EP2229470A1 - Method for obtaining a metal microstructure and microstructure obtained according to said method - Google Patents

Method for obtaining a metal microstructure and microstructure obtained according to said method

Info

Publication number
EP2229470A1
EP2229470A1 EP08867895A EP08867895A EP2229470A1 EP 2229470 A1 EP2229470 A1 EP 2229470A1 EP 08867895 A EP08867895 A EP 08867895A EP 08867895 A EP08867895 A EP 08867895A EP 2229470 A1 EP2229470 A1 EP 2229470A1
Authority
EP
European Patent Office
Prior art keywords
metal
layer
microstructure
substrate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08867895A
Other languages
German (de)
French (fr)
Other versions
EP2229470B1 (en
Inventor
Jean-Charles Fiaccabrino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Nivarox SA
Original Assignee
Nivarox Far SA
Nivarox SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nivarox Far SA, Nivarox SA filed Critical Nivarox Far SA
Publication of EP2229470A1 publication Critical patent/EP2229470A1/en
Application granted granted Critical
Publication of EP2229470B1 publication Critical patent/EP2229470B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/022Electroplating of selected surface areas using masking means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • C25D5/024Electroplating of selected surface areas using locally applied electromagnetic radiation, e.g. lasers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/005Jewels; Clockworks; Coins
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/10Bearings

Definitions

  • the present invention relates to a method of manufacturing a metal microstructure by a LIGA type technology.
  • the invention relates to such a method for producing such a microstructure having a core made of a first metal at least partially coated with a particularly functional layer, a second metal and the geometric dimensions of which are defined accurately. directly by the process.
  • the invention also relates to such a metal part obtained by this method.
  • the LIGA technique consists of depositing on a conductive substrate or coated with a conductive layer, a layer of a photosensitive resin, to be carried out through a mask corresponding to the contour of the desired microstructure X irradiation by means of a synchrotron; to develop, that is to say to remove by physical or chemical means the portions of the non-irradiated photoresist layer to define a mold having the contour of the microstructure, to galvanically deposit a metal typically nickel in the mold in photosensitive resin then to eliminate the mold to release the microstructure.
  • the quality of the microstructures obtained does not lend itself to criticism, but the need to implement expensive equipment (synchrotron) makes this technique little compatible with a mass production of microstructures to have a low unit cost.
  • microstructures obtained according to the processes of the prior art are metal microstructures made of a single metal, generally nickel, nickel-phosphorus copper, which is not always optimal depending on the application for which they are intended. Indeed, there are in particular applications for which one or the other of these materials does not have optimum properties from the mechanical point of view than tribological.
  • a toothed wheel must be rigid enough to withstand breaking under strong stress but must also have teeth with a low coefficient of friction to facilitate meshing.
  • the choice of nickel is therefore very interesting from the point of view of its mechanical strength, on the other hand nickel has tribological properties less interesting since it has a relatively high coefficient of friction.
  • the present invention also aims to provide such a method that is simple and inexpensive to implement. - AT -
  • the invention relates to a method for manufacturing a metal microstructure characterized in that it comprises the steps of: a) providing a substrate, at least one of the faces is conductive; b) applying on the conductive surface of the substrate a layer of photoresist; c) irradiating the resin layer through a mask defining the contour of the desired microstructure; d) dissolving the non-irradiated areas of the photoresist layer to expose the conductive surface of the substrate; e) galvanically and uniformly depositing a layer of a first metal from said conductive layer of the substrate and a conductive surface of the photoresist layer; f) galvanically and uniformly depositing a layer of a second metal from said layer of the first metal to form a block substantially reaching the level of the upper surface of the photoresist layer; g) flattening the resin and the deposited metal to bring the resin and electrodeposited block to the same level; h) delaminating the resin layer and electrodeposited block from the substrate;
  • This method therefore makes it possible to produce finished parts having a core made of a first metal coated with a layer of a second metal and whose desired geometric size precision is defined by the dimensions of the photosensitive resin mold in which the galvanic deposits of the two metals take place, ie in other words by the precision of the photolithography technique used.
  • a judicious choice of the two metals forming the microstructure makes it possible to better adapt the mechanical properties of the part to a given application.
  • the first metal may be deposited in the form of a thin layer, typically a nickel-phosphorus layer of a few tens of microns in order to promote a lowering of the friction coefficient of the part and the second metal may be deposited in the form of a block typically nickel, the latter giving the piece the mechanical strength to the piece.
  • the first and second metals have different mechanical properties in order to form a microstructure whose mechanical properties are optimized.
  • the first metal has a lower coefficient of friction than the second metal, and the second metal has a higher mechanical strength than the first metal.
  • the first metal is for example a nickel-phosphorus alloy and the second metal is, for example, nickel.
  • said conductive surface of the substrate is formed of a stack of layers of chromium and gold and said conductive surface of the photoresist layer is formed by activation of said resin.
  • the method further comprises, before step h) a step of depositing a conducting conductive layer and a repetition of steps b) to g) with a second mask defining a second contour for a second level of the microstructure, for example for producing a gear having two teeth of different diameters.
