EP2220541B1 - Atomic clock regulated by a static field and two oscillating fields - Google Patents

Atomic clock regulated by a static field and two oscillating fields Download PDF

Info

Publication number
EP2220541B1
EP2220541B1 EP08860180A EP08860180A EP2220541B1 EP 2220541 B1 EP2220541 B1 EP 2220541B1 EP 08860180 A EP08860180 A EP 08860180A EP 08860180 A EP08860180 A EP 08860180A EP 2220541 B1 EP2220541 B1 EP 2220541B1
Authority
EP
European Patent Office
Prior art keywords
magnetic fields
atomic clock
frequency
field
oscillating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08860180A
Other languages
German (de)
French (fr)
Other versions
EP2220541A1 (en
Inventor
Matthieu Le Prado
Jean-Michel Leger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2220541A1 publication Critical patent/EP2220541A1/en
Application granted granted Critical
Publication of EP2220541B1 publication Critical patent/EP2220541B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/14Apparatus for producing preselected time intervals for use as timing standards using atomic clocks

Definitions

  • the subject of this invention is an atomic clock set or dressed by two oscillating fields and a static field which are applied in a shield.
  • Atomic clocks comprise an often alkaline gaseous medium, a device for exciting the atoms of this gas such as a laser, able to pass them to higher energy states, and a means for measuring a frequency signal emitted by atoms returning to the usual energy level, using the photons from the laser.
  • Energy levels are sensitive to the surrounding magnetic field. This sensitivity is low (of the second order) for the sub-level to the magnetic number equal to 0, but much stronger (of the first order) for the other sub-levels: the transitions made from or up to them produce photons whose the frequency is variable and can not be used as a reference, and only the portion of the signal corresponding to the transition between the two sub-levels of zero magnetic number is used for the measurement, which affects its quality.
  • Magnetic shielding around the clock is therefore used to reduce external disturbances, and the application of a constant magnetic field in the shield to separate the sub-levels, failing to guarantee a zero magnetic field. If the operation of the clock is made more stable, the sub-levels then being immobile and therefore well defined, the disadvantage of undergoing a dispersion of frequencies and having to be satisfied with a weakened signal is not avoided.
  • H 0 is the intensity of the static field
  • T is the relaxation time of the atoms
  • the pulsation of the oscillating field
  • is the gyromagnetic moment.
  • the invention is based on an improvement, according to which a second oscillating field is added to the device. It relates to an atomic clock as defined in claim 1.
  • a Bessel function of the first kind of a report report / ⁇ H ⁇ ⁇ , where H ⁇ and ⁇ are an intensity and a frequency of the second oscillating magnetic field, and ⁇ is a gyromagnetic ratio, is at an extremum.
  • the figure 1 already described and the figure 2 already described illustrate two diagrams of the energy levels of a chemical element used in an atomic clock
  • the figure 3 is a schematic view of the clock
  • the figure 4 is a graphic representation of functions illustrating the effect of the invention.
  • the heart of the clock is a cell 1 filled with an alkaline gas.
  • An exciter 2 transmits energy to this gas in the form of a polarized photon flux passing through a circular polarizer 3.
  • the exciter may also be a microwave field, for example. It will then be necessary anyway to inject a light beam (for example of laser) to detect the resonances of the gas.
  • a photodetector 4 collects the light energy restored by the gas of the cell 1 and transmits a signal to a counting device 5.
  • a frequency separator 6 collects the signal at the output of the counting device 5 and transmits its results to an operating device 7 of the clock and a servo-control device 8 which controls the exciter 2 as well as means for applying magnetic fields 9 and 10.
  • These oscillating magnetic fields are applied in a magnetic shielding 11 which includes the cell 1 and the magnetic field application means 9 and 10.
  • the second oscillating field is added. It is orthogonal to the first radio frequency field and the static field, its pulsation is ⁇ and its intensity is H ⁇ .
  • the ⁇ pulse satisfies the following inequalities H 0 " 1 T . ⁇ " ⁇ ⁇ " ⁇ ⁇ , that is, the second radiofrequency field has the same effects as the first on the static field but that its pulsation is much less than that of the first field of radiofrequencies.
  • the frequencies of the two oscillating fields should not be too large: they should not exceed ( fo / 4) approximately, where fo already mentioned is the frequency of the transition hyperfine and corresponding to the change of energy level of the atoms in the gas.
  • the first oscillating magnetic field then also undergoes modifications which result in an attenuation of its amplitude H ⁇ by the Bessel function.
  • This value depends on that of J 0 / ⁇ ⁇ H ⁇ ⁇ ⁇ , which, in this case, was chosen at 3.8, that is to say an extremum of the Bessel function of curve 12.
  • Experimental settings may differ slightly from the theoretical settings. It is possible to perform them by exploiting information given by a low frequency sinusoidal magnetic field ⁇ (much less than 1/2 ⁇ T) and collinear with H 0 . This field induces disturbances on the signal delivered by the clock at frequencies fo ⁇ ⁇ . It will then be possible to quantify the sensitivity of the signal delivered by the atomic clock to the variations of the static magnetic field by a synchronous detection at the frequency of this disturbance.
  • An interesting operating point can be obtained by first adjusting the amplitude H ⁇ of the field at the highest frequency ( ⁇ / 2 ⁇ ) to a maximum of sensitivity of the static field H 0 .
  • the other radio frequency field H ⁇ will then be added and adjusted to obtain a minimum sensitivity of H 0 .
  • the servo-control device 8 can be used for a continuous adjustment of the amplitude of the second radio-frequency field according to this principle of keeping a minimum of sensitivity of the signal delivered by the clock.
  • the single exciter may be a photon flux such as a laser flux emitted for example by a laser diode or a lamp.
  • the gaseous element may consist of 87 Rb, 133 C s , with optional mixing with a buffer gas.
  • the material of cell 1 may consist of a glass such as Pyrex (trademark).
  • the means for applying the magnetic fields 9 and 10 may consist of triaxial coils, or of three monoaxial coils concentric with each other.
  • the photodetector 4 can be of any kind measuring a flow of photons at the output of the cell 1. These photons must be polarized for example by polarizers adjoining the exciter. Servoing is accomplished by any known hardware including a computing unit. The coils are driven by current.
  • the excitation at the resonance frequency is accomplished by amplitude modulation of the laser diode at the frequency f 0/2 , or by a microwave cavity resonant at the frequency f 0 .
  • An exciter comprising two lasers, the frequency deviation is f 0 can also be envisaged.
  • the magnetic shield 11 may consist of n metal cylinders imbricated, possibly with a soft iron cylinder.
  • the wavelength of the laser photons was 780nm
  • a quarter wave plate imposed a left circular polarization to the incident photons
  • the magnetic shield 11 consisted of four cylinders of ⁇ concentric metal and a soft iron cylinder outside
  • the magnetic field H 0 was 100 microgauss in the main axis
  • was equal to 670 kilohertz per gauss
  • radio frequencies were 3 kilohertz and 20 kilohertz to respective magnitudes of 27 and 114 milligauss in order to impose the previously identified conditions of process validity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An atomic clock including a mechanism applying both a static magnetic field and two oscillating magnetic fields, all mutually perpendicular, in a magnetic shield. The amplitudes and frequencies of the oscillating magnetic fields may be chosen so as to annihilate energy variations between sub-transition levels of excited atoms and to reinforce a clock output signal, and with low sensitivity to defects in regulation.

