EP2220541B1 - Horloge atomique reglee par un champ statique et deux champs oscillants - Google Patents
Horloge atomique reglee par un champ statique et deux champs oscillants Download PDFInfo
- Publication number
- EP2220541B1 EP2220541B1 EP08860180A EP08860180A EP2220541B1 EP 2220541 B1 EP2220541 B1 EP 2220541B1 EP 08860180 A EP08860180 A EP 08860180A EP 08860180 A EP08860180 A EP 08860180A EP 2220541 B1 EP2220541 B1 EP 2220541B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic fields
- atomic clock
- frequency
- field
- oscillating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04F—TIME-INTERVAL MEASURING
- G04F5/00—Apparatus for producing preselected time intervals for use as timing standards
- G04F5/14—Apparatus for producing preselected time intervals for use as timing standards using atomic clocks
Definitions
- the subject of this invention is an atomic clock set or dressed by two oscillating fields and a static field which are applied in a shield.
- Atomic clocks comprise an often alkaline gaseous medium, a device for exciting the atoms of this gas such as a laser, able to pass them to higher energy states, and a means for measuring a frequency signal emitted by atoms returning to the usual energy level, using the photons from the laser.
- Energy levels are sensitive to the surrounding magnetic field. This sensitivity is low (of the second order) for the sub-level to the magnetic number equal to 0, but much stronger (of the first order) for the other sub-levels: the transitions made from or up to them produce photons whose the frequency is variable and can not be used as a reference, and only the portion of the signal corresponding to the transition between the two sub-levels of zero magnetic number is used for the measurement, which affects its quality.
- Magnetic shielding around the clock is therefore used to reduce external disturbances, and the application of a constant magnetic field in the shield to separate the sub-levels, failing to guarantee a zero magnetic field. If the operation of the clock is made more stable, the sub-levels then being immobile and therefore well defined, the disadvantage of undergoing a dispersion of frequencies and having to be satisfied with a weakened signal is not avoided.
- H 0 is the intensity of the static field
- T is the relaxation time of the atoms
- ⁇ the pulsation of the oscillating field
- ⁇ is the gyromagnetic moment.
- the invention is based on an improvement, according to which a second oscillating field is added to the device. It relates to an atomic clock as defined in claim 1.
- a Bessel function of the first kind of a report report / ⁇ H ⁇ ⁇ , where H ⁇ and ⁇ are an intensity and a frequency of the second oscillating magnetic field, and ⁇ is a gyromagnetic ratio, is at an extremum.
- the figure 1 already described and the figure 2 already described illustrate two diagrams of the energy levels of a chemical element used in an atomic clock
- the figure 3 is a schematic view of the clock
- the figure 4 is a graphic representation of functions illustrating the effect of the invention.
- the heart of the clock is a cell 1 filled with an alkaline gas.
- An exciter 2 transmits energy to this gas in the form of a polarized photon flux passing through a circular polarizer 3.
- the exciter may also be a microwave field, for example. It will then be necessary anyway to inject a light beam (for example of laser) to detect the resonances of the gas.
- a photodetector 4 collects the light energy restored by the gas of the cell 1 and transmits a signal to a counting device 5.
- a frequency separator 6 collects the signal at the output of the counting device 5 and transmits its results to an operating device 7 of the clock and a servo-control device 8 which controls the exciter 2 as well as means for applying magnetic fields 9 and 10.
- These oscillating magnetic fields are applied in a magnetic shielding 11 which includes the cell 1 and the magnetic field application means 9 and 10.
- the second oscillating field is added. It is orthogonal to the first radio frequency field and the static field, its pulsation is ⁇ and its intensity is H ⁇ .
- the ⁇ pulse satisfies the following inequalities H 0 " 1 T . ⁇ " ⁇ ⁇ " ⁇ ⁇ , that is, the second radiofrequency field has the same effects as the first on the static field but that its pulsation is much less than that of the first field of radiofrequencies.
