EP2261758B1 - Atomic clock operated with Helium-3 - Google Patents
Atomic clock operated with Helium-3 Download PDFInfo
- Publication number
- EP2261758B1 EP2261758B1 EP10165184A EP10165184A EP2261758B1 EP 2261758 B1 EP2261758 B1 EP 2261758B1 EP 10165184 A EP10165184 A EP 10165184A EP 10165184 A EP10165184 A EP 10165184A EP 2261758 B1 EP2261758 B1 EP 2261758B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- helium
- atomic clock
- magnetic field
- clock according
- exciter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- SWQJXJOGLNCZEY-BJUDXGSMSA-N helium-3 atom Chemical compound [3He] SWQJXJOGLNCZEY-BJUDXGSMSA-N 0.000 title claims abstract description 26
- 230000003068 static effect Effects 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims abstract description 4
- 238000005259 measurement Methods 0.000 claims description 24
- 239000007789 gas Substances 0.000 description 11
- 230000005284 excitation Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
Definitions
- the subject of the invention is an atomic clock operating with helium 3.
- Atomic clocks comprise an often alkaline gaseous medium, a device for exciting the atoms of this gas such as a laser, able to pass them to higher energy states, and a means for measuring a frequency signal emitted by atoms returning to the usual energy level, using the photons from the laser.
- Energy levels are sensitive to the surrounding magnetic field. This sensitivity is low (of the second order) for the sub-level of angular momentum equal to 0, but much stronger (of the first order) for the other sub-levels: the transitions made from or up to them produce photons whose the frequency is variable and can not be used as a reference, and only the portion of the signal corresponding to the transition between the two sub-levels of zero angular momentum is used for the measurement, which affects its quality.
- the alkaline gases have hitherto been preferred as measuring medium in atomic clocks since they generally comprise stable and excited states each having a zero angular momentum sub-level which therefore ensures a measurement at a frequency of stable resonance.
- These bodies have the disadvantage of being able to present several physical states under ordinary operating conditions and to be chemically very reactive.
- the object of the invention is to improve existing clocks.
- helium 3 is chemically inert, no reaction with the surrounding material is to be feared; and since only a reduced portion is usually brought to the state of plasma, most of it remains gaseous and serves as a buffer gas in order to limit the shocks between the atoms of helium 3 in the metastable level, said atoms being carriers of magnetic information.
- a synthetic definition of the invention is an atomic clock comprising a cell filled with a measuring medium, a first exciter device (1) of particles of the measuring medium up to a higher energy level, a system (4, 6, 7) collecting a luminous energy frequency restored by the measurement medium by leaving the upper energy level, said light energy band frequency being used to give a measurement of the time, a device (9) for applying magnetic fields comprising at least one essentially static magnetic field and servocontrol means (8) for said device (9) for adjusting the magnetic fields, characterized in that the measuring medium comprises plasma of helium 3, the clock comprising a second exciter device (10) for generating the helium plasma 3 from helium 3 gas.
- the second exciter device is optionally a "power" radiofrequency wave generator.
- the expression means that the power that this second device establishes in the measuring medium is significantly greater than that which is established by the first exciter device, responsible for the excitation at the origin of the measurement.
- the radio frequency waves can be between 20 MHz and 30 MHz, and their power can be 1 W for a quantity of helium gas 3 of 100 mm 3 at a pressure of 0.1 Torr approximately.
- the chemical stability of this element which makes it all the more interesting as a buffer gas that being of the same chemical nature as the element used for the measurement, it does not react chemically with it, which does not is not the case with alkaline gases, which often have to be mixed with buffer gases to give a stable state. It is consistent with a preferred embodiment of the invention that the measuring medium is, therefore, composed exclusively of helium 3, the metastable state being the level 2 3 S 1 .
- the first exciter device may comprise a laser beam; and the magnetic fields applied by the device, which are intended for the stabilization of the energy levels of the measuring medium, may comprise at least one essentially static and enslaved magnetic field, and possibly one or two oscillating magnetic fields perpendicular to the preceding one.
- the heart of the clock ( figure 2 ) is a cell 1 filled with a measuring medium.
- An exciter 2 transmits energy to this medium in the form of a flux of photons polarized by a quarter wave plate 3.
