-23 Polyisocyanates hydrophiles à nanoparticules modifiées

Country Status (7)

Country Link
US (1) US20120041142A1 (fr)
EP (2) EP2236532A1 (fr)
JP (1) JP5547273B2 (fr)
KR (1) KR20120009474A (fr)
CN (1) CN102449015A (fr)
ES (1) ES2524821T3 (fr)
WO (1) WO2010112156A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019238742A1 (fr) * 2018-06-13 2019-12-19 Fresenius Medical Care Deutschland Gmbh Matière d'enrobage résistante aux températures pour des membranes à fibres creuses
EP4001333A1 (fr) * 2020-11-10 2022-05-25 tesa SE Préparation destinée à la fabrication de matières adhésives à réactivité latente
EP4144780A4 (fr) * 2021-06-11 2024-04-03 Wanhua Chemical Group Co Ltd Polyisocyanate modifié par acide sulfonique et procédé de préparation s'y rapportant

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236531A1 (fr) * 2009-03-31 2010-10-06 Bayer MaterialScience AG Nouveaux systèmes de revêtement 2K PUR aqueux pour une protection contre la corrosion améliorée
JP5770505B2 (ja) * 2011-03-25 2015-08-26 株式会社Adeka 水系ポリウレタン樹脂用ウレタンプレポリマー組成物及びこれを含有してなる水系ポリウレタン樹脂組成物
KR101268414B1 (ko) 2011-03-30 2013-05-28 주식회사 스노젠 불소 발수제용 친수성 블록화 이소시아네이트 가교제 조성물 및 그 제조방법
JP6247492B2 (ja) * 2012-11-06 2017-12-13 ダウ グローバル テクノロジーズ エルエルシー 水性皮革コーティング組成物および皮革をコーティングするための方法
CN102925032B (zh) * 2012-11-14 2015-03-18 长江水利委员会长江科学院 一种大坝混凝土表面抗泄水冲磨涂料及其涂刷方法
JP5696735B2 (ja) * 2013-03-25 2015-04-08 日油株式会社 ウレタン硬化性組成物
CN104448232B (zh) 2013-09-13 2017-12-15 万华化学集团股份有限公司 一种氨基磺酸改性的多异氰酸酯及其制备方法和用途
CN103626956B (zh) * 2013-11-22 2016-03-30 深圳市新纶科技股份有限公司 一种改性多异氰酸酯、水分散性交联剂及其制备方法
EP3161034A1 (fr) * 2014-06-24 2017-05-03 BYK-Chemie GmbH Systèmes bi- ou multicomposants à base de polyuréthane à tendance latente à l'épaississement
AU2015337050B2 (en) * 2014-10-22 2019-10-10 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Two-component siloxane-based coatings containing polymers with urea linkages and terminal alkoxysilanes
WO2016209063A2 (fr) * 2015-06-25 2016-12-29 고려대학교 산학협력단 Structure réglable de densité moyenne et procédé de modification de matériau et de liaison sélective faisant intervenir celle-ci
JP6633218B2 (ja) * 2016-09-23 2020-01-22 旭化成株式会社 ポリイソシアネート組成物、ブロックポリイソシアネート組成物、コーティング組成物、水性コーティング組成物、及びコーティング基材
JP6332823B1 (ja) * 2017-10-26 2018-05-30 太陽精機株式会社 湿気硬化性ポリウレタンホットメルト接着剤及びその製造方法
WO2020109189A1 (fr) * 2018-11-30 2020-06-04 Covestro Deutschland Ag Polyisocyanate modifié
CN111253552B (zh) 2018-11-30 2023-08-22 科思创德国股份有限公司 改性聚异氰酸酯
CN109988495B (zh) * 2019-03-29 2021-10-26 华南理工大学 纳米材料改性水性多异氰酸酯固化剂及制备与应用
CN111978509B (zh) * 2019-05-24 2022-04-12 旭化成株式会社 多异氰酸酯组合物、涂料组合物和涂膜
KR102504788B1 (ko) 2019-10-14 2023-02-27 삼성에스디아이 주식회사 양자점, 이를 포함하는 경화성 조성물, 상기 조성물을 이용하여 제조된 경화막 및 상기 경화막을 포함하는 컬러필터
US20210403678A1 (en) * 2020-06-24 2021-12-30 Evonik Operations Gmbh Use of long-chain phosphoric acid esters in aqueous polyurethane dispersions
CN116209692A (zh) * 2020-09-30 2023-06-02 科思创德国股份有限公司 改性聚异氰酸酯
EP4001332A1 (fr) * 2020-11-18 2022-05-25 Covestro Deutschland AG Polyisocyanate modifié
CN114517050A (zh) * 2020-11-19 2022-05-20 广东华润涂料有限公司 木器用封闭底漆和含有由该封闭底漆形成的封闭底漆层的制品
EP4116349A1 (fr) 2021-07-07 2023-01-11 Covestro Deutschland AG Polyisocyanates comportant des structures de silane et de thioallophanate rendues hydrophiles
CN116445062A (zh) * 2023-02-03 2023-07-18 青岛爱尔家佳新材料股份有限公司 一种高弹耐候水性聚脲面漆及其制备方法