- the frequencies of the two oscillating fields should not be too large: they should not exceed ( fo / 4) approximately, where fo already mentioned is the frequency of the transition hyperfine and corresponding to the change of energy level of the atoms in the gas.
- the first oscillating magnetic field then also undergoes modifications which result in an attenuation of its amplitude H ⁇ by the Bessel function.
- This value depends on that of J 0 / ⁇ ⁇ H ⁇ ⁇ ⁇ , which, in this case, was chosen at 3.8, that is to say an extremum of the Bessel function of curve 12.
- Experimental settings may differ slightly from the theoretical settings. It is possible to perform them by exploiting information given by a low frequency sinusoidal magnetic field ⁇ (much less than 1/2 ⁇ T) and collinear with H 0 . This field induces disturbances on the signal delivered by the clock at frequencies fo ⁇ ⁇ . It will then be possible to quantify the sensitivity of the signal delivered by the atomic clock to the variations of the static magnetic field by a synchronous detection at the frequency of this disturbance.
- An interesting operating point can be obtained by first adjusting the amplitude H ⁇ of the field at the highest frequency ( ⁇ / 2 ⁇ ) to a maximum of sensitivity of the static field H 0 .
- the other radio frequency field H ⁇ will then be added and adjusted to obtain a minimum sensitivity of H 0 .
- the servo-control device 8 can be used for a continuous adjustment of the amplitude of the second radio-frequency field according to this principle of keeping a minimum of sensitivity of the signal delivered by the clock.
- the single exciter may be a photon flux such as a laser flux emitted for example by a laser diode or a lamp.
- the gaseous element may consist of 87 Rb, 133 C s , with optional mixing with a buffer gas.
- the material of cell 1 may consist of a glass such as Pyrex (trademark).
- the means for applying the magnetic fields 9 and 10 may consist of triaxial coils, or of three monoaxial coils concentric with each other.
- the photodetector 4 can be of any kind measuring a flow of photons at the output of the cell 1. These photons must be polarized for example by polarizers adjoining the exciter. Servoing is accomplished by any known hardware including a computing unit. The coils are driven by current.
- the excitation at the resonance frequency is accomplished by amplitude modulation of the laser diode at the frequency f 0/2 , or by a microwave cavity resonant at the frequency f 0 .
- An exciter comprising two lasers, the frequency deviation is f 0 can also be envisaged.
- the magnetic shield 11 may consist of n metal cylinders imbricated, possibly with a soft iron cylinder.
- the wavelength of the laser photons was 780nm
- a quarter wave plate imposed a left circular polarization to the incident photons
- the magnetic shield 11 consisted of four cylinders of ⁇ concentric metal and a soft iron cylinder outside
- the magnetic field H 0 was 100 microgauss in the main axis
- ⁇ was equal to 670 kilohertz per gauss
- radio frequencies were 3 kilohertz and 20 kilohertz to respective magnitudes of 27 and 114 milligauss in order to impose the previously identified conditions of process validity.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Description
- Le sujet de cette invention est une horloge atomique réglée ou habillée par deux champs oscillants et un champ statique qui sont appliqués dans un blindage.
- Des horloges atomiques comprennent un milieu gazeux souvent alcalin, un dispositif d'excitation des atomes de ce gaz tel qu'un laser, apte à les faire passer à des états d'énergie supérieurs, et un moyen de mesure d'un signal fréquentiel émis par les atomes en revenant au niveau d'énergie habituel, en utilisant les photons provenant du laser.