- the exciter may be a laser injecting a light beam to detect the resonances of the medium.
- a photodetector 4 collects the light energy restored by the excited medium of the cell 1 and transmits a signal to a counting device 5, the photodetector 4 being advantageously arranged in the extension of a laser beam emanating from the exciter 2.
- a frequency separator 6 collects the signal at the output of the counting device 5 and transmits its results to an operating device 7 of the clock and a servo-control device 8, which governs the exciter 2 and a magnetic field application device 9.
- the first exciter 2 is a laser diode of wavelength 1083 nm for a power of 100 mW, with a pump current modulated at approximately 3.37 GHz in order to induce an optical intensity modulation responsible for generating the resonance of Microwave of the hyperfine transition of helium 3.
- the quarter-wave plate 3 imposes a left circular polarization for the photons.
- Cell 1 is filled with helium 3 subjected to a pressure of approximately 0.1 torr. It is cylindrical, in Pyrex, and its volume is 100 mm 3 .
- the second exciter device 10 comprises two electrodes contiguous to the cell 1 on either side of it and which are connected to a radiofrequency power generator at 25 MHz (between 20 MHz and about 30 MHz) and 1W. It creates the helium plasma, which is necessary to populate the metastable level 2 3 S 1 with the hyperfine structure.
- the magnetic field application device 9 makes it possible to apply a magnetic field H o of 500 ⁇ T parallel to the laser beam to block the sub-levels at constant energies.
- a pair of Helmholtz coils is used.
- This magnetic field is slaved to a constant value by measuring the Larmor frequency within the hyperfine structure. Thus, variations in the ambient magnetic field are prevented from disturbing the microwave transition defining the resonance frequency fo.
- the magnetic field application device 9 again generates a low-frequency oscillating magnetic field component applied perpendicularly to the static magnetic field and which is controlled by the servo-control device 8 to the Zeeman transition at about 12 MHz. .
- This oscillating field makes it possible to induce a resonance within the Zeeman sub-levels that will give the aforementioned measurement for evaluating the resulting ambient magnetic field and enslaving it to a constant value.
- helium 3 is devoid of sub-levels with zero angular momentum index, it is necessary to operate the device with a constant magnetic field, which can be obtained by an artificial field controlled with or without a magnetic shield.
- the enslavement of the magnetic field can be accomplished in a scalar or vector manner by the Larmor or vector frequency by a zero total magnetic field search.
- the magnetic field application device 9 can both generate the magnetic field for the measurement of resonance if it is composed of triaxial coils.
- the field application device 9 emits magnetic fields at radio frequencies of pulsations denoted ⁇ and ⁇ , which are perpendicular to each other and of direction dependent on the polarization (for example perpendicular to the light rays emitted by the exciter 2 in the case of a circular polarization).
- the signal coming from the counting device 5 comprises several light lines, and first one which is at the useful frequency f 0 corresponding to the restitution of the photons by the gaseous medium and which gives the reference to the measurement of time. It also reveals spectral lines at the frequencies ⁇ / 2 ⁇ , ( ⁇ - ⁇ ) / 2 ⁇ , ( ⁇ / 2 ⁇ , and ( ⁇ + ⁇ ) / 2 ⁇ .These spectral lines appear for magnetic fields of low values, much lower than 1 / ⁇ .T R , where T R is the relaxation time of the sub-levels and ⁇ is their gyromagnetic ratio, characteristic of the excited chemical element.They correspond to resonances between the sub-levels .Their amplitude is proportional to the field It is consistent with this mode of servocontrol to apply a magnetic field of compensation of the essentially static ambient magnetic field, but which is continuously varied in amplitude and amplitude.
- the magnetic field application device 9 applies both the substantially static magnetic compensation field and the radio frequency magnetic fields.
- the enslavement is accomplished by any known hardware including a computing unit.
- the coils are driven by current or voltage.
- the excitation at the resonance frequency f 0 is accomplished by amplitude modulation of the laser diode at the frequency f 0/2 or by a microwave cavity resonating at the frequency f 0 .
- An exciter comprising two lasers, the frequency deviation is f 0 can also be envisaged.
- helium 3 is devoid of sub-levels with zero angular momentum index, it is necessary to operate the device with a constant magnetic field, which can be obtained by an artificial field controlled with or without a magnetic shield.
