EP2228461A1 - Bauteilbeschichtung - Google Patents

Bauteilbeschichtung Download PDF

Info

Publication number
EP2228461A1
EP2228461A1 EP09002778A EP09002778A EP2228461A1 EP 2228461 A1 EP2228461 A1 EP 2228461A1 EP 09002778 A EP09002778 A EP 09002778A EP 09002778 A EP09002778 A EP 09002778A EP 2228461 A1 EP2228461 A1 EP 2228461A1
Authority
EP
European Patent Office
Prior art keywords
component
component coating
rhenium
layer
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09002778A
Other languages
English (en)
French (fr)
Inventor
Alessandro Casu
Dr. Werner Stamm
Ulrich Wörz
Dr. Jaap Van Kampen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09002778A priority Critical patent/EP2228461A1/de
Priority to PCT/EP2010/050937 priority patent/WO2010097262A1/de
Publication of EP2228461A1 publication Critical patent/EP2228461A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a component coating, a component with the component coating, methods for producing the component coating and the use of the component coating as an abrasion and wear protection layer.
  • Components that are exposed to high loads are often provided with protective layers to protect them in particular from wear.
  • Such components are used for example in turbines, where they are exposed in a chemically aggressive atmosphere at high temperatures strong mechanical stresses.
  • wear protection layers or systems based on titanium nitride or titanium carbide are applied to the components.
  • Such wear protection systems are for example in the WO 2005/031038 A1 described.
  • fretting wear with superimposed vibrations or by a high temperature load to damage.
  • Other known wear protection layers based on tungsten carbide chromium or chromium carbide nickel chromium also do not have the necessary temperature resistance.
  • wear layers which serve as run-in layers. They are applied to the surface of a stationary component to serve as a seal between the stationary and a relative to this moving component, after the moving component during operation of the turbine has been ground in abrasion layer.
  • abrasion layers are for example in the EP 1 253 294 A2 described.
  • the known abrasion layers do not have the necessary capacity.
  • the cubic boron nitride wear layers used in many cases oxidize very rapidly under the influence of hot gas, which adversely affects their functionality and service life.
  • the object of the invention was therefore to provide a component coating, the thermal, chemical and mechanical stresses, such as occur in turbines, resists.
  • component coatings containing rhenium diboride meet these requirements.
  • component coatings that consist of either rhenium diboride or rhenium diboride particles have a high temperature resistance and, moreover, are chemically and mechanically highly resistant. This is partly due to the very high hardness of rhenium diboride.
  • the component coating contains rhenium diboride particles, these may be embedded in a ductile matrix, wherein the ductile matrix may in particular consist of MCrAlY.
  • the ductile matrix may in particular consist of MCrAlY.
  • the proportion of rhenium diboride particles in the component coating can be from 1 to 70, preferably from 2 to 40, more preferably from 4 to 25, and especially preferably from 6 to 10,% by weight.
  • the component coating may be 10 to 500, preferably 50 to 400 and particularly preferably 100 to 300 ⁇ m thick.