  • the method of the invention finds a particularly advantageous application for the manufacture of micromechanical parts of watch movements.
  • the parts may be selected from the group consisting of gear wheels, escape wheels, anchors, pivoted parts, jumper springs, spirals, cams, and passive parts.
  • FIGS. 1 to 8 illustrate the method steps of an embodiment of the invention with a view to producing a toothed wheel.
  • the substrate 1 used in step a) of the process according to the invention is, for example, formed by a wafer of silicon, glass or ceramic to which a conductive layer has been deposited by evaporation. that is to say a layer able to start an electroforming reaction.
  • the conducting conductive layer is formed of a sub-layer of chromium 2 and a gold layer 3 (FIG. 1).
  • the substrate 1 may consist of stainless steel or another metal capable of starting the electroforming reaction. In the case of a stainless steel substrate, the latter will be degreased before use.
  • the photosensitive resin 4 used in step b) of the process according to the invention is preferably an octofunctional epoxy-based resin available from Shell Chemical under the reference SU-8 and a photoinitiator chosen from triarylsulfonium such as those described in US Patent 4,058,401. This resin is likely to be photo-polymerized under the action of UV radiation. It will be appreciated that a solvent which has been found suitable for this resin is gammabutyrolactone (GBL).
  • GBL gammabutyrolactone
  • a novolac-type phenolformaldehyde-based resin in the presence of a DNQ (DiazoNaphthoquinone) photoinitiator may also be used.
  • the resin 4 is deposited on the substrate 1 by any suitable means, typically by spinning, to the desired thickness. Typically, the resin thickness is between 150 m ⁇ and 1 mm. Depending on the desired thickness and the deposition technique used the resin 4 will be deposited in one or more times.
  • the resin 4 is then heated between 90 and 95 ° C for a time dependent on the deposited thickness to remove the solvent.
  • step c) illustrated in FIG. 3 consists in irradiating the resin layer 4 by means of UV radiation through a mask defining the contour of the desired microstructure M and thus insolated zones 4a and non-insolated zones 4b. .
  • this UV irradiation is from 200 to 100 mJ.cm- 2 , measured at a wavelength of 365 nm depending on the thickness of the layer, and if necessary a layer annealing step may be necessary to complete the process.
  • UV-induced photopolymerization This annealing step is preferably carried out between 90 ° C. and 95 ° C. for 15 to 30 minutes, while the insolated zones 4a (photopolymerized) become insensitive to a large majority of solvents.
  • step d) illustrated in FIG. 4 consists in developing the non-insolated zones 4b of the photosensitive resin layer in order to reveal, in places, the conductive layer 3 of the substrate 1 This operation is carried out by dissolving the non-insolated zones 4b using a solvent chosen from GBL (gammabutyrolactone) and PGMEA (propylene glycol methyl ethyl acetate). insolated photosensitive resin 4a having the contours of a metal structure is thus realized.
  • GBL gammabutyrolactone
  • PGMEA propylene glycol methyl ethyl acetate
  • the following step e) illustrated in FIG. 5 consists in depositing galvanically and uniformly on the mold a layer 5 of a first metal from said conductive layer 3, ensuring that the first layer extends only over a portion of the mold depth and also extends along the vertical walls of the mold.
  • the resin layer 4 forming the mold has been activated in order to make it conductive or has been coated with a conductive primer layer.
  • the thickness of the layer 5 of this first metal corresponds to the thickness of the lining of the microstructure that it is desired to obtain, typically the thickness of this layer may be between a few microns and a few tens of microns.
  • step f) illustrated in FIG. 6 consists of depositing a layer 6 of a second metal, which is different from the first metal, in the mold coated with the layer 5 until it forms a block substantially reaching the upper surface of the photosensitive resin. 4a, the block being formed of the layer 5 of the first metal and the layer 6 of the second metal.
  • metal in this context are of course included metal alloys.
  • the first and second metals will be selected from the group consisting of nickel, copper, gold or silver, and, as an alloy, gold-copper, nickel-cobalt, nickel-iron, and nickel-phosphorus.
  • the thickness of the layer 6 of the second metal may vary depending on the use of the desired microstructure M. Typically, the thickness of the layer 6 of the second metal may vary between 100 microns to 1 mm. In a particular application such as a cam or a pinion, it will be possible, for example, to make a microstructure comprising a layer 5 having good tribological qualities typically made of nickel-phosphorus, and a layer 6 of a second mechanically resistant metal, typically nickel.
  • the electroforming conditions in particular the composition of the baths, the geometry of the system, the voltages and current densities, are chosen for each metal or alloy to be electrodeposited according to the techniques well known in the art of electroforming (cf. example Di Bah GA "electroforming" Electroplating Engineering Handbook 4th Edition redacted by LJ. Durney, published by Van Nostrand Reinhold Company Inc., NY USA 1984).
  • This step can be done by abrasion and polishing in order to directly obtain microstructures having a flat upper surface having in particular a surface state compatible with the requirements of the watch industry for the production of high-end movement.
  • step h illustrated in FIG. 8, consists in delamination separating the resin layer and the electrodeposited block from the substrate.
  • the photosensitive resin layer is removed from the delaminated structure in order to release the microstructure M thus formed.
  • the photopolymerized resin is dissolved in a step i) by N-methylpyrrolidone (NMP) or this resin is removed by plasma etching.
  • NMP N-methylpyrrolidone
  • the microstructure M thus released can either be used directly or, if appropriate, after appropriate machining.
  • the microstructure M illustrated in FIG. 8, comprises a core formed from the layer 6 of the second metal and a very precise liner formed from the layer 5 of the first metal.
  • the microstructure M illustrated in FIG. 8, it is possible to obtain a microstructure whose outer, inner and lower walls are coated with the layer 5 of the first metal.
  • these walls can advantageously serve as a contact surface in the applications mentioned above such as a cam or a pinion.