- the enslavement of the magnetic field can be accomplished in a scalar or vector manner by the Larmor frequency or vector by a zero total magnetic field search.
- the magnetic field application device 9 can both generate the magnetic field for the measurement of resonance if it is composed of triaxial coils.
- the instrument measuring the laser flux may be an InGaAs type photodiode.
- This embodiment comprising a magnetic field stabilizing device, does not include magnetic shielding.
- a magnetic shield in addition to the magnetic field servo device as previously described.
- the magnetic shielding may be composed of, for example, a soft iron cylinder and a nested metal cylinder.
- Exciter 2 could include a lamp or VCSEL (for Variation capacity surface emitting light). In the absence of a device for stabilizing the ambient magnetic field, excitation at the resonance frequency could also be provided by a resonant microwave cavity or by two lasers whose frequency difference is the resonance frequency.
- VCSEL Variation capacity surface emitting light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Lasers (AREA)
Abstract
Description
Le sujet de l'invention est une horloge atomique fonctionnant à l'hélium 3.The subject of the invention is an atomic clock operating with
Des horloges atomiques comprennent un milieu gazeux souvent alcalin, un dispositif d'excitation des atomes de ce gaz tel qu'un laser, apte à les faire passer à des états d'énergie supérieurs, et un moyen de mesure d'un signal fréquentiel émis par les atomes en revenant au niveau d'énergie habituel, en utilisant les photons provenant du laser.Atomic clocks comprise an often alkaline gaseous medium, a device for exciting the atoms of this gas such as a laser, able to pass them to higher energy states, and a means for measuring a frequency signal emitted by atoms returning to the usual energy level, using the photons from the laser.
La fréquence du signal des photons restitués par le gaz est définie par la formule ν =ΔE/h, où ν est la fréquence, ΔE la différence entre les niveaux d'énergie et h la constante de Planck, égale à 6,62x10-34 J/s .The frequency of the signal of the photons restored by the gas is defined by the formula ν = ΔE / h, where ν is the frequency, ΔE the difference between the energy levels and h the Planck constant, equal to 6.62x10 -34 J / s.
Il est connu que cette fréquence est très stable et qu'elle peut donc servir d'unité de référence au temps. Cela n'est toutefois plus vrai quand on considère la structure Zeeman de la matière : les niveaux d'énergie apparaissent alors comme composés de sous-niveaux correspondant à des états un peu différents, qu'on distingue par leur indice de moment angulaire mF, 0 pour un état de référence du niveau d'énergie et -1, -2, etc. ou +1, +2, etc. pour les autres. Cela est illustré par la
Les niveaux d'énergie sont sensibles au champ magnétique ambiant. Cette sensibilité est faible (du second ordre) pour le sous-niveau de moment angulaire égal à 0, mais beaucoup plus forte (du premier ordre) pour les autres sous-niveaux : les transitions faites depuis ou jusqu'à eux produisent des photons dont la fréquence est variable et ne peut donc pas servir de référence, et seule la portion du signal correspondant à la transition entre les deux sous-niveaux de moment angulaire nul est exploitée pour la mesure, ce qui nuit à sa qualité. La fréquence de référence donnée par l'horloge est alors fo=E0/h, où E0 est la différence d'énergie entre les sous-niveaux à mF=0 des deux états (F=1 et F=2 de l'exemple de la
Les gaz alcalins ont été préférés jusqu'à présent comme milieu de mesure dans les horloges atomiques puisqu'ils comprennent en général des états stables et excités dotés chacun d'un sous-niveau à moment angulaire nul qui assure donc une mesure à une fréquence de résonnance stable. Ces corps présentent toutefois l'inconvénient de pouvoir présenter plusieurs états physiques aux conditions ordinaires de fonctionnement et d'être chimiquement très réactifs.The alkaline gases have hitherto been preferred as measuring medium in atomic clocks since they generally comprise stable and excited states each having a zero angular momentum sub-level which therefore ensures a measurement at a frequency of stable resonance. These bodies, however, have the disadvantage of being able to present several physical states under ordinary operating conditions and to be chemically very reactive.