  • the component coating when it is rhenium diboride, it may be 0.1 to 600 ⁇ m thick.
  • the component may preferably be a turbine component, for example a spring clip.
  • the invention also provides a process for producing a component coating in which rhenium diboride particles are embedded in a ductile matrix of MCrAlY.
  • a mixture of MCrAlY and rhenium diboride is sprayed onto a component.
  • the mixture can be sprayed onto the component by means of HVOF or cold spray.
  • the invention also encompasses a process for producing a component coating consisting of rhenium diboride.
  • a layer of rhenium and a layer of boron which preferably each have a thickness in the range from 0.1 to 400 .mu.m, are first applied to a component in any order one above the other. Subsequently, the layers of rhenium and boron are heated in vacuo at a temperature> 1000 ° C until a layer of rhenium diboride has formed from the layers.
  • rhenium diboride from rhenium and boron, for example, is generally in Hsiu-Ying Chung et al., Science, April 20, 2007, Vol. 316, no. 5823, pp. 436-439 described.
  • the layer of rhenium and / or the layer of boron can be vapor-deposited or sprayed onto the component. In particular, this can be done with the aid of HVOF and / or cold spray.
  • the component coating as an abrasion or wear protection layer on a component.
  • the component may in particular be a turbine component.
  • the spring clip 1 is provided with a component coating 2 according to the invention as a wear protection layer.
  • the component coating 2 consists of rhenium diboride.
  • the Spring Clip 1 serves to realize the transition of the basket and transition of the turbine blade with as little leakage as possible. It also provides the necessary axial degree of freedom to allow the burner of the turbine thermal expansion. Therefore, it constantly moves relative to the transition and needs at the provided with the component coating contact surface high wear resistance. Function and structure of a Spring Clip are for example in the US 2007/0012043 A1 described.
  • a layer of rhenium is first deposited on the Spring Clip 1 by means of HVOF. Then a layer of boron is applied to the layer of rhenium. This can again be done by HVOF. Alternatively, the order of the layers on the spring clip 1 can also be reversed, i. First, the boron layer and then on this rhenium layer can be applied.
  • the Spring Clip 1 with the rhenium and the boron layer is then heated in vacuo at a temperature> 1000 ° C until a layer of rhenium diboride has formed from the two layers.
  • Temperature and duration of the heat treatment depend, inter alia, on the thicknesses of the rhenium and the boron layer and, in this specific case, can easily be determined experimentally by a person skilled in the art with the aid of a few experiments.
  • the component coating 2 of rhenium diboride thus obtained has a high temperature resistance and is above it also chemically resistant. Above all, it is due to their high hardness mechanically extremely strong.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Die Erfindung betrifft eine Bauteilbeschichtung (2), die Rheniumdiborid enthält, ein Bauteil (1) mit der Bauteilbeschichtung (2), Verfahren zur Herstellung der Bauteilbeschichtung (2) und die Verwendung der Bauteilbeschichtung (2) als Abrieb- und Verschleißschutzschicht.