Abstract

The invention concerns a method of fabricating a metallic microstructure, characterized in that it includes the steps consisting in forming a photosensitive resin mold by a LIGA-UV type process, and in the uniform, galvanic deposition of a layer of a first metal and then a layer of a second metal form a block, which approximately reaches the top surface of the photosensitive resin.

Description

Cas 2788 TR Case 2788 TR
P ROCED E D E FAB RI CATION D' U N E M I CROSTRUCTU RE M ETALLIQU E ET M I CROSTRUCTU RE OBTEN U E SELON CEM ETALLICALLY F RALLY T OUSING P ROCED E M AND M OR CROSTRUCTU RE BUILDING IN ACCORDANCE WITH THIS
P ROCE D EPROCESS
La présente invention concerne un procédé de fabrication d'une microstructure métallique par une technologie de type LIGA. En particulier l'invention concerne un tel procédé pour la fabrication d'une telle microstructure présentant une âme réalisée en un premier métal revêtue au moins partiellement d'une couche notamment fonctionnelle, d'un deuxième métal et dont la précision des dimensions géométrique sont définies directement par le procédé. L'invention concerne également un telle pièce métallique obtenue par ce procédé.The present invention relates to a method of manufacturing a metal microstructure by a LIGA type technology. In particular, the invention relates to such a method for producing such a microstructure having a core made of a first metal at least partially coated with a particularly functional layer, a second metal and the geometric dimensions of which are defined accurately. directly by the process. The invention also relates to such a metal part obtained by this method.
La technologie LIGA (Lithographie Galvanik Abformung) développée par W. Ehrfeld du Karlsruhe Nuclear Research Center, Allemagne) dans les années 80 s'est révélée intéressante pour la fabrication de microstructures métalliques de hautes précisions.The LIGA (Lithography Galvanik Abformung) technology developed by W. Ehrfeld of the Karlsruhe Nuclear Research Center, Germany) in the 1980s has proved to be of interest for the manufacture of high precision metal microstructures.
Dans son principe la technique LIGA consiste à déposer sur un substrat conducteur ou revêtue d'une couche conductrice, une couche d'une résine photosensible, à effectuer à travers un masque correspondant au contour de la microstructure désirée une irradiation X au moyen d'un synchrotron; à développer, c'est-à-dire à éliminer par des moyens physiques ou chimiques les portions de la couche de résine photosensible non irradiées afin de définir un moule ayant le contour de la microstructure, à déposer galvaniquement un métal typiquement du nickel dans le moule en résine photosensible puis à éliminer le moule pour libérer la microstructure. La qualité des microstructures obtenues ne prête pas à critique, mais la nécessité de mettre en œuvre un équipement coûteux (synchrotron) rend cette technique peu compatible avec une production de masse de microstructures devant avoir un faible coût unitaire. C'est pourquoi sur la base de ce procédé LIGA ont été développées des procédé analogues mais utilisant des résines photosensibles aux UV. Un tel procédé est par exemple décrit dans la publication de A. B. Frazier et al., intitulée « Metallic Microstructures Fabricated Using Photosensitive Polyimide Electroplating Molds", Journal of Microelectromechanical Systems, Vol. 2, N deg. 2, June 1993 pour la fabrication de structures métalliques par électrodéposition de métal dans des moules en résine photosensible à base de polyimide. Ce procédé comprend les étapes suivantes :In principle, the LIGA technique consists of depositing on a conductive substrate or coated with a conductive layer, a layer of a photosensitive resin, to be carried out through a mask corresponding to the contour of the desired microstructure X irradiation by means of a synchrotron; to develop, that is to say to remove by physical or chemical means the portions of the non-irradiated photoresist layer to define a mold having the contour of the microstructure, to galvanically deposit a metal typically nickel in the mold in photosensitive resin then to eliminate the mold to release the microstructure. The quality of the microstructures obtained does not lend itself to criticism, but the need to implement expensive equipment (synchrotron) makes this technique little compatible with a mass production of microstructures to have a low unit cost. This is why on the basis of this LIGA process analogous processes have been developed but using UV-sensitive resins. Such a method is for example described in the publication of AB Frazier et al., Entitled "Metallic Microstructures Fabricated Using Photosensitive Polyimide Electroplating Molds", Journal of Microelectromechanical Systems, Vol 2, No. 2, June 1993 for the manufacture of structures. metal electrodeposited in polyimide-based photosensitive resin molds This method comprises the following steps:
- créer sur substrat une couche métallique sacrificielle et une couche conductrice d'amorçage pour une étape ultérieure d'électrodéposition,creating on the substrate a sacrificial metal layer and a conducting conductive layer for a subsequent electroplating step,
- appliquer une couche de polyimide photosensible,- apply a layer of photosensitive polyimide,
- irradier à l'UV la couche de polyimide à travers un masque correspondant au contour de la microstructure désirée,- UV irradiating the polyimide layer through a mask corresponding to the contour of the desired microstructure,
- développer en dissolvant les parties non irradiées de la couche de polyimide de façon à obtenir un moule en polyimide,developing by dissolving the non-irradiated portions of the polyimide layer so as to obtain a polyimide mold,
- déposer galvaniquement du nickel dans la partie ouverte du moule jusqu'à la hauteur de celui-ci, et- deposit galvanically nickel in the open part of the mold to the height thereof, and
- éliminer la couche sacrificielle et séparer la structure métallique obtenue du substrat et - éliminer le moule en polyimide.- Remove the sacrificial layer and separate the resulting metal structure from the substrate and - eliminate the polyimide mold.
Les microstructures obtenues selon les procédés de l'art antérieur sont des microstructures métalliques réalisées en un seul métal généralement du nickel, du cuivre du nickel-phosphore ce qui n'est pas toujours optimal selon l'application à laquelle elles sont destinées. En effet II existe en particulier des applications pour lesquelles l'un ou l'autre des ces matériaux ne présente pas des propriétés optimales tant du point de vue mécanique que tribologique. Typiquement une roue dentée doit être suffisamment rigide pour résister à la rupture en cas de sollicitation forte mais doit également présenter des dents avec un faible coefficient de frottement pour faciliter l'engrènement. Le choix du nickel est donc très intéressant du point de vue de sa résistance mécanique, en revanche le nickel présente des propriétés tribologiques moins intéressante puisqu'il présente un coefficient de frottement relativement élevé.The microstructures obtained according to the processes of the prior art are metal microstructures made of a single metal, generally nickel, nickel-phosphorus copper, which is not always optimal depending on the application for which they are intended. Indeed, there are in particular applications for which one or the other of these materials does not have optimum properties from the mechanical point of view than tribological. Typically a toothed wheel must be rigid enough to withstand breaking under strong stress but must also have teeth with a low coefficient of friction to facilitate meshing. The choice of nickel is therefore very interesting from the point of view of its mechanical strength, on the other hand nickel has tribological properties less interesting since it has a relatively high coefficient of friction.
