EP2234758B9 - Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement - Google Patents

Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement Download PDF

Info

Publication number
EP2234758B9
EP2234758B9 EP09714122A EP09714122A EP2234758B9 EP 2234758 B9 EP2234758 B9 EP 2234758B9 EP 09714122 A EP09714122 A EP 09714122A EP 09714122 A EP09714122 A EP 09714122A EP 2234758 B9 EP2234758 B9 EP 2234758B9
Authority
EP
European Patent Office
Prior art keywords
longitudinal profile
singular
edging
ophthalmic lens
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09714122A
Other languages
German (de)
English (en)
Other versions
EP2234758A1 (fr
EP2234758B1 (fr
Inventor
Ahmed Haddadi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP2234758A1 publication Critical patent/EP2234758A1/fr
Application granted granted Critical
Publication of EP2234758B1 publication Critical patent/EP2234758B1/fr
Publication of EP2234758B9 publication Critical patent/EP2234758B9/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/144Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms the spectacles being used as a template

Definitions

  • the present invention relates generally to the preparation of ophthalmic lenses for interlocking in circled spectacle frame surrounds.
  • the optician is to cut the ophthalmic lens so that it can mechanically and aesthetically adapt to the shape of the corresponding entourage of the selected frame, while ensuring that the lens exercises at best the optical function for which it was designed.
  • the machining operation comprises in particular, in the case of rimmed frames, a beveling step for forming on the edge of the lens an interlocking rib, commonly called bevel, adapted to fit into a groove, commonly called a sucker, which runs along the inner face of the corresponding entourage of the mount.
  • a beveling step for forming on the edge of the lens an interlocking rib, commonly called bevel, adapted to fit into a groove, commonly called a sucker, which runs along the inner face of the corresponding entourage of the mount.
  • the two acquisition and machining operations must be carried out carefully so that the lens can perfectly fit into its surroundings, effortlessly and "first time”, that is to say without requiring resumption of machining.
  • a device contour reading device comprising a feeler which comes to raise the shape of the bezel.
  • a feeler which comes to raise the shape of the bezel.
  • errors in raising the shape of the contour are inherent to the reading device which may have insufficient resolution, assembly defects or be damaged or unregulated.
  • the deformations of the frame during the probing of the bezel due to the support of the probe on the bezel) also generate errors.
  • a lens thus machined has an outline that rarely corresponds exactly to the outline of the bezel of his entourage. It may then be too large, which forces the optician to perform a tedious resume of the machining of the bevel, or too small.
  • the lenses considered as mountable in their surroundings are, to a large extent, slightly too large compared to their surroundings, so that once nested in their surroundings, they are mechanically constrained. As a result, these lenses are weakened and their treatment layers are likely to degrade more rapidly. In addition, these mechanical stresses slightly modify the optical characteristics of the lenses, which can cause discomfort for the carriers.
  • the present invention provides a method of lens preparation that not only increases the rate of lenses properly machined the first shot, but also reduces the mechanical stress to which the lenses are subjected.
  • These particularly sensitive areas are areas of interference between the bevel and the surrounding frame when the lens is interlocked in its surroundings. They correspond in this case singular very curved portions of the second longitudinal profile, that is to say, the projecting areas of the interlocking rib, of small radius of curvature. Therefore, trimming according to the invention of these protruding areas of the interlocking rib facilitates the interlocking of the lens in its surroundings. As a result, these singular portions of interference are so-called portions of freedom that induce a free play between the interlocking rib and the bezel.
  • the method according to the invention makes it possible in particular to determine with precision the positions of these singular portions of interference.
  • the interlocking rib we can also calculate the shape of the second longitudinal profile particularly in the singular portions, so as to locally increase the radius of curvature of the second longitudinal profile to cause a decrease in its length.
  • the lens is locally milled more deeply to reveal, when mounting the lens in the surrounding area, a slight gap between the frame's surroundings and the edge of the frame. lens. Therefore, if the lens was mistakenly cut off in an outline that is slightly too big compared to the surrounding area, this slight space allows the entourage to locally deform to compensate for this clipping error.
  • the localized trimming of the interlocking rib in at least one of the singular portions of the second longitudinal profile makes it possible to reduce the difficulties of interlocking the lenses in their surroundings.
  • said determining step excludes the search for said singular portion of the second longitudinal profile as a portion having a singular angular point or cusp.
  • angular point is meant a point of the second longitudinal profile to which the two half-tangents form a non-flat angle.
  • curb point is meant a point of the second longitudinal profile to which the two half-tangents are opposite.
  • This axis will preferably be an optical axis or a geometric axis of the ophthalmic lens to be machined.
  • the search for highly curved areas of the second longitudinal profile is made from a third longitudinal profile, for example in the form of a frame circumscribed to the second longitudinal profile.
  • This third longitudinal profile facilitates the identification of angular points or minimum radius of curvature or less than a threshold on this profile. In this way, it is easier to locate singular points on the second longitudinal profile. It is therefore also easier to identify singular portions of the second longitudinal profile at which it will trim the interlocking rib to facilitate assembly of the lens with its mount.
  • the surrounds of metal spectacle frames are generally provided, close to the branches of the frame (temporal zones), barrels allowing them to open to accommodate a cutout ophthalmic lens. It is observed that these barrels generate a discontinuity of the bezel (and therefore the first longitudinal profile) which generates local mechanical stresses on the lens, or even which prevent the nesting rib of the lens to properly fit into its bezel.
  • the trimming of the interlocking rib in the first singular portion compensates for this discontinuity.
  • the present invention aims to facilitate and improve the preparation of an ophthalmic lens for its nesting in a surrounding of a spectacle frame.
  • each surround 11 is internally traversed by a groove, generally in the form of a dihedron, commonly called bezel 11.
  • This bezel extends along a first curvilinear longitudinal profile called acquired longitudinal profile 27.
  • This acquired longitudinal profile 27 corresponds to one of the strands of the bezel which extends on one and / or the other of the sides of this bezel and which is substantially parallel or coincides with the bottom ridge of this bezel.
  • Each surround 11 is further closed by a barrel crossed by a screw which allows to tighten the lens in the entourage so as to correctly immobilize it in the mount.
  • the ophthalmic lens 20 has a convex front face 21 and a concave rear face 22, as well as a peripheral edge 23 whose initial contour 28 ( figure 6 ) is generally circular.
  • this ophthalmic lens 20 is intended to include after machining its edge 23 an engagement rib 24 extending along a second longitudinal profile 25; 26 curvilinear, called longitudinal profile deduced, whose shape is calculated to allow the interlocking of the ophthalmic lens 20 in the surrounding 11 corresponding to the spectacle frame 10.
  • This longitudinal profile deduces 25; 26 corresponds to a line running along the edge 23 of the lens and which joins a defined point of each cross section of the nesting rib 24. Each of these points is here defined by a rule which is uniform for the whole cross sections of the interlocking rib 24.
  • the longitudinal profile 25; 26 corresponds to one of the strands of the interlocking rib 24 which extends on one and / or the other of the flanks of this interlocking rib and which is substantially parallel or coincident with the vertex of the rib nesting.
  • a box frame 60 can be defined with respect to the longitudinal profile deduced.
  • This boxing frame 60 can be defined as the rectangle which, on the one hand, is circumscribed to the orthogonal projection of the longitudinal profile deduced in the plane of the initial contour 28, and which, on the other hand, has two parallel sides intended for extend horizontally when the frame 10 supporting the lens 20 will be carried by the wearer.
  • This boxing frame 60 has, at the intersection of its two diagonals, a geometric center C1 through which passes a central axis A1 optical and geometric lens ( figure 2 ).
  • the central axis A1 considered is substantially normal to the plane which is tangential to the front optical face 21 of the lens and which passes through the point of the front optical face 21 whose orthogonal projection in the plane of the initial contour 28 is the geometric center C1.
  • a contour reading device 1 such as, for example, the one shown in FIG. figure 1 .
  • This apparatus comprises a top cover 2 covering the set of the apparatus with the exception of a central upper portion accessible to the user, in which the eyeglass frame 10 is arranged.
  • the contour reading apparatus 1 is intended to record the shape of the contours of the bezels 11 of the surroundings of this spectacle frame 10.
  • a frame 5 In the space left visible by the upper central opening of the cover 2, a frame 5 is visible.
  • a plate (not visible) can move in translation on the frame 5 along a transfer axis D.
  • On this plate is rotatably mounted a turntable 6.
  • This turntable 6 is adapted to take two positions on the transfer axis D1, opposite each of the two frames of the spectacle frame 10.
  • the turntable 6 has an axis of rotation B1 defined as the normal axis to the front face of the turntable 6 and passing through its center. It is adapted to pivot about this axis relative to the plate.
  • the turntable 6 further comprises an oblong slot 7 in the form of an arc of a circle through which a probe 8 protrudes.
  • This probe 8 comprises a support rod 8A with an axis perpendicular to the plane of the front face of the turntable 6 and, at its free end, a feeler pin 8B with an axis perpendicular to the axis of the support rod 8A.
  • This finger 8B is intended to follow by sliding or possibly rolling the bottom of the bezel of each of the two surrounds of the spectacle frame 10, moving along the light 7.
  • the contour reading apparatus 1 comprises actuating means (not shown) adapted, firstly, to slide the support rod 8A along the lumen 7 in order to modify its radial position R with respect to the B1 rotation axis of the turntable 6, a second part, to vary the TETA angular position of the turntable 6 about its axis of rotation B1, and, thirdly, to position the feeler finger 8B of the probe 8 at an altitude Z more or less important with respect to the plane of the front face of the turntable 6.
  • Each point palpated by the end of the feeler finger 8B of the probe 8 is then located in a corresponding coordinate system R, TETA, Z.
  • the coordinates of this point probed are then noted ra i , tetaa i , za i .
  • the contour reading apparatus 1 furthermore comprises an electronic and / or computer device 9 making it possible, on the one hand, to drive the actuating means of the contour reading apparatus 1, and, on the other hand, to acquire and to record the coordinates ra i , tetaa i , za i of the end of the feeler finger 8B of the probe 8.
  • a trimming apparatus 30 which is not the subject of the present invention.
  • a clipping apparatus well known to those skilled in the art, is for example described in the document US 6,327,790 or marketed by the Applicant under the trademark Kappa CTD.
  • such a trimming apparatus generally comprises support means here formed by shafts 31 for holding and rotating the ophthalmic lens 10 around a locking pin A1.
  • Such a trimming apparatus further comprises trimming means here formed by a machining tool 32 rotatably mounted about an axis of rotation A2 which is here substantially parallel to the locking axis A1, but which could also be inclined relative to this axis.
  • the machining tool 32 and / or the shafts 31 are provided with two relative mobilities, including a radial mobility that makes it possible to modify the spacing between the axis of rotation A2 and the blocking axis A1, and translational mobility. axial along an axis parallel to the blocking axis A1.
  • the trimming apparatus 30 further comprises an electronic and / or computer device (not shown) which is provided, on the one hand, with communication means with the electronic and / or computer device 9 of the contour reading device. 1, and, secondly, means for controlling the mobilities of the shafts 31 and of the machining tool 32.
  • This electronic and / or computer device makes it possible in particular to control, for each angular position of the lens 20 around of the locking pin A1, the radial spacing between the machining tool 32 and the locking pin A1, as well as the axial position of the edge 23 of the lens relative to the working surface of the machining tool 32.
  • the machining tool 32 is in this case constituted by a main wheel 33 of shape, that is to say having hollow, in the manner of a negative, a machining profile complementary to that to obtain relief on the edge 23 of the lens to be machined. More particularly, this main grinding wheel 33 is here of revolution about the axis of rotation A2 and is provided with a bevelling groove 34 capable of forming on the edge of the lens 20 the interlocking rib 24 ( figure 7 ) of complementary shape. The diameter of the main grinding wheel will preferably be less than 25 millimeters.
  • This interlocking rib 24 is most often made to present, in cross section, a profile in the form of a dihedral, that is to say in the shape of an inverted V, which is why the interlocking rib 24 is commonly called bevel.
  • this interlocking rib may have, in cross section, different shapes, for example a semi-circular or rectangular shape.
  • the machining tool comprises a wheel set comprising, in addition to the aforementioned main wheel 33, an auxiliary beveling wheel 35 provided with a beveling groove 36 of depth and / or width less than less 0.05 millimeter to the depth and / or width of the beveling groove 34 of the main grinding wheel 33.
  • This small beveling groove 36 may for example have a depth and width less than 0.3 millimeters to the depth and to the width of the beveling groove 34 of the main grinding wheel 33.
  • the machining tool 32 comprises a grinder 37 having a cylindrical central portion 40 of revolution about the axis of rotation A2, and, on either side of this central portion 40, two portions of end 38, 39 conical of revolution about the axis of rotation A2 and arranged back-to-back.
  • These two end portions 38, 39 will then be able to successively machine the two sides of the engagement rib 24 of the ophthalmic lens 20.
  • these two end portions it will also be possible for these two end portions to be arranged facing each other. at a distance from each other.
  • the machining tool may be of another type. It may in particular be formed by a cutter or a knife rotatably mounted about the axis of rotation A2. Knife means a tool having, in the manner of a flat wick, a central shaft on each side of which extend radially in the same plane, two blades adapted to machine the wafer of the ophthalmic lens.
  • the eyeglass frame 10 chosen by the future wearer is fixed in the reading apparatus 1.
  • the frame is inserted between the studs 4 of the jaws 3, so that each of the frames of the frame is ready. to be palpated along a path starting by the insertion of the probe 8 between the two studs 4 enclosing the lower part of the entourage to be probed, then following the bezel 11 of this entourage to cover its entire length.
  • the electronic and / or computer device 9 defines as zero the angular position and the altitude of the probe 8 when the feeler finger 8B is disposed between the two aforementioned studs 4.
  • the electronic and / or computer device 9 controls the rotation of the turntable 6 so that the feeler finger 8B of the probe 8 moves continuously along the bottom of the bezel 11.
  • the preservation of the contact of the feeler finger 8B with the bottom of the bezel 11 is provided by the actuating means which exert on the probe 8 a radial return force directed towards the bezel 11.
  • This radial return force thus makes it possible to avoid that the feeler finger 8B goes up along one or other of the sides of the bezel 11 and that it leaves the bezel.
  • the feeler 8 is controlled in angular position around the axis of rotation B and is guided according to its radial coordinate and according to its altitude thanks to the shape here V of the bezel 11.
  • the electronic and / or computer device 9 then falls during the rotation of the turntable 6 the spatial coordinates ra i , tetaa i , za i of a plurality of points of the acquired longitudinal profile 27 of the bezel 11, for example 360 points, to memorize a precise digital image of the outline of this bezel.
  • This image, in orthogonal projection in the plane of the initial contour 28, is represented in dotted line on the figure 6 .
  • the probe comes to feel, in a discrete manner, a predefined number of points of the bezel to raise the spatial coordinates of these points.
  • these spatial coordinates ra i , teta i , z i i can be acquired by means of a database register.
  • the database register comprises a plurality of records each associated with a referenced type of spectacle frames (that is to say a given spectacle frame model). More specifically, each record includes an identifier that corresponds to the referenced type of spectacle frames, and an array of values referencing, for example, the spatial coordinates of 360 characteristic points of the shape of a longitudinal profile of the bezel of an eyeglass frame. referenced type.
  • the user can search the database for the record whose identifier corresponds to the eyeglass frame selected by the wearer (for example by means of the code -barre of the mount). Then, The values referenced in this recording will then be read and transmitted to the electronic and / or computer device of the trimming apparatus 30.
  • a disadvantage generally found when using this acquisition method is that, since two frames of the same type do not show that rarely exactly the same shape, the spatial coordinates acquired in the database can be slightly different from the real coordinates of the corresponding points of the bezel. However, the method according to the invention will make it possible to compensate for these differences, so that the lens is easily mountable in the frame selected by the wearer.
  • the acquisition of coordinates of points of the acquired longitudinal profile can be carried out in a plane, for example on a picture of the wearer.
  • a digital photograph of the wearer equipped with his spectacle frame is acquired.
  • the acquired image is taken from the shape of the inner contour of each surrounding of the spectacle frame, for example by means of an image processing software.
  • a computational instruction of the ophthalmic lens to be inserted in the palpated surround of the eyeglass frame 10 is calculated.
  • This calculation step may be performed by computing means of the electronic and / or computer device hosted by the contour reading device 1 or by those of the trimming apparatus 30, or by those of any other device capable of communicate with one and / or both of these devices 1.30.
  • the calculation means develop, as a function of the spatial coordinates ra i , tetaa i , za i points acquired longitudinal profile 27 on the bezel 11, a set of clipping radius and an axial setpoint clipping of the ophthalmic lens 20.
  • These instructions are elaborated so that the lens is cut off, on its edge 23, a profiled interlocking rib 24 having a desired section and extending according to the longitudinal profile deduced ( figure 6 ), which here corresponds to the top of the edge of the interlocking rib 24 to be machined.
  • the deduced longitudinal profile 25 is here defined by 360 points whose spatial coordinates are denoted rs j , tetas j , zs j .
  • the constant k is calculated conventionally according to the architectures of the contour reading apparatus 1 and the contouring apparatus 30, as well as to the shapes of the cross sections of the bezel of the surround of the frame and the bevelling groove of the main grinding wheel 33.
  • This constant k makes it possible in particular to take into account the fact that, once the lens is nested in the surrounding area, the top of the interlocking rib (corresponding to the longitudinal profile deduced 25) is never in contact the bottom of the bezel (corresponding to the acquired longitudinal profile 27) but is slightly offset from the latter.
  • the function g (tetas j ) can be chosen to be zero or constant or variable, to take into account a possible difference between the general camber of the lens and the bezel of the frame.
  • the choice of this function makes it possible in particular to modify the position of the interlocking rib on the peripheral edge 23 of the lens, such that the interlocking rib extends along the front optical face of the lens. or rather in the middle of his slice.
  • the calculation means proceed to the detection of at least one singular portion Z1-Z5 of the longitudinal profile deduced 25.
  • This detection will subsequently machine the ophthalmic lens 20 so that its nesting rib 24 is ideally in contact with the bezel outside the singular portions and out of contact with this bezel in these singular portions. It is thus understood that the interlocking rib 24 will be machined in a conventional and uniform manner out of the singular portions of the longitudinal profile 25 deduced, so that the nesting rib 24 fits into the bezel 13, and it will be machined in a particular and non-uniform manner in the singular portions of the longitudinal profile deduced 25, so that ideally the nesting rib 24 does not fit completely into the bezel 13 at these singular portions.
  • the sections of the interlocking rib 24 which are expected to be in contact with the bezel 13 are called bearing sections, while the sections of the nesting rib 24 which are expected to be in contact with the bezel 13 are called freedom sections. These sections of freedom are so named because if the lens is not properly cut and has a contour too large compared to that of the entourage 11 corresponding, this entourage is free to deform at these sections of freedom to marry the shape of the nesting rib. In this sense, the singular portions could also be called portions of freedom.
  • the calculation means proceed to the detection of at least one singular point P1-P5 to which the derived longitudinal profile has a minimum radius of curvature or less than a threshold, and then they deduce the position of at least one singular portion Z1-Z5 of the longitudinal profile deduced as a portion within 5 millimeters of or containing the singular point P1-P5.
  • the calculation means determine the radii of curvature Rc j of the longitudinal profile deduced at the level of its 360 previously defined points.
  • the calculation of the radii of curvature is made in two dimensions, in the plane of projection of the longitudinal profile deduced 25 represented on the figure 6 , by ignoring the coordinates zs j of the points of the longitudinal profile deduced 25.
  • the calculation means can deduce from the coordinates of the 360 points of the deduced longitudinal profile 25, a function f (tetas j ) representative of the longitudinal profile deduced 25, in polar coordinates and twice differentiable.
  • the calculation means then proceed to the determination of the positions of the singular points P1-P5 of the longitudinal profile deduced 25.
  • the calculation means compare the values of the 360 calculated radii of curvature Rc j with a threshold value and select the points at which the calculated radius of curvature is less than this threshold value.
  • this threshold value is predetermined and stored in the calculation means. It is then chosen less than 20 millimeters, here equal to 10 millimeters.
  • this threshold value may be determined as a function of the calculated values of the radii of curvature Rc j .
  • the threshold value can be chosen as a function of the overall shape of the longitudinal profile deduced 25, or even according to the shape of the acquired longitudinal profile 27.
  • the threshold value can be chosen according to the average and / or the standard deviation and / or the median of the 360 calculated radii of curvature Rc j . It may also be chosen equal to the smallest radius of curvature calculated, so that it allows to select a single point of the longitudinal profile deduced 25, namely the point where the curvature of this profile is maximum.