S'il est possible de maintenir le champ magnétique ambiant à une valeur fixe, tous les sous-niveaux sont fixés et peuvent contribuer à la mesure. Plusieurs techniques de stabilisation du champ magnétique ambiant ont été développées et exposées dans certaines publications, telles que le brevet américain
Les documents
L'objet de l'invention est de perfectionner des horloges existantes.The object of the invention is to improve existing clocks.
Elle est fondée sur l'emploi comme milieu de mesure de l'hélium 3, mais qui a été porté à l'état de plasma par un dispositif excitateur distinct du dispositif classique servant à l'excitation des particules en vue de la mesure.It is based on the use as a measuring medium of
Seuls des milieux de mesures gazeux sont généralement considérés pour les mesures dans les horloges atomiques. L'emploi d'un plasma, et plus particulièrement celui d'hélium 3, permet de peupler un niveau métastable muni d'une structure hyperfine dont la fréquence est élevée et fournit donc une base de mesure de temps appréciable pour sa précision.Only gaseous measurement media are generally considered for measurements in atomic clocks. The use of a plasma, and more particularly that of
De plus, comme l'hélium 3 est chimiquement inerte, aucune réaction avec le matériel environnant n'est à redouter ; et comme seule une portion réduite est usuellement portée à l'état de plasma, la plus grande part reste gazeuse et sert de gaz tampon afin de limiter les chocs entre les atomes de l'hélium 3 dans le niveau métastable, lesdits atomes étant porteurs de l'information magnétique.Moreover, since
Une définition synthétique de l'invention est une horloge atomique comprenant une cellule emplie d'un milieu de mesure, un premier dispositif excitateur (1) de particules du milieu de mesure jusqu'à un niveau d'énergie supérieur, un système (4, 6, 7) recueillant une fréquence d'énergie lumineuse restituée par le milieu de mesure en quittant le niveau d'énergie supérieur, ladite fréquence bande d'énergie lumineuse étant exploitée pour donner une mesure du temps, un dispositif (9) d'application de champs magnétiques comprenant au moins un champ magnétique essentiellement statique et des moyens d'asservissement (8) dudit dispositif (9) pour ajuster les champs magnétiques, caractérisée en ce que le milieu de mesure comprend du plasma d'hélium 3, l'horloge comprenant un second dispositif excitateur (10) pour susciter le plasma d'hélium 3 à partir d'hélium 3 gazeux.A synthetic definition of the invention is an atomic clock comprising a cell filled with a measuring medium, a first exciter device (1) of particles of the measuring medium up to a higher energy level, a system (4, 6, 7) collecting a luminous energy frequency restored by the measurement medium by leaving the upper energy level, said light energy band frequency being used to give a measurement of the time, a device (9) for applying magnetic fields comprising at least one essentially static magnetic field and servocontrol means (8) for said device (9) for adjusting the magnetic fields, characterized in that the measuring medium comprises plasma of
Le second dispositif excitateur est éventuellement un générateur d'ondes de radiofréquences « de puissance ». L'expression signifie que la puissance que ce second dispositif instaure dans le milieu de mesure est nettement supérieure à celle qui est instaurée par le premier dispositif excitateur, responsable de l'excitation à l'origine de la mesure.The second exciter device is optionally a "power" radiofrequency wave generator. The expression means that the power that this second device establishes in the measuring medium is significantly greater than that which is established by the first exciter device, responsible for the excitation at the origin of the measurement.
Les ondes de radiofréquences peuvent être comprises entre 20 MHz et 30 MHz, et leur puissance peut être de 1 W pour une quantité de gaz d'hélium 3 de 100 mm3 à une pression de 0,1 Torr environ. Il suffit en réalité d'ioniser une partie seulement du milieu de mesure, ayant par exemple une teneur de 1 partie par million des atomes portés au niveau métastable, le reste de l'hélium 3 restant à l'état gazeux et étant alors sans utilité directe pour la mesure ; il sert cependant de gaz tampon aux atomes de l'hélium 3 dans le niveau métastable. On a déjà mentionné la stabilité chimique de cet élément, qui le rend d'autant plus intéressant comme gaz tampon qu'étant de même nature chimique que l'élément servant à la mesure, il ne réagit pas chimiquement avec lui, ce qui n'est pas le cas avec les gaz alcalins, qui doivent souvent être mêlés à des gaz tampons pour donner un état stable. Il est conforme à une réalisation privilégiée de l'invention que le milieu de mesure soit, en conséquence, composé exclusivement d'hélium 3, l'état métastable étant le niveau 23S1.The radio frequency waves can be between 20 MHz and 30 MHz, and their power can be 1 W for a quantity of
Parmi d'autres solutions, le premier dispositif excitateur peut comprendre un faisceau de laser ; et les champs magnétiques appliqués par le dispositif, qui sont destinés à la stabilisation des niveaux d'énergie du milieu de mesure, peuvent comprendre au moins un champ magnétique essentiellement statique et asservi, et éventuellement un ou deux champ magnétiques oscillants perpendiculaires au précédent.Among other solutions, the first exciter device may comprise a laser beam; and the magnetic fields applied by the device, which are intended for the stabilization of the energy levels of the measuring medium, may comprise at least one essentially static and enslaved magnetic field, and possibly one or two oscillating magnetic fields perpendicular to the preceding one.