Une voie pour résoudre ce problème consiste à réaliser par le procédé LIGA-UV l'âme de la microstructure désirée avec un premier métal puis à revêtir ladite âme d'une couche d'un deuxième métal par un autre procédé classique, par exemple, par vaporisation sous vide. Un tel procédé présente toutefois l'inconvénient de ne pas permettre d'obtenir des pièces avec des précisions géométriques maîtrisées de façon simple. Il existe donc un besoin pour un procédé permettant de s'affranchir d'un tel inconvénient.One way to solve this problem is to make the core of the desired microstructure with a first metal by the LIGA-UV process and then to coat said core with a layer of a second metal by another conventional method, for example by vacuum vaporization. However, such a method has the disadvantage of not making it possible to obtain parts with geometric accuracies mastered in a simple manner. There is therefore a need for a method for overcoming such a disadvantage.
La présente invention a pour but de remédier aux inconvénients susmentionnés ainsi qu'à d'autres encore en fournissant un procédé permettant de fabriquer des microstructures adaptées, du point de vue de leur composition de façon optimale à l'application à laquelle elles sont destinées, les microstructures ainsi obtenues présentant des dimensions géométriques ayant une précision maîtrisée.It is an object of the present invention to overcome the aforementioned and other disadvantages by providing a method for producing microstructures adapted from the point of view of their composition optimally to the application for which they are intended. the microstructures thus obtained having geometric dimensions having a controlled precision.
La présente invention a également pour but de fournir un tel procédé permettant de fabriquer des microstructures présentant une âme en un premier métal revêtue d'une couche d'un deuxième métal et dont la précision des dimensions géométriques souhaitée est définie par le procédé.It is another object of the present invention to provide such a method for manufacturing microstructures having a core of a first metal coated with a layer of a second metal and whose desired geometric size accuracy is defined by the method.
La présente invention a également pour but de fournir un tel procédé qui soit simple et peu coûteux à mettre en œuvre. - A -The present invention also aims to provide such a method that is simple and inexpensive to implement. - AT -
A cet effet l'invention a pour objet un Procédé de fabrication d'une microstructure métallique caractérisé en ce qu'il comprend les étapes consistant à : a) se munir d'un substrat dont au moins une des faces est conductrice ; b) appliquer sur la face conductrice du substrat une couche de résine photosensible ; c) irradier la couche de résine à travers un masque définissant le contour de la microstructure désirée ; d) dissoudre les zones non irradiées de la couche de résine photosensible pour faire apparaître par endroit la face conductrice du substrat ; e) déposer galvaniquement et de manière uniforme une couche d'un premier métal à partir de ladite couche conductrice du substrat et d'une face conductrice de la couche de résine photosensible ; f) déposer galvaniquement et de manière uniforme une couche d'un deuxième métal à partir de ladite couche du premier métal pour former un bloc atteignant sensiblement le niveau de la surface supérieure de la couche de résine photosensible ; g) aplanir la résine et le métal déposé pour amener la résine et le bloc électrodéposé au même niveau ; h) séparer par délamination la couche de résine et le bloc électrodéposé du substrat ; i) éliminer la couche de résine photosensible de la structure délaminée pour libérer la microstructure ainsi formée. Ce procédé permet donc la réalisation de pièces terminées présentant une âme en un premier métal revêtue d'une couche d'un deuxième métal et dont la précision des dimensions géométriques souhaitée est définie par les dimensions du moule en résine photosensible dans lequel les dépôts galvaniques des deux métaux ont lieu, soit en d'autres termes par la précision de la technique de photolithographie utilisée. Un choix judicieux des deux métaux formant la microstructure permet d'adapter au mieux les propriétés mécaniques de la pièce à une application donnée. Par exemple dans le cas de la réalisation d'une roue dentée, le premier métal pourra être déposé sous la forme d'une fine couche typiquement une couche de nickel-phosphore de quelques dizaines de microns afin de favoriser un abaissement du coefficient de frottement de la pièce et le deuxième métal pourra être déposé sous la forme d'un bloc typiquement du nickel, ce dernier conférant à la pièce la résistance mécanique à la pièce.For this purpose the invention relates to a method for manufacturing a metal microstructure characterized in that it comprises the steps of: a) providing a substrate, at least one of the faces is conductive; b) applying on the conductive surface of the substrate a layer of photoresist; c) irradiating the resin layer through a mask defining the contour of the desired microstructure; d) dissolving the non-irradiated areas of the photoresist layer to expose the conductive surface of the substrate; e) galvanically and uniformly depositing a layer of a first metal from said conductive layer of the substrate and a conductive surface of the photoresist layer; f) galvanically and uniformly depositing a layer of a second metal from said layer of the first metal to form a block substantially reaching the level of the upper surface of the photoresist layer; g) flattening the resin and the deposited metal to bring the resin and electrodeposited block to the same level; h) delaminating the resin layer and electrodeposited block from the substrate; i) removing the photoresist layer from the delaminated structure to release the microstructure thus formed. This method therefore makes it possible to produce finished parts having a core made of a first metal coated with a layer of a second metal and whose desired geometric size precision is defined by the dimensions of the photosensitive resin mold in which the galvanic deposits of the two metals take place, ie in other words by the precision of the photolithography technique used. A judicious choice of the two metals forming the microstructure makes it possible to better adapt the mechanical properties of the part to a given application. For example, in the case of the production of a toothed wheel, the first metal may be deposited in the form of a thin layer, typically a nickel-phosphorus layer of a few tens of microns in order to promote a lowering of the friction coefficient of the part and the second metal may be deposited in the form of a block typically nickel, the latter giving the piece the mechanical strength to the piece.
Selon un mode de réalisation préféré de l'invention, les premier et deuxième métaux présentent des propriétés mécaniques différentes afin de former une microstructure dont les propriétés mécaniques sont optimisée. De préférence, le premier métal présente un coefficient de frottement plus faible que le deuxième métal, et le deuxième métal présente une résistance mécanique plus élevée que le premier métal. Le premier métal est par exemple un alliage Nickel-phosphore et le deuxième métal est par exemple du nickel.According to a preferred embodiment of the invention, the first and second metals have different mechanical properties in order to form a microstructure whose mechanical properties are optimized. Preferably, the first metal has a lower coefficient of friction than the second metal, and the second metal has a higher mechanical strength than the first metal. The first metal is for example a nickel-phosphorus alloy and the second metal is, for example, nickel.
Typiquement ladite face conductrice du substrat est formée d'un empilement de couches de chrome et d'or et ladite face conductrice de la couche de résine photosensible est formée par activation de ladite résine.Typically said conductive surface of the substrate is formed of a stack of layers of chromium and gold and said conductive surface of the photoresist layer is formed by activation of said resin.