Description

  • Die Erfindung betrifft eine Bauteilbeschichtung, ein Bauteil mit der Bauteilbeschichtung, Verfahren zur Herstellung der Bauteilbeschichtung und die Verwendung der Bauteilbeschichtung als Abrieb- und Verschleißschutzschicht.
  • Bauteile, die hohen Belastungen ausgesetzt sind, werden häufig mit Schutzschichten versehen, um sie insbesondere vor Verschleiß schützen sollen. Derartige Bauteile kommen beispielsweise in Turbinen zum Einsatz, wo sie in einer chemisch aggressiven Atmosphäre bei hohen Temperaturen starken mechanischen Beanspruchungen ausgesetzt sind.
  • Insbesondere dann, wenn zwei solche Bauteile eine Relativbewegung zueinander ausführen, kann reibender und hämmernder Verschleiß auftreten. Darüber hinaus kann es zu dem so genannten "Fretting" kommen, worunter man die gleichzeitige Abnutzung und Korrosion von Bauteilen versteht.
  • Um solche Beschädigungen zu vermeiden, werden bisher spezielle Verschleißschutzschichten bzw. -systeme auf Basis von Titannitrid oder Titancarbid auf die Bauteile aufgebracht. Derartige Verschleißschutzsysteme sind beispielsweise in der WO 2005/031038 A1 beschrieben. Allerdings kommt es auch bei diesen Systemen durch Reibverschleiß mit überlagerten Schwingungen oder durch eine hohe Temperaturbelastung zu Beschädigungen. Andere bekannte Verschleißschutzschichten auf Basis von Wolframcarbid-Chrom oder Chromcarbid-Nickel-Chrom weisen ebenfalls nicht die notwendige Temperaturbeständigkeit auf.
  • Eine weitere Gruppe von Bauteilbeschichtungen, die insbesondere beim Turbinenbau von Bedeutung haben, sind Abriebschichten, die als Einlaufschichten dienen. Sie werden auf die Oberfläche eines ruhenden Bauteils aufgebracht, um als Dichtung zwischen dem ruhenden und einem sich relativ zu diesem bewegenden Bauteil zu dienen, nachdem sich das bewegende Bauteil während des Betriebes der Turbine in Abriebschicht eingeschliffen hat. Derartige Abriebschichten sind beispielsweise in der EP 1 253 294 A2 beschrieben.
  • Die bekannten Abriebschichten weisen jedoch nicht die notwendige Belastbarkeit auf. So oxidieren die in vielen Fällen zum Einsatz kommenden Abriebschichten aus kubischem Bornitrid sehr schnell unter Heißgaseinfluss, was ihre Funktionalität und Lebensdauer negative beeinflusst.
  • Aufgabe der Erfindung war es daher, eine Bauteilbeschichtung bereit zu stellen, die thermischen, chemischen und mechanischen Belastungen, wie sie etwa in Turbinen auftreten, widersteht.
  • Überraschender Weise wurde gefunden, das Bauteilbeschichtungen, die Rheniumdiborid enthalten, diesen Anforderungen genügen. So weisen Bauteilbeschichtungen, die entweder aus Rheniumdiborid bestehen oder Rheniumdiboridpartikel enthalten eine hohe Temperaturbeständigkeit auf und sind darüber hinaus chemisch wie mechanisch hoch widerstandsfähig. Dies ist unter anderem durch die sehr große Härte des Rheniumdiborids bedingt.
  • Wenn die Bauteilbeschichtung Rheniumdiboridpartikel enthält, können diese in einer duktilen Matrix eingebettet sein, wobei die duktile Matrix insbesondere aus MCrAlY bestehen kann. Beispielsweise kann als MCrAlY SC 2464 verwendet werden. Vorteilhafterweise kann der Anteil der Rheniumdiboridpartikel in der Bauteilbeschichtung kann 1 bis 70, bevorzugt 2 bis 40, besonders bevorzugt 4 bis 25 und insbesondere bevorzugt 6 bis 10 Gew.-% betragen. Die Bauteilbeschichtung kann 10 bis 500, bevorzugt 50 bis 400 und besonders bevorzugt 100 bis 300 µm dick sein.
  • Wenn die Bauteilbeschichtung aus Rheniumdiborid besteht, kann sie insbesondere 0,1 bis 600 µm dick sein.