  • Nth smallest calculated radius of curvature (with N less than 360, typically between 5 and 60), so that it allows to select N points of the longitudinal profile deduced 25, namely the N points. where the curvature of this profile is maximum.
  • the comparison of the radii of curvature Rc j calculated with this threshold value makes it possible to record at least one singular point on the longitudinal profile deduced at which the radius of curvature of the profile is less than this threshold value.
  • the calculation means define a single singular point P1-P5 by set of points, namely the central point of this set of points.
  • the calculation means define the singular portions Z1-Z5 as the areas of the longitudinal profile deduced 25 which are centered on these singular points P1-P5 and which have a length of between 5 and 10 millimeters, here equal to 8 millimeters.
  • the calculation means determine five singular portions spaced apart from each other.
  • the ophthalmic lens 20 is locked between the shafts 31 of the shaping device 30 and the ophthalmic lens 20 is cut off by this shaping device 30.
  • the support shafts 31 of the lens and / or the trimming tool 32 are controlled such that the deduced longitudinal profile has, in at least one singular portion Z1-Z5, a specific deviation E1 with respect to acquired longitudinal profile 27 such as to increase its radius of curvature and / or so that the section of the engagement rib 24 is locally narrowed in width and / or height on at least one singular portion Z1-Z5.
  • the lens will be specifically bevelled in each singular portion Z1-Z5.
  • the bevel specifically in only certain singular portions.
  • the longitudinal profile deduced as a whole It has a temporal zone that corresponds to the area around the frame at which is fixed one of the branches of the eyeglass frame, and a nasal area that corresponds to the area of the entourage of the frame at the level of which is fixed the bridge of the eyeglass frame.
  • the singular portion Z2 selected will be the one closest to the zone of attachment of the branch on the entourage (in this case the temporal area of the longitudinal profile deduced 25).
  • the singular portions Z2, Z3 selected will be, for one of them, the one closest to the temporal zone of the longitudinal profile deduced. , and, for the other of them, the one closest to the nasal zone of the longitudinal profile deduced 25.
  • the two singularly bevelled singular portions will be confused or located near these temporal and / or nasal areas.
  • the support shafts 31 of the lens and / or the trimming tool 32 are controlled so that the longitudinal profile deduced 26 has, in each singular portion Z1-Z5 considered, a specific difference E1 with respect to the acquired longitudinal profile 27 of a nature to increase its radius of curvature (see figure 6 ).
  • the shafts 31 and / or the trimming tool 32 are controlled so that the longitudinal profile deduced 26 is deductible from the acquired longitudinal profile 27 by a mathematical law which, on the singular portions Z1-Z5, differs from the rest of the longitudinal profile 26 deduced, so that the average radius of curvature of each singular portion Z1-Z5 of the longitudinal profile deduced 26 is increased relative to the mean radius of curvature that this singular portion Z1- Z5 would have presented if the given mathematical law had been, on this singular portion Z1-Z5, the same as for the remainder of the longitudinal profile deduced 26.
  • the calculation means determine a new longitudinal profile deduced 26, coinciding with the initial calculated longitudinal profile initially calculated except in each singular portion Z1-Z5. Consequently, the aforementioned mathematical law is uniform (and corresponds to the mathematical formula for deducing the longitudinal profile deduced as a function of the acquired longitudinal profile 27) outside the singular portions Z1-Z5, and is non-uniform in each singular portion.
  • the calculation means reduce the values of the radial coordinates rs j of the points of the initial derived longitudinal profile which are located in the singular portion Z1 considered.
  • the calculation means reduce the value of the radial coordinate rs j of each singular point P1-P5 by a value between 0.05 and 0.3 millimeters, here equal to 0.1 millimeter .
  • the calculation means adjust the radial coordinates rs j of the other points of the singular portions Z1-Z5 considered so that the new longitudinal profile deduced 26 extends continuously without angular points and no cusp.
  • the gap between the new profile longitudinal curve 26 and the acquired longitudinal profile 27 is constant and equal to k out of the singular portions, and is variable in each singular portion.
  • the gap between the initial derived longitudinal profile and the newly derived longitudinal profile 26 is at least one point greater than 0.05 millimeters and is in any case less than 0.3 millimeters.
  • the lens is cut off in a conventional manner according to the new longitudinal profile deduced 26, by means of the main grinding wheel 33.
  • the interlocking rib 24 presents at the end of this step a uniform section, it is that is to say of invariable form on all of its length.
  • the top of the interlocking rib has, in each singular portion Z1-Z5 considered, a profile 24A which extends at a distance from the locking pin A1 closer than that to which would have extended if the lens had been beveled according to the initial longitudinal profile (profile 24B).
  • profile 24A which extends at a distance from the locking pin A1 closer than that to which would have extended if the lens had been beveled according to the initial longitudinal profile (profile 24B).
  • the register may comprise a plurality of records each of which is associated with a referenced type or model of glasses frames and contains the shape of a new longitudinal profile deduced 26 common to such frames. or this model.
  • the storage in the register of the shape of the new longitudinal profile deduced 26 will then be performed by searching in this register a record corresponding to the mount concerned and by writing in this record the shape of the new longitudinal profile deduced 26.
  • the calculating means can acquire in the register the shape of this new longitudinal profile 26 deduced, so to directly machine the lens according to this profile.
  • the support shafts 31 of the lens and / or the trimming tool 32 are piloted according to the initial longitudinal profile deduced, so as to achieve a profiled nesting rib 24, that is to say of uniform section, except in each singular portion Z1-Z5 where they are controlled to reduce only the size of the section of this interlocking rib 24.
  • This embodiment has a particular advantage. Indeed, as shown in figure 8 the fact of only decreasing the size of the interlocking rib section without modifying the target trim radius of the lens (i.e. without locally modifying the longitudinal profile deduced on the singular portions) allows to ensure that the position of the foot of the interlocking rib (part of the edge of the lens bordering the interlocking rib) remains locally unchanged. After mounting the lens in its surroundings, the foot of the nesting rib 24 will then extend close to the inner face of the frame of the spectacle frame, as on the rest of the lens surround, without creating any unsightly interstice between the edge of the lens and the mount at the level of singular portions.
  • the trimming of the lens comprises a first machining phase of the interlocking rib 24 with a uniform section along the longitudinal profile deduced 25 and a second trimming phase of the interlocking rib 24 on each singular portion Z1- Z5 of the longitudinal profile deduced 25.
  • the first machining step being carried out by means of the main grinding wheel 33 of shape (shown in FIG. figure 3 ) while the second phase is performed using the auxiliary grinding wheel 35 (shown in FIG. figure 4 ).
  • the beveling groove 36 of the auxiliary beveling wheel 35 is brought into contact with the engagement rib 24 of the ophthalmic lens 20, at one of the ends of a first singular portion. Then the support shafts 31 of the lens and / or the trimming tool 32 are controlled so that the engagement rib 24 of the lens is trimmed along the entire length of this singular portion, then over the entire length of the other singular portions. As shown in figure 8 , this control is provided so that the profile of the engagement rib 24, at each singular point P1-P5, has a height and / or a width less than 0.05 millimeters and at most 0 , 3 millimeters relative to the height and / or the width of the interlocking rib 24 outside the singular portions. This control is further provided so that the engagement rib 24 has no discontinuity, particularly at the ends of each singular portion Z1-Z5.
  • the trimming of the interlocking rib 24 may be made differently.
  • it can be achieved using the main grinding wheel 33 during a second pass, moving it in a direction substantially parallel to the locking pin A1, transversely offset relative to the longitudinal profile. deduced 25.
  • the support shafts 31 of the lens and / or the trimming tool 32 will be controlled in each singular portion Z1-Z5 considered so as to shift progressively axially (following the locking pin A1) relative to their position during the first pass.
  • one of the flanks of the engagement rib 24 will be machined by one of the flanks of the beveling groove 34 of the main grinding wheel 33, which will have the effect of reducing the height and the width of the interlocking rib 24 in each singular portion under consideration.
  • the trimming of the interlocking rib 24 can be achieved by means of a cylindrical portion of the main grinding wheel 33, by planing the top of the interlocking rib 24, so as to break its vertex edge. , or even so as to locally remove the interlocking rib 24. In this variant, only the height of the interlocking rib will be modified.
  • the realization of the interlocking rib 24 and its trimming can be performed simultaneously.
  • the support shafts 31 of the lens and / or the trimming tool 32 may be controlled so as to present axial reciprocating movements (along the blocking axis A1 ).
  • these reciprocating movements will plan the two flanks of the nesting rib.
  • the electronic and / or computer device of the trimming apparatus 30 co-ordinates the radial mobility of the grinder relative to the shafts 31 to position a first conical end portion 39 of the grinder 37 against the edge of the lens, on the side of its front face. Then, the grinder 37 and the support shafts 31 of the lens are piloted to form the front flank of the engagement rib 24.
  • this control is provided so that the leading edge of the engagement rib 24 is formed to a constant distance from the front face of the lens, except in singular portions where it deviates from the front face.
  • the electronic and / or computer device of the trimming apparatus 30 co-ordinates the radial mobility of the grinder relative to the shafts 31 to position a second conical end portion 38 of the grinder 37 against the slice. the lens, on the side of its back side. Then, the grinder 37 and the support shafts 31 of the lens are piloted to form the trailing edge of the engagement rib 24.
  • this control is provided so that the trailing edge of the interlocking rib 24 is formed to a constant distance from the front face of the lens, except in the singular portions where it approaches the front face.
  • the ophthalmic lens is beveled so that its interlocking rib 24 has a local narrowing of height and / or width in each singular portion Z1-Z5.
  • the electronic and / or computer device of the trimming apparatus 30 may control the radial mobility of the machining tool and / or the shafts 31 so as not only to reduce in width and / or height the section of the interlocking rib 24 on each singular portion but also to machine the feet of the interlocking rib 24 (by determining the shape of a new longitudinal profile from the longitudinal profile deduced, according to a method of the type of the one mentioned above).
  • the electronic and / or computer device of the trimming apparatus 30 can transmit these data to the register so that he memorizes them in a recording whose identifier corresponds to the frame of glasses selected by the holder or in a new ad hoc record. This recording can then be read later to cut another lens intended to be mounted in a mount of the same type.
  • this first ophthalmic lens it will be possible to trim a second ophthalmic lens for mounting in a second surround of said spectacle frame 10, forming on its edge a nesting rib generally. profiled.
  • This rib will then be made so that it follows a symmetrical longitudinal profile of the longitudinal profile deduced 25 and so that each of its sections has a shape identical to that of the corresponding section (by symmetry) of the interlocking rib 24 of the first lens.
  • the invention if the two surrounds of the spectacle frame 10 are not perfectly symmetrical while the two lenses have been machined symmetrically, the lenses will remain mountable in their respective surroundings.
  • This invention will find a particularly advantageous application to lens preparation processes implemented by customers (opticians) called “outsourcers” subcontracting the manufacture and trimming of lenses.
  • the client terminal comprises computer means for recording and transmitting control data of the ophthalmic lens 20, for example via an IP communication protocol (Internet type).
  • This control data includes visual correction prescription data (eg optical power, centering data, etc.) and mount data.
  • the terminal-manufacturer comprises meanwhile computer means for receiving and recording the order data transmitted by the terminal-client. It further comprises a device for manufacturing the ophthalmic lens in accordance with the prescription data, provided for example with means for molding the lens and / or for machining at least one of the optical faces of the lens. It also includes a device for trimming this ophthalmic lens in accordance with the data relating to the frame.
  • the clipping path is designed to implement the previously described blocking and clipping steps, according to one or other of the presented embodiments.
  • the step of acquiring the acquired longitudinal profile 27 comprises three successive operations.
  • the client determines a reference of the spectacle frame 10.
  • the client terminal transmits control data of a lens (integrating said reference) and the terminal-manufacturer receives this data.
  • the third operation is carried out by means of a database register equipping the terminal-manufacturer, each record of which is associated with a type of spectacle frames 10 and contains, on the one hand, a reference of this type of frames, and, on the other hand, the shape of an acquired longitudinal profile which is common to all frames of this type.
  • the manufacturer searches in this register, using the reference acquired during the first operation the shape of the longitudinal profile of the bezel of the corresponding frame. In this way, it can then implement the previously described method, by determining in particular the position of the singular portions of the acquired longitudinal profile.
  • the manufacturer can exploit these spatial coordinates to cut the ophthalmic lens to the desired shape, without physically having the frame in which the lens is intended to be nested.
  • the method according to the invention will make it possible to compensate for possible errors in acquiring the shape of the longitudinal profile and / or machining of the lens, so that the lens will be easily mountable "at first glance” in the frame selected by the wearer. This advantage is decisive here since it avoids returning the lens to the manufacturer for resumption, which is always expensive and time-consuming referral.
  • the determination of the positions of the singular portions on the longitudinal profile acquired 27 may be carried out indifferently by the manufacturer or by the customer.
  • each singular portion Z6 of the derived longitudinal profile may be performed manually by the operator.
  • a man-machine interface including in particular a screen 51, is made available to the operator.
  • This screen 51 will preferably be tactile and accompanied by a stylus allowing the operator to interact precisely with the screen 51.
  • the interface is further equipped with an electronic device able, on the one hand, to communicate with the user. electronic device and / or computer of the contour reading device 1 or with that of the trimming apparatus 30, and, secondly, to display images on the screen.
  • the electronic device is particularly adapted to display on the screen 51 an image of the contour 24 of an ophthalmic lens 20 not cut-out, an image representing two buttons 52, 53 respectively provided with a symbol "+” and an acronym "-", an image of a cursor 50 in the form of a circle and an image of a numerical value 54 corresponding to the radius R1 of the cursor 50. It is further adapted to display an image of the longitudinal profile deduced 25.
  • the operator adjusts the radius R1 of the cursor 50 by pressing one or other of the two buttons 52, 53 with his stylus.
  • the choice of the value of the radius R1 allows the operator to set a threshold radius of curvature.
  • the initial value of the radius R1 of the slider 50 is initially set at 10 millimeters and can thus be modified in a range of values between 5 and 20 millimeters.
  • the operator with the stylus navigates, as shown on the figure 9 , the slider 50 in such a way that the circular edge of this slider runs along the longitudinal profile deduced 25.
  • the electronic device of the screen 51 is here adapted to assist the operator by guiding the slider so as to maintain a point contact between the circular edge of the slider 50 and the longitudinal profile deduced 25.
  • the operator selects the portion of the longitudinal profile deduced in which the cursor is located, for example by "double clicking" with the stylus on the touch screen 51.
  • the shapes are considered here as "concordant" when the cursor has two points of contact with the longitudinal profile deduced 25.
  • the portions of the longitudinal profile in which the cursor has two points of contact have a radius of curvature less than radius of the cursor, that is to say below the threshold determined by the operator. These portions therefore correspond to the singular portions Z6 of the longitudinal profile deduced 25. These singular portions Z6 are then defined as the portions situated between the two points of contact of the slider 50 with the longitudinal profile deduced 25.
  • the selected portions are then displayed in color so that the operator can visually validate his selection.
  • the spatial coordinates of the points belonging to the singular portions Z6 are then transmitted to the trimming apparatus 30, so that the latter diverts the lens specifically in these singular portions.
  • each singular portion of the derived longitudinal profile may be made considering not the shape of the derived longitudinal profile 25 or the acquired longitudinal profile 27, but rather the shape of a third longitudinal profile 60; 61; 62 deduced from either of these two longitudinal profiles 25, 27 according to a deduction rule given and distinct from these two longitudinal profiles.
  • the calculation means establish an association between each point of this third longitudinal profile 60; 61; 62 and each point of the longitudinal profile deduced 25 according to a given rule of correspondence, then they determine the positions of the singular portions of the longitudinal profile deduced 25 as portions less than 5 millimeters from or containing a singular point whose associated point on said third longitudinal profile 60; 61; 62 is angular or has a minimum radius of curvature or less than a threshold.
  • each singular portion of the derived longitudinal profile is performed on a third longitudinal profile 62 deduced from this profile by a mathematical calculation of homothety.
  • the calculation means deduce from these coordinates the coordinates of 360 points of the third longitudinal profile 62.
  • the constant rmax corresponds to the coordinate rs j of the point of the longitudinal profile deduced 25 farthest from the blocking axis A1 and the constant rmin corresponds to the coordinate rs j of the nearest point of the longitudinal profile deduced 25 of the locking pin A1.
  • the calculation means determine the radii of curvature of the third longitudinal profile 62 at its 360 points.
  • the computation means compare these radii of curvature with a determined threshold in order to locate on the third longitudinal profile 62 at least one point P17 of small radius of curvature.
  • the calculation means deduce from the coordinates of this point P17 those of the singular point P7 corresponding to the longitudinal profile deduced 25.
  • the calculation means determine, as has been explained above, the position of at least one singular portion. Z7 of the longitudinal profile deduced 25, centered on this singular point P7.
  • each singular portion of the longitudinal profile deduced 25 is carried out by means of a third longitudinal profile circumscribed to the longitudinal profile deduced 25.
  • This third longitudinal profile corresponds here boxing frame 60.
  • the calculation means of the device deduce from these coordinates the geometry of boxing frame 60.
  • the calculation means then establish a rule of correspondence between the points of this boxing frame 60 and the points of the longitudinal profile deduced 25.
  • a point of the longitudinal profile deduced 25 is defined as being associated with a point of the boxing frame 60 if these two points have the same angular position around the blocking axis A1, that is to say if these two points are located on the same straight line through the blocking axis A1.
  • the calculation means determine the coordinates of four angular points P20, P21, P22, P23 boxing frame 60, that is to say here the coordinates of the four corners of the frame.
  • the calculation means deduce the coordinates of the four singular points P10, P11, P12, P13 associated.
  • these four singular points P10, P11, P12, P13 correspond to the points of intersection of the diagonals of the boxing frame 60 with the longitudinal profile deduced 25.
  • These four singular points P10, P11, P12, P13 are located near the strongly curved zones of the longitudinal profile deduced 25.
  • the calculation means can deduce from the coordinates of these four singular points the positions of four singular portions Z10, Z11, Z12, Z13 curved of the longitudinal profile deduced 25.
  • each singular portion of the deduced longitudinal profile is carried out by means of a third polygon-shaped profile 61 inscribed in the longitudinal profile deduced 25.
  • This polygon is chosen to have at least 10 sides of equal lengths whose ends belong to the longitudinal profile deduced 25.
  • this polygon may be chosen to be limited to the longitudinal profile deduced 25, so that each of its sides is tangent to the longitudinal profile deduced 25.
  • the calculation means then establish a rule of correspondence between the points of this polygon 61 and the points of the longitudinal profile deduced 25.
  • a point of the longitudinal profile deduced 25 is defined as being associated with a point of the polygon 61 if these two points have the same angular position around the blocking axis A1, that is to say if these two points are located on the same straight line through the blocking axis A1.
  • the calculation means determine the ALPHA angles at the junction of each of the sides of the polygon.
  • the calculation means compare these angles with a predetermined threshold preferably between 150 and 175 degrees. They deduce the position of at least one junction point P14 from two sides of the polygon which is particularly angular. This junction point P14, which here belongs to the longitudinal profile deduced 25, is then located near a strongly curved portion of this profile.
  • the calculation means can deduce from the coordinates of this junction point P14 the position of a curved singular portion Z14 of the derived longitudinal profile 25.
  • each singular portion of the derived longitudinal profile can be made by selecting singular portions Z15, Z16 of the derived longitudinal profile which are less than 5 millimeters from or containing a singular point P15, P16 whose distance from the blocking pin A1 is maximum or greater than a threshold.
  • the calculation means select from among the 90 points of the upper left dial of the longitudinal profile deduced 25 (the index points j ranging from 91 to 180) and from the 90 points of the upper right dial of this longitudinal profile deduced 25 (the index points j ranging from 181 to 270), the point of each dial farthest from the blocking axis A1 (that is, the point of each dial having a maximum radial coordinate). These two points are then located near strongly curved parts of the longitudinal profile deduced 25.
  • the calculation means then deduce the positions of the two singular portions Z15, Z16 of the longitudinal profile deduced 25, which are defined here as the portions of the profile of 10 millimeters in length, centered on the two points P15, P16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Eyeglasses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

    DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
  • La présente invention concerne de manière générale la préparation de lentilles ophtalmiques en vue de leur emboîtement dans des entourages de montures de lunettes cerclées.
  • ARRIÈRE-PLAN TECHNOLOGIQUE
  • La partie technique du métier de l'opticien consiste à monter une paire de lentilles ophtalmiques correctrices sur une monture de lunettes cerclées sélectionnée par un porteur. Ce montage se décompose en trois opérations principales :
    • l'acquisition de la forme des contours intérieurs des entourages de la monture,
    • le centrage de chaque lentille qui consiste à positionner et à orienter convenablement chaque lentille en regard de chaque oeil du porteur, puis
    • l'usinage de chaque lentille qui consiste à découper ou à détourer son contour à la forme souhaitée, compte tenu de la forme des entourages et des paramètres de centrage définis.
  • Dans le cadre de la présente invention, on s'intéresse plus particulièrement aux première et troisième opérations dites d'acquisition et d'usinage. L'objectif concret de l'opticien est de détourer la lentille ophtalmique de manière à ce qu'elle puisse mécaniquement et esthétiquement s'adapter à la forme de l'entourage correspondant de la monture sélectionnée, tout en s'assurant que cette lentille exerce au mieux la fonction optique pour laquelle elle a été conçue.
  • L'opération d'usinage comprend en particulier, dans le cas des montures cerclées, une étape de biseautage permettant de former sur la tranche de la lentille une nervure d'emboîtement, communément appelée biseau, apte à s'emboîter dans une rainure, communément appelée drageoir, qui court le long de la face intérieure de l'entourage correspondant de la monture. Un exemple de mise en oeuvre de cette opération d'usinage est par exemple présentée dans le document US 2001/036794 . condidéré comme l'état de la technique le plus proche.
  • Les deux opérations d'acquisition et d'usinage doivent en particulier être réalisées avec soin de manière que la lentille puisse parfaitement s'emboîter dans son entourage, sans effort et « du premier coup », c'est-à-dire sans nécessiter de reprise d'usinage.
  • Pour acquérir la forme du drageoir, on utilise généralement un appareil de lecture de contour comportant un palpeur qui vient relever la forme du drageoir. On constate toutefois, à l'issue de ce palpage, des erreurs de relèvement de la forme du contour. Ces erreurs sont inhérentes à l'appareil de lecture qui peut présenter une résolution insuffisante, des défauts d'assemblage ou encore être endommagé ou déréglé. En outre, les déformations de la monture lors du palpage du drageoir (dues à l'appui du palpeur sur le drageoir) génèrent également des erreurs.
  • On observe aussi, à l'issue de l'opération d'usinage, des erreurs de détourage si bien que la forme effective du chant de la lentille ne correspond pas exactement à la forme souhaitée. Ces erreurs sont également inhérentes à l'appareil de détourage qui peut présenter une résolution insuffisante, des défauts d'assemblage ou encore comporter une meule de forme usée. En outre, les déformations en flexion de la lentille (dues à l'appui de la meule contre le chant de la lentille lors de son usinage) génèrent elles aussi des erreurs, ainsi que les phénomènes de dilatation des lentilles durant leurs usinages.
  • En définitive, au vue de ces erreurs et imprécisions, une lentille ainsi usinée présente un contour qui correspond rarement exactement au contour du drageoir de son entourage. Elle risque alors d'être soit trop grande, ce qui contraint l'opticien à réaliser une fastidieuse reprise de l'usinage du biseau, soit trop petite.
  • Afin d'accroître le taux de lentilles correctement détourées « du premier coup », il est connu de corriger les défauts des appareils d'acquisition et de détourage, de manière à accroître leurs résolutions et à ce qu'ils prennent en considération un plus grand nombre de paramètres. Il est également connu d'étalonner à intervalles réduits ces appareils. Toutefois, ces méthodes sont longues, complexes et coûteuses à mettre en oeuvre. Les paramètres actuellement pris en considération ne sont en outre pas exhaustifs. De ce fait, le taux de lentilles correctement usinées du premier coup n'est à ce jour pas satisfaisant.
  • Par ailleurs, les lentilles considérées comme montables dans leurs entourages sont, pour une part importante, légèrement trop grandes par rapport à leurs entourages, si bien qu'une fois emboîtées dans leurs entourages, elles sont mécaniquement contraintes. De ce fait, ces lentilles sont fragilisées et leurs couches de traitement sont susceptibles de se dégrader plus rapidement. En outre, ces contraintes mécaniques modifient légèrement les caractéristiques optiques des lentilles, ce qui peut entraîner une gêne pour les porteurs.
  • Il est également connu d'acquérir les formes des drageoirs des entourages d'une monture de lunettes au moyen d'un registre de base de données comportant une pluralité d'enregistrements chacun associés à un modèle de montures de lunettes. Toutefois, du fait de dispersions de fabrication, on observe que deux montures de lunettes d'un même modèle ne présentent jamais exactement la même forme. Par conséquent, les formes acquises dans la base de données sont généralement légèrement différentes des formes réelles des drageoirs de la monture de lunettes sélectionnée par le porteur. De ce fait, les lentilles usinées en fonction de ces formes acquises ne sont pas toujours montables dans les entourages de la monture sélectionnée, si bien qu'il est souvent nécessaire de reprendre l'usinage de leurs nervures d'emboîtement.
  • Il est aussi connu d'acquérir la forme du drageoir d'un entourage d'une monture de lunettes en fonction de la forme préalablement acquise du drageoir de l'autre entourage de cette monture de lunettes. Toutefois, du fait de dispersions de fabrication, on observe que les deux entourages d'une monture de lunettes ne sont jamais réellement symétriques. Par conséquent, la forme déduite d'un drageoir est généralement légèrement différente de la forme réelle de ce drageoir. De ce fait, la lentille usinée en fonction de cette forme déduite n'est pas toujours montable dans l'entourage correspondant de la monture, si bien qu'il est souvent nécessaire de reprendre l'usinage de sa nervure d'emboîtement.
  • OBJET DE L'INVENTION
  • Afin de remédier aux inconvénients précités, la présente invention propose un procédé de préparation de lentilles qui permet non seulement d'accroître le taux de lentilles correctement usinées du premier coup, mais aussi de réduire les contraintes mécaniques auxquelles les lentilles sont soumises.
  • Plus particulièrement, on propose des procédés de préparation d'une lentille ophtalmique selon les revendications 1 et 7.
  • On compense ainsi les erreurs inhérentes au fonctionnement des appareils de lecture et de détourage, non pas en accroissant la précision de ces derniers, mais en tenant compte de ces erreurs lors du détourage de chaque lentille dans des zones de la nervure d'emboîtement particulièrement sensibles pour l'assemblage de la lentille avec sa monture.
  • Ces zones particulièrement sensibles sont des zones d'interférences entre le biseau et l'entourage de la monture lors de l'emboîtement de la lentille dans son entourage. Elles correspondent en l'occurrence aux portions singulières très courbées du deuxième profil longitudinal, c'est-à-dire aux zones saillantes de la nervure d'emboîtement, de faible rayon de courbure. Par conséquent, le rognage selon l'invention de ces zones saillantes de la nervure d'emboîtement permet de faciliter l'emboîtement de la lentille dans son entourage. De ce fait, ces portions singulières d'interférences sont des portions dites de liberté qui induisent un jeu de liberté entre la nervure d'emboîtement et le drageoir.
  • Le procédé selon l'invention permet en particulier de déterminer avec précision les positions de ces portions singulières d'interférences.
  • Pour rogner la nervure d'emboîtement, on peut rétrécir localement la section de la nervure d'emboîtement de la lentille dans ces portions singulières du deuxième profil longitudinal. On comprend alors que la nervure d'emboîtement va pouvoir s'engager plus profondément dans le drageoir de l'entourage au niveau de ces portions singulières. Par conséquent, si la lentille a par erreur été détourée selon un contour légèrement trop grand par rapport au contour de l'entourage, cette profondeur d'engagement supplémentaire va permettre de compenser cette erreur de détourage.
  • Pour rogner la nervure d'emboîtement, on peut aussi calculer la forme du deuxième profil longitudinal de manière particulière dans les portions singulières, de manière à accroître localement le rayon de courbure du deuxième profil longitudinal afin d'engendrer une diminution de sa longueur. De cette manière, au cours de l'étape de détourage, on usine localement la lentille plus profondément pour faire apparaître, lors du montage de la lentille dans l'entourage, un léger espace entre l'entourage de la monture et le chant de la lentille. Par conséquent, si la lentille a par erreur été détourée selon un contour légèrement trop grand par rapport à l'entourage, ce léger espace permet à l'entourage de se déformer localement pour compenser cette erreur dé détourage.
  • En résumé, le rognage localisé de la nervure d'emboîtement dans l'une au moins des portions singulières du deuxième profil longitudinal permet de réduire les difficultés d'emboîtement des lentilles dans leurs entourages.
  • Préférentiellement, ladite étape de détermination exclut la recherche de ladite portion singulière du deuxième profil longitudinal en tant que portion présentant un point singulier anguleux ou de rebroussement.
  • On entend par point anguleux un point du deuxième profil longitudinal auquel les deux demi-tangentes forment un angle non plat. On entend par ailleurs par point de rebroussement un point du deuxième profil longitudinal auquel les deux demi-tangentes sont opposées.
  • La recherche de portions singulières du deuxième profil longitudinal ne se base donc pas sur les irrégularités de forme du deuxième profil longitudinal mais plutôt sur les variations de rayon de courbure de ce profil.
  • Un deuxième mode de réalisation de l'invention est présenté dans les revendications 3 et 9
  • La recherche des zones très courbées du deuxième profil longitudinal est ainsi réalisée, non pas en analysant les variations de rayon de courbure de ce profil, mais plutôt en déterminant les points les plus éloignés d'un axe central du deuxième profil. Cet axe sera préférentiellement un axe optique ou un axe géométrique de la lentille ophtalmique à usiner.
  • Un troisième mode de réalisation de l'invention est présenté dans les revendications 4 et 10.
  • Dans ce mode, la recherche des zones très courbées du deuxième profil longitudinal est réalisée à partir d'un troisième profil longitudinal, par exemple en forme de cadre circonscrit au deuxième profil longitudinal. L'utilisation de ce troisième profil longitudinal permet de faciliter le repérage de points anguleux ou de rayon de courbure minimum ou inférieur à un seuil sur ce profil. De cette manière, il est plus facile de situer des points singuliers sur le deuxième profil longitudinal. Il est donc également plus facile de repérer des portions singulières du deuxième profil longitudinal au niveau desquelles il faudra rogner la nervure d'emboîtement pour faciliter l'assemblage de la lentille avec sa monture.
  • Une caractéristique avantageuse de l'invention est présentée dans la revendication 17.
  • Les entourages des montures de lunettes métalliques sont généralement pourvus, à proximité des branches de la monture (zones temporales), de barillets leurs permettant de s'ouvrir pour accueillir une lentille ophtalmique détourée. On observe que ces barillets génèrent une discontinuité du drageoir (et donc du premier profil longitudinal) qui engendre des contraintes mécaniques locales sur la lentille, voire qui empêchent la nervure d'emboîtement de la lentille de correctement s'emboîter dans son drageoir. Ici, grâce à l'invention, le rognage de la nervure d'emboîtement dans la première portion singulière permet de compenser cette discontinuité.
  • DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION
  • La description qui va suivre, en regard des dessins annexés, donnée à titre d'exemple non limitatif, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • Sur les dessins annexés :
    • la figure 1 est une vue en perspective d'un appareil de lecture de contours de drageoirs de montures de lunettes ;
    • la figure 2 est une vue schématique d'une lentille ophtalmique maintenue dans un appareil de détourage pourvu d'une meule de biseautage ;
    • les figures 3 à 5 sont des vues de côté de trois meules de biseautage ;
    • la figure 6 est une vue de face d'une lentille ophtalmique non détourée, sur lequel est représenté le contour final qu'elle présentera après détourage;
    • les figures 7 et 8 sont des vues en coupe des tranches de deux lentilles ophtalmiques détourées selon deux modes de réalisation différents du procédé selon l'invention ;
    • la figure 9 est une vue d'une image d'une lentille ophtalmique non détourée sur laquelle sont superposées des images du contour final et d'un curseur ;
    • la figure 10 est une vue du contour final après détourage d'une lentille ophtalmique et d'une forme déduite de ce contour final par homothétie ;
    • la figure 11 est une vue du contour final après détourage d'une lentille ophtalmique et d'un cadre boxing de ce contour final ;
    • la figure 12 est une vue du contour final après détourage d'une lentille ophtalmique et d'une forme polygonale déduite de ce contour final ; et
    • la figure 13 est une vue du contour final après détourage d'une lentille ophtalmique.
  • La présente invention a pour objectif de faciliter et de perfectionner la préparation d'une lentille ophtalmique en vue de son emboîtement dans un entourage d'une monture de lunettes.
  • On s'intéressera donc plus particulièrement aux montures de lunettes 10 cerclées (figure 1) comportant deux entourages 11 qui sont reliés l'un à l'autre par un pontet et qui sont chacun équipés d'une branche. Classiquement, chaque entourage 11 est parcouru intérieurement d'une rainure, généralement en forme de dièdre, communément appelée drageoir 11. Ce drageoir s'étend suivant un premier profil longitudinal curviligne appelé profil longitudinal acquis 27.
  • Ce profil longitudinal acquis 27 correspond à l'un des brins du drageoir qui s'étend sur l'un et/ou l'autre des flancs de ce drageoir et qui est sensiblement parallèle ou confondu avec l'arête de fond de ce drageoir.
  • Chaque entourage 11 est en outre fermé par un barillet traversé par une vis qui permet de serrer la lentille dans l'entourage de manière à correctement l'immobiliser dans la monture.
  • Comme le montre la figure 2, la lentille ophtalmique 20 présente une face avant 21 convexe et une face arrière 22 concave, ainsi qu'une tranche périphérique 23 dont le contour initial 28 (figure 6) est généralement circulaire.
  • Comme le montrent les figures 6, 7 et 8, cette lentille ophtalmique 20 est destinée à comporter après usinage de son chant 23 une nervure d'emboîtement 24 s'étendant suivant un deuxième profil longitudinal 25 ; 26 curviligne, appelé profil longitudinal déduit, dont la forme est calculée pour permettre l'emboîtement de la lentille ophtalmique 20 dans l'entourage 11 correspondant de la monture de lunettes 10.
  • Ce profil longitudinal déduit 25 ; 26 correspond à une ligne qui court le long du chant 23 de la lentille et qui joint un point défini de chaque section transversale de la nervure d'emboîtement 24. Chacun de ces points est ici défini par une règle qui est uniforme pour l'ensemble des sections transversales de la nervure d'emboîtement 24. A titre d'exemple, le profil longitudinal 25 ; 26 correspond à l'un des brins de la nervure d'emboîtement 24 qui s'étend sur l'un et/ou l'autre des flancs de cette nervure d'emboîtement et qui est sensiblement parallèle ou confondu avec le sommet de la nervure d'emboîtement.
  • Tel que représenté sur la figure 11, on peut définir par rapport au profil longitudinal déduit 25 un cadre boxing 60.
  • Ce cadre boxing 60 peut être défini comme le rectangle qui, d'une part, est circonscrit à la projection orthogonale du profil longitudinal déduit 25 dans le plan du contour initial 28, et qui, d'autre part, présente deux côtés parallèles destinés à s'étendre horizontalement lorsque la monture 10 supportant la lentille 20 sera portée par le porteur.
  • Ce cadre boxing 60 présente, à l'intersection de ses deux diagonales, un centre géométrique C1 par lequel passe un axe central A1 optique et géométrique de la lentille (figure 2). L'axe central A1 considéré est sensiblement normal au plan qui est tangent à la face optique avant 21 de la lentille et qui passe par le point de la face optique avant 21 dont le projeté orthogonal dans le plan du contour initial 28 est le centre géométrique C1.
  • Dispositif
  • Pour préparer une telle lentille, il est connu d'utiliser un appareil de lecture de contour 1 tel que par exemple celui représenté sur la figure 1.
  • Cet appareil comporte un capot supérieur 2 recouvrant l'ensemble de l'appareil à l'exception d'une portion supérieure centrale accessible à l'usager, dans laquelle est disposée la monture de lunettes 10.
  • L'appareil de lecture de contour 1 est destiné à relever la forme des contours des drageoirs 11 des entourages de cette monture de lunettes 10.
  • Il comporte à cet effet un jeu de deux mâchoires 3, dont l'une est mobile, qui sont pourvues de plots 4 mobiles permettant de serrer entre eux la monture de lunettes 10 afin de l'immobiliser.
  • Dans l'espace laissé visible par l'ouverture supérieure centrale du capot 2, un châssis 5 est visible. Une platine (non visible) peut se déplacer en translation sur ce châssis 5 selon un axe de transfert D. Sur cette platine est monté tournant un plateau tournant 6. Ce plateau tournant 6 est donc apte à prendre deux positions sur l'axe de transfert D1, en regard de chacun des deux entourages de la monture de lunettes 10.
  • Le plateau tournant 6 possède un axe de rotation B1 défini comme l'axe normal à la face avant de ce plateau tournant 6 et passant par son centre. Il est adapté à pivoter autour de cet axe par rapport à la platine. Le plateau tournant 6 comporte par ailleurs une lumière 7 oblongue en forme d'arc de cercle au travers de laquelle un palpeur 8 fait saillie. Ce palpeur 8 comporte une tige support 8A d'axe perpendiculaire au plan de la face avant du plateau tournant 6 et, à son extrémité libre, un doigt de palpage 8B d'axe perpendiculaire à l'axe de la tige support 8A. Ce doigt de palpage 8B est destiné à suivre par glissement ou éventuellement roulement le fond du drageoir de chacun des deux entourages de la monture de lunettes 10, en se déplaçant le long de la lumière 7.
  • L'appareil de lecture de contour 1 comporte des moyens d'actionnement (non représentés) adaptés, d'une première part, à faire glisser la tige support 8A le long de la lumière 7 afin de modifier sa position radiale R par rapport à l'axe de rotation B1 du plateau tournant 6, d'une deuxième part, à faire varier la position angulaire TETA du plateau tournant 6 autour de son axe de rotation B1, et, d'une troisième part, à positionner le doigt de palpage 8B du palpeur 8 à une altitude Z plus ou moins importante par rapport au plan de la face avant du plateau tournant 6. Chaque point palpé par l'extrémité du doigt de palpage 8B du palpeur 8 est alors repéré dans un système de coordonnées correspondant R, TETA, Z. Les coordonnées de ce point palpé sont alors notées rai, tetaai, zai.
  • L'appareil de lecture de contour 1 comporte en outre un dispositif électronique et/ou informatique 9 permettant, d'une part, de piloter les moyens d'actionnement de l'appareil de lecture de contour 1, et, d'autre part, d'acquérir et d'enregistrer les coordonnées rai, tetaai, zai de l'extrémité du doigt de palpage 8B du palpeur 8.
  • Pour préparer la lentille ophtalmique 20, il est également connu d'utiliser un appareil de détourage 30 qui ne fait pas en propre l'objet de la présente invention. Un tel appareil de détourage, bien connu de l'Homme du métier, est par exemple décrit dans le document US 6 327 790 ou commercialisé par la demanderesse sous la marque Kappa CTD.
  • Comme le montre la figure 2, un tel appareil de détourage comprend généralement des moyen de support ici formés par des arbres 31 de maintien et d'entraînement en rotation de la lentille ophtalmique 10 autour d'un axe de blocage A1. Un tel appareil de détourage comprend en outre des moyens de détourage ici formés par un outil d'usinage 32 monté rotatif autour d'un axe de rotation A2 qui est ici sensiblement parallèle à l'axe de blocage A1, mais qui pourrait également être incliné par rapport à cet axe. L'outil d'usinage 32 et/ou les arbres 31 sont pourvus de deux mobilités relatives, dont une mobilité radiale permettant de modifier l'écartement entre l'axe de rotation A2 et l'axe de blocage A1, et une mobilité de translation axiale selon un axe parallèle à l'axe de blocage A1.
  • L'appareil de détourage 30 comporte en outre un dispositif électronique et/ou informatique (non représenté) qui est pourvu, d'une part, de moyens de communication avec le dispositif électronique et/ou informatique 9 de l'appareil de lecture de contour 1, et, d'autre part, de moyens de pilotage des mobilités des arbres 31 et de l'outil d'usinage 32. Ce dispositif électronique et/ou informatique permet en particulier de piloter, pour chaque position angulaire de la lentille 20 autour de l'axe de blocage A1, l'écartement radial entre l'outil d'usinage 32 et l'axe de blocage A1, ainsi que la position axiale de la tranche 23 de la lentille par rapport à la surface de travail de l'outil d'usinage 32.
  • Comme le montre plus particulièrement la figure 3, l'outil d'usinage 32 est en l'espèce constitué par une meule principale 33 de forme, c'est-à-dire présentant en creux, à la manière d'un négatif, un profil d'usinage complémentaire de celui à obtenir en relief sur la tranche 23 de la lentille à usiner. Plus particulièrement, cette meule principale 33 est ici de révolution autour de l'axe de rotation A2 et est pourvue d'une gorge de biseautage 34 apte à former sur la tranche de la lentille 20 la nervure d'emboîtement 24 (figure 7) de forme complémentaire. Le diamètre de la meule principale sera préférentiellement choisi inférieur à 25 millimètres.
  • Cette nervure d'emboîtement 24 est le plus souvent réalisée pour présenter, en section transversale, un profil en forme de dièdre, c'est-à-dire en forme de V renversé, c'est pourquoi la nervure d'emboîtement 24 est communément appelée biseau. Bien sûr, cette nervure d'emboîtement pourra présenter, en section transversale, des formes différentes, par exemple une forme semi-circulaire ou encore rectangulaire.
  • En variante et en référence à la figure 4, on pourra prévoir que l'outil d'usinage comporte un train de meules comprenant, outre la meule principale 33 précitée, une meule de biseautage auxilliaire 35 pourvue d'une gorge de biseautage 36 de profondeur et/ou de largeur inférieures d'au moins 0,05 millimètre aux profondeur et/ou largeur de la gorge de biseautage 34 de la meule principale 33. Cette petite gorge de biseautage 36 pourra par exemple présenter une profondeur et une largeur inférieures de 0,3 millimètres à la profondeur et à la largeur de la gorge de biseautage 34 de la meule principale 33.
  • En variante encore, comme le montre la figure 5, on pourra prévoir que l'outil d'usinage 32 comporte une meulette 37 présentant une partie centrale 40 cylindrique de révolution autour de l'axe de rotation A2, et, de part et d'autre de cette partie centrale 40, deux parties d'extrémité 38, 39 coniques de révolution autour de l'axe de rotation A2 et disposées dos-à-dos. Ces deux parties d'extrémité 38, 39 seront alors aptes à usiner successivement les deux flancs de la nervure d'emboîtement 24 de la lentille ophtalmique 20. Bien sûr, on pourra aussi prévoir que ces deux parties d'extrémité soient disposées en regard et à distance l'une de l'autre.
  • L'outil d'usinage pourra être d'un type autre. Il pourra en particulier être formé par une fraise ou un couteau monté rotatif autour de l'axe de rotation A2. Par couteau, on entend un outil présentant, à la manière d'une mèche plate, un arbre central de part et d'autre duquel s'étendent radialement, dans un même plan, deux lames aptes à usiner la tranche de la lentille ophtalmique.
  • Procédé de préparation
  • Pour la mise en oeuvre du procédé selon l'invention, en référence à la figure 1, on commence par fixer la monture de lunettes 10 choisie par le futur porteur dans l'appareil de lecture 1. Pour cela, la monture est insérée entre les plots 4 des mâchoires 3, de telle sorte que chacun des entourages de la monture est prêt à être palpé selon un trajet démarrant par l'insertion du palpeur 8 entre les deux plots 4 enserrant la partie inférieure de l'entourage à palper, puis suivant le drageoir 11 de cet entourage afin de couvrir toute sa longueur.
  • Plus précisément, le dispositif électronique et/ou informatique 9 définit comme nulles la position angulaire et l'altitude du palpeur 8 lorsque le doigt de palpage 8B est disposé entre les deux plots 4 précités.
  • Une fois la monture de lunettes 10 fixée et le palpeur 8 au contact du drageoir 11, le dispositif électronique et/ou informatique 9 commande la rotation du plateau tournant 6 de sorte que le doigt de palpage 8B du palpeur 8 se déplace continûment le long du fond du drageoir 11.
  • La conservation du contact du doigt de palpage 8B avec le fond du drageoir 11 est assurée par les moyens d'actionnement qui exercent sur le palpeur 8 un effort de rappel radial dirigé vers le drageoir 11. Cet effort de rappel radial permet ainsi d'éviter que le doigt de palpage 8B ne remonte le long de l'un ou l'autre des flancs du drageoir 11 et qu'il ne sorte du drageoir.
  • Par conséquent, le palpeur 8 est piloté en position angulaire autour de l'axe de rotation B et est guidé selon sa coordonnée radiale et selon son altitude grâce à la forme ici en V du drageoir 11.
  • Le dispositif électronique et/ou informatique 9 relève alors pendant la rotation du plateau tournant 6 les coordonnées spatiales rai, tetaai, zai d'une pluralité de points du profil longitudinal acquis 27 du drageoir 11, par exemple 360 points, pour mémoriser une image numérique précise du contour de ce drageoir. Cette image, en projection orthogonale dans le plan du contour initial 28, est représentée en pointillé sur la figure 6.
  • En variante, on pourrait prévoir que le palpeur vienne palper, de manière discrète, un nombre prédéfini de points du drageoir pour relever les coordonnées spatiales de ces points.
  • En variante encore, on pourra acquérir ces coordonnées spatiales rai, tetaai, zai au moyen d'un registre de base de données. Dans cette variante, le registre de base de données comporte une pluralité d'enregistrements chacun associés à un type référencé de montures de lunettes (c'est-à-dire à un modèle donné de monture de lunettes). Plus précisément, chaque enregistrement comporte un identifiant qui correspond au type référencé de montures de lunettes, et un tableau de valeurs référençant par exemple les coordonnées spatiales de 360 points caractéristiques de la forme d'un profil longitudinal du drageoir d'une monture de lunettes du type référencé. Ainsi, pour acquérir ces coordonnées spatiales rai, tetaai, zai, l'utilisateur pourra rechercher dans la base de données l'enregistrement dont l'identifiant correspond à la monture de lunettes sélectionnée par le porteur (par exemple au moyen du code-barre de la monture). Puis, les valeurs référencées dans cet enregistrement seront ensuite lues et transmises au dispositif électronique et/ou informatique de l'appareil de détourage 30. Un inconvénient généralement constaté lors de l'utilisation de cette méthode d'acquisition est que, puisque deux montures du même type ne présentent que rarement exactement la même forme, les coordonnées spatiales acquises dans la base de données peuvent être légèrement différentes des coordonnées réelles des points correspondants du drageoir. Toutefois, le procédé selon l'invention va permettre de compenser ces différences, de manière que la lentille soit aisément montable dans la monture sélectionnée par le porteur.
  • Selon une autre variante, l'acquisition de coordonnées de points du profil longitudinal acquis peut être réalisée dans un plan, par exemple sur une photo du porteur. Dans cette variante, au cours d'une première opération, on acquiert une photo numérique du porteur équipé de sa monture de lunettes. Puis, au cours d'une seconde opération, on relève sur la photo acquise la forme du contour intérieur de chaque entourage de la monture de lunettes, par exemple au moyen d'un logiciel de traitement d'images. On en déduit ainsi les coordonnées rai, tetaai d'une pluralité de points du profil longitudinal acquis.
  • Au cours d'une seconde étape, on procède au calcul d'une consigne de détourage de la lentille ophtalmique à emboîter dans l'entourage palpé de la monture de lunettes 10.
  • Cette étape de calcul peut être réalisée par des moyens de calcul du dispositif électronique et/ou informatique hébergé par l'appareil de lecture de contour 1 ou par ceux de l'appareil de détourage 30, ou encore par ceux de tout autre dispositif apte à communiquer avec l'un et/ou l'autre de ces deux appareils 1,30.
  • Au cours de cette seconde étape, les moyens de calcul élaborent, en fonction des coordonnées spatiales rai, tetaai, zai des points du profil longitudinal acquis 27 sur le drageoir 11, une consigne de rayon de détourage et une consigne axiale de détourage de la lentille ophtalmique 20. Ces consignes sont élaborées pour que la lentille soit détourée avec, sur sa tranche 23, une nervure d'emboîtement 24 profilée ayant une section souhaitée et s'étendant selon le profil longitudinal déduit 25 (figure 6), qui correspond ici au sommet de l'arête de la nervure d'emboîtement 24 à usiner.
  • Le profil longitudinal déduit 25 est ici défini par 360 points dont les coordonnées spatiales sont notées rsj, tetasj, zsj.
  • Le profil longitudinal déduit 25 est déduit du profil longitudinal acquis 27 en ce sens qu'il est défini pour être soit confondu avec celui-ci, soit écarté de celui-ci d'un écart quasi-constant. Plus précisément, les coordonnées rsj, tetasj, zsj des 360 points du profil longitudinal déduit 25 sont calculées à partir des coordonnées rai, tetaai, zai des 360 points du profil longitudinal acquis 27 selon la loi mathématique suivante :
    • Pour i = j et j allant de 1 à 360,
    • rsj = rai + k ; tetasj = tetaai ; zsj = zai + g(tetasj).
  • La constante k est calculée de manière classique en fonction des architectures des appareils de lecture de contour 1 et de détourage 30, ainsi qu'en fonction des formes des sections transversales du drageoir de l'entourage de la monture et de la gorge de biseautage de la meule principale 33. Cette constante k permet en particulier de tenir compte du fait que, une fois la lentille emboîtée dans l'entourage, le sommet de la nervure d'emboîtement (correspondant au profil longitudinal déduit 25) n'est jamais au contact du fond du drageoir (correspondant au profil longitudinal acquis 27) mais est légèrement décalé de ce dernier.
  • La fonction g(tetasj) peut être choisie nulle ou constante ou variable, pour prendre en compte une éventuelle différence entre les cambrures générales de la lentille et du drageoir de la monture. Le choix de cette fonction permet en particulier de modifier la position de la nervure d'emboîtement sur la tranche périphérique 23 de la lentille, de manière par exemple que la nervure d'emboîtement s'étende le long de la face optique avant de la lentille ou plutôt au milieu de sa tranche.
  • Au cours d'une troisième étape, les moyens de calcul procèdent à la détection d'au moins une portion singulière Z1-Z5 du profil longitudinal déduit 25.
  • Cette détection permettra par la suite d'usiner la lentille ophtalmique 20 de telle sorte que sa nervure d'emboîtement 24 soit idéalement au contact du drageoir en dehors des portions singulières et hors contact de ce drageoir dans ces portions singulières. On comprend ainsi que la nervure d'emboîtement 24 sera usinée de manière classique et uniforme hors des portions singulières du profil longitudinal déduit 25, de telle sorte que la nervure d'emboîtement 24 s'emboîte dans le drageoir 13, et qu'elle sera usinée de manière particulière et non-uniforme dans les portions singulières du profil longitudinal déduit 25, de telle sorte qu'idéalement, la nervure d'emboîtement 24 ne s'emboîte pas complètement dans le drageoir 13 au niveau de ces portions singulières.
  • Les sections de la nervure d'emboîtement 24 auxquelles on prévoit qu'il y ait contact avec le drageoir 13 sont appelées sections d'appui, tandis que les sections de la nervure d'emboîtement 24 auxquelles on prévoit qu'il n'y ait pas contact avec le drageoir 13 sont appelées sections de liberté. Ces sections de liberté sont ainsi nommées puisque si la lentille n'est pas correctement détourée et présente un contour trop grand par rapport à celui de l'entourage 11 correspondant, cet entourage est libre de se déformer au niveau de ces sections de liberté pour épouser la forme de la nervure d'emboîtement. En ce sens, les portions singulières pourraient également être nommées portions de liberté.
  • Plus particulièrement, les moyens de calcul procèdent à la détection d'au moins un point singulier P1-P5 auquel le profil longitudinal déduit 25 présente un rayon de courbure minimum ou inférieur à un seuil, puis ils en déduisent la position d'au moins une portion singulière Z1-Z5 du profil longitudinal déduit 25 en tant que portion située à moins de 5 millimètres de ou contenant le point singulier P1-P5.
  • Pour déterminer les positions des points singuliers P1-P5, les moyens de calcul déterminent les rayons de courbure Rcj du profil longitudinal déduit 25 au niveau de ses 360 points préalablement définis.
  • Le calcul de ces rayons de courbure pourra être réalisé de diverses manières, en deux ou trois dimensions.
  • Ici, le calcul des rayons de courbure est fait en deux dimensions, dans le plan de projection du profil longitudinal déduit 25 représenté sur la figure 6, en faisant abstraction des coordonnées zsj des points du profil longitudinal déduit 25.
  • Le calcul du rayon de courbure Rcj du profil longitudinal déduit 25 en chaque point Pj est réalisé de la manière suivante : R c j = r s j . cos teta s j - a 0 2 + r s j . sin teta s j - a 1 2 1 / 2 ,
    Figure imgb0001