Ce procédé permet de réaliser plusieurs structures micromécaniques sur le même substratThis method makes it possible to produce several micromechanical structures on the same substrate
Selon un autre mode de réalisation de l'invention, le procédé comprend en outre avant l'étape h) une étape de dépôt d'une couche conductrice d'amorçage ainsi qu'une répétition des étapes b) à g) avec un second masque définissant un deuxième contour pour un deuxième niveau de la microstructure, par exemple en vue la réalisation d'une roue dentée présentant deux dentures de diamètres différents.According to another embodiment of the invention, the method further comprises, before step h) a step of depositing a conducting conductive layer and a repetition of steps b) to g) with a second mask defining a second contour for a second level of the microstructure, for example for producing a gear having two teeth of different diameters.
Le procédé de l'invention trouve une application particulièrement avantageuse pour la fabrication de pièces micromécaniques de mouvements d'horlogerie. En particulier les pièces pourront être choisies parmi l'ensemble constitué des roues dentées, des roues d'échappement, des ancres, des pièces pivotées, des ressorts sautoir, des spiraux, des cames, et des pièces passives.The method of the invention finds a particularly advantageous application for the manufacture of micromechanical parts of watch movements. In particular the parts may be selected from the group consisting of gear wheels, escape wheels, anchors, pivoted parts, jumper springs, spirals, cams, and passive parts.
D'autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d'un exemple de réalisation d'un procédé selon l'invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement, en liaison avec le dessin annexé sur lequel : les figures 1 à 8 illustrent les étapes de procédé d'un mode de réalisation de l'invention en vue de la réalisation d'une roue dentée. Le substrat 1 utilisé dans l'étape a) du procédé selon l'invention est, par exemple, formé par une plaquette de silicium, de verre ou de céramique sur laquelle on a déposé par évaporation, une couche conductrice d'amorçage, c'est-à-dire une couche apte à démarrer une réaction d'électroformage. Typiquement la couche conductrice d'amorçage est formé d'une sous couche de chrome 2 et d'une couche d'or 3 (figure 1 ).Other features and advantages of the present invention will emerge more clearly from the detailed description which follows of an example embodiment of a method according to the invention, this example being given purely by way of illustration and not only in limitation, in connection with the accompanying drawings in which: FIGS. 1 to 8 illustrate the method steps of an embodiment of the invention with a view to producing a toothed wheel. The substrate 1 used in step a) of the process according to the invention is, for example, formed by a wafer of silicon, glass or ceramic to which a conductive layer has been deposited by evaporation. that is to say a layer able to start an electroforming reaction. Typically, the conducting conductive layer is formed of a sub-layer of chromium 2 and a gold layer 3 (FIG. 1).
Alternativement, le substrat 1 peut se composer d'acier inoxydable ou d'un autre métal apte à démarrer la réaction d'électroformage. Dans le cas d'un substrat en acier inoxydable, ce dernier sera dégraissé avant usage. La résine photosensible 4 utilisée à l'étape b) du procédé selon l'invention est, de préférence, une résine à base d'époxy octofonctionnelle disponible chez Shell Chemical sous la référence SU-8 et d'un photoinitiateur choisi parmi les sels de triarylsulfonium tels que ceux décrits dans le brevet US 4,058,401. Cette résine est susceptible d'être de photo polymérisée sous l'action d'un rayonnement UV. On notera qu'un solvant qui s'est révélé approprié pour cette résine est la gammabutyrolactone (GBL).Alternatively, the substrate 1 may consist of stainless steel or another metal capable of starting the electroforming reaction. In the case of a stainless steel substrate, the latter will be degreased before use. The photosensitive resin 4 used in step b) of the process according to the invention is preferably an octofunctional epoxy-based resin available from Shell Chemical under the reference SU-8 and a photoinitiator chosen from triarylsulfonium such as those described in US Patent 4,058,401. This resin is likely to be photo-polymerized under the action of UV radiation. It will be appreciated that a solvent which has been found suitable for this resin is gammabutyrolactone (GBL).
Alternativement, une résine à base de phénolformaldéhydique de type Novolac en présence d'un photoinitiateur DNQ (DiazoNaphtoQuinone) peut également être utilisée. La résine 4 est déposée sur le substrat 1 par tout moyen approprié typiquement à la tournette jusqu'à l'épaisseur souhaitée. Typiquement, l'épaisseur de résine est comprise entre 150 mμ et 1 mm. Selon l'épaisseur désirée et la technique de dépôt utilisée la résine 4 sera déposée en une ou plusieurs fois.Alternatively, a novolac-type phenolformaldehyde-based resin in the presence of a DNQ (DiazoNaphthoquinone) photoinitiator may also be used. The resin 4 is deposited on the substrate 1 by any suitable means, typically by spinning, to the desired thickness. Typically, the resin thickness is between 150 mμ and 1 mm. Depending on the desired thickness and the deposition technique used the resin 4 will be deposited in one or more times.
La résine 4 est ensuite chauffée entre 90 et 95° C pendant une durée dépendant de l'épaisseur déposée pour évacuer le solvant.The resin 4 is then heated between 90 and 95 ° C for a time dependent on the deposited thickness to remove the solvent.
L'étape c) suivante illustrée à la figure 3 consiste à irradier la couche de résine 4 au moyen d'un rayonnement UV à travers un masque définissant le contour de la microstructure M désirée et ainsi des zones insolées 4a et des zones non insolées 4b. Typiquement, cette irradiation UV est de 200 à 10OO mJ.cm"2, mesurée à une longueur d'onde de 365 nm selon l'épaisseur de la couche. Le cas échéant une étape de recuit de la couche peut être nécessaire pour compléter la photopolymérisation induite par l'irradiation UV. Cette étape de recuit est effectuée, de préférence, entre 90 °C et 95 °C pendant 15 à 30 mn. Les zones insolées 4a (photopolymérisées) deviennent insensibles à une grande majorité de solvants. Par contre, les zones non insolées pourront ultérieurement être dissoutes par un solvant. L'étape d) suivante illustrée à la figure 4 consiste à développer les zones non insolées 4b de la couche de résine photosensible pour faire apparaître par endroit la couche conductrice 3 du substrat 1. Cette opération est réalisée par dissolution des zones non insolées 4b au moyen d'un solvant choisi parmi la GBL (gammabutyrolactone) et le PGMEA (propylène glycol méthyle éthyle acétate). Un moule en résine photosensible insolée 4a présentant les contours d'une structure métallique est ainsi réalisé.The following step c) illustrated in FIG. 3 consists in irradiating the resin layer 4 by means of UV radiation through a mask defining the contour of the desired microstructure M and thus insolated zones 4a and non-insolated zones 4b. . Typically, this UV irradiation is from 200 to 100 mJ.cm- 2 , measured at a wavelength of 365 nm depending on the thickness of the layer, and if necessary a layer annealing step may be necessary to complete the process. UV-induced photopolymerization This annealing step is preferably carried out between 90 ° C. and 95 ° C. for 15 to 30 minutes, while the insolated zones 4a (photopolymerized) become insensitive to a large majority of solvents. the non-insolated zones may subsequently be dissolved by a solvent The following step d) illustrated in FIG. 4 consists in developing the non-insolated zones 4b of the photosensitive resin layer in order to reveal, in places, the conductive layer 3 of the substrate 1 This operation is carried out by dissolving the non-insolated zones 4b using a solvent chosen from GBL (gammabutyrolactone) and PGMEA (propylene glycol methyl ethyl acetate). insolated photosensitive resin 4a having the contours of a metal structure is thus realized.