L'invention sera maintenant décrite en liaison aux figures :
- la
figure 1 illustre un diagramme d'énergie d'un élément de mesure dans une horloge atomique ; - la
figure 2 est une représentation de l'horloge atomique selon l'invention ; - et les
figures 3 et 4 illustrent un mode d'asservissement de champ magnétique de stabilisation.
- the
figure 1 illustrates an energy diagram of a measuring element in an atomic clock; - the
figure 2 is a representation of the atomic clock according to the invention; - and the
Figures 3 and 4 illustrate a stabilization magnetic field servo mode.
Le coeur de l'horloge (
On trouve également un second dispositif d'excitation 10 pour obtenir un plasma d'hélium 3 à partir du gaz de l'hélium 3.There is also a
Voici quelques éléments de construction d'une réalisation possible de l'invention. Le premier excitateur 2 est une diode laser de longueur d'onde 1083 nm pour une puissance de 100 mW, avec un courant de pompe modulé à 3,37 GHz environ afin d'induire une modulation d'intensité optique chargée de générer la résonance de micro-onde de la transition hyperfine de l'hélium 3. La lame quart d'onde 3 impose une polarisation circulaire gauche pour les photons. La cellule 1 est emplie d'hélium 3 soumis à une pression de 0,1 torr environ. Elle est cylindrique, en Pyrex, et son volume est de 100 mm3. Le second dispositif excitateur 10 comprend deux électrodes accolées à la cellule 1 de part et d'autre d'elle et qui sont branchées à un générateur de puissance de radiofréquences à 25 MHz (entre 20MHz et 30 MHz environ) et 1W. Il crée le plasma d'hélium, qui est nécessaire pour peupler le niveau métastable 23S1 disposant de la structure hyperfine.Here are some building elements of a possible embodiment of the invention. The
Le dispositif d'application de champ magnétique 9 permet d'appliquer un champ magnétique Ho de 500 µT parallèlement au faisceau du laser pour bloquer les sous-niveaux à des énergies constantes. On utilise pour cela une paire de bobines de Helmholtz. Ce champ magnétique est asservi à une valeur constante par la mesure de la fréquence de Larmor au sein de la structure hyperfine. Ainsi, on empêche que les variations du champ magnétique ambiant ne perturbent la transition de micro-ondes définissant la fréquence de résonnance fo.The magnetic
Le dispositif de d'application de champ magnétique 9 engendre encore une composante de champ magnétique oscillant à basse fréquence, appliquée perpendiculairement au champ magnétique statique et que l'on asservit grâce au dispositif d'asservissement 8 à la transition de Zeeman à 12 MHz environ. Ce champ oscillant permet d'induire une résonnance au sein des sous-niveaux de Zeeman qui donnera la mesure précitée pour évaluer le champ magnétique ambiant résultant et l'asservir à une valeur constante.The magnetic
L'hélium 3 étant dépourvu de sous-niveaux à indice de moment angulaire nul, il est nécessaire de faire fonctionner le dispositif à champ magnétique constant, ce qui peut être obtenu par un champ artificiel asservi avec ou sans un blindage magnétique. L'asservissement du champ magnétique peut être accompli de façon scalaire ou vectorielle par la fréquence de Larmor ou vectorielle par une recherche de champ magnétique total nul.Since
Le dispositif d'application de champ magnétique 9 peut à la fois générer le champ magnétique servant à la mesure de la résonnance s'il est composé de bobines triaxiales asservies.The magnetic
Dans une conception perfectionnée, le dispositif d'application de champ 9 émet des champs magnétiques à des radiofréquences de pulsations notées Ω et ω, qui sont perpendiculaires entre eux et de direction dépendant de la polarisation (par exemple perpendiculaires aux rayons lumineux émis par l'excitateur 2 dans le cas d'une polarisation circulaire).In an improved design, the
On se reporte à la