- La fréquence des photons restitués par le gaz est définie par la formule ν =ΔE/h, où ν est la fréquence, ΔE la différence entre les niveaux d'énergie et h la constante de Planck, égale à 6, 63x10-34 J.s. Il est connu que cette fréquence est très stable et qu'elle peut donc servir d'unité de référence au temps. Cela n'est toutefois plus vrai quand on considère la structure Zeeman de la matière : les niveaux d'énergie apparaissent alors comme composés de sous-niveaux correspondant à des états un peu différents, qu'on distingue par leur nombre quantique magnétique m, 0 pour un état de référence du niveau d'énergie et -1, -2, etc. ou +1, +2, etc. pour les autres. Cela est illustré par la
figure 1 dans le cas de l'élément 87Rb, dont on a figuré la décomposition des deux premiers niveaux d'énergie (de moments angulaires F=1 et F=2). - Les niveaux d'énergie sont sensibles au champ magnétique ambiant. Cette sensibilité est faible (du second ordre) pour le sous-niveau au nombre magnétiques égal à 0, mais beaucoup plus forte (du premier ordre) pour les autres sous-niveaux : les transitions faites depuis ou jusqu'à eux produisent des photons dont la fréquence est variable et ne peut donc pas servir de référence, et seule la portion du signal correspondant à la transition entre les deux sous-niveaux de nombre magnétique nul est exploitée pour la mesure, ce qui nuit à sa qualité. La fréquence de référence donnée par l'horloge est alors la fréquence de la transition hyperfine considérée dans le gaz fo=Eo/h, où E0 est la différence d'énergie entre les sous-niveaux à m=0 des deux états (F=1 et F=2 dans l'exemple de la
figure 1 ). - On recourt donc à un blindage magnétique autour de l'horloge pour réduire les perturbations extérieures, et à l'application d'un champ magnétique constant dans le blindage pour bien séparer les sous-niveaux, à défaut de garantir un champ magnétique nul. Si le fonctionnement de l'horloge est rendu plus stable, les sous-niveaux étant alors immobiles et donc bien définis, l'inconvénient de subir une dispersion des fréquences et de devoir se contenter d'un signal affaibli n'est pas évité.
- Avec l'invention, on s'efforce de perfectionner les horloges atomiques existantes en les faisant travailler en champ magnétique nul afin de concentrer les sous-niveaux à une même valeur d'énergie et d'obtenir un signal comprenant un pic de mesure beaucoup plus net.
- Il a été proposé de faire participer les sous-niveaux à nombre magnétique non nul au signal utile en supprimant la dispersion des énergies entre sous-niveaux que le champ statique provoque. L'article de Haroche "Modified Zeeman hyperfine spectra observed in H1 and Rb87 ground states interacting with a nonresonant RF field", Physical Review Letters, volume 24, numéro 16, 20 avril 1970, pages 861 à 864, révèle que l'effet du champ magnétique statique peut être annihilé pour les atomes excités en appliquant un champ oscillant qui lui est perpendiculaire, à condition de respecter la double inégalité
où H0 est l'intensité du champ statique, T le temps de relaxation des atomes, ω la pulsation du champ oscillant, et γ le moment gyromagnétique. Les différences d'énergie ΔE entre les sous-niveaux d'un même niveau deviennent alors toutes nulles dans chaque niveau, les photons restitués par le gaz correspondent tous à la différence d'énergie E0, l'état de la matière de lafigure 2 étant alors obtenu : tout se passe comme si un champ résultant (fictif) nul existait. - Cela implique cependant de respecter des rapports déterminés entre l'intensité et la fréquence du champ oscillant pour obtenir cet effet ; or une grande finesse de réglage est nécessaire, une perturbation même faible laissant subsister un champ résiduel fictif non négligeable qui empêche de bénéficier de cette découverte.