    avec
    • a0 = (b0 - b1) / (b2 - b3) ;
    • a1=b1-b2.a0 ;
    • b0 = (c0 2 - c1 2 + c2 2- c3 2) / (2.c2 - 2.c3) ;
    • b1 = (c1 2 - c4 2 + c3 2 - c5 2) /(2.c3 - 2.c5) ;
    • b2 = (c1 - c4) / (c3 c5) ;
    • b3 = (c0-c1)/(c2-c3) ;
    et où
    • c0 = rsj+1 . cos (tetasj+1) ;
    • c1 = rsj . cos (tetasj) ;
    • c2 = rsj+1. sin (tetasj+1) ;
    • c3 = rsj . sin (tetasj) ;
    • c4 = rsj-1 . cos (tetasj-1) ;
    • c5 = rsj-1 . sin (tetasj-1).
  • En variante, pour déterminer chaque rayon de courbure, les moyens de calcul pourront déduire des coordonnées des 360 points du profil longitudinal déduit 25, une fonction f(tetasj) représentative du profil longitudinal déduit 25, en coordonnées polaires et deux fois dérivable. Le calcul de chaque rayon de courbure sera alors réalisé au moyen de la formule : R c j = f ʹ 2 + f 2 3 / 2 / 2. f ʹ 2 + f 2 - f . f ʺ ,
    Figure imgb0002