Description

Le sujet de cette invention est une horloge atomique réglée ou habillée par deux champs oscillants et un champ statique qui sont appliqués dans un blindage.The subject of this invention is an atomic clock set or dressed by two oscillating fields and a static field which are applied in a shield.

Des horloges atomiques comprennent un milieu gazeux souvent alcalin, un dispositif d'excitation des atomes de ce gaz tel qu'un laser, apte à les faire passer à des états d'énergie supérieurs, et un moyen de mesure d'un signal fréquentiel émis par les atomes en revenant au niveau d'énergie habituel, en utilisant les photons provenant du laser.Atomic clocks comprise an often alkaline gaseous medium, a device for exciting the atoms of this gas such as a laser, able to pass them to higher energy states, and a means for measuring a frequency signal emitted by atoms returning to the usual energy level, using the photons from the laser.

La fréquence des photons restitués par le gaz est définie par la formule ν =ΔE/h, où ν est la fréquence, ΔE la différence entre les niveaux d'énergie et h la constante de Planck, égale à 6, 63x10-34 J.s. Il est connu que cette fréquence est très stable et qu'elle peut donc servir d'unité de référence au temps. Cela n'est toutefois plus vrai quand on considère la structure Zeeman de la matière : les niveaux d'énergie apparaissent alors comme composés de sous-niveaux correspondant à des états un peu différents, qu'on distingue par leur nombre quantique magnétique m, 0 pour un état de référence du niveau d'énergie et -1, -2, etc. ou +1, +2, etc. pour les autres. Cela est illustré par la figure 1 dans le cas de l'élément 87Rb, dont on a figuré la décomposition des deux premiers niveaux d'énergie (de moments angulaires F=1 et F=2).The frequency of the photons restored by the gas is defined by the formula ν = ΔE / h, where ν is the frequency, ΔE the difference between the energy levels and h the Planck constant, equal to 6, 63x10 -34 Js Il It is known that this frequency is very stable and can therefore serve as a unit of reference for time. However, this is no longer true when one considers the Zeeman structure of matter: the energy levels then appear as composed of sub-levels corresponding to slightly different states, which are distinguished by their magnetic quantum number m, 0 for a reference state of the energy level and -1, -2, etc. or +1, +2, etc. for the others. This is illustrated by the figure 1 in the case of element 87 Rb, whose decomposition of the first two levels of energy (angular moments F = 1 and F = 2) has been figured.

Les niveaux d'énergie sont sensibles au champ magnétique ambiant. Cette sensibilité est faible (du second ordre) pour le sous-niveau au nombre magnétiques égal à 0, mais beaucoup plus forte (du premier ordre) pour les autres sous-niveaux : les transitions faites depuis ou jusqu'à eux produisent des photons dont la fréquence est variable et ne peut donc pas servir de référence, et seule la portion du signal correspondant à la transition entre les deux sous-niveaux de nombre magnétique nul est exploitée pour la mesure, ce qui nuit à sa qualité. La fréquence de référence donnée par l'horloge est alors la fréquence de la transition hyperfine considérée dans le gaz fo=Eo/h, où E0 est la différence d'énergie entre les sous-niveaux à m=0 des deux états (F=1 et F=2 dans l'exemple de la figure 1).Energy levels are sensitive to the surrounding magnetic field. This sensitivity is low (of the second order) for the sub-level to the magnetic number equal to 0, but much stronger (of the first order) for the other sub-levels: the transitions made from or up to them produce photons whose the frequency is variable and can not be used as a reference, and only the portion of the signal corresponding to the transition between the two sub-levels of zero magnetic number is used for the measurement, which affects its quality. The reference frequency given by the clock is then the frequency of the hyperfine transition considered in the gas fo = E o / h, where E 0 is the energy difference between the sub-levels at m = 0 of the two states ( F = 1 and F = 2 in the example of the figure 1 ).