L'étape e) suivante illustrée à la figure 5 consiste à déposer galvaniquement et de manière uniforme sur le moule une couche 5 d'un premier métal à partir de ladite couche conductrice 3 en veillant à ce que la première couche ne s'étende que sur une partie de la profondeur du moule et s'étende également le long des parois verticales du moule. Pour ce faire, la couche de résine 4 formant le moule a soit été activée afin de la rendre conductrice soit été revêtue d'une couche conductrice d'amorçage. L'épaisseur de la couche 5 de ce premier métal correspond à l'épaisseur du chemisage de la microstructure que l'on souhaite obtenir, typiquement, l'épaisseur de cette couche pourra être comprise entre quelques microns et quelques dizaines de microns.The following step e) illustrated in FIG. 5 consists in depositing galvanically and uniformly on the mold a layer 5 of a first metal from said conductive layer 3, ensuring that the first layer extends only over a portion of the mold depth and also extends along the vertical walls of the mold. To do this, the resin layer 4 forming the mold has been activated in order to make it conductive or has been coated with a conductive primer layer. The thickness of the layer 5 of this first metal corresponds to the thickness of the lining of the microstructure that it is desired to obtain, typically the thickness of this layer may be between a few microns and a few tens of microns.
L'étape f) suivante illustrée à la figure 6 consiste à déposer galvaniquement dans le moule revêtue de la couche 5, une couche 6 d'un second métal différent du premier jusqu'à former un bloc atteignant sensiblement la surface supérieure de la résine photosensible 4a, le bloc étant formé de la couche 5 du premier métal et de la couche 6 du deuxième métal. Par métal dans ce contexte sont bien entendu compris les alliages métalliques. Typiquement, les premier et deuxième métaux seront choisis parmi l'ensemble comprenant le nickel, le cuivre, l'or ou l'argent, et, comme alliage, l'or-cuivre, le nickel-cobalt, le nickel-fer, et le nickel-phosphore.The following step f) illustrated in FIG. 6 consists of depositing a layer 6 of a second metal, which is different from the first metal, in the mold coated with the layer 5 until it forms a block substantially reaching the upper surface of the photosensitive resin. 4a, the block being formed of the layer 5 of the first metal and the layer 6 of the second metal. By metal in this context are of course included metal alloys. Typically, the first and second metals will be selected from the group consisting of nickel, copper, gold or silver, and, as an alloy, gold-copper, nickel-cobalt, nickel-iron, and nickel-phosphorus.
L'épaisseur de la couche 6 du deuxième métal peut varier en fonction de l'utilisation de la microstructure M désirée. Typiquement, l'épaisseur de la couche 6 du deuxième métal peut varier entre 100 microns à 1 mm. Dans une application particulière telle qu'une came ou un pignon, on pourra, par exemple, réaliser une microstructure comprenant une couche 5 présentant de bonnes qualités tribologiques typiquement réalisée en nickel-phosphore, et une couche 6 d'un deuxième métal résistant mécaniquement, typiquement du nickel.The thickness of the layer 6 of the second metal may vary depending on the use of the desired microstructure M. Typically, the thickness of the layer 6 of the second metal may vary between 100 microns to 1 mm. In a particular application such as a cam or a pinion, it will be possible, for example, to make a microstructure comprising a layer 5 having good tribological qualities typically made of nickel-phosphorus, and a layer 6 of a second mechanically resistant metal, typically nickel.
Les conditions d'électroformage, notamment la composition des bains, la géométrie du système, les tensions et densités de courant, sont choisis pour chaque métal ou alliage à électrodéposer selon les techniques bien connues dans l'art de l'électroformage (cf. par exemple Di Bah G. A. "electroforming" Electroplating Engineering Handbook 4th Edition rédigée par LJ. Durney, publié par Van Nostrand Reinhold Compagny Inc., N. Y. USA 1984 ).The electroforming conditions, in particular the composition of the baths, the geometry of the system, the voltages and current densities, are chosen for each metal or alloy to be electrodeposited according to the techniques well known in the art of electroforming (cf. example Di Bah GA "electroforming" Electroplating Engineering Handbook 4th Edition redacted by LJ. Durney, published by Van Nostrand Reinhold Company Inc., NY USA 1984).
Dans une étape g) subséquente, illustrée à la figure 7, on procède à la mise à niveau du bloc électroformé avec la couche de résine. Cette étape peut se faire par abrasion et polissage afin d'obtenir directement des microstructures ayant une surface supérieure plane présentant notamment un état de surface compatible avec les exigences de l'industrie horlogère pour la réalisation de mouvement de haut de gamme.In a subsequent step g), illustrated in FIG. 7, the electroformed block is leveled with the resin layer. This step can be done by abrasion and polishing in order to directly obtain microstructures having a flat upper surface having in particular a surface state compatible with the requirements of the watch industry for the production of high-end movement.
L'étape h) suivante, illustrée à la figure 8, consiste à séparer par délamination la couche de résine et le bloc électrodéposé du substrat. Une fois cette opération de délamination effectuée, on élimine la couche de résine photosensible de la structure délaminée pour libérer la microstructure M ainsi formée. Pour ce faire, on dissout dans une étape i) la résine photopolymérisé par la N-méthylepyrrolidone (NMP) ou encore on élimine cette résine par une attaque plasma.The following step h), illustrated in FIG. 8, consists in delamination separating the resin layer and the electrodeposited block from the substrate. Once this delamination operation has been carried out, the photosensitive resin layer is removed from the delaminated structure in order to release the microstructure M thus formed. For this purpose, the photopolymerized resin is dissolved in a step i) by N-methylpyrrolidone (NMP) or this resin is removed by plasma etching.
La microstructure ainsi libérée peut soit être utilisée directement ou le cas échéant après un usinage approprié. On comprend que grâce à la précision géométrique du moule en résine 4, la microstructure M, illustrée à la figure 8, comporte une âme formée à partir de la couche 6 du deuxième métal et un chemisage très précis formée à partir de la couche 5 du premier métal. Ainsi, comme illustré à la figure 8, on peut obtenir une microstructure dont les parois extérieures, intérieures et inférieures sont revêtues de la couche 5 du premier métal.The microstructure thus released can either be used directly or, if appropriate, after appropriate machining. It will be understood that, thanks to the geometric precision of the resin mold 4, the microstructure M, illustrated in FIG. 8, comprises a core formed from the layer 6 of the second metal and a very precise liner formed from the layer 5 of the first metal. Thus, as illustrated in FIG. 8, it is possible to obtain a microstructure whose outer, inner and lower walls are coated with the layer 5 of the first metal.
Ainsi comme expliquée ci-dessus, on comprend que, dans le cas où la couche 5 du premier métal présente de bonnes qualités tribologiques, ces parois puissent avantageusement servir de surface de contact dans les applications citées ci-dessus telles qu'une came ou un pignon. Thus, as explained above, it is understood that, in the case where the layer 5 of the first metal has good tribological qualities, these walls can advantageously serve as a contact surface in the applications mentioned above such as a cam or a pinion.