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482721A (en) 1978-03-21 1984-11-13 Bayer Aktiengesellschaft 1,2,4-Triazole-blocked polyisocyanates as cross-linkers for lacquer binders
EP0159117A1 (fr) 1984-02-29 1985-10-23 The Baxenden Chemical Company Limited Isocyanates bloqués
EP0048688B1 (fr) 1980-08-27 1986-04-02 Cables Cortaillod S.A. Procédé pour détecter optiquement et/ou mesurer une déformation et/ou un déplacement d'un objet ou partie d'objet, dispositif pour sa mise en oeuvre et application du procédé
EP0206059B1 (fr) 1985-06-15 1992-03-11 Bayer Ag Composition de polyisocyanate dispersible dans l'eau et son utilisation comme agent additif pour adhésifs aqueux
EP0566953A1 (fr) 1992-04-24 1993-10-27 Bayer Ag Compositions de revêtement aqueuses pour des vernis au four élastiques
EP0576952A2 (fr) 1992-07-03 1994-01-05 Bayer Ag Compositions dispersables de polyisocyanates solubles dans l'eau et leur utilisation dans des vernis au four
US5364955A (en) 1992-11-06 1994-11-15 Bayer Aktiengesellschaft Compounds containing alkoxysilane and amino groups
EP0540985B1 (fr) 1991-11-07 1996-01-03 Bayer Ag Mélanges de polyisocyanates dispersibles dans l'eau
EP0744423A1 (fr) 1995-05-26 1996-11-27 Hüls Aktiengesellschaft Polyisocyanates bloqués ainsi qu'un procédé pour leur préparation
US5587502A (en) * 1995-06-02 1996-12-24 Minnesota Mining & Manufacturing Company Hydroxy functional alkoxysilane and alkoxysilane functional polyurethane made therefrom
EP0486881B1 (fr) 1990-11-20 1997-02-05 BASF Aktiengesellschaft Composition non-aqueuse de polyisocyanate
WO1997012924A1 (fr) 1995-10-05 1997-04-10 Baxenden Chemicals Limited Polyisocyanates bloques capables de se disperser dans l'eau
WO1997031960A1 (fr) 1996-02-29 1997-09-04 Rhodia Chimie Compositions a base d'isocyanate, leur procede d'utilisation, leur utilisation pour realiser des revetements et revetements ainsi obtenus
EP0798299A1 (fr) 1996-03-26 1997-10-01 Bayer Ag Trimères d'isocyanate, mélanges de trimères d'isocyanate, leur préparation et utilisation
EP0959087A1 (fr) 1998-05-22 1999-11-24 Bayer Aktiengesellschaft Polyisocyanates dispersables dans l'eau modifiés par un polyéther
DE19846660A1 (de) 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Hochtemperaturbeständige polymerisierbare Metalloxidpartikel
DE19914884A1 (de) * 1999-04-01 2000-10-05 Bayer Ag Polyurethan-Dispersionen mit Alkoxysilan-Endgruppen für Glasfaserschlichten
WO2001088006A1 (fr) 2000-05-18 2001-11-22 Bayer Aktiengesellschaft Polyisocyanates modifies
WO2003044099A1 (fr) 2001-11-23 2003-05-30 Deutsche Amphibolin-Werke Von Robert Murjahn Gmbh & Co. Kg Matiere de revetement contenant des nanoparticules, utilisation de cette matiere et procede de production de revetements
DE10226927A1 (de) 2002-06-17 2003-12-24 Bayer Ag Blockierte Polyisocyanate
WO2005047357A2 (fr) 2003-10-27 2005-05-26 Basf Aktiengesellschaft Isocyanates emulsifiables dans l'eau presentant des proprietes ameliorees
WO2006008120A1 (fr) 2004-07-16 2006-01-26 Alberdingk Boley Gmbh Dispersion aqueuse de liant comportant des nanoparticules, et son procede de production et d'utilisation
EP1923412A1 (fr) * 2006-11-17 2008-05-21 Bayer MaterialScience AG Polyisocyanate modifié par nano-particules