- L'invention repose sur un perfectionnement, d'après lequel un second champ oscillant est ajouté au dispositif. Elle concerne une horloge atomique telle que définie dans la revendication 1. Dans une variante préférée, une fonction de Bessel de première espèce d'un rapport rapport
- Le document
WO-A-2005/081 794 décrit une horloge atomique selon le préambule de la revendication indépendante. - L'invention sera maintenant décrite en liaison aux figures, dont la
figure 1 déjà décrite et lafigure 2 déjà décrite illustrent deux diagrammes des niveaux d'énergie d'un élément chimique utilisé dans une horloge atomique, lafigure 3 est une vue schématique de l'horloge, et lafigure 4 est une représentation graphique de fonctions illustrant l'effet de l'invention. - La
figure 3 est abordée. Le coeur de l'horloge est une cellule 1 remplie d'un gaz alcalin. Un excitateur 2 transmet de l'énergie à ce gaz sous forme d'un flux de photons polarisés traversant un polariseur circulaire 3. L'excitateur peut aussi être un champ de micro-ondes par exemple. Il faudra alors de toute façon injecter un fasceau lumineux (par exemple de laser) pour détecter les résonances du gaz. Un photo-détecteur 4 recueille l'énergie lumineuse restituée par le gaz de la cellule 1 et transmet un signal à un dispositif de comptage 5. Un séparateur de fréquences 6 recueille le signal à la sortie du dispositif de comptage 5 et transmet ses résultats à un dispositif d'exploitation 7 de l'horloge et un dispositif d'asservissement 8, qui gouverne l'excitateur 2 ainsi que des moyens d'application de champs magnétiques 9 et 10. Ces derniers émettent des champs magnétiques à des radiofréquences de pulsations notées Ω et ω,qui sont perpendiculaires entre elles et de direction dépendant de la polarisation (par exemple perpendiculaires aux rayons lumineux émis par l'excitateur 2 dans le cas d'une polarisation circulaire). Ces champs magnétiques oscillants sont appliqués dans un blindage magnétique 11 qui englobe la cellule 1 et les moyens d'applications des champs magnétiques 9 et 10. - On revient à l'explication théorique des phénomènes. La combinaison d'un champ magnétique statique d'intensité H0 et d'un champ de radiofréquences d'intensité Hω et de pulsation ω respectant les conditions indiquées plus haut a un effet équivalent sur les atomes à celui d'un champ magnétique statique fictif d'intensité H'0 dont les composantes sont égales à H0·cos α et
figure 4 (courbe 12). Des choix judicieux du rapport - Ce champ peut s'annuler par des réglages particuliers de chacun des champs de radiofréquences. La
figure 4 montre un exemple d'évolution du rapport - Les réglages expérimentaux peuvent légèrement différer des réglages théoriques. Il est possible de les effectuer en exploitant une information donnée par un champ magnétique sinusoïdal à basse fréquence υ (très inférieure à 1/2 πT) et colinéaire à H0. Ce champ induit des perturbations sur le signal délivré par l'horloge aux fréquences fo±υ. On pourra alors quantifier la sensibilité du signal délivré par l'horloge atomique aux variations du champ magnétique statique par une détection synchrone à la fréquence de cette perturbation. Un point de fonctionnement intéressant pourra être obtenu en réglant d'abord l'amplitude H ω du champ à la plus haute fréquence (ω/2π) à un maximum de sensibilité du champ statique H 0. L'autre champ de radiofréquences H Ω sera ensuite ajouté et ajusté pour obtenir un minimum de sensibilité de H0.
- Le dispositif d'asservissement 8 peut servir à un réglage continu de l'amplitude du deuxième champ de radiofréquences en fonction de ce principe de conserver un minimum de sensibilité du signal délivré par l'horloge.
- L'excitateur unique peut être un flux de photons tel qu'un flux de laser émis par exemple par une diode laser ou une lampe. L'élément gazeux peut consister en du 87Rb, du 133Cs, avec mélange éventuel à un gaz tampon. La matière de la cellule 1 peut consister en un verre tel que le Pyrex (marque déposée). Les moyens d'application des champs magnétiques 9 et 10 peuvent consister en des bobines triaxiales, ou en trois bobines monoaxiales concentriques entre elles. Le photo-détecteur 4 peut être de n'importe quel genre mesurant un flux de photons en sortie de la cellule 1. Ces photons doivent être polarisées par exemple par des polariseurs adjoints à l'excitateur. L'asservissement est accompli par tout matériel connu comprenant une unité de calcul. Les bobines sont pilotées en courant. L'excitation à la fréquence de résonance est accomplie par une modulation en amplitude de la diode laser à la fréquence f0/2, ou par une cavité à micro-ondes résonnant à la fréquence f0. Un excitateur comprenant deux lasers dont l'écart en fréquence est f0 peut aussi être envisagé.