Claims

REVEN D I CATIONS REVEN DI CATIONS
1. Procédé de fabrication d'une microstructure (M) métallique caractérisé en ce qu'il comprend les étapes suivantes : a) se munir d'un substrat (1 ) dont au moins une (3) des faces est conductrice ; b) appliquer sur la face conductrice (3) du substrat (1 ) une couche (4) de résine photosensible ; c) irradier la couche (4) de résine à travers un masque définissant le contour (4a) de la microstructure désirée ; d) dissoudre les zones (4b) non irradiées de la couche (4) de résine photosensible pour faire apparaître par endroit la face conductrice (3) du substrat (1 ) ; e) déposer galvaniquement et de manière uniforme une couche (5) d'un premier métal à partir de ladite couche conductrice (3) du substrat (1 ) et d'une face conductrice de la couche (4a) de résine photosensible ; f) déposer galvaniquement et de manière uniforme une couche (6) d'un deuxième métal à partir de ladite couche du premier métal pour former un bloc atteignant sensiblement le niveau de la surface supérieure de la couche (4) de résine photosensible ; g) aplanir la résine (4) et le métal (5, 6) déposé pour amener la résine et le bloc électrodéposé au même niveau ; h) séparer par délamination la couche (4) de résine et le bloc électrodéposé du substrat (1 ) ; i) éliminer la couche (4) de résine photosensible de la structure délaminée pour libérer la microstructure (M) ainsi formée.1. A method of manufacturing a microstructure (M) metal characterized in that it comprises the following steps: a) to provide a substrate (1) of which at least one (3) of the faces is conductive; b) applying on the conductive surface (3) of the substrate (1) a layer (4) of photoresist; c) irradiating the resin layer (4) through a mask defining the contour (4a) of the desired microstructure; d) dissolving the non-irradiated areas (4b) of the photoresist layer (4) to expose the conductive surface (3) of the substrate (1) in places; e) galvanically and uniformly depositing a layer (5) of a first metal from said conductive layer (3) of the substrate (1) and a conductive face of the photoresist layer (4a); f) galvanically and uniformly depositing a layer (6) of a second metal from said layer of the first metal to form a block substantially reaching the level of the upper surface of the photoresist layer (4); g) flattening the resin (4) and the deposited metal (5, 6) to bring the resin and electrodeposited block to the same level; h) delaminating the resin layer (4) and the electrodeposited block from the substrate (1); i) removing the layer (4) of photosensitive resin from the delaminated structure to release the microstructure (M) thus formed.
2. Procédé selon la revendication 1 , caractérisé en ce que les premier et deuxième métaux présentent des propriétés mécaniques différentes afin de former une microstructure (M) dont les propriétés mécaniques sont optimisée.2. Method according to claim 1, characterized in that the first and second metals have mechanical properties different to form a microstructure (M) whose mechanical properties are optimized.
3. Procédé selon la revendication 1 ou 2 caractérisé en ce que le premier métal présente un coefficient de frottement plus faible que le deuxième métal et en ce que le deuxième métal présente un résistance mécanique plus élevée que le premier métal.3. Method according to claim 1 or 2 characterized in that the first metal has a lower coefficient of friction than the second metal and in that the second metal has a higher mechanical strength than the first metal.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le premier métal est un alliage Nickel-phosphore et le deuxième métal est du nickel. 4. Method according to one of claims 1 to 3, characterized in that the first metal is a nickel-phosphorus alloy and the second metal is nickel.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite face conductrice (3) du substrat (1 ) est formée d'un empilement de couches de chrome (2) et d'or (3).5. Method according to one of the preceding claims, characterized in that said conductive surface (3) of the substrate (1) is formed of a stack of layers of chromium (2) and gold (3).
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite face conductrice (3) de la couche (4a) de résine photosensible est formée par activation de ladite résine.6. Method according to one of the preceding claims, characterized in that said conductive surface (3) of the layer (4a) of photoresist is formed by activation of said resin.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce que plusieurs structures micromécaniques sont fabriquées sur le même substrat.7. Method according to one of the preceding claims, characterized in that several micromechanical structures are manufactured on the same substrate.
8. Microstructure métallique obtenue selon l'une des revendications précédentes, caractérisée en ce qu'elle forme une pièce micromécanique d'un mouvement d'horlogerie et étant notamment choisie parmi l'ensemble constitué des roues dentées, des roues d'échappement, des ancres, des pièces pivotées, des ressorts sautoir, des ressorts spiral et des pièces passives, des cames. 8. Microstructure metal obtained according to one of the preceding claims, characterized in that it forms a micromechanical part of a clockwork movement and being selected in particular from the set consisting of gears, escape wheels, anchors, pivoted parts, jumper springs, spiral springs and passive parts, cams.
EP08867895A 2007-12-31 2008-12-19 Method for obtaining a metal microstructure and microstructure obtained according to said method Active EP2229470B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH02036/07A CH704572B1 (en) 2007-12-31 2007-12-31 A method of manufacturing a metal microstructure and microstructure obtained using this method.
PCT/EP2008/067969 WO2009083488A1 (en) 2007-12-31 2008-12-19 Method for obtaining a metal microstructure and microstructure obtained according to said method

Publications (2)

Publication Number Publication Date
EP2229470A1 true EP2229470A1 (en) 2010-09-22
EP2229470B1 EP2229470B1 (en) 2011-11-16

Family

ID=40590002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08867895A Active EP2229470B1 (en) 2007-12-31 2008-12-19 Method for obtaining a metal microstructure and microstructure obtained according to said method

Country Status (10)

Country Link
US (1) US8557506B2 (en)
EP (1) EP2229470B1 (en)
JP (1) JP5559699B2 (en)
KR (1) KR20100098425A (en)
CN (1) CN101918617B (en)
AT (1) ATE533873T1 (en)
CH (1) CH704572B1 (en)
HK (1) HK1151562A1 (en)
RU (1) RU2481422C2 (en)
WO (1) WO2009083488A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266738A1 (en) * 2016-07-06 2018-01-10 The Swatch Group Research and Development Ltd. Method for manufacturing a part for a timepiece provided with a multi-level exterior element

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2405300A1 (en) 2010-07-09 2012-01-11 Mimotec S.A. Manufacturing method for multi-level metal parts through an LIGA type method and parts obtained using the method
CN102478765A (en) * 2011-05-10 2012-05-30 深圳光启高等理工研究院 Method for fabricating micro-structure
JP5854875B2 (en) * 2012-02-21 2016-02-09 セイコーインスツル株式会社 Electroformed parts
JP6211754B2 (en) * 2012-09-28 2017-10-11 セイコーインスツル株式会社 Manufacturing method of machine part and machine part
WO2014068613A1 (en) * 2012-10-30 2014-05-08 株式会社Leap Coil element production method
CN104756211A (en) * 2012-10-30 2015-07-01 株式会社Leap Method for producing coil element using resin substrate and using electroforming
EP3171229A1 (en) * 2015-11-19 2017-05-24 Nivarox-FAR S.A. Clock component
HK1220859A2 (en) * 2016-02-29 2017-05-12 Master Dynamic Ltd Liga fabrication process liga
CN106000489A (en) * 2016-06-30 2016-10-12 中国科学院重庆绿色智能技术研究院 Hot-piercing manufacturing method of micro-via array biological chip
JP6703674B2 (en) * 2016-09-21 2020-06-03 株式会社東海理化電機製作所 Method for manufacturing MEMS device
JP7102778B2 (en) * 2018-02-27 2022-07-20 セイコーエプソン株式会社 Watch movements and watches
CH714739A2 (en) * 2018-03-09 2019-09-13 Swatch Group Res & Dev Ltd Method of manufacturing a metallic decoration on a dial and dial obtained according to this method.
EP3575447A1 (en) * 2018-05-28 2019-12-04 The Swatch Group Research and Development Ltd Method for producing a metal decoration on a dial and dial obtained according to said method
EP3670440A1 (en) 2018-12-21 2020-06-24 Rolex Sa Method for manufacturing a clock component
EP3670441A1 (en) 2018-12-21 2020-06-24 Rolex Sa Method for manufacturing a clock component
EP3839625A1 (en) * 2019-12-18 2021-06-23 Nivarox-FAR S.A. Method for manufacturing a timepiece component and component produced by this method
EP3839624B1 (en) * 2019-12-18 2023-09-13 Nivarox-FAR S.A. Method for manufacturing a timepiece component
EP3839626B1 (en) * 2019-12-18 2023-10-11 Nivarox-FAR S.A. Method for manufacturing a timepiece component