  • Ein weiterer Aspekt der Erfindung betrifft ein Bauteil, das die Bauteilbeschichtung aufweist. Bei dem Bauteil kann es sich bevorzugt um ein Turbinenbauteil, beispielsweise um eine Spring Clip handeln.
  • Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung einer Bauteilbeschichtung, bei der Rheniumdiboridpartikel in einer duktilen Matrix aus MCrAlY eingebettet sind. Zur Herstellung einer solchen Bauteilbeschichtung wird eine Mischung aus MCrAlY und Rheniumdiborid auf ein Bauteil aufgesprüht. Vorzugsweise kann die Mischung mittels HVOF oder Coldspray auf das Bauteil aufgesprüht werden.
  • Von der Erfindung ist auch ein Verfahren zur Herstellung einer Bauteilbeschichtung, die aus Rheniumdiborid besteht, umfasst. Bei diesem Verfahren werden zunächst auf ein Bauteil in beliebiger Reihenfolge übereinander eine Schicht aus Rhenium und eine Schicht aus Bor aufgebracht, die vorzugsweise jeweils eine Dicke im Bereich von 0,1 bis 400µm aufweisen. Anschließend werden die Schichten aus Rhenium und Bor im Vakuum bei einer Temperatur > 1000°C solange erhitzt, bis sich aus den Schichten eine Schicht aus Rheniumdiborid gebildet hat.
  • Die Herstellung von Rheniumdiborid aus Rhenium und Bor ist beispielsweise allgemein in Hsiu-Ying Chung et al., Science 20. April 2007, Vol. 316, no. 5823, pp. 436-439 beschrieben.
  • Vorzugsweise kann die Schicht aus Rhenium und/oder die Schicht aus Bor auf das Bauteil aufgedampft oder aufgespritzt werden. Insbesondere kann dies mit Hilfe von HVOF und/oder Coldspray erfolgen.
  • Weitere Gegenstände der Erfindung sind schließlich die Verwendung der Bauteilbeschichtung als Abrieb- oder als Verschleißschutzschicht auf einem Bauteil. Bei dem Bauteil kann es sich insbesondere um ein Turbinenbauteil handeln.
  • Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnung näher erläutert. Die einzige Figur der Zeichnung zeigt schematisch im Schnitt eine Spring Clip einer Turbinenschaufel.
  • Die Spring Clip 1 ist mit einer erfindungsgemäßen Bauteilbeschichtung 2 als Verschleißschutzschicht versehen. Die Bauteilbeschichtung 2 besteht aus Rheniumdiborid.
  • Die Spring Clip 1 dient dazu den Übergang von Basket und Transition der Turbinenschaufel mit möglichst wenig Leckage zu realisieren. Sie gewährleistet auch den nötigen axialen Freiheitsgrad, um dem Brenner der Turbine eine thermische Dehnung zu erlauben. Daher bewegt sie sich ständig relativ zum Transition und benötigt an der mit der Bauteilbeschichtung versehenen Kontaktfläche eine hohe Verschleißfestigkeit. Funktion und Aufbau einer Spring Clip sind beispielsweise in der US 2007/0012043 A1 beschrieben.
  • Um die Bauteilbeschichtung 2 auf der Spring Clip 1 aufzubringen, wird zunächst eine Schicht aus Rhenium auf der Spring Clip 1 mittels HVOF abgeschieden. Dann wird auf der Schicht aus Rhenium eine Schicht aus Bor aufgebracht. Dies kann wiederum durch HVOF erfolgen. Alternativ kann die Reihenfolge der Schichten auf der Spring Clip 1 auch vertauscht werden, d.h. zunächst kann die Borschicht und dann auf dieser die Rheniumschicht aufgebracht werden.
  • Die Spring Clip 1 mit der Rhenium- und der Borschicht wird dann im Vakuum bei einer Temperatur > 1000°C solange erhitzt, bis sich aus den beiden Schichten eine Schicht aus Rheniumdiborid gebildet hat. Temperatur und Dauer der Wärmebehandlung hängen unter anderem von den Dicken der Rhenium- und der Borschicht ab und können im konkreten Fall leicht vom Fachmann experimentell mit Hilfe weniger Versuche ermittelt werden.
  • Die so erhaltene Bauteilbeschichtung 2 aus Rheniumdiborid weist eine hohe Temperaturbeständigkeit auf und ist darüber hinaus chemisch widerstandsfähig. Vor allem ist sie auf Grund ihrer hohen Härte mechanisch extrem belastbar.