- Le blindage étant alors particulièrement efficace, tous les sous-niveaux deviennent équivalents puisque le champ est nul. On peut alors utiliser d'autres gaz que ceux employés habituellement dans les horloges atomiques (gaz alcalins), en particulier les gaz dont la structure hyperfine de leurs atomes ne présente pas de sous-niveaux à moment angulaire nul, tels que 3He.
- Le blindage magnétique 11 peut consister en cylindres de µ métal imbriqués, avec éventuellement un cylindre de fer doux. Dans un cas particulier où l'élément 87Rb était employé, la longueur d'onde des photons du laser était de 780nm, une lame quart d'onde imposait une polarisation circulaire gauche aux photons incidents, le blindage magnétique 11 consistait en quatre cylindres de µ métal concentriques et un cylindre de fer doux à l'extérieur, le champ magnétique H0 était de 100 microgauss dans l'axe principal, γ était égal à 670 kilohertz par gauss, et les radiofréquences étaient de 3 kilohertz et 20 kilohertz à des amplitudes respectives de 27 et 114 milligauss afin d'imposer les conditions précédemment identifiées de validité du procédé.
Claims (7)
- Horloge atomique comprenant une cellule (1) remplie d'un gaz, un excitateur (2) du gaz pour faire passer ses atomes à un niveau d'énergie supérieur, un détecteur (4) pour recueillir un signal lumineux traversant le gaz, un blindage magnétique (11) autour de la cellule, et des moyens d'application de champs magnétiques (9, 10) dont un champ magnétique statique, caractérisée en ce que les moyens d'application de champs magnétiques (9, 10) sont agencés pour appliquer aussi deux champs magnétiques oscillants, perpendiculaires entre eux et au champ magnétique statique, de sorte qu'une fonction de Bessel de première espèce d'un rapport
- Horloge atomique selon la revendication 1, caractérisée en ce qu'elle comprend des moyens de réglage soit d'intensité soit de fréquence des champs magnétiques oscillants.
- Horloge atomique selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les moyens d'application de champs magnétiques comprennent au moins trois bobines monoaxiales concentriques.
- Horloge atomique selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les moyens d'application des champs magnétiques comprennent au moins une bobine triaxiale magnétique.
- Horloge atomique selon l'une quelconque des revendications précédentes, caractérisée en ce que le gaz est choisi parmi les gaz alcalins et l'hélium 3.