    avec f' = df(tetasj)/d(tetasj) et f" = d2f(tetasj)/d(tetasj)2.
  • Quoi qu'il en soit, les moyens de calcul procèdent alors à la détermination des positions des points singuliers P1-P5 du profil longitudinal déduit 25.
  • Pour cela, les moyens de calcul comparent les valeurs des 360 rayons de courbure Rcj calculés avec une valeur seuil et sélectionnent les points auxquels le rayon de courbure calculé est inférieur à cette valeur seuil.
  • Préférentiellement, cette valeur seuil est prédéterminée et mémorisée dans les moyens de calcul. Elle est alors choisie inférieure à 20 millimètres, ici égale à 10 millimètres.
  • En variante, cette valeur seuil pourra être déterminée en fonction des valeurs calculées des rayons de courbure Rcj. En d'autres termes, la valeur seuil pourra être choisie en fonction de la forme globale du profil longitudinal déduit 25, ou même en fonction de la forme du profil longitudinal acquis 27. A titre d'exemples non limitatifs, la valeur seuil pourra être choisie en fonction de la moyenne et/ou de l'écart type et/ou de la médiane des 360 rayons de courbure Rcj calculés. Elle pourra également être choisie égale au plus petit rayon de courbure calculé, de manière qu'elle permette de sélectionner un unique point du profil longitudinal déduit 25, à savoir le point où la courbure de ce profil est maximale. Elle pourra également être choisie égale au Nième plus petit rayon de courbure calculé (avec N inférieur à 360, typiquement compris entre 5 et 60), de manière qu'elle permette de sélectionner N points du profil longitudinal déduit 25, à savoir les N points où la courbure de ce profil est maximale.
  • Quoi qu'il en soit, la comparaison des rayons de courbure Rcj calculés avec cette valeur seuil permet de relever au moins un point singulier sur le profil longitudinal déduit 25 au niveau duquel le rayon de courbure du profil est inférieur à cette valeur seuil.
  • Généralement, des ensembles de plusieurs points voisins, au niveau desquels le rayon de courbure du profil est inférieur à cette valeur seuil, sont ainsi relevés. Les moyens de calcul définissent un unique point singulier P1-P5 par ensemble de points, à savoir le point central de cet ensemble de points.
  • Puis, les moyens de calcul définissent les portions singulières Z1-Z5 comme les zones du profil longitudinal déduit 25 qui sont centrées sur ces points singuliers P1-P5 et qui présentent une longueur comprise entre 5 et 10 millimètres, ici égale à 8 millimètres.
  • Tel que représenté sur la figure 6, les moyens de calcul déterminent cinq portions singulières écartées les unes des autres.
  • Enfin, au cours d'une quatrième et dernière étape, la lentille ophtalmique 20 est bloquée entre les arbres 31 de l'appareil de détourage 30 puis la lentille ophtalmique 20 est détourée par cet appareil de détourage 30.
  • Au cours de cette étape, les arbres 31 de support de la lentille et/ou l'outil de détourage 32 sont pilotés de telle sorte que le profil longitudinal déduit présente dans au moins une portion singulière Z1-Z5 un écart spécifique E1 par rapport au profil longitudinal acquis 27 de nature à accroître son rayon de courbure et/ou de telle sorte que la section de la nervure d'emboîtement 24 soit localement rétrécie en largeur et/ou en hauteur sur au moins une portion singulière Z1-Z5.
  • Tel que décrit dans la suite, la lentille sera biseautée de manière spécifique dans chaque portion singulière Z1-Z5.
  • En variante, on pourra prévoir de la biseauter de manière spécifique dans seulement certaines portions singulières. Considérons, pour choisir laquelle ou lesquelles des portions singulières seront biseautées de manière spécifique, le profil longitudinal déduit 25 dans son ensemble. Il présente une zone temporale qui correspond à la zone de l'entourage de la monture au niveau de laquelle est fixée l'une des branches de la monture de lunettes, et une zone nasale qui correspond à la zone de l'entourage de la monture au niveau de laquelle est fixé le pontet de la monture de lunettes. Alors, si on choisit de biseauter la lentille de manière spécifique dans une seule des portions singulières Z1-Z5, la portion singulière Z2 sélectionnée sera celle la plus proche de la zone d'accroche de la branche sur l'entourage (en l'occurrence la zone temporale du profil longitudinal déduit 25). Si on choisit de biseauter la lentille de manière spécifique dans deux des portions singulières Z1-Z5, les portions singulières Z2, Z3 sélectionnées seront, pour l'une d'entre elles, celle la plus proche de la zone temporale du profil longitudinal déduit 25, et, pour l'autre d'entre elles, celle la plus proche de la zone nasale du profil longitudinal déduit 25. Ainsi, si, du fait des soudures des branches et du pontet sur l'entourage, le drageoir est localement déformé dans les zones temporales et/ou nasales, les deux portions singulières biseautées de manière spécifique seront confondues ou situées à proximité de ces zones temporales et/ou nasales.
  • Selon un premier mode de réalisation de l'invention, au cours de cette étape de détourage, les arbres 31 de support de la lentille et/ou l'outil de détourage 32 sont pilotés de telle sorte que le profil longitudinal déduit 26 présente, dans chaque portion singulière Z1-Z5 considérée, un écart spécifique E1 par rapport au profil longitudinal acquis 27 de nature à accroître son rayon de courbure (voir figure 6).
  • Plus particulièrement, au cours de l'étape de détourage, les arbres 31 et/ou l'outil de détourage 32 sont pilotés de telle sorte que le profil longitudinal déduit 26 soit déductible du profil longitudinal acquis 27 par une loi mathématique qui, sur les portions singulières Z1-Z5, diffère du reste du profil longitudinal déduit 26, de manière que le rayon de courbure moyen de chaque portion singulière Z1-Z5 du profil longitudinal déduit 26 soit augmenté par rapport au rayon de courbure moyen que cette portion singulière Z1- Z5 aurait présenté si la loi mathématique donnée avait été, sur cette portion singulière Z1-Z5, la même que pour le reste du profil longitudinal déduit 26.
  • En d'autres termes, les moyens de calcul déterminent un nouveau profil longitudinal déduit 26, confondu avec le profil longitudinal déduit 25 initialement calculé excepté dans chaque portion singulière Z1-Z5. Par conséquent, la loi mathématique précitée est uniforme (et correspond à la formule mathématique de déduction du profil longitudinal déduit 25 en fonction du profil longitudinal acquis 27) en dehors des portions singulières Z1-Z5, et est non-uniforme dans chaque portion singulière.
  • Pour obtenir les coordonnées du nouveau profil longitudinal déduit 26 dans chaque portion singulière Z1-Z5, les moyens de calcul diminuent les valeurs des coordonnées radiales rsj des points du profil longitudinal déduit 25 initial qui sont situés dans la portion singulière Z1 considérée.
  • Plus précisément, dans un premier temps, les moyens de calcul diminuent la valeur de la coordonnée radiale rsj de chaque point singulier P1-P5 d'une valeur comprise entre 0,05 et 0,3 millimètre, ici égale à 0,1 millimètre. Puis, dans un second temps, les moyens de calcul ajustent les coordonnées radiales rsj des autres points des portions singulières Z1-Z5 considérées de telle sorte que le nouveau profil longitudinal déduit 26 s'étende continûment sans point anguleux et sans point de rebroussement. De cette manière, l'écart entre le nouveau profil longitudinal déduit 26 et le profil longitudinal acquis 27 est constant et égal à k hors des portions singulières, et est variable dans chaque portion singulière. Ainsi, l'écart entre le profil longitudinal déduit 25 initial et le nouveau profil longitudinal déduit 26 est en au moins un point supérieur à 0,05 millimètre et est en tout point inférieur à 0,3 millimètre.
  • Enfin, la lentille est détourée de manière classique selon le nouveau profil longitudinal déduit 26, au moyen de la meule principale 33. De cette manière, la nervure d'emboîtement 24 présente à l'issue de cette étape une section uniforme, c'est-à-dire de forme invariable sur l'ensemble de sa longeur.
  • Ainsi, comme le montre la figure 7, à l'issue de ce détourage, le sommet de la nervure d'emboîtement présente, dans chaque portion singulière Z1-Z5 considérée, un profil 24A qui s'étend à une distance de l'axe de blocage A1 plus proche que celle à laquelle il se serait étendu si la lentille avait été biseautée selon le profil longitudinal initial 25 (profil 24B). De cette manière, lorsque le palpage de l'entourage de la monture et/ou le détourage de la lentille sont réalisés de manière imparfaite et que, partant, le contour de la lentille est légèrement trop grand par rapport au contour de l'entourage, le biseautage spécifique permet à la lentille de rester montable dans l'entourage, sans que ce montage ne génère de contraintes mécaniques préjudiciables à la durée de vie de la lentille ophtalmique 20.
  • De manière avantageuse, on pourra prévoir, après l'étape de détermination, de mémoriser la forme du nouveau profil longitudinal déduit 26 dans un registre de base de données. Pour cela, le registre peut comporter une pluralité d'enregistrements dont chacun d'entre eux est associé à un type ou à un modèle de montures de lunettes référencé et contient la forme d'un nouveau profil longitudinal déduit 26 commun aux montures de ce type ou de ce modèle. La mise en mémoire dans le registre de la forme du nouveau profil longitudinal déduit 26 sera alors réalisée en recherchant dans ce registre un enregistrement correspondant à la monture concernée et en écrivant dans cet enregistrement la forme du nouveau profil longitudinal déduit 26.
  • De cette manière, lors du détourage ultérieur d'une lentille ophtalmique en vue de son montage dans une monture du même type ou du même modèle, les moyens de calcul pourront acquérir dans le registre la forme de ce nouveau profil longitudinal déduit 26, de manière à directement usiner la lentille selon ce profil.
  • Selon un second mode de réalisation de l'invention, au cours de l'étape de détourage, les arbres 31 de support de la lentille et/ou l'outil de détourage 32 sont pilotés selon le profil longitudinal déduit 25 initial, de manière à réaliser une nervure d'emboîtement 24 profilée, c'est-à-dire de section uniforme, excepté dans chaque portion singulière Z1-Z5 où ils sont pilotés pour réduire uniquement la taille de la section de cette nervure d'emboîtement 24.
  • Ce mode de réalisation présente un avantage particulier. En effet, comme le montre la figure 8, le fait de seulement diminuer la taille de la section de la nervure d'emboîtement sans modifier le rayon de consigne de détourage de la lentille (c'est-à-dire sans localement modifier le profil longitudinal déduit 25 sur les portions singulières) permet de s'assurer que la position du pied de la nervure d'emboîtement (partie du chant de la lentille bordant la nervure d'emboîtement) reste localement inchangée. Après montage de la lentille dans son entourage, le pied de la nervure d'emboîtement 24 s'étendra alors à proximité de la face intérieure de l'entourage de la monture de lunettes, comme sur le reste du pourtour de lentille, sans créer d'interstice inesthétique entre le chant de la lentille et la monture au niveau des portions singulières.
  • Préférentiellement, le détourage de la lentille comporte une première phase d'usinage de la nervure d'emboîtement 24 avec une section uniforme suivant le profil longitudinal déduit 25 et une deuxième phase de rognage de la nervure d'emboîtement 24 sur chaque portion singulière Z1-Z5 du profil longitudinal déduit 25.
  • Ici, la première phase d'usinage étant réalisée au moyen de la meule principale 33 de forme (représentée sur la figure 3) tandis que la deuxième phase est réalisée à l'aide de la meule auxiliaire 35 (représentée sur la figure 4).
  • Pour cela, la gorge de biseautage 36 de la meule de biseautage auxiliaire 35 est amenée au contact de la nervure d'emboîtement 24 de la lentille ophtalmique 20, au niveau de l'une des extrémités d'une première portion singulière. Puis les arbres 31 de support de la lentille et/ou l'outil de détourage 32 sont pilotés de telle sorte que la nervure d'emboîtement 24 de la lentille soit rognée sur toute la longueur de cette portion singulière, puis sur toute la longueur des autres portions singulières. Comme le montre la figure 8, ce pilotage est prévu pour que le profil de la nervure d'emboîtement 24, au niveau de chaque point singulier P1-P5, présente une hauteur et/ou une largeur inférieures d'au moins 0,05 millimètre et d'au plus 0,3 millimètre par rapport à la hauteur et/ou à la largeur de la nervure d'emboîtement 24 en dehors des portions singulières. Ce pilotage est en outre prévu pour que la nervure d'emboîtement 24 ne présente pas de discontinuité, en particulier au niveau des extrémités de chaque portion singulière Z1-Z5.
  • On constate par ailleurs que, si la section de la nervure d'emboîtement 24 a été rétrécie en hauteur, le profil longitudinal déduit 25 selon lequel s'étend cette nervure d'emboîtement 24 est légèrement déformé auxdites portions singulières.
  • En variante, le rognage de la nervure d'emboîtement 24 pourra être réalisé de manière différente. Par exemple, il pourra être réalisé à l'aide de la meule principale 33 au cours d'une seconde passe, en déplaçant celle-ci selon une direction sensiblement parallèle à l'axe de blocage A1, en décalage transversal par rapport au profil longitudinal déduit 25. Pour cela, lors de la seconde passe, les arbres 31 de support de la lentille et/ou l'outil de détourage 32 seront pilotés dans chaque portion singulière Z1-Z5 considérée de manière à se décaler progressivement axialement (suivant l'axe de blocage A1) par rapport à leur position durant la première passe. Ainsi, au cours de cette seconde passe, l'un des flancs de la nervure d'emboîtement 24 sera usiné par l'un des flancs de la gorge de biseautage 34 de la meule principale 33, ce qui aura pour effet de réduire la hauteur et la largeur de la nervure d'emboîtement 24 dans chaque portion singulière considérée.
  • En variante, le rognage de la nervure d'emboîtement 24 pourra être réalisé à l'aide d'une partie cylindrique de la meule principale 33, en rabotant le sommet de la nervure d'emboîtement 24, de manière à casser son arête de sommet, voire de manière à supprimer localement la nervure d'emboîtement 24. Dans cette variante, seule la hauteur de la nervure d'emboîtement sera modifiée.
  • En variante encore, la réalisation de la nervure d'emboîtement 24 et son rognage pourront être réalisés simultanément.
  • Ainsi, lors du biseautage de la lentille par la meule principale 33, les arbres 31 de support de la lentille et/ou l'outil de détourage 32 pourront être pilotés de manière à présenter des mouvements alternatifs axiaux (selon l'axe de blocage A1). Ainsi, ces mouvements alternatifs permettront de raboter les deux flancs de la nervure d'emboîtement.
  • Pour détourer la lentille de telle sorte que le rétrécissement de la nervure d'emboîtement 24 soit réalisé simultanément à la formation de cette nervure d'emboîtement, il est également possible d'utiliser la meulette représentée sur la figure 5 en usinant cette nervure d'emboîtement 24 en deux phases successives, dont une phase d'usinage d'un premier de ses flancs et une phase d'usinage d'un second de ses flancs.
  • A cet effet, dans un premier temps, le dispositif électronique et/ou informatique de l'appareil de détourage 30 pilote en coordination la mobilité radiale de la meulette relativement aux arbres 31 pour positionner une première partie d'extrémité conique 39 de la meulette 37 contre la tranche de la lentille, du côté de sa face avant. Puis, la meulette 37 et les arbres 31 de support de la lentille sont pilotés pour former le flanc avant de la nervure d'emboîtement 24. Ici, ce pilotage est prévu pour que le flanc avant de la nervure d'emboîtement 24 soit formé à une distance constante de la face avant de la lentille, excepté dans les portions singulières où il s'écarte de la face avant.
  • Dans un second temps, le dispositif électronique et/ou informatique de l'appareil de détourage 30 pilote en coordination la mobilité radiale de la meulette relativement aux arbres 31 pour positionner une seconde partie d'extrémité conique 38 de la meulette 37 contre la tranche de la lentille, du côté de sa face arrière. Puis, la meulette 37 et les arbres 31 de support de la lentille sont pilotés pour former le flanc arrière de la nervure d'emboîtement 24. Ici, ce pilotage est prévu pour que le flanc arrière de la nervure d'emboîtement 24 soit formé à une distance constante de la face avant de la lentille, excepté dans les portions singulières où il se rapproche de la face avant.
  • De cette manière, la lentille ophtalmique est biseautée pour que sa nervure d'emboîtement 24 présente un rétrécissement local de hauteur et/ou de largeur dans chaque portion singulière Z1-Z5.
  • Selon une autre variante, le dispositif électronique et/ou informatique de l'appareil de détourage 30 pourra piloter la mobilité radiale de l'outil d'usinage et/ou des arbres 31 de manière à non seulement réduire en largeur et/ou en hauteur la section de la nervure d'emboîtement 24 sur chaque portion singulière mais aussi à usiner les pieds de la nervure d'emboîtement 24 (en déterminant la forme d'un nouveau profil longitudinal à partir du profil longitudinal déduit, selon une méthode du type de celle précitée).
  • De manière avantageuse, on pourra prévoir d'enregistrer la forme du profil longitudinal déduit 25 dans un enregistrement du registre de base de données, ainsi que les positions des portions singulières sur ce profil.