Claims (17)

  1. Bauteilbeschichtung (2),
    dadurch gekennzeichnet, dass
    sie Rheniumdiborid enthält.
  2. Bauteilbeschichtung (2) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    sie Rheniumdiboridpartikel enthält.
  3. Bauteilbeschichtung (2) nach Anspruch 2,
    dadurch gekennzeichnet, dass
    die Rheniumdiboridpartikel in einer duktilen Matrix eingebettet sind.
  4. Bauteilbeschichtung (2) nach Anspruch 3,
    dadurch gekennzeichnet, dass
    die duktile Matrix aus MCrAlY besteht.
  5. Bauteilbeschichtung (2) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    sie 1 bis 70, bevorzugt 2 bis 40, besonders bevorzugt 4 bis 25 und insbesondere bevorzugt 6 bis 10 Gew.-% Rheniumdiboridpartikel enthält.
  6. Bauteilbeschichtung (2) nach einem der Ansprüche 2 bis 5,
    dadurch gekennzeichnet, dass
    sie 10 bis 500, bevorzugt 50 bis 400 und besonders bevorzugt 100 bis 300 µm dick ist.
  7. Bauteilbeschichtung (2) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    sie aus Rheniumdiborid besteht.
  8. Bauteilbeschichtung (2) nach Anspruch 7,
    dadurch gekennzeichnet, dass
    sie 0,1 bis 600 µm dick ist.
  9. Bauteil (1),
    insbesondere Turbinenbauteil,
    dadurch gekennzeichnet, dass
    es eine Bauteilbeschichtung (2) gemäß einem der vorhergehenden Ansprüche aufweist.
  10. Bauteil (1) nach Anspruch 9,
    dadurch gekennzeichnet, dass
    es eine Spring Clip einer Turbine ist.
  11. Verfahren zur Herstellung einer Bauteilbeschichtung (2) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    eine Mischung aus MCrAlY und Rheniumdiborid auf ein Bauteil (1) aufgesprüht wird.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, dass
    die Mischung mittels HVOF oder Coldspray auf das Bauteil (1) aufgesprüht wird.
  13. Verfahren zur Herstellung einer Bauteilbeschichtung (2) nach Anspruch 7,
    dadurch gekennzeichnet, dass
    auf ein Bauteil (1) in beliebiger Reihenfolge übereinander eine Schicht aus Rhenium und eine Schicht aus Bor aufgebracht und im Vakuum bei einer Temperatur > 1000°C erhitzt werden, bis sich aus den Schichten aus Rhenium und Bor eine Schicht aus Rheniumdiborid gebildet hat.
  14. Verfahren nach Anspruch 13,
    bei dem die Schicht aus Rhenium und/oder die Schicht aus Bor aufgedampft oder aufgespritzt werden.
  15. Verfahren nach Anspruch 14,
    dadurch gekennzeichnet, dass
    die Schicht aus Rhenium und/oder die Schicht aus Bor mittels HVOF und/oder Coldspray aufgespritzt werden.
  16. Verwendung einer Bauteilbeschichtung (2) nach einem der Ansprüche 1 bis 8 als Abriebschicht auf einem Bauteil (1) insbesondere auf einem Turbinenbauteil.
  17. Verwendung einer Bauteilbeschichtung (2) nach einem der Ansprüche 1 bis 8 als Verschleißschutzschicht auf einem Bauteil (1) insbesondere auf einem Turbinenbauteil.
EP09002778A 2009-02-26 2009-02-26 Bauteilbeschichtung Withdrawn EP2228461A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09002778A EP2228461A1 (de) 2009-02-26 2009-02-26 Bauteilbeschichtung
PCT/EP2010/050937 WO2010097262A1 (de) 2009-02-26 2010-01-27 Bauteilbeschichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09002778A EP2228461A1 (de) 2009-02-26 2009-02-26 Bauteilbeschichtung

Publications (1)

Publication Number Publication Date
EP2228461A1 true EP2228461A1 (de) 2010-09-15

Family

ID=40638128

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09002778A Withdrawn EP2228461A1 (de) 2009-02-26 2009-02-26 Bauteilbeschichtung

Country Status (2)

Country Link
EP (1) EP2228461A1 (de)
WO (1) WO2010097262A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010019958B4 (de) * 2010-05-08 2016-05-04 MTU Aero Engines AG Verfahren zur Herstellung eines Einlaufbelags

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253294A2 (de) 2001-04-28 2002-10-30 ALSTOM (Switzerland) Ltd Gasturbinendichtung
WO2005031038A1 (de) 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Verschleissschutzschicht, bauteil mit einer derartigen verschleissschutzschicht sowie herstellverfahren
US20070012043A1 (en) 2005-07-18 2007-01-18 Siemens Westinghouse Power Corporation Turbine spring clip seal
US20090003123A1 (en) * 2007-06-28 2009-01-01 Morrison Jr Lowen Robert Apparatus and method for mixing by producing shear and/or cavitation, and components for apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1253294A2 (de) 2001-04-28 2002-10-30 ALSTOM (Switzerland) Ltd Gasturbinendichtung
WO2005031038A1 (de) 2003-09-22 2005-04-07 Mtu Aero Engines Gmbh Verschleissschutzschicht, bauteil mit einer derartigen verschleissschutzschicht sowie herstellverfahren
US20070012043A1 (en) 2005-07-18 2007-01-18 Siemens Westinghouse Power Corporation Turbine spring clip seal
US20090003123A1 (en) * 2007-06-28 2009-01-01 Morrison Jr Lowen Robert Apparatus and method for mixing by producing shear and/or cavitation, and components for apparatus

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HSIU-YING CHUNG ET AL., SCIENCE, vol. 316, no. 5823, 20 April 2007 (2007-04-20), pages 436 - 439
HSIU-YING ET AL: "Synthesis of Ultra-Incompressible Superhard Rhenium Diboride at Ambient Pressure", SCIENCE, vol. 316, 20 April 2008 (2008-04-20), pages 436 - 439, XP002529265 *
LATININ, RAU ET AL: "Superhard Rhenium Diboride Films:Preparation and Characterization", CHEM. MATER, no. 20, 2008, usa, pages 4507 - 4511, XP002529264 *

Also Published As

Publication number Publication date
WO2010097262A1 (de) 2010-09-02

Similar Documents

Publication Publication Date Title
DE2829369C3 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
DE60005416T2 (de) Thermische Sprühbeschichtung für Ventilsitze sowie Ventilschieber
EP2398936B1 (de) Erosionsschutz-beschichtungssystem fur gasturbinenbauteile
EP1144727B1 (de) Verschleissschutzschicht
DE4203869C2 (de) Hochbelastbare, beschichtete Bauteile aus einem Werkstoff, der aus der intermetallischen Phase Titan-Aluminid besteht
EP1715140A1 (de) Turbinenschaufel mit einer Deckplatte und einer auf der Deckplatte aufgebrachte Schutzschicht
DE102007035915A1 (de) Reibüberzug für Gasturbinentriebwerks-Verdichter
CH704833A1 (de) Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente.
WO2015049309A1 (de) Gesinterte spritzpulver auf basis von molybdänkarbid
CH667469A5 (de) Verfahren zum aufbringen von schutzschichten.
EP2468925A2 (de) Verfahren zur Herstellung eines Wärmedämmschichtaufbaus
WO2019020390A1 (de) Bremsscheibe und verfahren zur herstellung einer bremsscheibe
DE102006016995A1 (de) Bauteil mit einer Panzerung
DE2842848A1 (de) Ueberzogener gegenstand, insbesondere superlegierungsgasturbinenschaufel
DE102013009955B4 (de) Bremsscheibe oder Bremstrommel mit verschleißbeständiger Reibschicht
DE102007056452A1 (de) Dichtsystem einer Turbomaschine
WO2007033650A1 (de) Verfahren zur herstellung einer schutzschicht, schutzschicht und bauteil mit einer schutzschicht
DE102015212588A1 (de) Konturtreue Schutzschicht für Verdichterbauteile von Gasturbinen
DE102007026271A1 (de) Abdeckklebebänder und Verfahren zum Beschichten und/oder Ausbessern von Bauteilen
DE102016114533A1 (de) Eisenbasierte Legierung zur Herstellung thermisch gespritzter Verschleißschutzschichten
EP2228461A1 (de) Bauteilbeschichtung
Sharma et al. Slurry erosion performance study of high velocity flame sprayed Ni–Al2O3 coating under hydro accelerated conditions
EP2537959B1 (de) Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung
EP1900708B1 (de) Wärmedämmstoff mit hoher zyklischer Temperaturbelastbarkeit
DE102011120989B3 (de) Spritzwerkstoff für thermische Spritzbeschichtungen,dessen Verwendung und mit dem Spritzwerkstoffthermisch beschichteter Grauguss-Grundkörper

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110316