On recourt donc à un blindage magnétique autour de l'horloge pour réduire les perturbations extérieures, et à l'application d'un champ magnétique constant dans le blindage pour bien séparer les sous-niveaux, à défaut de garantir un champ magnétique nul. Si le fonctionnement de l'horloge est rendu plus stable, les sous-niveaux étant alors immobiles et donc bien définis, l'inconvénient de subir une dispersion des fréquences et de devoir se contenter d'un signal affaibli n'est pas évité.Magnetic shielding around the clock is therefore used to reduce external disturbances, and the application of a constant magnetic field in the shield to separate the sub-levels, failing to guarantee a zero magnetic field. If the operation of the clock is made more stable, the sub-levels then being immobile and therefore well defined, the disadvantage of undergoing a dispersion of frequencies and having to be satisfied with a weakened signal is not avoided.

Avec l'invention, on s'efforce de perfectionner les horloges atomiques existantes en les faisant travailler en champ magnétique nul afin de concentrer les sous-niveaux à une même valeur d'énergie et d'obtenir un signal comprenant un pic de mesure beaucoup plus net.With the invention, efforts are made to perfect the existing atomic clocks by making them work in a zero magnetic field in order to focus the sub-levels at the same energy value and obtain a signal with a much sharper peak.

Il a été proposé de faire participer les sous-niveaux à nombre magnétique non nul au signal utile en supprimant la dispersion des énergies entre sous-niveaux que le champ statique provoque. L'article de Haroche "Modified Zeeman hyperfine spectra observed in H1 and Rb87 ground states interacting with a nonresonant RF field", Physical Review Letters, volume 24, numéro 16, 20 avril 1970, pages 861 à 864 , révèle que l'effet du champ magnétique statique peut être annihilé pour les atomes excités en appliquant un champ oscillant qui lui est perpendiculaire, à condition de respecter la double inégalité H 0 < < 1 T . γ < < ω δ

Figure imgb0001

où H0 est l'intensité du champ statique, T le temps de relaxation des atomes, ω la pulsation du champ oscillant, et γ le moment gyromagnétique. Les différences d'énergie ΔE entre les sous-niveaux d'un même niveau deviennent alors toutes nulles dans chaque niveau, les photons restitués par le gaz correspondent tous à la différence d'énergie E0, l'état de la matière de la figure 2 étant alors obtenu : tout se passe comme si un champ résultant (fictif) nul existait.It has been proposed to involve non-zero magnetic number sub-levels in the useful signal by suppressing the dispersion of energies between sub-levels that the static field causes. The article of Harp "Modified Zeeman hyperfine spectra observed in H1 and Rb87 ground states interacting with a nonresonant RF field", Physical Review Letters, Volume 24, Number 16, April 20, 1970, pages 861-864. , reveals that the effect of the static magnetic field can be annihilated for the excited atoms by applying an oscillating field which is perpendicular to it, provided to respect the double inequality H 0 < < 1 T . γ < < ω δ
Figure imgb0001

where H 0 is the intensity of the static field, T is the relaxation time of the atoms, ω the pulsation of the oscillating field, and γ is the gyromagnetic moment. The energy differences ΔE between the sub-levels of the same level then all become zero in each level, the photons restored by the gas all correspond to the energy difference E 0 , the state of the material of the figure 2 being then obtained: everything happens as if a null (fictitious) field existed.

Cela implique cependant de respecter des rapports déterminés entre l'intensité et la fréquence du champ oscillant pour obtenir cet effet ; or une grande finesse de réglage est nécessaire, une perturbation même faible laissant subsister un champ résiduel fictif non négligeable qui empêche de bénéficier de cette découverte.This implies, however, to respect specific ratios between the intensity and the frequency of the oscillating field to obtain this effect; however a great fineness of adjustment is necessary, a disturbance even weak leaving a field fictitious residual fictitious that prevents benefit from this discovery.

L'invention repose sur un perfectionnement, d'après lequel un second champ oscillant est ajouté au dispositif. Elle concerne une horloge atomique telle que définie dans la revendication 1. Dans une variante préférée, une fonction de Bessel de première espèce d'un rapport rapport / γHω ω ,

Figure imgb0002
H ω et ω sont une intensité et une fréquence du second champs magnétique oscillant, et γ est ut rapport gyromagnétique, est à un extrémum.The invention is based on an improvement, according to which a second oscillating field is added to the device. It relates to an atomic clock as defined in claim 1. In a preferred variant, a Bessel function of the first kind of a report report / γHω ω ,
Figure imgb0002
where H ω and ω are an intensity and a frequency of the second oscillating magnetic field, and γ is a gyromagnetic ratio, is at an extremum.

Le document WO-A-2005/081 794 décrit une horloge atomique selon le préambule de la revendication indépendante.The document WO-A-2005/081 794 describes an atomic clock according to the preamble of the independent claim.