  • Plus précisément, après avoir déterminé les coordonnées spatiales de ce profil longitudinal déduit 25 et les positions des portions singulières et/ou des points singuliers, le dispositif électronique et/ou informatique de l'appareil de détourage 30 pourra transmettre ces données au registre pour qu'il les mémorise dans un enregistrement dont l'identifiant correspond à la monture de lunettes sélectionnée par le porteur ou dans un nouvel enregistrement ad hoc. Cet enregistrement pourra alors être lu ultérieurement pour détourer une autre lentille destinée à être montée dans une monture du même type.
  • Par ailleurs, suite au détourage de cette première lentille ophtalmique, on pourra procéder au détourage d'une seconde lentille ophtalmique en vue de son montage dans un second entourage de ladite monture de lunettes 10, en formant sur son chant une nervure d'emboîtement globalement profilée. Cette nervure sera alors réalisée de telle sorte qu'elle suive un profil longitudinal symétrique du profil longitudinal déduit 25 et de telle sorte que chacune de ses sections présente une forme identique de celle de la section correspondante (par symétrie) de la nervure d'emboîtement 24 de la première lentille.
  • Grâce à l'invention, si les deux entourages de la monture de lunettes 10 ne sont pas parfaitement symétriques alors que les deux lentilles ont été usinées de manière symétrique, les lentilles resteront montables dans leurs entourages respectifs.
  • Cette invention trouvera une application particulièrement avantageuse aux procédés de préparation de lentilles mis en oeuvre par des clients (les opticiens) dits « donneurs d'ordre » qui sous-traitent la fabrication et le détourage des lentilles.
  • Plus précisément, on pourra ici considérer, d'une part, un terminal-client installé du côté d'un client pour la commande de lentilles, et, d'autre part, un terminal fabricant installé du côté d'un fabricant de lentilles pour la fabrication et le détourage de lentilles.
  • Le terminal-client comporte des moyens informatiques pour enregistrer et transmettre des données de commande de la lentille ophtalmique 20, par exemple via un protocole de communication par IP (de type Internet). Ces données de commande comportent des données de prescription de correction visuelle (par exemple des données de puissance optique, de centrage...) et des données relatives à la monture.
  • Le terminal-fabricant comporte quant à lui des moyens informatiques pour recevoir et enregistrer les données de commande transmises par le terminal-client. Il comporte en outre un dispositif de fabrication de la lentille ophtalmique conformément aux données de prescription, pourvu par exemple de moyens de moulage de la lentille et/ou d'usinage de l'une au moins des faces optiques de la lentille. Il comporte également un dispositif de détourage de cette lentille ophtalmique conformément aux données relatives à la monture. Ce dispositif de détourage est en particulier conçu pour mettre en oeuvre les étapes de blocage et de détourage précédemment décrites, selon l'une ou l'autre des variantes de réalisation présentées.
  • Pour la mise en oeuvre du procédé de préparation de la lentille conforme à l'invention, l'étape d'acquisition du profil longitudinal acquis 27 comporte trois opérations successives.
  • Au cours d'une première opération dite de détermination, le client détermine une référence de la monture de lunettes 10.
  • Au cours d'une seconde opération dite d'émission-réception, le terminal-client émet des données de commande d'une lentille (intégrant ladite référence) et le terminal-fabricant reçoit ces données.
  • La troisième opération est réalisée au moyen d'un registre de base de données équipant le terminal-fabricant, dont chaque enregistrement est associé à un type de montures de lunettes 10 et contient, d'une part, une référence de ce type de montures, et, d'autre part, la forme d'un profil longitudinal acquis qui est commune à toutes les montures de ce type. Au cours de cette troisième opération dite de recherche, le fabricant recherche dans ce registre, à l'aide de la référence acquise durant la première opération la forme du profil longitudinal du drageoir de la monture correspondante. De cette manière, il peut ensuite mettre en oeuvre le procédé précédemment décrit, en déterminant en particulier la position des portions singulières du profil longitudinal acquis.
  • Ainsi le fabricant peut-il exploiter ces coordonnées spatiales pour détourer la lentille ophtalmique à la forme souhaitée, sans disposer physiquement de la monture dans laquelle la lentille est destinée à être emboîtée. Par ailleurs, le procédé selon l'invention va permettre de compenser les éventuelles erreurs d'acquisition de la forme du profil longitudinal et/ou d'usinage de la lentille, de manière que la lentille sera aisément montable « du premier coup» dans la monture sélectionnée par le porteur. Cet avantage est ici déterminant puisqu'il évite le renvoi de la lentille chez le fabricant en vue de sa reprise, renvoi qui s'avère toujours onéreux et long.
  • En variante, on pourra prévoir que l'étape d'acquisition du profil longitudinal acquis 27 comporte une étape de détermination par le client de la forme d'un profil longitudinal du drageoir 11, à savoir ici celle du profil longitudinal acquis 27, et une étape d'émission-réception de données de commande comportant la forme du profil longitudinal acquis 27. Dans cette variante, la détermination des positions des portions singulières sur le profil longitudinal acquis 27 pourra indifféremment être réalisée par le fabricant ou par le client.
  • Dans un autre mode de réalisation de l'invention représenté sur la figure 9, la détermination de chaque portion singulière Z6 du profil longitudinal déduit 25 pourra être réalisée manuellement par l'opérateur.
  • A cet effet, une interface homme-machine, comportant en particulier un écran 51, est mise à la disposition de l'opérateur. Cet écran 51 sera préférentiellement tactile et accompagné d'un stylet permettant à l'opérateur d'interagir précisément avec l'écran 51. L'interface est en outre équipée d'un dispositif électronique apte, d'une part, à communiquer avec le dispositif électronique et/ou informatique de l'appareil de lecture de contour 1 ou avec celui de l'appareil de détourage 30, et, d'autre part, à afficher des images sur l'écran.
  • Le dispositif électronique est en particulier adapté à afficher sur l'écran 51 une image du contour 24 d'une lentille ophtalmique 20 non détourée, une image représentant deux boutons 52, 53 respectivement munis d'un sigle « + » et d'un sigle « - », une image d'un curseur 50 en forme de cercle et une image d'une valeur numérique 54 correspondant au rayon R1 du curseur 50. Il est en outre adapté à afficher une image du profil longitudinal déduit 25.
  • Alors, pour déterminer les positions des portions singulières Z6 du profil longitudinal déduit 25, lorsque les coordonnées spatiales des 360 points du profil longitudinal déduit 25 ont été calculées, ces coordonnées sont transmises au dispositif électronique de l'écran 51 qui détermine, en fonction de ces coordonnées, la forme du profil longitudinal déduit 25 et qui affiche cette forme sur l'écran tactile 51.
  • Puis, l'opérateur ajuste le rayon R1 du curseur 50 en appuyant sur l'un ou l'autre des deux boutons 52, 53 à l'aide de son stylet. Le choix de la valeur du rayon R1 permet à l'opérateur de fixer un seuil de rayon de courbure.
  • La valeur initiale du rayon R1 du curseur 50 est initialement fixée à 10 millimètres et peut être ainsi modifiée dans un intervalle de valeurs compris entre 5 et 20 millimètres.
  • Une fois ce rayon R1 ajusté, l'opérateur muni du stylet fait naviguer, comme représenté sur la figure 9, le curseur 50 de telle manière que le bord circulaire de ce curseur longe le profil longitudinal déduit 25. Le dispositif électronique de l'écran 51 est ici adapté à aider l'opérateur en guidant le curseur de manière à maintenir un contact ponctuel entre le bord circulaire du curseur 50 et le profil longitudinal déduit 25.
  • Lorsque l'opérateur estime que les formes du curseur 50 et du profil longitudinal déduit 25 concordent, l'opérateur sélectionne la portion du profil longitudinal déduit 25 dans laquelle se trouve le curseur, par exemple en « double cliquant » avec le stylet sur l'écran tactile 51.
  • Les formes sont ici considérées comme « concordantes » lorsque le curseur présente deux points de contact avec le profil longitudinal déduit 25. En effet, les portions du profil longitudinal déduit 25 dans lesquelles le curseur comporte deux points de contact présentent un rayon de courbure inférieur au rayon du curseur, c'est-à-dire inférieur au seuil déterminé par l'opérateur. Ces portions correspondent donc aux portions singulières Z6 du profil longitudinal déduit 25. Ces portions singulières Z6 sont alors définies comme les portions situées entre les deux points de contact du curseur 50 avec le profil longitudinal déduit 25.
  • Préférentiellement, les portions sélectionnées s'affichent alors en couleur de manière que l'opérateur puisse valider visuellement sa sélection.
  • Les coordonnées spatiales des points appartenant aux portions singulières Z6 sont alors transmises à l'appareil de détourage 30, pour que ce dernier détoure la lentille de manière spécifique dans ces portions singulières.
  • Dans d'autres variantes de réalisation de l'invention représentées sur les figures 10 à 12, la détermination de chaque portion singulière du profil longitudinal déduit 25 pourra être réalisée en considérant non pas la forme du profil longitudinal déduit 25 ou du profil longitudinal acquis 27, mais plutôt la forme d'un troisième profil longitudinal 60 ; 61 ; 62 déduit de l'un ou l'autre de ces deux profils longitudinaux 25, 27 selon une règle de déduction donnée et distinct de ces deux profils longitudinaux.
  • Plus particulièrement, après avoir déterminé ce troisième profil longitudinal, les moyens de calcul établissent une association entre chaque point de ce troisième profil longitudinal 60 ; 61 ; 62 et chaque point du profil longitudinal déduit 25 selon une règle de correspondance donnée, puis ils déterminent les positions des portions singulières du profil longitudinal déduit 25 en tant que portions situées à moins de 5 millimètres de ou contenant un point singulier dont le point associé sur ledit troisième profil longitudinal 60 ; 61 ; 62 est anguleux ou présente un rayon de courbure minimum ou inférieur à un seuil.
  • Selon la variante de mise en oeuvre du procédé selon l'invention représentée sur la figure 10, la détermination de chaque portion singulière du profil longitudinal déduit 25 est réalisée sur un troisième profil longitudinal 62 déduit de ce profil 25 par un calcul mathématique d'homothétie.
  • Plus précisément, après avoir déterminé les coordonnées spatiales des 360 points du profil longitudinal déduit 25, les moyens de calcul déduisent de ces coordonnées les coordonnées de 360 points du troisième profil longitudinal 62.
  • A cet effet, étant données les coordonnées rsj, tetasj, zsj d'un point Tj1 du profil longitudinal déduit 25 et les coordonnées rhj, tetahj, zhj d'un point correspondant Tj2 du troisième profil longitudinal 62, les coordonnées rhj, tetahj, zhj des 360 points de ce troisième profil longitudinal sont calculées selon les formules suivantes :
    • Pour j allant de 1 à 360, r h j = r s j . exp - 0 , 5. r s j - rmin / rmax - rmin ; teta h j = teta s j ; z h j = z s j .
      Figure imgb0003
  • Dans cette formule, la constante rmax correspond à la coordonnée rsj du point du profil longitudinal déduit 25 le plus éloigné de l'axe de blocage A1 et la constante rmin correspond à la coordonnée rsj du point du profil longitudinal déduit 25 le plus proche de l'axe de blocage A1.
  • Bien sûr, les coordonnées rhj des points du troisième profil longitudinal 62 pourront être calculées différemment, par exemple au moyen de la formule suivante :
    • rhj = rsj + v, avec v une constante quelconque.
  • Quoi qu'il en soit, une fois ces coordonnées calculées, les moyens de calcul déterminent les rayons de courbure du troisième profil longitudinal 62 au niveau de ses 360 points.
  • Puis, au cours d'une étape de comparaison, les moyens de calcul comparent ces rayons de courbure avec un seuil déterminé afin de situer sur le troisième profil longitudinal 62 au moins un point P17 de faible rayon de courbure.
  • Enfin, les moyens de calcul déduisent des coordonnées de ce point P17 celles du point singulier P7 correspondant situé sur le profil longitudinal déduit 25. Les moyens de calcul déterminent alors, comme cela a été exposé précédemment, la position d'au moins une portion singulière Z7 du profil longitudinal déduit 25, centrée sur ce point singulier P7.
  • Selon la variante de mise en oeuvre du procédé selon l'invention représentée sur la figure 11, la détermination de chaque portion singulière du profil longitudinal déduit 25 est réalisée au moyen d'un troisième profil longitudinal circonscrit au profil longitudinal déduit 25. Ce troisième profil longitudinal correspond ici au cadre boxing 60.
  • Plus précisément, après avoir acquis les coordonnées spatiales rsj, tetasj, zsj de 360 points du profil longitudinal déduit 25, les moyens de calcul du dispositif déduisent de ces coordonnées la géométrie du cadre boxing 60.
  • Les moyens de calcul établissent alors une règle de correspondance entre les points de ce cadre boxing 60 et les points du profil longitudinal déduit 25. A cet effet, un point du profil longitudinal déduit 25 est défini comme étant associé à un point du cadre boxing 60 si ces deux points comportent une même position angulaire autour de l'axe de blocage A1, c'est-à-dire si ces deux points sont situés sur une même droite passant par l'axe de blocage A1.
  • Puis, les moyens de calcul déterminent les coordonnées de quatre points anguleux P20, P21, P22, P23 du cadre boxing 60, c'est à dire ici les coordonnées des quatre coins du cadre.
  • Les moyens de calcul en déduisent les coordonnées des quatre points singuliers P10, P11, P12, P13 associés. Sur la figure 11, ces quatre points singuliers P10, P11, P12, P13 correspondent aux points d'intersection des diagonales du cadre boxing 60 avec le profil longitudinal déduit 25. Ces quatre points singuliers P10, P11, P12, P13 sont situés à proximité des zones fortement courbées du profil longitudinal déduit 25.
  • En conséquence, les moyens de calcul peuvent déduire des coordonnées de ces quatre points singuliers les positions de quatre portions singulières Z10, Z11, Z12, Z13 courbées du profil longitudinal déduit 25.
  • Selon la variante de mise en oeuvre du procédé selon l'invention représentée sur la figure 12, la détermination de chaque portion singulière du profil longitudinal déduit 25 est réalisée au moyen d'un troisième profil en forme de polygone 61 inscrit dans le profil longitudinal déduit 25.
  • Ce polygone est choisi pour comporter au moins 10 côtés d'égales longueurs dont les extrémités appartiennent au profil longitudinal déduit 25.
  • Bien sûr, en variante, ce polygone pourra être choisi comme étant circonscrit au profil longitudinal déduit 25, de telle sorte que chacun de ses côtés soit tangent au profil longitudinal déduit 25.
  • Quoi qu'il en soit, les moyens de calcul établissent ensuite une règle de correspondance entre les points de ce polygone 61 et les points du profil longitudinal déduit 25. A cet effet, un point du profil longitudinal déduit 25 est défini comme étant associé à un point du polygone 61 si ces deux points comportent une même position angulaire autour de l'axe de blocage A1, c'est-à-dire si ces deux points sont situés sur une même droite passant par l'axe de blocage A1.
  • Puis, au cours d'une étape de calcul, les moyens de calcul déterminent les angles ALPHA à la jonction de chacun des côtés du polygone.
  • Au cours d'une étape de comparaison, les moyens de calcul comparent ces angles avec un seuil prédéterminé préférentiellement compris entre 150 et 175 degrés. Ils en déduisent la position d'au moins un point de jonction P14 de deux côtés du polygone qui est particulièrement anguleux. Ce point de jonction P14, qui appartient ici au profil longitudinal déduit 25, est alors situé à proximité d'une partie fortement courbée de ce profil.
  • En conséquence, les moyens de calcul peuvent déduire des coordonnées de ce point de jonction P14 la position d'une portion singulière Z14 courbée du profil longitudinal déduit 25.
  • Selon une autre variante de réalisation de l'invention représentée sur la figure 13, la détermination de chaque portion singulière du profil longitudinal déduit 25 pourra être réalisée en sélectionnant les portions singulières Z15, Z16 du profil longitudinal déduit 25 qui sont situées à moins de 5 millimètres de ou contenant un point singulier P15, P16 dont la distance à l'axe de blocage A1 est maximum ou supérieure à un seuil.
  • Plus particulièrement ici, les moyens de calcul sélectionnent parmi les 90 points du cadran supérieur gauche du profil longitudinal déduit 25 (les points d'indices j allant de 91 à 180) et parmi les 90 points du cadran supérieur droit de ce profil longitudinal déduit 25 (les points d'indices j allant de 181 à 270), le point de chaque cadran le plus éloigné de l'axe de blocage A1 (c'est-à-dire le point de chaque cadran qui présente une coordonnée radiale maximale). Ces deux points sont alors situés à proximité de parties fortement courbées du profil longitudinal déduit 25.
  • Les moyens de calcul en déduisent alors les positions des deux portions singulières Z15, Z16 du profil longitudinal déduit 25, qui sont ici définies comme les portions du profil de 10 millimètres de longueur, centrées sur les deux points P15, P16.