Il peut consister en des bobines triaxiales, ou en trois bobines monoaxiales concentriques entre elles. L'asservissement est accompli par tout matériel connu comprenant une unité de calcul. Les bobines sont pilotées en courant ou en tension. L'excitation à la fréquence de résonance f0 est accomplie par une modulation en amplitude de la diode laser à la fréquence f0/2 ou par une cavité à micro-ondes résonnant à la fréquence f0. Un excitateur comprenant deux lasers dont l'écart en fréquence est f0 peut aussi être envisagé.It may consist of triaxial coils, or three monoaxial coils concentric with each other. The enslavement is accomplished by any known hardware including a computing unit. The coils are driven by current or voltage. The excitation at the resonance frequency f 0 is accomplished by amplitude modulation of the laser diode at the frequency f 0/2 or by a microwave cavity resonating at the frequency f 0 . An exciter comprising two lasers, the frequency deviation is f 0 can also be envisaged.
L'hélium 3 étant dépourvu de sous-niveaux à indice de moment angulaire nul, il est nécessaire de faire fonctionner le dispositif à champ magnétique constant, ce qui peut être obtenu par un champ artificiel asservi avec ou sans un blindage magnétique. L'asservissement du champ magnétique peut être accompli de façon scalaire ou vectorielle par la fréquence de Larmor ou vectorielle par une recherche de champ magnétique total nul.Since
Le dispositif d'application de champ magnétique 9 peut à la fois générer le champ magnétique servant à la mesure de la résonnance s'il est composé de bobines triaxiales asservies.The magnetic
L'instrument mesurant le flux laser peut être une photodiode de type InGaAs. Ce mode de réalisation, comprenant un dispositif de stabilisation du champ magnétique, ne comprend pas de blindage magnétique. Cependant, il est également possible d'utiliser un blindage magnétique en plus du dispositif d'asservissement du champ magnétique tel que précédemment décrit. Le blindage magnétique peut être composé par exemple d'un cylindre de fer doux et de cylindre de µ métal imbriqués.The instrument measuring the laser flux may be an InGaAs type photodiode. This embodiment, comprising a magnetic field stabilizing device, does not include magnetic shielding. However, it is also possible to use a magnetic shield in addition to the magnetic field servo device as previously described. The magnetic shielding may be composed of, for example, a soft iron cylinder and a nested metal cylinder.
L'excitateur 2 pourrait comprendre une lampe ou une VCSEL (pour Variation capacity surface emitting light). En l'absence d'un dispositif de stabilisation du champ magnétique ambiant, L'excitation à la fréquence de résonnance pourrait aussi être procurée par une cavité micro-onde résonnante ou par deux lasers dont l'écart des fréquences est la fréquence de résonance.
Claims (10)
- Atomic clock comprising a cell filled with a measurement medium, a first device (1) for exciting particles of the measurement medium up to a higher energy level, a system (4, 6, 7) collecting a light energy frequency returned by the measurement medium on leaving the higher energy level, said light energy frequency being exploited to give a time measurement, a device (9) for applying magnetic fields comprising at least one essentially static magnetic field and means (8) for controlling said device (9) to adjust the magnetic fields, characterised in that the measurement medium comprises helium 3 plasma, the clock comprising a second exciter device (10) to give rise to helium 3 plasma from gaseous helium 3.
- Atomic clock according to claim 1, characterised in that the second exciter device (10) is a power radiofrequency wave generator.
- Atomic clock according to claim 2, characterised in that the radiofrequency waves are between 20 MHz and 30 MHz.
- Atomic clock according to claim 2, characterised in that the radiofrequency waves have a power of 1W for a quantity of helium 3 of 100 mm3 at a pressure of around 0.1 torr.