L'invention sera maintenant décrite en liaison aux figures, dont la figure 1 déjà décrite et la figure 2 déjà décrite illustrent deux diagrammes des niveaux d'énergie d'un élément chimique utilisé dans une horloge atomique, la figure 3 est une vue schématique de l'horloge, et la figure 4 est une représentation graphique de fonctions illustrant l'effet de l'invention.The invention will now be described with reference to the figures, the figure 1 already described and the figure 2 already described illustrate two diagrams of the energy levels of a chemical element used in an atomic clock, the figure 3 is a schematic view of the clock, and the figure 4 is a graphic representation of functions illustrating the effect of the invention.

La figure 3 est abordée. Le coeur de l'horloge est une cellule 1 remplie d'un gaz alcalin. Un excitateur 2 transmet de l'énergie à ce gaz sous forme d'un flux de photons polarisés traversant un polariseur circulaire 3. L'excitateur peut aussi être un champ de micro-ondes par exemple. Il faudra alors de toute façon injecter un fasceau lumineux (par exemple de laser) pour détecter les résonances du gaz. Un photo-détecteur 4 recueille l'énergie lumineuse restituée par le gaz de la cellule 1 et transmet un signal à un dispositif de comptage 5. Un séparateur de fréquences 6 recueille le signal à la sortie du dispositif de comptage 5 et transmet ses résultats à un dispositif d'exploitation 7 de l'horloge et un dispositif d'asservissement 8, qui gouverne l'excitateur 2 ainsi que des moyens d'application de champs magnétiques 9 et 10. Ces derniers émettent des champs magnétiques à des radiofréquences de pulsations notées Ω et ω,qui sont perpendiculaires entre elles et de direction dépendant de la polarisation (par exemple perpendiculaires aux rayons lumineux émis par l'excitateur 2 dans le cas d'une polarisation circulaire). Ces champs magnétiques oscillants sont appliqués dans un blindage magnétique 11 qui englobe la cellule 1 et les moyens d'applications des champs magnétiques 9 et 10.The figure 3 is discussed. The heart of the clock is a cell 1 filled with an alkaline gas. An exciter 2 transmits energy to this gas in the form of a polarized photon flux passing through a circular polarizer 3. The exciter may also be a microwave field, for example. It will then be necessary anyway to inject a light beam (for example of laser) to detect the resonances of the gas. A photodetector 4 collects the light energy restored by the gas of the cell 1 and transmits a signal to a counting device 5. A frequency separator 6 collects the signal at the output of the counting device 5 and transmits its results to an operating device 7 of the clock and a servo-control device 8 which controls the exciter 2 as well as means for applying magnetic fields 9 and 10. These emit magnetic fields at radio frequencies of pulsations noted Ω and ω, which are perpendicular to each other and of direction dependent on the polarization (for example perpendicular to the light rays emitted by the exciter 2 in the case of a circular polarization). These oscillating magnetic fields are applied in a magnetic shielding 11 which includes the cell 1 and the magnetic field application means 9 and 10.

On revient à l'explication théorique des phénomènes. La combinaison d'un champ magnétique statique d'intensité H0 et d'un champ de radiofréquences d'intensité Hω et de pulsation ω respectant les conditions indiquées plus haut a un effet équivalent sur les atomes à celui d'un champ magnétique statique fictif d'intensité H'0 dont les composantes sont égales à Hcos α et H 0 . J 0 / γ H ω ω .