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4058401A (en) * 1974-05-02 1977-11-15 General Electric Company Photocurable compositions containing group via aromatic onium salts
JPS57171682A (en) * 1981-04-14 1982-10-22 Citizen Watch Co Ltd Manufacture of display plate for timepiece
RU2050423C1 (en) * 1989-05-23 1995-12-20 Геннадий Ильич Шпаков Galvanoplastic method for manufacture of parts, mainly, molding dies
US5190637A (en) * 1992-04-24 1993-03-02 Wisconsin Alumni Research Foundation Formation of microstructures by multiple level deep X-ray lithography with sacrificial metal layers
DE19607266A1 (en) * 1995-03-29 1996-10-02 Bosch Gmbh Robert Perforated disk, in particular for injection valves and method for producing a perforated disk
US6136513A (en) * 1997-06-13 2000-10-24 International Business Machines Corporation Method of uniformly depositing seed and a conductor and the resultant printed circuit structure
SE523309E (en) * 2001-06-15 2009-10-26 Replisaurus Technologies Ab Method, electrode and apparatus for creating micro- and nanostructures in conductive materials by patterning with master electrode and electrolyte
AU2003228977A1 (en) * 2002-05-07 2003-11-11 University Of Southern California Method of and apparatus for forming three-dimensional structures integral with semiconductor based circuitry
EP1596259A1 (en) * 2004-05-10 2005-11-16 Precision Engineering AG Method of manufacture of thin metallic bodies, particularly watch parts
EP1835339B1 (en) * 2006-03-15 2012-05-16 Rolex S.A. Fabrication process by LIGA type technology, of a monolayer or multilayer metallic structure, and structure obtained therewith
EP1835050A1 (en) * 2006-03-15 2007-09-19 Doniar S.A. Process for the fabrication of LIGA-UV multilayer metallic structures, the layers being adjacent and not completely superimposed, and structure therefrom.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009083488A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3266738A1 (en) * 2016-07-06 2018-01-10 The Swatch Group Research and Development Ltd. Method for manufacturing a part for a timepiece provided with a multi-level exterior element
US10301732B2 (en) 2016-07-06 2019-05-28 The Swatch Group Research And Development Ltd Method for fabrication of a timepiece provided with a multi-level exterior element

Also Published As

Publication number Publication date
CN101918617A (en) 2010-12-15
JP2011521098A (en) 2011-07-21
JP5559699B2 (en) 2014-07-23
EP2229470B1 (en) 2011-11-16
RU2010132147A (en) 2012-02-10
US8557506B2 (en) 2013-10-15
ATE533873T1 (en) 2011-12-15
CH704572B1 (en) 2012-09-14
WO2009083488A1 (en) 2009-07-09
US20110020754A1 (en) 2011-01-27
CN101918617B (en) 2012-05-02
RU2481422C2 (en) 2013-05-10
HK1151562A1 (en) 2012-02-03
KR20100098425A (en) 2010-09-06

Similar Documents

Publication Publication Date Title
EP2229470B1 (en) Method for obtaining a metal microstructure and microstructure obtained according to said method
EP2347036B1 (en) Heterogenous liga method
EP2004881B1 (en) Process for the fabrication of liga-uv multilayer metallic structures, the layers being adjacent and not completely superimposed, and structure therefrom.
EP1835339B1 (en) Fabrication process by LIGA type technology, of a monolayer or multilayer metallic structure, and structure obtained therewith
EP2316056B1 (en) Process for fabricating multi-level metal parts by the uv-liga technique
EP2440690B1 (en) Method for manufacturing a metal microstructure
EP3536826B1 (en) Method for producing a metal decoration on a dial and dial obtained according to said method
WO2009083487A2 (en) Method for obtaining a metal microstructure and microstructure obtained according to said method
EP3839624B1 (en) Method for manufacturing a timepiece component
EP3454122B1 (en) Method for manufacturing a metal microstructure using liga technology, comprising at least two levels
EP3802920B1 (en) Method for producing a metal decoration on a dial and dial obtained according to said method
EP3839626B1 (en) Method for manufacturing a timepiece component
EP3839625A1 (en) Method for manufacturing a timepiece component and component produced by this method
EP3467151B1 (en) Electroplating mould and method for manufacturing same
EP3670440A1 (en) Method for manufacturing a clock component
EP3841433B1 (en) Method for manufacturing a timepiece component and component produced by this method
EP2833204B1 (en) Method for treating a layer of photosensitive resin and method for manufacturing a metal component
CH716967A2 (en) A method of manufacturing a watch component and a component obtained according to this method.
EP3748437A1 (en) Manufacture of a timepiece component
CH716966A2 (en) A method of manufacturing a watch component and a component obtained according to this method.
CH699803A2 (en) LIGA process heterogeneous.
CH714227A2 (en) Mold for electroplating and its manufacturing process.
CH715266A2 (en) Method for manufacturing a timepiece component and component obtained according to this method.
CH716969A2 (en) A method of manufacturing a watch component and a component obtained according to this method.
CH715028A2 (en) Method of manufacturing a metallic decoration on a substrate and dial obtained by such a method.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100802

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008011476

Country of ref document: DE

Effective date: 20120126

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111116

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120216

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120217

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

BERE Be: lapsed

Owner name: NIVAROX-FAR S.A.

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 533873

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111116

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008011476

Country of ref document: DE

Effective date: 20120817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111116

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161128

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230101

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231122

Year of fee payment: 16

Ref country code: DE

Payment date: 20231121

Year of fee payment: 16