- Atomic clock according to any of claims 1 to 4, characterised in that the higher energy level, from which the measurement medium returns the light energy frequency exploited to give the time measurement, is the metastable level 23S1.
- Atomic clock according to claim 5, characterised in that the measurement medium is composed exclusively of helium 3, having a level of 1 part per million of atoms taken to the metastable level, when the second exciter device operates.
- Atomic clock according to any of claims 1 to 6, characterised in that the first exciter device (1) comprises a laser beam, and the magnetic fields applied by the device (9) comprise at least one oscillating magnetic field.
- Atomic clock according to claim 7, characterised in that the magnetic fields applied by the device (9) comprise two mutually perpendicular oscillating magnetic fields.
- Atomic clock according to any of claims 7 and 8, characterised in that the essentially static magnetic field is precisely oriented in relation to the oscillating magnetic field or to the oscillating magnetic fields.
- Atomic clock according to any of claims 1 to 9, characterised in that it comprises a magnetic shielding that surrounds it.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0953901A FR2946766B1 (en) | 2009-06-11 | 2009-06-11 | ATOMIC CLOCK WORKING WITH HELIUM 3. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2261758A1 EP2261758A1 (en) | 2010-12-15 |
EP2261758B1 true EP2261758B1 (en) | 2011-12-07 |
Family
ID=41480094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10165184A Not-in-force EP2261758B1 (en) | 2009-06-11 | 2010-06-08 | Atomic clock operated with Helium-3 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8183942B2 (en) |
EP (1) | EP2261758B1 (en) |
JP (1) | JP2010286490A (en) |
AT (1) | ATE536573T1 (en) |
FR (1) | FR2946766B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2924826B1 (en) * | 2007-12-11 | 2010-03-05 | Commissariat Energie Atomique | ATOMIC CLOCK WITH CORRECTION OF THE AMBIENT MAGNETIC FIELD |
FR2964476B1 (en) | 2010-09-07 | 2012-10-05 | Commissariat Energie Atomique | METHOD FOR CALIBRATING AN ATOMIC OPERATING DEVICE |
JP5804256B2 (en) * | 2011-07-29 | 2015-11-04 | 国立研究開発法人物質・材料研究機構 | Electron spin polarized ion beam generation method and apparatus |
FR3008190B1 (en) | 2013-07-08 | 2015-08-07 | Commissariat Energie Atomique | METHOD AND DEVICE FOR MEASURING A MAGNETIC FIELD USING SYNCHRONIZED EXCITATIONS |
FR3026193B1 (en) | 2014-09-19 | 2016-12-23 | Commissariat Energie Atomique | MAGNETOMETER WITHOUT ASSEMBLY AND COMPENSATION OF LOW FIELD RESONANCE SLOPE FLUCTUATIONS, MAGNETOMETER NETWORK AND MEASURING METHOD |
CN109029740B (en) * | 2018-04-20 | 2020-06-12 | 山西大学 | Device and method for measuring atomic hyperfine structure |
FR3093816B1 (en) | 2019-03-12 | 2021-04-16 | Commissariat Energie Atomique | Zero-field slave magnetometer with low-frequency filtering of the compensation field |
WO2021200908A1 (en) * | 2020-03-31 | 2021-10-07 | 日本電子株式会社 | Optical lattice clock and magnetic field correction method for optical lattice clock |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4193029A (en) * | 1963-03-04 | 1980-03-11 | The United States Of America As Represented By The Secretary Of The Navy | Pulsed helium magnetometer |
FR2779530B1 (en) * | 1998-06-09 | 2000-07-07 | Commissariat Energie Atomique | DEVICE FOR MEASURING THE COMPONENTS OF A MAGNETIC FIELD USING A SCALAR MAGNETOMETER |
US7468637B2 (en) * | 2006-04-19 | 2008-12-23 | Sarnoff Corporation | Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock |
FR2924827B1 (en) * | 2007-12-11 | 2010-02-19 | Commissariat Energie Atomique | ATOMIC CLOCK ADJUSTED BY A STATIC FIELD AND TWO SWING FIELDS |
FR2924826B1 (en) * | 2007-12-11 | 2010-03-05 | Commissariat Energie Atomique | ATOMIC CLOCK WITH CORRECTION OF THE AMBIENT MAGNETIC FIELD |
-
2009
- 2009-06-11 FR FR0953901A patent/FR2946766B1/en not_active Expired - Fee Related
-
2010
- 2010-06-08 AT AT10165184T patent/ATE536573T1/en active
- 2010-06-08 EP EP10165184A patent/EP2261758B1/en not_active Not-in-force
- 2010-06-08 US US12/796,615 patent/US8183942B2/en not_active Expired - Fee Related
- 2010-06-10 JP JP2010132868A patent/JP2010286490A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
US20100315173A1 (en) | 2010-12-16 |
EP2261758A1 (en) | 2010-12-15 |
FR2946766A1 (en) | 2010-12-17 |
JP2010286490A (en) | 2010-12-24 |
ATE536573T1 (en) | 2011-12-15 |