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043433A1 (de) * 2000-09-04 2002-03-21 Bayer Ag Wäßrige 2-K-PUR-Systeme
DE102005053678A1 (de) * 2005-11-10 2007-05-16 Bayer Materialscience Ag Hydrophile Polyisocyanatgemische

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482721A (en) 1978-03-21 1984-11-13 Bayer Aktiengesellschaft 1,2,4-Triazole-blocked polyisocyanates as cross-linkers for lacquer binders
EP0048688B1 (fr) 1980-08-27 1986-04-02 Cables Cortaillod S.A. Procédé pour détecter optiquement et/ou mesurer une déformation et/ou un déplacement d'un objet ou partie d'objet, dispositif pour sa mise en oeuvre et application du procédé
EP0159117A1 (fr) 1984-02-29 1985-10-23 The Baxenden Chemical Company Limited Isocyanates bloqués
EP0206059B1 (fr) 1985-06-15 1992-03-11 Bayer Ag Composition de polyisocyanate dispersible dans l'eau et son utilisation comme agent additif pour adhésifs aqueux
EP0486881B1 (fr) 1990-11-20 1997-02-05 BASF Aktiengesellschaft Composition non-aqueuse de polyisocyanate
EP0540985B1 (fr) 1991-11-07 1996-01-03 Bayer Ag Mélanges de polyisocyanates dispersibles dans l'eau
EP0566953A1 (fr) 1992-04-24 1993-10-27 Bayer Ag Compositions de revêtement aqueuses pour des vernis au four élastiques
EP0576952A2 (fr) 1992-07-03 1994-01-05 Bayer Ag Compositions dispersables de polyisocyanates solubles dans l'eau et leur utilisation dans des vernis au four
US5364955A (en) 1992-11-06 1994-11-15 Bayer Aktiengesellschaft Compounds containing alkoxysilane and amino groups
EP0744423A1 (fr) 1995-05-26 1996-11-27 Hüls Aktiengesellschaft Polyisocyanates bloqués ainsi qu'un procédé pour leur préparation
US5587502A (en) * 1995-06-02 1996-12-24 Minnesota Mining & Manufacturing Company Hydroxy functional alkoxysilane and alkoxysilane functional polyurethane made therefrom
WO1997012924A1 (fr) 1995-10-05 1997-04-10 Baxenden Chemicals Limited Polyisocyanates bloques capables de se disperser dans l'eau
WO1997031960A1 (fr) 1996-02-29 1997-09-04 Rhodia Chimie Compositions a base d'isocyanate, leur procede d'utilisation, leur utilisation pour realiser des revetements et revetements ainsi obtenus
EP0798299A1 (fr) 1996-03-26 1997-10-01 Bayer Ag Trimères d'isocyanate, mélanges de trimères d'isocyanate, leur préparation et utilisation
EP0959087A1 (fr) 1998-05-22 1999-11-24 Bayer Aktiengesellschaft Polyisocyanates dispersables dans l'eau modifiés par un polyéther
EP0959087B1 (fr) 1998-05-22 2003-10-15 Bayer Aktiengesellschaft Polyisocyanates dispersables dans l'eau modifiés par un polyéther
DE19846660A1 (de) 1998-10-09 2000-04-13 Inst Oberflaechenmodifizierung Hochtemperaturbeständige polymerisierbare Metalloxidpartikel
DE19914884A1 (de) * 1999-04-01 2000-10-05 Bayer Ag Polyurethan-Dispersionen mit Alkoxysilan-Endgruppen für Glasfaserschlichten
WO2001088006A1 (fr) 2000-05-18 2001-11-22 Bayer Aktiengesellschaft Polyisocyanates modifies
WO2003044099A1 (fr) 2001-11-23 2003-05-30 Deutsche Amphibolin-Werke Von Robert Murjahn Gmbh & Co. Kg Matiere de revetement contenant des nanoparticules, utilisation de cette matiere et procede de production de revetements
DE10226927A1 (de) 2002-06-17 2003-12-24 Bayer Ag Blockierte Polyisocyanate
WO2005047357A2 (fr) 2003-10-27 2005-05-26 Basf Aktiengesellschaft Isocyanates emulsifiables dans l'eau presentant des proprietes ameliorees
WO2006008120A1 (fr) 2004-07-16 2006-01-26 Alberdingk Boley Gmbh Dispersion aqueuse de liant comportant des nanoparticules, et son procede de production et d'utilisation
EP1923412A1 (fr) * 2006-11-17 2008-05-21 Bayer MaterialScience AG Polyisocyanate modifié par nano-particules
DE102006054289A1 (de) 2006-11-17 2008-05-21 Bayer Materialscience Ag Nanopartikelmodifizierte Polyisocyanate