Claims (18)

  1. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (25) déduit du premier profil longitudinal (27),
    caractérisé en ce qu'il comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (25) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) auquel le deuxième profil longitudinal (25) présente un rayon de courbure minimum ou inférieur à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la section de la nervure d'emboîtement (24) soit rétrécie en largeur et/ou en hauteur sur ladite portion singulière (Z1-Z5).
  2. Procédé selon la revendication précédente, dans lequel ladite étape de détermination exclut la recherche de ladite portion singulière (Z1-Z5) du deuxième profil longitudinal (25) en tant que portion présentant un point singulier (P1-P5) anguleux ou de rebroussement.
  3. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (25) déduit du premier profil longitudinal (27),
    caractérisé en ce qu'il comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (25) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) dont la distance à un axe de la lentille ophtalmique (20) passant à l'intérieur du deuxième profil longitudinal (25) est maximum ou supérieure à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la section de la nervure d'emboîtement (24) soit rétrécie en largeur et/ou en hauteur sur ladite portion singulière (Z1-Z5).
  4. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (25) déduit du premier profil longitudinal (27),
    caractérisé en ce que, considérant un troisième profil (60 ; 61 ; 62) déduit du premier ou du deuxième profil longitudinal (25, 27) selon une règle de déduction donnée, distinct de ces premier et deuxième profils longitudinaux (25, 27) et dont chaque point est associé à un point du deuxième profil longitudinal (25) selon une règle de correspondance donnée, le procédé comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (25) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) dont le point associé sur ledit troisième profil longitudinal (60 ; 61 ; 62) est anguleux ou présente un rayon de courbure minimum ou inférieur à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la section de la nervure d'emboîtement (24) soit rétrécie en largeur et/ou en hauteur sur ladite portion singulière (Z1-Z5).
  5. Procédé selon l'une des revendications précédentes, dans lequel la largeur et/ou la hauteur de la section de la nervure d'emboîtement (24) sont, en au moins un point de chaque portion singulière, rétrécies d'au moins 0,05 millimètre.
  6. Procédé selon la revendication précédente, dans lequel la largeur et la hauteur de la section de la nervure d'emboîtement (24) sont, en tout point de chaque portion singulière, rétrécies d'au plus 0,3 millimètre.
  7. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) d'un drageoir (11) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (26) déduit du premier profil longitudinal (27),
    caractérisé en ce qu'il comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (26) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) auquel le deuxième profil longitudinal (26) présente un rayon de courbure minimum ou inférieur à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que le deuxième profil longitudinal (26) soit déductible du premier profil longitudinal (27) par une loi mathématique qui, sur ladite portion singulière (Z1-Z5), diffère du reste du deuxième profil longitudinal (26), de manière que le rayon de courbure moyen de cette portion singulière (Z1-Z5) du deuxième profil longitudinal (26) soit augmenté par rapport au rayon de courbure moyen que cette portion singulière (Z1- Z5) aurait présenté si la loi mathématique donnée avait été, sur cette portion singulière (Z1-Z5), la même que pour le reste du deuxième profil longitudinal (26).
  8. Procédé selon la revendication précédente, dans lequel ladite étape de détermination exclut la recherche de ladite portion singulière (Z1-Z5) du deuxième profil longitudinal (26) en tant que portion présentant un point singulier (P1-P5) anguleux ou de rebroussement.
  9. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (26) déduit du premier profil longitudinal (27),
    caractérisé en ce qu'il comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (26) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) dont la distance à un axe de la lentille ophtalmique (20) passant à l'intérieur du deuxième profil longitudinal (26) est maximum ou supérieure à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que le deuxième profil longitudinal (26) soit déductible du premier profil longitudinal (27) par une loi mathématique qui, sur ladite portion singulière (Z1-Z5), diffère du reste du deuxième profil longitudinal (26), de manière que le rayon de courbure moyen de cette portion singulière (Z1-Z5) du deuxième profil longitudinal (26) soit augmenté par rapport au rayon de courbure moyen que cette portion singulière (Z1- Z5) aurait présenté si la loi mathématique donnée avait été, sur cette portion singulière (Z1-Z5), la même que pour le reste du deuxième profil longitudinal (26).
  10. Procédé de préparation d'une lentille ophtalmique (20) en vue de son montage dans un entourage d'une monture de lunettes (10), comportant :
    - une étape d'acquisition d'un premier profil longitudinal (27) dudit entourage,
    - une étape de blocage de la lentille ophtalmique (20) dans des moyens de support (31),
    - une étape de détourage de la lentille ophtalmique (20) par des moyens de détourage (32), au cours de laquelle les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la lentille ophtalmique (20) soit détourée avec, sur son chant (23), une nervure d'emboîtement (24) globalement profilée ayant une section souhaitée et s'étendant selon un deuxième profil longitudinal (26) déduit du premier profil longitudinal (27),
    caractérisé en ce que, considérant un troisième profil (60 ; 61 ; 62) déduit du premier ou du deuxième profil longitudinal (26, 27) selon une règle de déduction donnée, distinct de ces premier et deuxième profils longitudinaux (26, 27) et dont chaque point est associé à un point du deuxième profil longitudinal (26) selon une règle de correspondance donnée, le procédé comporte une étape de détermination d'au moins une portion singulière (Z1-Z5) du deuxième profil longitudinal (26) en tant que portion située à moins de 5 millimètres de ou contenant un point singulier (P1-P5) dont le point associé sur ledit troisième profil longitudinal (60 ; 61 ; 62) est anguleux ou présente un rayon de courbure minimum ou inférieur à un seuil,
    et en ce qu'au cours de l'étape de détourage, les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que le deuxième profil longitudinal (26) soit déductible du premier profil longitudinal (27) par une loi mathématique qui, sur ladite portion singulière (Z1-Z5), diffère du reste du deuxième profil longitudinal (26), de manière que le rayon de courbure moyen de cette portion singulière (Z1-Z5) du deuxième profil longitudinal (26) soit augmenté par rapport au rayon de courbure moyen que cette portion singulière (Z1- Z5) aurait présenté si la loi mathématique donnée avait été, sur cette portion singulière (Z1-Z5), la même que pour le reste du deuxième profil longitudinal (26).
  11. Procédé selon l'une des revendications 7 à 10, dans lequel la portion singulière (Z1-Z5) du deuxième profil longitudinal (26) présente, par rapport à la forme que cette portion aurait présentée si la loi mathématique avait été, sur la portion singulière (Z1-Z5), la même que pour le reste du deuxième profil longitudinal (26), un écart en au moins un point supérieur à 0,05 millimètre.
  12. Procédé selon la revendication précédente, dans lequel la portion singulière (Z1-Z5) du deuxième profil longitudinal (26) présente, par rapport à la forme que cette portion aurait présentée si la loi mathématique avait été, sur la portion singulière (Z1-Z5), la même que pour le reste du deuxième profil longitudinal (26), un écart inférieur à 0,3 millimètre.
  13. Procédé selon l'une des revendications 7 à 12, dans lequel les moyens de détourage (32) et/ou les moyens de support (31) sont pilotés de telle sorte qu'à l'issue de l'étape de détourage, la nervure d'emboîtement (24) présente une section de géométrie uniforme le long du deuxième profil longitudinal (26).
  14. Procédé selon l'une des revendications 4 et 10, dans lequel ledit troisième profil longitudinal est un polygone circonscrit (60) ou inscrit (61) au premier ou au deuxième profil longitudinal (25 ; 26, 27).
  15. Procédé selon l'une des revendications 4 et 10, dans lequel ledit troisième profil longitudinal est une homothétie (62) du premier ou du deuxième profil longitudinal (25 ; 26, 27).
  16. Procédé selon l'une des revendications 1, 4, 7 et 10, dans lequel ledit seuil est inférieur à 20 millimètres, préférentiellement égal à 10 millimètres.
  17. Procédé selon l'une des revendications précédentes, dans lequel, le deuxième profil longitudinal (25 ; 26) comportant au moins deux portions singulières (Z1-Z5) dont une première portion singulière (Z2) qui est la plus proche d'une partie temporale du deuxième profil longitudinal (25 ; 26), les moyens de support (31) et/ou les moyens de détourage (32) sont pilotés de telle sorte que la section de la nervure d'emboîtement (24) soit localement rétrécie en largeur et/ou en hauteur au moins dans la première portion singulière (Z2) et/ou de telle sorte que le deuxième profil longitudinal (26) soit déduit par ladite loi mathématique différente au moins dans la première portion singulière (Z2).
  18. Procédé selon l'une des revendications précédentes, dans lequel chaque portion singulière (Z1-Z5) du deuxième profil longitudinal (25 ; 26) est centrée sur ledit point singulier (P1-P5) et présente une longueur inférieure à 10 millimètres.
EP09714122A 2008-01-28 2009-01-09 Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement Active EP2234758B9 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0800452A FR2926898B1 (fr) 2008-01-28 2008-01-28 Procede de preparation d'une lentille ophtalmique avec un usinage specifique de sa nervure d'emboitement
PCT/FR2009/000024 WO2009106764A1 (fr) 2008-01-28 2009-01-09 Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement

Publications (3)

Publication Number Publication Date
EP2234758A1 EP2234758A1 (fr) 2010-10-06
EP2234758B1 EP2234758B1 (fr) 2011-07-13
EP2234758B9 true EP2234758B9 (fr) 2012-02-08

Family

ID=39877859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09714122A Active EP2234758B9 (fr) 2008-01-28 2009-01-09 Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement

Country Status (5)

Country Link
US (1) US8651661B2 (fr)
EP (1) EP2234758B9 (fr)
AT (1) ATE516110T1 (fr)
FR (1) FR2926898B1 (fr)
WO (1) WO2009106764A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950163B1 (fr) * 2009-09-15 2012-01-20 Essilor Int Procede et dispositif d'usinage d'une lentille ophtalmique en vue de son montage dans une monture de lunettes
FR2961732B1 (fr) * 2010-06-24 2012-07-27 Essilor Int Procede de calcul predictif d'une geometrie simulee d'une nervure d'engagement a menager sur le chant d'une lentille ophtalmique d'une paire de lunettes et methode de biseautage
JP5745909B2 (ja) * 2011-03-30 2015-07-08 株式会社ニデック 眼鏡レンズ周縁加工装置
FR2983316B1 (fr) * 2011-11-30 2014-06-27 Essilor Int Procede de preparation d'une lentille ophtalmique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5185620A (en) * 1991-08-22 1993-02-09 Cooper George F Eyeglass system
JP4360764B2 (ja) * 2000-04-28 2009-11-11 株式会社トプコン 眼鏡レンズのレンズ周縁加工方法、レンズ周縁加工装置及び眼鏡レンズ

Also Published As

Publication number Publication date
EP2234758A1 (fr) 2010-10-06
WO2009106764A1 (fr) 2009-09-03
FR2926898B1 (fr) 2010-03-19
US8651661B2 (en) 2014-02-18
EP2234758B1 (fr) 2011-07-13
US20100312573A1 (en) 2010-12-09
FR2926898A1 (fr) 2009-07-31
ATE516110T1 (de) 2011-07-15

Similar Documents

Publication Publication Date Title
EP2247407B9 (fr) Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement
EP2305424B9 (fr) Méthode d'élaboration d'une consigne de détourage d'une lentille ophtalmique
EP2786202B1 (fr) Procédé de préparation d'une lentille ophtalmique
EP2210703B1 (fr) Dispositif d'usinage d'une lentille ophtalmique
EP2305423B9 (fr) Procédé d'élaboration d'une consigne de détourage d'une lentille ophtalmique
EP2410372B1 (fr) Procédé de calcul d'une consigne de biseautage ou de rainage d'une lentille ophtalmique
EP2234758B1 (fr) Procédé de préparation d'une lentille ophtalmique avec un usinage spécifique de sa nervure d'emboîtement
EP2306236B1 (fr) Procédé d'élaboration d'une consigne de détourage d'une lentille ophtalmique en vue de son montage sur une monture de lunettes semi-ceclée
EP2077927B1 (fr) Procédé de détourage d'une lentille ophtalmique
EP2268997B1 (fr) Appareil de lecture de la géometrie d'un cercle ou d'une arcade de monture de lunettes et procédé de lecture correspondant
EP2196845B1 (fr) Procédé de préparation d'une lentille ophtalmique en vue de son montage sur une monture de lunettes cambrée
EP3074178B1 (fr) Procédé de biseautage d'une lentille ophtalmique
EP2247408B1 (fr) Équipement visuel comportant une lentille ophtalmique dont la nervure d'emboîtement est localement rognée et procédé de préparation d'une telle lentille
WO2007065984A1 (fr) Procede d'elaboration d'une consigne de detourage d'une lentille ophtalmique
EP2140223B1 (fr) Procédé de préparation d'une lentille ophtalmique à l'affleurement d'un entourage d'une monture de lunettes
EP2399709B1 (fr) Procédé de calcul prédictif d'une géométrie simulée d'une nervure d'engagement à ménager sur le chant d'une lentille ophtalmique d'une paire de lunettes et méthode de biseautage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HADDADI, AHMED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009001811

Country of ref document: DE

Effective date: 20110901

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110713

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 516110

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111113

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111014

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

26N No opposition filed

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

BERE Be: lapsed

Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQ

Effective date: 20120131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009001811

Country of ref document: DE

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009001811

Country of ref document: DE

Representative=s name: 24IP LAW GROUP SONNENBERG FORTMANN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602009001811

Country of ref document: DE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON LE PONT, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230125

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602009001811

Country of ref document: DE

Representative=s name: SONNENBERG HARRISON PARTNERSCHAFT MBB PATENT- , DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 16

Ref country code: GB

Payment date: 20240129

Year of fee payment: 16