FR2946766B1 (en) | 2011-07-01 |
US8183942B2 (en) | 2012-05-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2261758B1 (en) | Atomic clock operated with Helium-3 | |
EP2220540B1 (en) | Apparatus with ambient magnetic field correction | |
FR2663429A1 (en) | RESONANCE AND OPTICAL PUMPING MAGNETOMETER USING SEQUENTIAL POLARIZATION. | |
EP0462000A1 (en) | Resonance magnetometer with optical pumping using a plurality of beams | |
EP3454139B1 (en) | Optical measurement system with stabilised davll servo and associated method | |
EP2220541B1 (en) | Atomic clock regulated by a static field and two oscillating fields | |
EP2473886A1 (en) | Device for an atomic clock | |
CA1283950C (en) | Laser pumped helium magnetometer | |
CN107209113A (en) | Spectral device and method | |
EP3730959B1 (en) | Slave zero field magnetometer with low-frequency filtering of the compensation field | |
Li et al. | Improving sensitivity of an amplitude-modulated magneto-optical atomic magnetometer using squeezed light | |
US6359917B1 (en) | Detection method and detector for generating a detection signal that quantifies a resonant interaction between a quantum absorber and incident electro-magnetic radiation | |
EP3771917B1 (en) | Magnetometer with optical pumping | |
EP3650877A1 (en) | Compact hanle-effect magnetometer | |
Chen et al. | An overview of the optically detected magnetic-state-selected cesium beam clock | |
FR2894663A1 (en) | OPTICALLY ACTIVE SOLID STATE GYROLASER THROUGH ALTERNATIVE BIAIS | |
EP0453544A1 (en) | Cell of atomic or molecular vapors for optical pumping and magnetometer or gyroscope using such cell | |
CH703410A1 (en) | Device for enabling double passage of laser beam into gas cell of coherent-population-trapping atomic clock, has photodetector controlling optical frequency of laser beam and/or controlling temperature of gas cell | |
Xiao et al. | Conversion of phase noise to intensity noise in electromagnetically induced transparency | |
FR2668862A1 (en) | METHOD FOR DETERMINING AMPLITUDE OF A MAGNETIC FIELD BY OPTICAL PUMPING BY LASER AND MAGNETOMETER FOR IMPLEMENTING THE METHOD. | |
Mitsui et al. | Spectral narrowing of magnetic resonance in transverse optical pumping by recurrently using free decay | |
FR3093360A1 (en) | Isotropic and all-optical scalar magnetometer | |
FR3088729A1 (en) | MAGNETOMETER IN ALIGNMENT WITH ANGULAR OFFSET BETWEEN POLARIZATIONS OF PUMP AND PROBE BEAMS | |
Zhu et al. | A subminiature adjustable and measurable atomic clock based on coherent population trapping | |
Sibilla et al. | Diffraction Free Propagation in a Nonlinear Second Order Material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME RS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20110527 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G04F 5/14 20060101AFI20110621BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602010000479 Country of ref document: DE Effective date: 20120223 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120308 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120307 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120407 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120409 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 536573 Country of ref document: AT Kind code of ref document: T Effective date: 20111207 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
26N | No opposition filed |
Effective date: 20120910 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES Effective date: 20120630 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602010000479 Country of ref document: DE Effective date: 20120910 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120318 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120608 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100608 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150605 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150612 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160608 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200612 Year of fee payment: 11 Ref country code: FR Payment date: 20200630 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200619 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602010000479 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210608 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210608 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210630 |