- Horloge atomique selon l'une quelconque des revendications précédentes, caractérisée en ce que les champs magnétiques oscillants ont des fréquences au plus égal au quart d'une fréquence de transition hyperfine mesurée par l'horloge.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0759743A FR2924827B1 (fr) | 2007-12-11 | 2007-12-11 | Horloge atomique reglee par un champ statique et deux champs oscillants |
PCT/EP2008/067252 WO2009074616A1 (fr) | 2007-12-11 | 2008-12-10 | Horloge atomique reglee par un champ statique et deux champs oscillants |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2220541A1 EP2220541A1 (fr) | 2010-08-25 |
EP2220541B1 true EP2220541B1 (fr) | 2011-11-02 |
Family
ID=39712683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08860180A Not-in-force EP2220541B1 (fr) | 2007-12-11 | 2008-12-10 | Horloge atomique reglee par un champ statique et deux champs oscillants |
Country Status (6)
Country | Link |
---|---|
US (1) | US8154349B2 (fr) |
EP (1) | EP2220541B1 (fr) |
JP (1) | JP5596555B2 (fr) |
AT (1) | ATE532114T1 (fr) |
FR (1) | FR2924827B1 (fr) |
WO (1) | WO2009074616A1 (fr) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2924826B1 (fr) * | 2007-12-11 | 2010-03-05 | Commissariat Energie Atomique | Horloge atomique a correction du champ magnetique ambiant |
FR2946766B1 (fr) * | 2009-06-11 | 2011-07-01 | Commissariat Energie Atomique | Horloge atomique fonctionnant a l'helium 3. |
FR2964476B1 (fr) | 2010-09-07 | 2012-10-05 | Commissariat Energie Atomique | Procede de calibration d'un appareil a fonctionnement atomique |
JP6134092B2 (ja) | 2011-10-18 | 2017-05-24 | セイコーエプソン株式会社 | 磁場計測装置 |
JP5796454B2 (ja) * | 2011-10-28 | 2015-10-21 | セイコーエプソン株式会社 | 原子発振器 |
FR3008190B1 (fr) | 2013-07-08 | 2015-08-07 | Commissariat Energie Atomique | Procede et dispositif de mesure d'un champ magnetique au moyen d'excitations synchronisees |
FR3026193B1 (fr) | 2014-09-19 | 2016-12-23 | Commissariat Energie Atomique | Magnetometre sans asservissement et a compensation des fluctuations de la pente de resonance en champ faible, reseau de magnetometres et procede de mesure |
US10024931B2 (en) * | 2014-12-02 | 2018-07-17 | Seiko Epson Corporation | Magnetic field measurement method and magnetic field measurement apparatus |
US10718661B2 (en) | 2017-06-14 | 2020-07-21 | Texas Instruments Incorporated | Integrated microfabricated vapor cell sensor with transparent body having two intersecting signal paths |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1354208A (fr) | 1963-01-22 | 1964-03-06 | Csf | Nouveau magnétomètre à pompage optique |
JPS63191981A (ja) | 1987-02-05 | 1988-08-09 | Mitsubishi Electric Corp | 光磁気共鳴磁力計 |
FR2693801B1 (fr) * | 1992-07-16 | 1994-09-02 | Commissariat Energie Atomique | Magnétomètre à polarisation lumineuse et à champ de radiofréquence asservis. |
FR2779530B1 (fr) | 1998-06-09 | 2000-07-07 | Commissariat Energie Atomique | Dispositif de mesure des composantes d'un champ magnetique a l'aide d'un magnetometre scalaire |
US20040095037A1 (en) * | 2002-03-22 | 2004-05-20 | Albert Palmero | Low profile motor with internal gear train |
US6888780B2 (en) * | 2003-04-11 | 2005-05-03 | Princeton University | Method and system for operating an atomic clock with simultaneous locking of field and frequency |
US7102451B2 (en) * | 2004-02-18 | 2006-09-05 | Princeton University, Office Of Technology, Licensing & Intellectual Property | Method and system for operating an atomic clock with alternating-polarization light |
US7468637B2 (en) * | 2006-04-19 | 2008-12-23 | Sarnoff Corporation | Batch-fabricated, RF-interrogated, end transition, chip-scale atomic clock |
-
2007
- 2007-12-11 FR FR0759743A patent/FR2924827B1/fr not_active Expired - Fee Related
-
2008
- 2008-12-10 US US12/743,433 patent/US8154349B2/en not_active Expired - Fee Related
- 2008-12-10 EP EP08860180A patent/EP2220541B1/fr not_active Not-in-force
- 2008-12-10 JP JP2010537437A patent/JP5596555B2/ja not_active Expired - Fee Related
- 2008-12-10 AT AT08860180T patent/ATE532114T1/de active
- 2008-12-10 WO PCT/EP2008/067252 patent/WO2009074616A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
FR2924827B1 (fr) | 2010-02-19 |
JP5596555B2 (ja) | 2014-09-24 |
WO2009074616A1 (fr) | 2009-06-18 |
FR2924827A1 (fr) | 2009-06-12 |
ATE532114T1 (de) | 2011-11-15 |