Figure imgb0003
sin α respectivement dans la direction du champ de radiofréquences et la direction perpendiculaire à ce champ, J 0 étant une fonction de Bessel de première espèce et α étant l'angle entre le champ statique et le champ de radiofréquences. Quand les champs sont perpendiculaires entre eux, la première composante disparaît et H 0 ʹ = H 0 . J 0 / γ H ω ω .
Figure imgb0004
Or la fonction de Bessel J 0 de première espèce est comprise entre -1 et +1 et s'annule en au moins un point. Une représentation graphique en est faite à la figure 4 (courbe 12). Des choix judicieux du rapport / γ H ω ω
Figure imgb0005
permettent donc d'annuler le champ magnétique résultant fictif H'0=0 ; un de ces rapports est égal à 2,4. On voit toutefois que la pente de la fonction est importante, et qu'une variation de 10% du réglage produit un champ magnétique résultant dont l'intensité est d'environ 0,1H0, ce qui est excessif. C'est pourquoi le second champ oscillant est ajouté. Il est orthogonal au premier champ de radiofréquences et au champ statique, sa pulsation est Ω et son intensité est HΩ. La pulsation Ω satisfait aux inégalités suivantes H 0 1 T . γ Ω γ ω γ ,
Figure imgb0006
c'est-à-dire que le second champ de radiofréquences a les mêmes effets que le premier sur le champ statique mais que sa pulsation est bien moindre que celle du premier champ de radiofréquences. De plus, il faut remarquer que les fréquences des deux champs oscillants ne doivent pas être trop grandes : il convient qu'elles ne dépassent pas (f o/4) environ, où fo déjà mentionnée est la fréquence de la transition hyperfine et correspondant au changement de niveau d'énergie des atomes dans le gaz. Le premier champ magnétique oscillant subit aussi alors des modifications qui se traduisent par une atténuation de son amplitude HΩ par la fonction de Bessel. Le système composé par les deux champs de radiofréquences et le champ magnétique statique est donc équivalent à un champ de radiofréquences fictif H Ω . J 0 / γ H ω ω cos Ω t
Figure imgb0007
et un champ statique fictif H 0 ʹ = H 0 . J 0 / γ H ω ω ,
Figure imgb0008
et ce système est lui-même équivalent, d'après ce qui précède, à un champ statique fictif H 0" atténué par la contribution des deux champs de radiofréquences, d'intensité H 0 .. = H 0 . J 0 γ H Ω . J 0 / γ H ω ω Ω = H 0 J 0 / γ H ω ω J 0 γ H Ω . J 0 / γ H ω ω Ω .
Figure imgb0009
We return to the theoretical explanation of phenomena. The combination of a static magnetic field of intensity H 0 and a field of radio frequencies H ω intensity and pulsation ω complying with the conditions indicated above has an equivalent effect on the atoms to that of a fictitious static magnetic field of intensity H ' 0 whose components are equal to H 0 · cos α and H 0 . J 0 / γ H ω ω .
Figure imgb0003
sin α respectively in the direction of the radiofrequency field and the direction perpendicular to this field, J 0 being a Bessel function of the first kind and α being the angle between the static field and the radiofrequency field. When the fields are perpendicular to each other, the first component disappears and H 0 ' = H 0 . J 0 / γ H ω ω .
Figure imgb0004
Now the Bessel J 0 function of the first kind is between -1 and +1 and vanishes in at least one point. A graphic representation is made at the figure 4 (curve 12). Judicious choices in the report / γ H ω ω
Figure imgb0005
thus allow to cancel the fictitious resulting magnetic field H ' 0 = 0; one of these ratios is equal to 2.4. It can be seen, however, that the slope of the function is important, and that a variation of 10% in the adjustment produces a resulting magnetic field whose intensity is about 0.1H 0 , which is excessive. This is why the second oscillating field is added. It is orthogonal to the first radio frequency field and the static field, its pulsation is Ω and its intensity is H Ω . The Ω pulse satisfies the following inequalities H 0 " 1 T . γ " Ω γ " ω γ ,
Figure imgb0006
that is, the second radiofrequency field has the same effects as the first on the static field but that its pulsation is much less than that of the first field of radiofrequencies. In addition, it should be noted that the frequencies of the two oscillating fields should not be too large: they should not exceed ( fo / 4) approximately, where fo already mentioned is the frequency of the transition hyperfine and corresponding to the change of energy level of the atoms in the gas. The first oscillating magnetic field then also undergoes modifications which result in an attenuation of its amplitude H Ω by the Bessel function. The system composed of the two radiofrequency fields and the static magnetic field is therefore equivalent to a fictitious radiofrequency field H Ω . J 0 / γ H ω ω cos Ω t
Figure imgb0007
and a fictional static field H 0 ' = H 0 . J 0 / γ H ω ω ,
Figure imgb0008
and this system is itself equivalent, from what precedes, to a fictitious static field H 0 "attenuated by the contribution of the two radiofrequency fields, of intensity H 0 .. = H 0 . J 0 γ H Ω . J 0 / γ H ω ω Ω = H 0 J 0 / γ H ω ω J 0 γ H Ω . J 0 / γ H ω ω Ω .
Figure imgb0009

Ce champ peut s'annuler par des réglages particuliers de chacun des champs de radiofréquences. La figure 4 montre un exemple d'évolution du rapport H 0 . / H 0 ..

Figure imgb0010
en fonction de / γ H Ω Ω
Figure imgb0011
(courbe 13) : H 0 , ,
Figure imgb0012
s'annule une première fois pour un rapport / γ H Ω Ω = 6 , 0.
Figure imgb0013
Cette valeur dépend de celle de J 0 / γ H ω ω ,
Figure imgb0014
qui, dans le cas présent, a été choisie à 3,8, c'est-à-dire un extrémum de la fonction de Bessel de la courbe 12. En se plaçant ainsi, on supprime la sensibilité de H 0 , ,
Figure imgb0015
aux variations de / γ H ω ω ,
Figure imgb0016
ce qui stabilise son réglage. La sensibilité de H 0 , ,
Figure imgb0017
aux variations de / γ H Ω Ω
Figure imgb0018
reste toutefois du premier ordre, mais elle est significativement atténuée par rapport à ce que l'on obtient avec un seul champ de radiofréquences, comme la comparaison des courbes 12 et 13 le montre, puisque la pente aux croisements de l'axe des abscisses (aux ordonnées nulles) est réduite d'un facteur qu'on peut démontrer égal à J 0 / γ H ω ω 2 .
Figure imgb0019
Une variation de 10% de / γ H Ω Ω
Figure imgb0020
autour de la valeur de 6,0 induit un champ fictif H 0 , , = J 0 3 8 2 x 0 , 1 x H 0 , , = 0 , 016 H 0 , ,
Figure imgb0021
au lieu de 0,1 1 H 0 avec un seul champ de radiofréquences : la sensibilité aux défauts de réglage est réduite de 84%. Par ailleurs, J 0 / γ H ω ω
Figure imgb0022
étant à un extrémum, H 0 , ,
Figure imgb0023
n'est pas sensible aux variations de ce rapport autour de ce point de réglage. Il serait évidemment possible de placer le rapport / γ H ω ω
Figure imgb0024
à d'autres extrémums de la fonction de Bessel, ce qui aurait donné une sensibilité aux défauts de réglage encore plus faible.This field can be canceled by specific settings of each of the radio frequency fields. The figure 4 shows an example of the evolution of the report H 0 . / H 0 ..
Figure imgb0010
in terms of / γ H Ω Ω
Figure imgb0011
(curve 13) : H 0 , ,
Figure imgb0012
cancels a first time for a report / γ H Ω Ω = 6 , 0.
Figure imgb0013
This value depends on that of J 0 / γ H ω ω ,
Figure imgb0014
which, in this case, was chosen at 3.8, that is to say an extremum of the Bessel function of curve 12. By placing itself thus, the sensitivity of H 0 , ,
Figure imgb0015
variations of / γ H ω ω ,
Figure imgb0016
which stabilizes its setting. The sensitivity of H 0 , ,
Figure imgb0017
variations of / γ H Ω Ω
Figure imgb0018
remains, however, of the first order, but it is significantly attenuated with respect to what is obtained with a single radio frequency field, as the comparison of the curves 12 and 13 shows, since the slope at the crossings of the abscissa ( to the null ordinates) is reduced by a factor that can be shown to be equal to J 0 / γ H ω ω 2 .
Figure imgb0019
A variation of 10% of / γ H Ω Ω
Figure imgb0020
around the value of 6.0 induces a fictitious field H 0 , , = J 0 3 8 2 x 0 , 1 x H 0 , , = 0 , 016 H 0 , ,
Figure imgb0021
instead of 0.1 1 H 0 with a single radio frequency field: the sensitivity to adjustment faults is reduced by 84%. Otherwise, J 0 / γ H ω ω
Figure imgb0022
being at an extremum, H 0 , ,
Figure imgb0023
is not sensitive to variations of this ratio around this set point. It would obviously be possible to place the report / γ H ω ω
Figure imgb0024
at other extremums of the Bessel function, which would have given a sensitivity to the defects of setting even lower.

Les réglages expérimentaux peuvent légèrement différer des réglages théoriques. Il est possible de les effectuer en exploitant une information donnée par un champ magnétique sinusoïdal à basse fréquence υ (très inférieure à 1/2 πT) et colinéaire à H0. Ce champ induit des perturbations sur le signal délivré par l'horloge aux fréquences fo±υ. On pourra alors quantifier la sensibilité du signal délivré par l'horloge atomique aux variations du champ magnétique statique par une détection synchrone à la fréquence de cette perturbation. Un point de fonctionnement intéressant pourra être obtenu en réglant d'abord l'amplitude H ω du champ à la plus haute fréquence (ω/2π) à un maximum de sensibilité du champ statique H 0. L'autre champ de radiofréquences H Ω sera ensuite ajouté et ajusté pour obtenir un minimum de sensibilité de H0.Experimental settings may differ slightly from the theoretical settings. It is possible to perform them by exploiting information given by a low frequency sinusoidal magnetic field υ (much less than 1/2 πT) and collinear with H 0 . This field induces disturbances on the signal delivered by the clock at frequencies fo ± υ. It will then be possible to quantify the sensitivity of the signal delivered by the atomic clock to the variations of the static magnetic field by a synchronous detection at the frequency of this disturbance. An interesting operating point can be obtained by first adjusting the amplitude H ω of the field at the highest frequency (ω / 2π) to a maximum of sensitivity of the static field H 0 . The other radio frequency field H Ω will then be added and adjusted to obtain a minimum sensitivity of H 0 .

Le dispositif d'asservissement 8 peut servir à un réglage continu de l'amplitude du deuxième champ de radiofréquences en fonction de ce principe de conserver un minimum de sensibilité du signal délivré par l'horloge.The servo-control device 8 can be used for a continuous adjustment of the amplitude of the second radio-frequency field according to this principle of keeping a minimum of sensitivity of the signal delivered by the clock.

L'excitateur unique peut être un flux de photons tel qu'un flux de laser émis par exemple par une diode laser ou une lampe. L'élément gazeux peut consister en du 87Rb, du 133Cs, avec mélange éventuel à un gaz tampon. La matière de la cellule 1 peut consister en un verre tel que le Pyrex (marque déposée). Les moyens d'application des champs magnétiques 9 et 10 peuvent consister en des bobines triaxiales, ou en trois bobines monoaxiales concentriques entre elles. Le photo-détecteur 4 peut être de n'importe quel genre mesurant un flux de photons en sortie de la cellule 1. Ces photons doivent être polarisées par exemple par des polariseurs adjoints à l'excitateur. L'asservissement est accompli par tout matériel connu comprenant une unité de calcul. Les bobines sont pilotées en courant. L'excitation à la fréquence de résonance est accomplie par une modulation en amplitude de la diode laser à la fréquence f0/2, ou par une cavité à micro-ondes résonnant à la fréquence f0. Un excitateur comprenant deux lasers dont l'écart en fréquence est f0 peut aussi être envisagé.The single exciter may be a photon flux such as a laser flux emitted for example by a laser diode or a lamp. The gaseous element may consist of 87 Rb, 133 C s , with optional mixing with a buffer gas. The material of cell 1 may consist of a glass such as Pyrex (trademark). The means for applying the magnetic fields 9 and 10 may consist of triaxial coils, or of three monoaxial coils concentric with each other. The photodetector 4 can be of any kind measuring a flow of photons at the output of the cell 1. These photons must be polarized for example by polarizers adjoining the exciter. Servoing is accomplished by any known hardware including a computing unit. The coils are driven by current. The excitation at the resonance frequency is accomplished by amplitude modulation of the laser diode at the frequency f 0/2 , or by a microwave cavity resonant at the frequency f 0 . An exciter comprising two lasers, the frequency deviation is f 0 can also be envisaged.

Le blindage étant alors particulièrement efficace, tous les sous-niveaux deviennent équivalents puisque le champ est nul. On peut alors utiliser d'autres gaz que ceux employés habituellement dans les horloges atomiques (gaz alcalins), en particulier les gaz dont la structure hyperfine de leurs atomes ne présente pas de sous-niveaux à moment angulaire nul, tels que 3He.The shielding being then particularly effective, all the sub-levels become equivalent since the field is zero. It is then possible to use other gases than those usually employed in atomic clocks (alkaline gases), in particular gases whose hyperfine structure of their atoms does not have zero angular momentum sub-levels, such as 3 He.

Le blindage magnétique 11 peut consister en cylindres de µ métal imbriqués, avec éventuellement un cylindre de fer doux. Dans un cas particulier où l'élément 87Rb était employé, la longueur d'onde des photons du laser était de 780nm, une lame quart d'onde imposait une polarisation circulaire gauche aux photons incidents, le blindage magnétique 11 consistait en quatre cylindres de µ métal concentriques et un cylindre de fer doux à l'extérieur, le champ magnétique H0 était de 100 microgauss dans l'axe principal, γ était égal à 670 kilohertz par gauss, et les radiofréquences étaient de 3 kilohertz et 20 kilohertz à des amplitudes respectives de 27 et 114 milligauss afin d'imposer les conditions précédemment identifiées de validité du procédé.The magnetic shield 11 may consist of n metal cylinders imbricated, possibly with a soft iron cylinder. In a particular case where the element 87 Rb was used, the wavelength of the laser photons was 780nm, a quarter wave plate imposed a left circular polarization to the incident photons, the magnetic shield 11 consisted of four cylinders of μ concentric metal and a soft iron cylinder outside, the magnetic field H 0 was 100 microgauss in the main axis, γ was equal to 670 kilohertz per gauss, and radio frequencies were 3 kilohertz and 20 kilohertz to respective magnitudes of 27 and 114 milligauss in order to impose the previously identified conditions of process validity.

Claims (7)

  1. Atomic clock comprising a cell (1) filed with a gas, an exciter (2) of the gas to make its atoms jump to a higher energy level, a detector (4) to collect a light signal passing through the gas, a magnetic shield (11) around the cell, and means for applying magnetic fields (9, 10), including a static magnetic field, characterised in that the means for applying magnetic fields (9, 10) are arranged to also apply two oscillating magnetic fields, perpendicular to each other and to the static magnetic field, so that a Bessel function of the first kind of a ratio γ H Ω / Ω ,
    Figure imgb0027
    where H Ω and Ω are an intensity and a frequency of one of the oscillating magnetic fields, which has a frequency lower than the other, and γ is a gyromagnetic ratio, is equal to 0.
  2. Atomic clock according to claim 1, characterised in that it comprises means for regulating either the intensity or the frequency of the oscillating magnetic fields.
  3. Atomic clock according to claim 1, characterised in that a Bessel function of the first kind of a ratio / γHω ω ,
    Figure imgb0028
    where H ω and ω are an intensity and a frequency of said other oscillating magnetic fields, and γ is a gyromagnetic ratio, is at an extremum.
  4. Atomic clock according to any of claims 1 to 3, characterised in that the means for applying magnetic fields comprise at least three concentric monoaxial coils.
  5. Atomic clock according to any of claims 1 to 3, characterised in that the means for applying magnetic fields comprise at least one triaxial magnetic coil.
  6. Atomic clock according to any of the preceding claims, characterised in that the gas is chosen among alkali gases and helium 3.
  7. Atomic clock according to any of the preceding claims, characterised in that the oscillating magnetic fields have frequencies at the most equal to the quarter of a hyperfine transition frequency measured by the clock.
EP08860180A 2007-12-11 2008-12-10 Atomic clock regulated by a static field and two oscillating fields Not-in-force EP2220541B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0759743A FR2924827B1 (en) 2007-12-11 2007-12-11 ATOMIC CLOCK ADJUSTED BY A STATIC FIELD AND TWO SWING FIELDS
PCT/EP2008/067252 WO2009074616A1 (en) 2007-12-11 2008-12-10 Atomic clock regulated by a static field and two oscillating fields

Publications (2)

Publication Number Publication Date
EP2220541A1 EP2220541A1 (en) 2010-08-25
EP2220541B1 true EP2220541B1 (en) 2011-11-02

Family

ID=39712683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08860180A Not-in-force EP2220541B1 (en) 2007-12-11 2008-12-10 Atomic clock regulated by a static field and two oscillating fields

Country Status (6)

Country Link
US (1) US8154349B2 (en)
EP (1) EP2220541B1 (en)
JP (1) JP5596555B2 (en)
AT (1) ATE532114T1 (en)
FR (1) FR2924827B1 (en)
WO (1) WO2009074616A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924826B1 (en) * 2007-12-11 2010-03-05 Commissariat Energie Atomique ATOMIC CLOCK WITH CORRECTION OF THE AMBIENT MAGNETIC FIELD
FR2946766B1 (en) * 2009-06-11 2011-07-01 Commissariat Energie Atomique ATOMIC CLOCK WORKING WITH HELIUM 3.
FR2964476B1 (en) 2010-09-07 2012-10-05 Commissariat Energie Atomique METHOD FOR CALIBRATING AN ATOMIC OPERATING DEVICE
JP6134092B2 (en) 2011-10-18 2017-05-24 セイコーエプソン株式会社 Magnetic field measuring device
JP5796454B2 (en) * 2011-10-28 2015-10-21 セイコーエプソン株式会社 Atomic oscillator
FR3008190B1 (en) 2013-07-08 2015-08-07 Commissariat Energie Atomique METHOD AND DEVICE FOR MEASURING A MAGNETIC FIELD USING SYNCHRONIZED EXCITATIONS
FR3026193B1 (en) 2014-09-19 2016-12-23 Commissariat Energie Atomique MAGNETOMETER WITHOUT ASSEMBLY AND COMPENSATION OF LOW FIELD RESONANCE SLOPE FLUCTUATIONS, MAGNETOMETER NETWORK AND MEASURING METHOD
US10024931B2 (en) * 2014-12-02 2018-07-17 Seiko Epson Corporation Magnetic field measurement method and magnetic field measurement apparatus
US10718661B2 (en) 2017-06-14 2020-07-21 Texas Instruments Incorporated Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1354208A (en) * 1963-01-22 1964-03-06 Csf New optically pumped magnetometer
JPS63191981A (en) 1987-02-05 1988-08-09 Mitsubishi Electric Corp Optical pumping magnetometer
FR2693801B1 (en) * 1992-07-16 1994-09-02 Commissariat Energie Atomique Magnetometer with light polarization and controlled radio frequency field.
FR2779530B1 (en) 1998-06-09 2000-07-07 Commissariat Energie Atomique DEVICE FOR MEASURING THE COMPONENTS OF A MAGNETIC FIELD USING A SCALAR MAGNETOMETER
US20040095037A1 (en) * 2002-03-22 2004-05-20 Albert Palmero Low profile motor with internal gear train
US6888780B2 (en) * 2003-04-11 2005-05-03 Princeton University Method and system for operating an atomic clock with simultaneous locking of field and frequency
US7102451B2 (en) * 2004-02-18 2006-09-05 Princeton University, Office Of Technology, Licensing & Intellectual Property Method and system for operating an atomic clock with alternating-polarization light
US7468637B2 (en) * 2006-04-19 2008-12-23 Sarnoff Corporation Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock

Also Published As

Publication number Publication date
EP2220541A1 (en) 2010-08-25
US8154349B2 (en) 2012-04-10
JP2011507249A (en) 2011-03-03
WO2009074616A1 (en) 2009-06-18
FR2924827B1 (en) 2010-02-19
ATE532114T1 (en) 2011-11-15
JP5596555B2 (en) 2014-09-24
FR2924827A1 (en) 2009-06-12
US20100244970A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2220541B1 (en) Atomic clock regulated by a static field and two oscillating fields
EP2220540B1 (en) Apparatus with ambient magnetic field correction
EP0462002B1 (en) Resonance magneto meter with optical pumping using a sequential polarization
Wang et al. Gain-assisted superluminal light propagation
US9097750B2 (en) Dual purpose atomic device for realizing atomic frequency standard and magnetic field measurement
EP2261758B1 (en) Atomic clock operated with Helium-3
Bederson et al. Advances in atomic, molecular, and optical physics
Fernandez et al. Optically Tunable Spontaneous Raman Fluorescence<? format?> from a Single Self-Assembled InGaAs Quantum Dot
Huber et al. Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation
Rosatzin et al. Light-shift-induced spin echoes in a J= 1/2 atomic ground state
Wu et al. Density Matrix Tomography through Sequential Coherent Optical Rotations<? format?> of an Exciton Qubit in a Single Quantum Dot
Grewal et al. Magnetometry using sodium fluorescence with synchronous modulation of two-photon resonant light fields
Wang et al. Pulsed vapor cell atomic clock with a differential Faraday rotation angle detection
Schmitt-Sody et al. Intracavity mode locked laser magnetometer
Singh et al. A tunable Doppler-free dichroic lock for laser frequency stabilization
Groeger et al. Design and performance of laser-pumped Cs-magnetometers for the planned UCN EDM experiment at PSI
Guan et al. Cold-atom optical filtering enhanced by optical pumping
Sargsyan et al. A modified method of Faraday rotation for investigation of atomic lines of rubidium and potassium in ultrathin cells
Moriyama et al. Ferromagnetic resonance measurement using stroboscopic magneto-optical Kerr effect
Sargsyan et al. Faraday effect in rubidium atomic layers thinner than 100 nm
Hamid et al. Polarization resonance on S–D two-photon transition of Rb atoms
Sarkisyan et al. “Unmoved” Atomic Transitions of Alkali Metals in External Magnetic Fields
Izmailov Sub-Doppler resonances caused by Rabi oscillations on atomic transitions in thin gas cells
WO1991007668A1 (en) Cell of atomic or molecular vapors for optical pumping and magnetometer or gyroscope using such cell
Chen et al. Phase sensitive Raman process with correlated seeds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008011154

Country of ref document: DE

Effective date: 20111229

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20111102

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES

Effective date: 20111231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120202

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 532114

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111102

26N No opposition filed

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008011154

Country of ref document: DE

Effective date: 20120803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151215

Year of fee payment: 8

Ref country code: CH

Payment date: 20151207

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161210

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201217

Year of fee payment: 13

Ref country code: DE

Payment date: 20201209

Year of fee payment: 13

Ref country code: FR

Payment date: 20201228

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008011154

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231