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. ULLMANNS: "Eneyclopädie der technischen Chemie", vol. 19, VERLAG CHEMIE, pages: 31 - 38
FOERSTER, S.; ANTONIETTI, M., ADVANCED MATERIALS, vol. 10, no. 3, 1998, pages 195
J. PRAKT. CHEM., vol. 336, 1994, pages 185 - 200

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019238742A1 (fr) * 2018-06-13 2019-12-19 Fresenius Medical Care Deutschland Gmbh Matière d'enrobage résistante aux températures pour des membranes à fibres creuses
US11878275B2 (en) 2018-06-13 2024-01-23 Fresenius Medical Care Deutschland Gmbh Temperature-resistant potting material for hollow fiber membranes
EP4001333A1 (fr) * 2020-11-10 2022-05-25 tesa SE Préparation destinée à la fabrication de matières adhésives à réactivité latente
EP4144780A4 (fr) * 2021-06-11 2024-04-03 Wanhua Chemical Group Co Ltd Polyisocyanate modifié par acide sulfonique et procédé de préparation s'y rapportant

Also Published As

Publication number Publication date
KR20120009474A (ko) 2012-01-31
JP2012522078A (ja) 2012-09-20
EP2414419B1 (fr) 2014-10-01
US20120041142A1 (en) 2012-02-16
JP5547273B2 (ja) 2014-07-09
EP2414419A1 (fr) 2012-02-08
WO2010112156A1 (fr) 2010-10-07
ES2524821T3 (es) 2014-12-12
CN102449015A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
EP2414419B1 (fr) Polyisocyanates hydrophiles à nanoparticules modifiées
EP2414415B1 (fr) Nouveaux systèmes de revêtement 2K PUR aqueux pour une protection contre la corrosion améliorée
EP1923412B1 (fr) Polyisocyanate modifié par nano-particules
EP1287052B1 (fr) Polyisocyanates modifies
EP0959087B1 (fr) Polyisocyanates dispersables dans l'eau modifiés par un polyéther
EP1788008B1 (fr) Mélanges de polyisocyanates hydrophilisés
EP1711547B1 (fr) Composition d'agent de revetement
EP1599525B1 (fr) Systemes pur a 2 composantes
EP1276787B1 (fr) Melanges de polyisocyanate dispersables dans l'eau et hautement fonctionnels
EP2209838B1 (fr) Polyisocyanate modifié par polysiloxane
EP3271412A1 (fr) Polyisocyanate hydrophile à base de 1,5-diisocyanatopentane
EP2058349A1 (fr) Polyisocyanate modifié par nanoparticules
EP1581576B1 (fr) Polyisocyanates bloques hydrophilises
EP1645601B1 (fr) Couches de finition hybride
EP1127928A2 (fr) Mélanges de polyisocyanates contenant des groupes acyl-urée
DE102006038941A1 (de) Wasserverdünnbare, bzw. wasserlösliche blockierte Polyisocyanate für die Herstellung von wässrigen 1K-PUR-Beschichtungen mit schneller physikalischer Antrocknung
EP2305727A1 (fr) Nouveaux systèmes 2K-PUR
EP2283055B1 (fr) Polyisocyanates stables contenant des nanoparticules
EP3728380A1 (fr) Peintures à l'eau résistantes au gel à base de polyisocyanates
KR100730269B1 (ko) 개질된 폴리이소시아네이트

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20101021