US8154349B2 (en) | 2012-04-10 |
US20100244970A1 (en) | 2010-09-30 |
JP2011507249A (ja) | 2011-03-03 |
EP2220541A1 (fr) | 2010-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2220541B1 (fr) | Horloge atomique reglee par un champ statique et deux champs oscillants | |
EP2220540B1 (fr) | Appareil a correction du champ magnetique ambiant | |
EP0462002B1 (fr) | Magnétomètre à résonance et à pompage optique utilisant une polarisation séquentielle | |
Wang et al. | Gain-assisted superluminal light propagation | |
US9097750B2 (en) | Dual purpose atomic device for realizing atomic frequency standard and magnetic field measurement | |
EP2261758B1 (fr) | Horloge atomique fonctionnant à l'hélium 3 | |
Bederson et al. | Advances in atomic, molecular, and optical physics | |
Fernandez et al. | Optically Tunable Spontaneous Raman Fluorescence<? format?> from a Single Self-Assembled InGaAs Quantum Dot | |
Huber et al. | Coherent phonon spectroscopy of non-fully symmetric modes using resonant terahertz excitation | |
Rosatzin et al. | Light-shift-induced spin echoes in a J= 1/2 atomic ground state | |
Gawlik et al. | Nonlinear magneto-optical rotation magnetometers | |
Wu et al. | Density Matrix Tomography through Sequential Coherent Optical Rotations<? format?> of an Exciton Qubit in a Single Quantum Dot | |
Grewal et al. | Magnetometry using sodium fluorescence with synchronous modulation of two-photon resonant light fields | |
Schmitt-Sody et al. | Intracavity mode locked laser magnetometer | |
Singh et al. | A tunable Doppler-free dichroic lock for laser frequency stabilization | |
Wang et al. | Pulsed vapor cell atomic clock with a differential Faraday rotation angle detection | |
Groeger et al. | Design and performance of laser-pumped Cs-magnetometers for the planned UCN EDM experiment at PSI | |
Sargsyan et al. | A modified method of Faraday rotation for investigation of atomic lines of rubidium and potassium in ultrathin cells | |
Moriyama et al. | Ferromagnetic resonance measurement using stroboscopic magneto-optical Kerr effect | |
Sargsyan et al. | Faraday effect in rubidium atomic layers thinner than 100 nm | |
Guan et al. | Cold-atom optical filtering enhanced by optical pumping | |
Hamid et al. | Polarization resonance on S–D two-photon transition of Rb atoms | |
Grafström et al. | Reflection spectroscopy of spin-polarized atoms near a dielectric surface | |
Sarkisyan et al. | “Unmoved” Atomic Transitions of Alkali Metals in External Magnetic Fields | |
WO1991007668A1 (fr) | Cellule de vapeurs atomiques ou moleculaires pour pompage optique et magnetometre ou gyroscope utilisant une telle cellule |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100601 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008011154 Country of ref document: DE Effective date: 20111229 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20111102 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120302 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120203 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120302 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
BERE | Be: lapsed |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES Effective date: 20111231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120202 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 532114 Country of ref document: AT Kind code of ref document: T Effective date: 20111102 |
|
26N | No opposition filed |
Effective date: 20120803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008011154 Country of ref document: DE Effective date: 20120803 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120213 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20111102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20151215 Year of fee payment: 8 Ref country code: CH Payment date: 20151207 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161210 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20201217 Year of fee payment: 13 Ref country code: DE Payment date: 20201209 Year of fee payment: 13 Ref country code: FR Payment date: 20201228 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008011154 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20211210 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211210 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |