EP2219861A2 - Functional composite material - Google Patents

Functional composite material

Info

Publication number
EP2219861A2
EP2219861A2 EP08852078A EP08852078A EP2219861A2 EP 2219861 A2 EP2219861 A2 EP 2219861A2 EP 08852078 A EP08852078 A EP 08852078A EP 08852078 A EP08852078 A EP 08852078A EP 2219861 A2 EP2219861 A2 EP 2219861A2
Authority
EP
European Patent Office
Prior art keywords
composite material
formations
functional composite
carrier
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08852078A
Other languages
German (de)
French (fr)
Inventor
Walter Mittelbach
Ralph Herrmann
Jürgen Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sortech AG
Original Assignee
Sortech AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sortech AG filed Critical Sortech AG
Priority to EP13183271.9A priority Critical patent/EP2671717B1/en
Publication of EP2219861A2 publication Critical patent/EP2219861A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/10Removing layers, or parts of layers, mechanically or chemically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1212Zeolites, glasses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/246Vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2310/00Treatment by energy or chemical effects
    • B32B2310/08Treatment by energy or chemical effects by wave energy or particle radiation
    • B32B2310/0806Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation
    • B32B2310/0843Treatment by energy or chemical effects by wave energy or particle radiation using electromagnetic radiation using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24521Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness with component conforming to contour of nonplanar surface

Definitions

  • the invention relates to a functional composite material consisting of a carrier and a functional surface material, according to the preamble of claim 1.
  • Functional composite materials have a broad technical field of application. Such materials are particularly important in sorption and catalytic processes with significant heat of reaction of crucial importance. Furthermore, they are used in the field of corrosion and antifouling protection in order to make the surfaces of chemical and technical apparatus insensitive to the influences of aggressive chemical substances or to avoid deposits.
  • Functional composite materials consist of a carrier material, for.
  • a carrier material for.
  • the functional materials are applied as shaped articles, in particular pellets, or as coatings to the corresponding support material.
  • the surface of the carrier material is not completely covered or coated with the functional material. The result is an insufficient mechanical connection of the functional materials to the carrier surface and insufficient thermal contact between the carrier material and the coating.
  • Coating methods which lead to a comparatively firm, direct and surface contact between carrier material and functional material in which the carrier surface is completely covered are, for example, an in-situ crystallization, a recrystallization or a consuming crystallization.
  • the resulting mechanical properties of the Although composite material and the achieved thermal coupling between the two components is in the end better, but by no means optimal for many conditions of use.
  • the required composite material should have a high thermal capacity, the mechanical bond between the substrate and functional coating should be able to withstand high loads even with higher layer thicknesses and the heat transfer in the composite should have technically optimal values.
  • the required composite material should be versatile applicable. Process steps for producing such a composite material are to be specified.
  • the object is achieved with a functional composite material consisting of a carrier and a functional surface material having the features of claim 1.
  • the object is achieved with a method for producing a composite material having the features of claim 16.
  • the respective subclaims indicate expedient or advantageous embodiments of the composite material or of the production method used therefor.
  • the material boundary between the carrier and the functional surface material is not flat.
  • the material boundary is rather structured within a boundary layer.
  • This boundary layer has a thickness called the crosslinking depth. It is in the direction of the functional surface material limited by an upper limit and in the direction of the carrier of a lower limit.
  • the carrier is interlocked on its corresponding surface with the functional surface material. This requires a greatly increased connection of the functional surface material on the surface of the carrier with intensive thermal contact between the two components. The thermal contact resistance between the carrier and surface material is thereby minimized.
  • the fabric border is formed as a continuous sequence of superficial formations of the carrier with gaps, each formation having a height equal to the depth of crosslinking.
  • at least one formation and at least one intermediate space are arranged within a horizontal width of the boundary layer corresponding to a multiple of the crosslinking depth.
  • the formations have a first mold width in the region of the lower boundary and a second mold width different from the first mold width in the region of the upper boundary of the structured boundary layer.
  • the thus achievable contour of the formations can improve the thermal contact between the carrier and the coating or contributes to the improved strength of the composite structure.
  • the resulting material boundary runs repeatedly along the lower limit and the upper limit of the structured boundary layer on a horizontal width corresponding to at least twice the crosslinking depth.
  • the length of the alternating material boundary is expediently such that it amounts to at least 1.1 times, preferably 1.3 to 2.5 times, a length of a flat material boundary of the carrier.
  • the associated correspondingly enlarged contact area between carrier and functional surface material has proven to be thermally advantageous.
  • the crosslinking depth has a value in the range from 5 to 100 .mu.m, in particular from 5 to 60 .mu.m.
  • the Ausformu lengths may be formed in different shapes.
  • the formations form a series of webs with a rectangular, dovetailed and / or wavy contour.
  • the rectangular and wavy contour is advantageous in view of the thermal contact between the surface material and the carrier and with respect to a simpler production, the dovetail-like contour imposes a very strong mechanical bond in the composite structure.
  • the Ausformu lengths can also be formed as a series of knobs with a bell-shaped, inverted or upright truncated pyramidal and / or mushroom-shaped contour. In contrast to the webs which extend predominantly in a longitudinal direction, the knobs form a mountain-and-valley structure without preferential direction.
  • the carrier can be made of different materials. It may consist of a metallic material, a ceramic material or a glass material. It may be in the form of a sheet or a plate, a tube or a sponge. For the surface material also ls different materials come into consideration.
  • the surface material may be an adsorbent, a catalytically active material or a corrosion and / or fouling protection, an insulator or an electrically functional material.
  • the composite material described above can be prepared in various ways.
  • a method for applying, depositing and / or growing a surface structure is used to produce the formations.
  • On an initially in the we- significant plane, that is, in the sense of the below-described evaluation unstructured surface of the carrier material is thus stored.
  • in situ crystallizations can be generated on the support, the formations can also be crystallized on the support.
  • Producing the formations is also possible by chemical or physical deposition of material from a gas phase.
  • a material-removing, in particular material-dissolving, method for working out the formations from the surface of the carrier it is also possible to use a material-removing, in particular material-dissolving, method for working out the formations from the surface of the carrier.
  • FIG. 1 shows an exemplary first embodiment with a sequence of
  • Fig. 2 modified embodiments of the formations of Fig. 1 as
  • Fig. 5 forms in the form of bell-shaped knobs.
  • Fig. 1 shows a carrier 1 with a superposed functional surface material 2 which completely covers the carrier.
  • the surface layer facing surface of the carrier has a series of formations 7 with intermediate spaces 8 between the formations.
  • the totality The formations and spaces form a structured boundary layer 3 with a crosslinking depth d.
  • the crosslinking depth denotes the distance between a lower boundary 4 and an upper boundary 5 of the structured boundary layer. It corresponds to the distance between the highest and the lowest level of the formations.
  • each individual formation corresponds substantially to the depth of crosslinking d of the structured boundary layer 3.
  • the surfaces of the formations and the interspaces between them form the resulting material boundary 6 between the support and the surface material 2 at which the surface material and the material of the support in to be in direct contact.
  • the material boundary 6 alternates between the upper and lower limits 5 and 4 of the boundary layer 3. Its course is determined by the shape of the formations 7 and their embhoff men 8. In comparison to a Stoffg renze 9 a flat support surface, it has an increased length. Integration-promoting material is not provided and is not necessary.
  • the sequence of the formations 7 and their spaces 8 is determined laterally with respect to the size of a horizontal width b.
  • the horizontal width is expediently related to the crosslinking depth d of the structured boundary layer. It forms a lateral scale for the surface structure of the carrier. In the embodiment shown in Fig. 1, the horizontal width b is approximately twice the crosslinking depth d, wherein at least one formation 7 and a septrau m 8 are within this scale.
  • the horizontal width b does not form a lattice constant in the narrower sense.
  • the width of the formations and their spaces may vary individually. Rather, what is important is the number of formations within the scaling given by the horizontal width b or the ratio of b to the crosslinking depth d.
  • the formations may be formed in a completely irregular shape in a lateral direction, so that the sizes defined in FIGS. 1 and 2 are used to characterize the formations vary in width by an average.
  • the crosslinking depth is essentially the same in the majority of the support surface.
  • the formations may have a different contour from the rectangular shape.
  • a distinction is made between a first shape-wide sl in the area of the foot of the formation at the lower boundary 4 and a second shape width s2 in the area of the upper boundary 5 of the structured boundary layer.
  • trapezoidal shape shown widened in the image on the left is the first mold width sl greater than the second mold width s2.
  • dovetail-shaped shaping on the right is the second mold width s2 g r Cler than the first mold width Si.
  • the values of the shape widths and also their size ratio can vary within certain limits due to the formations on a carrier surface.
  • the forms do not necessarily form a regular grid.
  • Fig. Figure 3 shows formations 7 and spaces 8 in a waveform.
  • the material boundary 6 alternates continuously between the lower boundary 4 and the upper boundary 5 of the structured boundary layer 3.
  • the first shape width sl corresponds to the horizontal distances between the deepest points within the spaces 8, the second, located near the upper boundary 5 Shape width is ideally arbitrarily small in this embodiment. In practice, however, the peaks of the wavy course of the material boundary in the region of the surface layer have a certain flattening, the second shape width s2 thus has a small but finite value.
  • Fig. 4 shows formations 7 with a mushroom-like shape. A wider in the region of the lower border 4 form in the area between the boundaries 4 and 5 in a tapered middle part and widens in the upper limit 5 again.
  • the mushroom top structure may be described as a rounded embodiment of the dovetail structure of FIG. 2 are understood.
  • the formations 7 extend over a portion of the surface of the support in a web-like manner. gers so that their cross sections are extruded over the surface of the carrier.
  • FIG. 5 shows a nub structure arranged on the support surface, consisting of a not necessarily uniform array of bell-shaped nubs 11 and intervening valleys which is covered by the surface coating 2.
  • the nubs may also be in trapezoidal or dovetail form.
  • the structured interfaces, the progress of the material boundaries and their previously explained parameters can be detected and investigated in a very simple manner by microscopic methods. These are expediently combined with digital image processing. From the material boundary, which can be recognized on average as a one-dimensional line, the two-dimensional contact surface between the support and the surface coating can be concluded on the assumption of sufficiently isotropic structuring.
  • embedded cross-sections are prepared from the composite samples to be examined, of which digital microscopic images are created.
  • the magnification is expediently chosen so that the image section to be analyzed comprises at least 6, but better 10, formations.
  • the viewing scale is appropriately set to set an appropriate ratio between image pixel and mesh depth.
  • the starting point is the section of the functional composite material. Of these, an approximately 1 millimeter long section is transferred at a magnification of 100x to an image format of, for example, 1024x768 pixels. If the resulting surface structure is anisotropic, it is recommended to make the cuts at different angles with a corresponding subsequent evaluation of the resulting images.
  • Crosslinking depths in the range of 15 to 60 ⁇ m have proven to be particularly expedient. However, crosslinking depths from 5 pm up to 100 pm are readily achievable and likewise show good properties when using the composite.
  • the length of the resulting material boundary 6 can be determined and compared with the length of the material boundary in the case of an unstructured surface of the carrier.
  • the formations in particular their width, their height or the resulting crosslinking depth are selected particularly expediently when the resulting material limit is increased by a factor of at least 1.4 relative to the material boundary of a flat, unstructured carrier surface.
  • the illustrated embodiments of the composite material have a significantly improved mechanical strength even under thermal stress. Particularly in the case of functional surface layers with brittle material properties, the risk of the coatings peeling off under thermal and mechanical loads is markedly reduced.
  • the increased material limit as a result of the formations increases the heat transfer between the support and the functional surface layer and thus enables thicker coatings with the same efficiency in applications which have a strong evolution of heat. This is especially the case with catalytic and adsorption processes.
  • Similar surface structures can be realized by physical or chemical deposition methods, for example thermal evaporation, electron beam evaporation, laser beam or arc vaporization. Likewise, molecular beam epitaxy methods, Sputtering or ion plating can be used with or without the use of masks.
  • a zeolite layer having the mentioned properties can be produced in a wet chemical process, for example, by reacting a reaction solution comprising one part of phosphoric acid (H3PO4), 0.38 part of silicon dioxide (SiO.sub.2) in the form of silica sol, 3 parts of morpholine and 70 parts of water Aluminum or an aluminum alloy in an amount such that the ratio of the surface area of the carrier material measured in square centimeters to the volume of the solution indicated in milliliters is about 2 to 5.
  • the thus prepared mixture is heated in a pressure vessel for 96 hours at a temperature of 175 0 C and subsequently washed in water.
  • a SAPO-34 zeolite layer is formed on the surface of the carrier.

Abstract

The invention relates to a functional composite material consisting of a support (1) and a functional surface material (2). The composite material is characterised in that the support has a structured boundary layer (3) with a lower boundary (4), an upper boundary (5) a cross-linking depth (d) between the lower and upper boundaries and a substance boundary (6) that alternates between the upper and lower boundaries on the surface facing the functional surface material. The substance boundary (6) is designed in particular as a continuous sequence of surface moulded sections (7) of the support with spaces (8) therebetween, each moulded section having a height (h) that equals the cross-linking depth and at least one moulded section and at least one space (8) lie within a horizontal width (b) corresponding to a multiple of the cross-linking depth.

Description

Funktionelles Kompositmaterial Functional composite material
Beschreibungdescription
Die Erfindung betrifft ein funktionelles Kompositmaterial, bestehend aus einem Träger und einem funktionellen Oberflächenmaterial, nach dem Oberbegriff des Anspruchs 1.The invention relates to a functional composite material consisting of a carrier and a functional surface material, according to the preamble of claim 1.
Funktionelle Kompositmaterialien haben ein breites technisches Anwendungsgebiet. Derartige Materialien sind insbesondere bei Sorptions- und Katalyseprozessen mit deutlicher Wärmetönung von ausschlaggebender Bedeutung . Des weiteren werden sie im Bereich des Korrosions- und Antifoulingschutzes eingesetzt, um die Oberflächen chemischer und technischer Apparate gegenüber den Einflüssen aggressiver chemischer Stoffe unempfindlich zu machen bzw. Ablagerungen zu vermeiden.Functional composite materials have a broad technical field of application. Such materials are particularly important in sorption and catalytic processes with significant heat of reaction of crucial importance. Furthermore, they are used in the field of corrosion and antifouling protection in order to make the surfaces of chemical and technical apparatus insensitive to the influences of aggressive chemical substances or to avoid deposits.
Funktionelle Kompositmaterialien bestehen aus einem Trägermaterial, z. B. metallischen Werkstoffen, Keramiken oder Glaswerkstoffen u nd einem auf deren Oberfläche angeordneten funktionellen Material, das als Katalysator, Adsorbens, Korrosions- bzw. Antifoulingschutz, Isolator oder elektrische Funktionsschicht dient.Functional composite materials consist of a carrier material, for. Example, metallic materials, ceramics or glass materials u nd arranged on the surface of a functional material that serves as a catalyst, adsorbent, corrosion or Antifoulingschutz, insulator or electrical functional layer.
Bei den herkömmlichen Herstellungsverfahren werden die funktionellen Materialien als Formkörper, insbesondere Pellets, oder als Beschichtungen auf das entsprechende Trägermaterial aufgebracht. Dabei wird in den meisten Fällen die Oberfläche des Trägermaterials nicht vollständig mit dem funktionellen Material bedeckt bzw. beschichtet. Die Folge ist eine ungenügende mechanische Anbindung der funktionellen Materialien an die Trägeroberfläche und ein ungenügender thermischer Kontakt zwischen dem Trägermaterial und der Beschich- tung.In the conventional production processes, the functional materials are applied as shaped articles, in particular pellets, or as coatings to the corresponding support material. In most cases, the surface of the carrier material is not completely covered or coated with the functional material. The result is an insufficient mechanical connection of the functional materials to the carrier surface and insufficient thermal contact between the carrier material and the coating.
Beschichtungsmethoden, die zu einer vergleichsweise festen, direkten und flächigen Berührung zwischen Trägermaterial und funktionellem Material führen, bei denen die Trägeroberfläche vollständig bedeckt wird, sind beispielsweise eine in-situ-Kristallisation, eine Aufkristallisation bzw. eine verbrauchende Aufkristallisation. Die daraus hervorgehenden mechanischen Eigenschaften des Kompositmaterials und die erreichte thermische Ankopplung zwischen beiden Komponenten ist im Ergebnis zwar besser, jedoch für viele Einsatzbedingungen keineswegs optimal .Coating methods which lead to a comparatively firm, direct and surface contact between carrier material and functional material in which the carrier surface is completely covered are, for example, an in-situ crystallization, a recrystallization or a consuming crystallization. The resulting mechanical properties of the Although composite material and the achieved thermal coupling between the two components is in the end better, but by no means optimal for many conditions of use.
So kommt es beispielsweise immer infolge der unterschiedlichen thermischen Ausdehnung von Trägermaterial und Beschichtung bei raschen Temperaturwechseln regelmäßig zu Festigkeitsproblemen in Verbindung mit einer Ablösung der funktionellen Beschichtung. Derartige Probleme treten insbesondere bei Temperierungsprozessen, bei Kalzinierungen und Adsorbens-Aktivierungen auf. Zudem wird mit einer zunehmenden Dicke der Beschichtu ng des funktionellen Materials der Wärmetransport im Komposit stark eingeschränkt.Thus, for example, due to the different thermal expansion of the carrier material and the coating with rapid temperature changes, there are always problems of strength in connection with a detachment of the functional coating. Such problems occur especially in Temperierungsprozessen, calcinations and adsorbent activations. In addition, as the coating thickness of the functional material increases, the heat transfer in the composite is severely limited.
Aus den vorgenannten Problemen ergibt sich die der Erfindung zugrunde liegende Aufgabe, ein funktionelles Kompositmaterial anzugeben, mit dem die erwähnten Nachteile und funktionellen Beeinträchtigungen nachhaltig vermieden werden können. Das geforderte Kompositmaterial soll eine hohe thermische Belastbarkeit aufweisen, die mechanische Bindung zwischen Trägermaterial und funktioneller Beschichtung soll auch mit höheren Schichtdicken hohen Belastungen standhalten können und der Wärmetransport im Komposit soll technisch optimale Werte aufweisen. Das geforderte Kompositmaterial soll vielfältig anwendbar sein. Es sind Verfahrensschritte zur Herstellung eines derartigen Kompositmaterials anzugeben.From the aforementioned problems, the object underlying the invention to provide a functional composite material with which the mentioned disadvantages and functional impairments can be avoided sustainably results. The required composite material should have a high thermal capacity, the mechanical bond between the substrate and functional coating should be able to withstand high loads even with higher layer thicknesses and the heat transfer in the composite should have technically optimal values. The required composite material should be versatile applicable. Process steps for producing such a composite material are to be specified.
Die Aufgabe wird mit einem funktionellen Kompositmaterial, bestehend aus einem Träger und einem funktionellen Oberflächenmaterial mit den Merkmalen des Anspruchs 1 gelöst. Hinsichtlich des Verfahrensaspektes wird die Aufgabe mit einem Verfahren zur Herstellung eines Kompositmaterials mit den Merkmalen des Anspruchs 16 gelöst. Die jeweiligen Unteransprüche geben zweckmäßige bzw. vorteilhafte Ausführu ngsformen des Kompositmaterials bzw. des dafür verwendeten Herstellungsverfahrens an.The object is achieved with a functional composite material consisting of a carrier and a functional surface material having the features of claim 1. With regard to the method aspect, the object is achieved with a method for producing a composite material having the features of claim 16. The respective subclaims indicate expedient or advantageous embodiments of the composite material or of the production method used therefor.
Erfindungsgemäß ist die Stoffgrenze zwischen Träger und funktionellem Oberflächenmaterial nicht plan. Die Stoffgrenze ist vielmehr innerhalb einer Grenzschicht strukturiert. Diese Grenzschicht weist eine als Vernetzungstiefe bezeichnete Dicke auf. Sie ist in Richtung des funktionellen Oberflächenmaterials von einer oberen Grenze und in Richtung des Trägers von einer unteren Grenze beschränkt. Als Resultat davon ist der Träger auf seiner entsprechenden Oberfläche mit dem funktionellen Ober-flächenmaterial verzahnt. Dies bedingt eine stark vergrößerte Anbindung des funktionellen Oberflächenmaterials auf der Oberfläche des Trägers mit einem intensiven thermischen Kontakt zwischen beiden Komponenten. Der thermische Übergangswiderstand zwischen Träger und Oberflächenmaterial ist dadurch minimiert.According to the invention, the material boundary between the carrier and the functional surface material is not flat. The material boundary is rather structured within a boundary layer. This boundary layer has a thickness called the crosslinking depth. It is in the direction of the functional surface material limited by an upper limit and in the direction of the carrier of a lower limit. As a result, the carrier is interlocked on its corresponding surface with the functional surface material. This requires a greatly increased connection of the functional surface material on the surface of the carrier with intensive thermal contact between the two components. The thermal contact resistance between the carrier and surface material is thereby minimized.
Die Stoffgrenze ist insbesondere als eine zusammenhängende Folge von oberflächlichen Ausformungen des Trägers mit Zwischenräumen ausgebildet, wobei jede Ausformu ng eine Höhe aufweist, die gleich der Vernetzungstiefe ist. Zusätzlich dazu sind innerhalb einer einem Vielfachen der Vernetzungstiefe entsprechenden horizontalen Breite der Grenzschicht mindestens eine Ausformung und mindestens ein Zwischenraum angeordnet.In particular, the fabric border is formed as a continuous sequence of superficial formations of the carrier with gaps, each formation having a height equal to the depth of crosslinking. In addition, at least one formation and at least one intermediate space are arranged within a horizontal width of the boundary layer corresponding to a multiple of the crosslinking depth.
Dies bedingt eine optimale Abstimmung zwischen der Höhe der Ausformungen und damit der Dicke der Grenzschicht bzw. deren Vernetzungstiefe und der Breite der Ausformungen, die für eine optimale mechanische Festigkeit und einen guten thermischen Kontakt im Komposit notwendig sind .This requires optimum coordination between the height of the formations and thus the thickness of the boundary layer or its crosslinking depth and the width of the formations, which are necessary for optimum mechanical strength and good thermal contact in the composite.
Zweckmäßigerweise weisen die Ausformungen eine erste Formbreite im Bereich der u nteren Grenze und eine von der ersten Formbreite verschiedene zweite Formbreite im Bereich der oberen Grenze der struktu rierten Grenzschicht auf. Die damit erreichbare Kontur der Ausformungen kann den thermischen Kontakt zwischen Träger und Beschichtung verbessern bzw. trägt zur verbesserten Festigkeit des Kompositaufbaus bei.Expediently, the formations have a first mold width in the region of the lower boundary and a second mold width different from the first mold width in the region of the upper boundary of the structured boundary layer. The thus achievable contour of the formations can improve the thermal contact between the carrier and the coating or contributes to the improved strength of the composite structure.
Bei einer vorteilhaften Ausführungsform verläuft die resultierende Stoffgrenze auf einer mindestens der doppelten Vernetzungstiefe entsprechenden horizontalen Breite wiederholt entlang der unteren Grenze und der oberen Grenze der strukturierten Grenzschicht. Ein derartiges Verhältnis zwischen Breite und Höhe der Ausformungen erweist sich in thermischer, chemischer und mechanischer Hinsicht als besonders gü nstig . Die Länge der alternierenden Stoffgrenze ist zweckmäßigerweise so bemessen, dass sie das mindestens 1, 1-Fache, vorzugsweise 1,3 bis 2,5-Fache, einer Länge einer ebenen Stoffgrenze des Trägers beträgt. Die damit einhergehende entsprechend vergrößerte Kontaktfläche zwischen Träger und funktionellem Oberflächenmaterial hat sich als thermisch vorteilhaft herausgestellt. Die Vernetzungstiefe weist einen Wert im Bereich von 5 bis 100 pm, insbesondere von 5 bis 60 pm, auf.In an advantageous embodiment, the resulting material boundary runs repeatedly along the lower limit and the upper limit of the structured boundary layer on a horizontal width corresponding to at least twice the crosslinking depth. Such a relationship between width and height of the formations proves to be particularly favorable in thermal, chemical and mechanical terms. The length of the alternating material boundary is expediently such that it amounts to at least 1.1 times, preferably 1.3 to 2.5 times, a length of a flat material boundary of the carrier. The associated correspondingly enlarged contact area between carrier and functional surface material has proven to be thermally advantageous. The crosslinking depth has a value in the range from 5 to 100 .mu.m, in particular from 5 to 60 .mu.m.
Die Ausformu ngen können in unterschiedlichen Formen ausgebildet sein. Bei einer ersten Variante bilden die Ausformungen eine Reihe von Stegen mit einer rechteckigen, schwalbenschwanzartigen und/oder welligen Kontur. Die rechteckige und wellige Kontur ist in H inblick auf den thermischen Kontakt zwischen Oberflächen-material und Träger und in H inblick auf eine einfachere Herstellung vorteilhaft, die schwalben-schwanzartige Kontur bed ingt eine sehr feste mechanische Bindung im Kompositaufbau .The Ausformu lengths may be formed in different shapes. In a first variant, the formations form a series of webs with a rectangular, dovetailed and / or wavy contour. The rectangular and wavy contour is advantageous in view of the thermal contact between the surface material and the carrier and with respect to a simpler production, the dovetail-like contour imposes a very strong mechanical bond in the composite structure.
Die Ausformu ngen können auch als eine Reihe von Noppen mit einer glockenartigen, umgekehrt oder aufrecht pyramidenstumpfförmigen und/oder pilzkopf- förmigen Kontur ausgebildet sein. Im Gegensatz zu den sich vorwiegend in eine Längsrichtung erstreckenden Stegen bilden die Noppen eine Berg-und- Tal-Struktur ohne Vorzugsrichtung aus.The Ausformu lengths can also be formed as a series of knobs with a bell-shaped, inverted or upright truncated pyramidal and / or mushroom-shaped contour. In contrast to the webs which extend predominantly in a longitudinal direction, the knobs form a mountain-and-valley structure without preferential direction.
Der Träger kann aus verschiedenen Materialien bestehen. Er kann aus einem metallischen Werkstoff, einem keramischen Werkstoff oder einem Glaswerkstoff bestehen. Er kann in Form eines Bleches oder einer Platte, eines Rohres oder eines Schwammes vorliegen. Für das Oberflächenmaterial kommen ebenfal ls verschiedene Materialien in Betracht. Das Oberflächenmaterial kann ein Adsorbens, ein katalytisch aktives Material oder ein Korrosions- und/oder Anti- foulingschutz, ein Isolator oder ein elektrisch funktionales Material sein.The carrier can be made of different materials. It may consist of a metallic material, a ceramic material or a glass material. It may be in the form of a sheet or a plate, a tube or a sponge. For the surface material also ls different materials come into consideration. The surface material may be an adsorbent, a catalytically active material or a corrosion and / or fouling protection, an insulator or an electrically functional material.
Das vorhergehend beschriebene Kompositmaterial kann auf verschiedene Wiese hergestellt werden. Bei einer ersten Ausführungsform wird zum Erzeugen der Ausformungen ein Verfahren zum Aufbringen, Abscheiden und/oder Aufwachsen einer Oberflächenstruktur angewendet. Auf eine anfänglich im we- sentlichen plane, das heißt im Sinne der unten beschriebenen Auswertung unstrukturierten Oberfläche des Trägers wird somit Material aufgelagert.The composite material described above can be prepared in various ways. In a first embodiment, a method for applying, depositing and / or growing a surface structure is used to produce the formations. On an initially in the we- significant plane, that is, in the sense of the below-described evaluation unstructured surface of the carrier material is thus stored.
Hierzu können in-situ-Kristallisationen auf dem Träger erzeugt werden, die Ausformungen können auch auf den Träger aufkristallisiert werden.For this purpose, in situ crystallizations can be generated on the support, the formations can also be crystallized on the support.
Ein Erzeugen der Ausformungen ist auch durch ein chemisches oder physikalisches Abscheiden von Material aus einer Gasphase möglich. Alternativ zu den genannten aufbauenden Oberflächenbehandlungen kann auch ein materialabtragendes, insbesondere materialauflösendes, Verfahren zum Herausarbeiten der Ausformungen aus der Oberfläche des Trägers angewendet werden.Producing the formations is also possible by chemical or physical deposition of material from a gas phase. As an alternative to the aforementioned constituent surface treatments, it is also possible to use a material-removing, in particular material-dissolving, method for working out the formations from the surface of the carrier.
Das erfindungsgemäße Kompositmaterial soll im Folgenden anhand von Ausführungsbeispielen näher erläutert werden. Es werden für gleiche bzw. gleich wirkende Teile die selben Bezugszeichen verwendet. Zur Verdeutlichung dienen die beigefügten Figuren 1 bis 5. Es zeigtThe composite material according to the invention will be explained in more detail below with reference to exemplary embodiments. The same reference numbers are used for identical or identically acting parts. For clarity, the attached figures serve 1 to 5. It shows
Fig. 1 eine beispielhafte erste Ausführungsform mit einer Folge von1 shows an exemplary first embodiment with a sequence of
Ausformungen in einer recht-eckigen Kontur,Formations in a right-angled contour,
Fig. Ia eine Trägeroberfläche in einer beispielhaften Draufsicht,1a a support surface in an exemplary plan view,
Fig. 2 modifizierte Ausführungsformen der Ausformungen aus Fig. 1 alsFig. 2 modified embodiments of the formations of Fig. 1 as
Trapez- bzw. Schwalbenschwanzform,Trapezoidal or dovetail shape,
Fig. 3 Ausformungen mit einer Wellenkontur,3 shows formations with a wave contour,
Fig. 4 Ausformungen mit einer Pilzkopfkontur,4 shows formations with a mushroom contour,
Fig. 5 Ausformungen in Form von glockenförmigen Noppen.Fig. 5 forms in the form of bell-shaped knobs.
Fig. 1 zeigt einen Träger 1 mit einem aufgelagerten funktionellen Oberflächenmaterial 2, das den Träger vollständig bedeckt. Die der Oberflächenschicht zugewandte Oberfläche des Trägers weist eine Reihe von Ausformungen 7 mit zwischen den Ausformungen gelegenen Zwischenräumen 8 auf. Die Gesamtheit der Ausformungen und Zwischenräume bildet eine strukturierte Grenzschicht 3 mit einer Vernetzungstiefe d. Die Vernetzungstiefe bezeichnet den Abstand zwischen einer unteren Grenze 4 und einer oberen Grenze 5 der strukturierten Grenzschicht. Sie entspricht dem Abstand zwischen dem höchsten und dem tiefsten Niveau der Ausformungen.Fig. 1 shows a carrier 1 with a superposed functional surface material 2 which completely covers the carrier. The surface layer facing surface of the carrier has a series of formations 7 with intermediate spaces 8 between the formations. The totality The formations and spaces form a structured boundary layer 3 with a crosslinking depth d. The crosslinking depth denotes the distance between a lower boundary 4 and an upper boundary 5 of the structured boundary layer. It corresponds to the distance between the highest and the lowest level of the formations.
Die Höhe h jeder einzelnen Ausformung entspricht im wesentlichen der Vernetzungstiefe d der strukturierten Grenzschicht 3. Die Oberflächen der Ausformungen und der zwischen ihnen gelegenen Zwischenräume bilden die resultierende Stoffgrenze 6 zwischen dem Träger und dem Oberflächenmaterial 2, an der das Oberflächenmaterial und das Material des Trägers in unmittelbarem Kontakt stehen. Wie aus Fig. 1 zu entnehmen ist, alterniert die Stoffgrenze 6 zwischen der oberen und unteren Grenze 5 bzw. 4 der Grenzschicht 3. Ihr Verlauf wird von der Form der Ausformungen 7 und deren Zwischenräu men 8 bestimmt. Im Vergleich zu einer Stoffg renze 9 einer planen Trägeroberfläche weist sie eine vergrößerte Länge auf. Einbindungsvermittelndes Material ist nicht vorgesehen und nicht notwendig .The height h of each individual formation corresponds substantially to the depth of crosslinking d of the structured boundary layer 3. The surfaces of the formations and the interspaces between them form the resulting material boundary 6 between the support and the surface material 2 at which the surface material and the material of the support in to be in direct contact. As can be seen from Fig. 1, the material boundary 6 alternates between the upper and lower limits 5 and 4 of the boundary layer 3. Its course is determined by the shape of the formations 7 and their Zwischenräu men 8. In comparison to a Stoffg renze 9 a flat support surface, it has an increased length. Integration-promoting material is not provided and is not necessary.
Die Folge der Ausformungen 7 und deren Zwischenräumen 8 wird lateral in Bezug auf die Größe einer horizontalen Breite b festgelegt. Die horizontale Breite ist zweckmäßigerweise auf die Vernetzungstiefe d der strukturierten Grenzschicht bezogen. Sie bildet einen lateralen Maßstab für die Oberflächenstruktur des Trägers. Bei der in Fig. 1 gezeigten Ausführungsform beträgt die horizontale Breite b in etwa das Doppelte der Vernetzungstiefe d, wobei sich innerhalb dieser Skalierung mindestens eine Ausformung 7 und ein Zwischenrau m 8 befinden. Die horizontale Breite b bildet keine Gitterkonstante im engeren Sinn. Die Breite der Ausformungen und ihrer Zwischenräume kann im einzelnen variieren. Von Bedeutung ist vielmehr die Anzahl der Ausformungen innerhalb der durch die horizontalen Breite b vorgegebenen Skalierung bzw. das Verhältnis von b zur Vernetzungstiefe d .The sequence of the formations 7 and their spaces 8 is determined laterally with respect to the size of a horizontal width b. The horizontal width is expediently related to the crosslinking depth d of the structured boundary layer. It forms a lateral scale for the surface structure of the carrier. In the embodiment shown in Fig. 1, the horizontal width b is approximately twice the crosslinking depth d, wherein at least one formation 7 and a Zwischenrau m 8 are within this scale. The horizontal width b does not form a lattice constant in the narrower sense. The width of the formations and their spaces may vary individually. Rather, what is important is the number of formations within the scaling given by the horizontal width b or the ratio of b to the crosslinking depth d.
Wie in Fig . Ia in der Draufsicht dargestellt, können die Ausformungen in lateraler Richtu ng völlig unregelmäßig geformt sein, sodass die in den Figuren 1 und 2 definierten Größen zur Charakterisierung der Ausformungen hinsichtlich ihrer Breite um einen Mittelwert schwanken. Die Vernetzungstiefe ist im überwiegenden Teil der Trägeroberfläche im wesentlichen gleich.As shown in FIG. As shown in plan view, the formations may be formed in a completely irregular shape in a lateral direction, so that the sizes defined in FIGS. 1 and 2 are used to characterize the formations vary in width by an average. The crosslinking depth is essentially the same in the majority of the support surface.
Wie in Fig . 2 und den folgenden Figuren dargestellt, können die Ausformungen eine von der recht-eckigen Form abweichende Kontur aufweisen. In einem solchen Fall ist zwischen einer ersten Form-breite sl im Bereich des Fußes der Ausformung an der unteren Grenze 4 und einer zweiten Formbreite s2 im Bereich der oberen Grenze 5 der strukturierten Grenzschicht zu unterscheiden. Bei einer in Fig . 2 links im Bild gezeigten trapezförmigen Ausformung mit verbreiterter Basis ist die erste Formbreite sl größer als die zweite Formbreite s2. Bei einer in Fig . 2 rechts dargestellten schwalbenschwanzförmigen Ausformung ist die zweite Formbreite s2 g rößer als die erste Formbreite Si. Die Werte der Formbreiten und auch ihr Größenverhältnis können in der Folge der Ausformungen auf einer Trägeroberfläche in gewissen Grenzen variieren. Die Ausformu ngen bilden nicht notwendigerweise ein regelmäßiges Gitter.As shown in FIG. 2 and the following figures, the formations may have a different contour from the rectangular shape. In such a case, a distinction is made between a first shape-wide sl in the area of the foot of the formation at the lower boundary 4 and a second shape width s2 in the area of the upper boundary 5 of the structured boundary layer. In a in Fig. 2 trapezoidal shape shown widened in the image on the left is the first mold width sl greater than the second mold width s2. In a in Fig. 2 shown dovetail-shaped shaping on the right is the second mold width s2 g rößer than the first mold width Si. The values of the shape widths and also their size ratio can vary within certain limits due to the formations on a carrier surface. The forms do not necessarily form a regular grid.
Fig . 3 zeigt Ausformungen 7 und Zwischenräume 8 in einer Wellenform. Die Stoffgrenze 6 alterniert kontinuierlich zwischen der unteren Grenze 4 und der oberen Grenze 5 der strukturierten Grenzschicht 3. Die erste Formbreite sl entspricht dabei den horizontalen Abständen zwischen den tiefsten Pu nkten innerhalb der Zwischenräume 8, die zweite, in der Nähe der oberen Grenze 5 gelegene Formbreite ist bei dieser Ausführungsform im Idealfall beliebig klein. Praktisch jedoch weisen die Spitzen des wellenförmigen Verlaufs der Stoffgrenze im Bereich der Oberflächenschicht eine gewisse Abplattung auf, die zweite Formbreite s2 hat damit einen kleinen, aber endlichen Wert.Fig. Figure 3 shows formations 7 and spaces 8 in a waveform. The material boundary 6 alternates continuously between the lower boundary 4 and the upper boundary 5 of the structured boundary layer 3. The first shape width sl corresponds to the horizontal distances between the deepest points within the spaces 8, the second, located near the upper boundary 5 Shape width is ideally arbitrarily small in this embodiment. In practice, however, the peaks of the wavy course of the material boundary in the region of the surface layer have a certain flattening, the second shape width s2 thus has a small but finite value.
Fig . 4 zeigt Ausformungen 7 mit einer pilzkopfartigen Form. Eine im Bereich der u nteren Grenze 4 breitere Form geht im Bereich zwischen den Grenzen 4 und 5 in einen verjüngten Mittelteil über und verbreitert sich im Bereich der oberen Grenze 5 wieder. Die Pilzkopfstruktur kann als eine abgerundete Ausführu ngsform der Schwalbenschwanzstruktur aus Fig . 2 aufgefasst werden.Fig. 4 shows formations 7 with a mushroom-like shape. A wider in the region of the lower border 4 form in the area between the boundaries 4 and 5 in a tapered middle part and widens in the upper limit 5 again. The mushroom top structure may be described as a rounded embodiment of the dovetail structure of FIG. 2 are understood.
Bei den in den Figuren 3 und 4 gezeigten Ausführungsformen erstrecken sich die Ausformungen 7 stegartig über einen Teilbereich der Oberfläche des Trä- gers, sodass deren Querschnitte über die Oberfläche des Trägers extrudiert sind.In the embodiments shown in FIGS. 3 and 4, the formations 7 extend over a portion of the surface of the support in a web-like manner. gers so that their cross sections are extruded over the surface of the carrier.
Fig . 5 zeigt eine auf der Trägeroberfläche angeordnete Noppenstruktur aus einem nicht notwendigerweise gleichmäßigen Array glockenförmiger Noppen 11 und dazwischen liegender Täler, die von der Oberflächenbeschichtung 2 überdeckt ist. Die Noppen können auch in Trapez- oder Schwalbenschwanzform vorliegen.Fig. FIG. 5 shows a nub structure arranged on the support surface, consisting of a not necessarily uniform array of bell-shaped nubs 11 and intervening valleys which is covered by the surface coating 2. The nubs may also be in trapezoidal or dovetail form.
Die strukturierten Grenzflächen, die Verläufe der Stoffgrenzen und deren vorhergehend erläuterten Parameter lassen sich in sehr einfacher Weise durch mikroskopische Verfahren nachweisen und untersuchen. Diese werden zweckmäßigerweise mit einer digitalen Bildverarbeitung kombiniert. Aus der im Schnitt als eindimensionale Linie erkennbaren Stoffgrenze lässt sich unter der Voraussetzung einer hinreichend isotropen Strukturierung auf die zweidimensionale Kontaktfläche zwischen Träger und Oberflächenbeschichtung schließen.The structured interfaces, the progress of the material boundaries and their previously explained parameters can be detected and investigated in a very simple manner by microscopic methods. These are expediently combined with digital image processing. From the material boundary, which can be recognized on average as a one-dimensional line, the two-dimensional contact surface between the support and the surface coating can be concluded on the assumption of sufficiently isotropic structuring.
Hierzu werden von den zu untersuchenden Kompositproben vorzugsweise eingebettete Querschnitte präpariert, von denen digitale mikroskopische Aufnahmen erstellt werden. Die Vergrößerung wird zweckmäßigerweise so gewählt, dass der zu analysierende Bildausschnitt mindestens 6, besser aber 10 Ausformungen umfasst. Der Betrachtungsmaßstab wird zum Einstellen eines zweckmäßigen Verhältnisses zwischen Bildpixel und Vernetzungstiefe zweckmäßig eingestellt. Unter Verwendung einer üblichen Bildverarbeitungssoftware, insbesondere eines vektorbasierten Zeichenprogramms, lassen sich die vorhergehend beschriebenen Größen, d . h. die Vernetzungstiefe, die Breite der Ausformungen und die Länge der resultierenden Stoffgrenze, sehr leicht ermitteln.For this purpose, preferably embedded cross-sections are prepared from the composite samples to be examined, of which digital microscopic images are created. The magnification is expediently chosen so that the image section to be analyzed comprises at least 6, but better 10, formations. The viewing scale is appropriately set to set an appropriate ratio between image pixel and mesh depth. Using conventional image processing software, in particular a vector-based drawing program, the previously described quantities, i. H. the depth of crosslinking, the width of the formations and the length of the resulting material boundary, very easily determine.
Zur Einschätzu ng der entstandenen Oberflächenstruktur und Vernetzungstiefe wird von dem Schnitt des funktionellen Kompositmaterials ausgegangen. Davon wird ein etwa 1 Millimeter langer Abschnitt in einer 100-fachen Vergrößerung auf ein Bildformat von beispielsweise 1024 x 768 Pixeln übertragen. Ist die resultierende Oberflächenstruktur anisotrop, empfiehlt sich eine Anfertigung der Schnitte in verschiedenen Winkeln mit einer entsprechenden nachfolgenden Auswertung der dabei entstehenden Aufnahmen . Als besonders zweckmäßig haben sich Vernetzungstiefen im Bereich von 15 bis 60 pm erwiesen. Vernetzungstiefen ab 5 pm und bis zu 100 pm sind jedoch ohne weiteres realisierbar und zeigen ebenfal ls gute Eigenschaften beim Einsatz des Komposits. Im Querschnitt lässt sich die Länge der resultierenden Stoffgrenze 6 ermitteln und mit der Länge der Stoffgrenze bei einer unstrukturierten Oberfläche des Trägers vergleichen.To assess the resulting surface structure and depth of crosslinking, the starting point is the section of the functional composite material. Of these, an approximately 1 millimeter long section is transferred at a magnification of 100x to an image format of, for example, 1024x768 pixels. If the resulting surface structure is anisotropic, it is recommended to make the cuts at different angles with a corresponding subsequent evaluation of the resulting images. Crosslinking depths in the range of 15 to 60 μm have proven to be particularly expedient. However, crosslinking depths from 5 pm up to 100 pm are readily achievable and likewise show good properties when using the composite. In cross-section, the length of the resulting material boundary 6 can be determined and compared with the length of the material boundary in the case of an unstructured surface of the carrier.
Versuche haben gezeigt, dass die Ausformungen, insbesondere deren Breite, deren Höhe bzw. die daraus resultierende Vernetzungstiefe besonders dann zweckmäßig gewählt sind, wenn die resultierende Stoffgrenze um einen Faktor von mindestens 1,4 gegenüber der Stoffgrenze einer planen, unstrukturierten Trägeroberfläche vergrößert ist.Experiments have shown that the formations, in particular their width, their height or the resulting crosslinking depth are selected particularly expediently when the resulting material limit is increased by a factor of at least 1.4 relative to the material boundary of a flat, unstructured carrier surface.
Die gezeigten Ausführungsbeispiele des Kompositmaterials weisen eine deutlich verbesserte mechanische Festigkeit auch unter thermischer Beanspruchung auf. Besonders bei funktionellen Oberflächenschichten mit spröden Materialeigenschaften ist die Gefahr eines Abplatzens der Beschichtungen unter thermischen und mechanischen Belastungen deutlich reduziert. Die infolge der Ausformungen vergrößerte Stoffgrenze erhöht den Wärmetransport zwischen Träger u nd funktioneller Oberflächenschicht und ermöglich somit dickere Beschichtungen bei gleicher Effizienz in Anwendungen, die eine starke Wärmetönung aufweisen. Dies ist insbesondere bei Katalyse- und Adsorptionsprozessen der Fall .The illustrated embodiments of the composite material have a significantly improved mechanical strength even under thermal stress. Particularly in the case of functional surface layers with brittle material properties, the risk of the coatings peeling off under thermal and mechanical loads is markedly reduced. The increased material limit as a result of the formations increases the heat transfer between the support and the functional surface layer and thus enables thicker coatings with the same efficiency in applications which have a strong evolution of heat. This is especially the case with catalytic and adsorption processes.
Zur Herstellung einer Oberfläche des Trägers in einer der genannten Ausführungsformen wird insbesondere auf eine konsumtive Aufkristallisation bei Verwend ung von Zeolithen zurückgegriffen. Es erfolgt dabei eine kontrollierte Trägerauflösung mit einem kontrollierten Zeolithwachstum. Dabei entsteht eine Berg- und Tal-Struktur mit schwalbenschwanzförmigen Noppen gemäß der Ausführungsform aus Fig . 5.For producing a surface of the carrier in one of the mentioned embodiments, use is made in particular of consumptive crystallization when zeolites are used. In this case, a controlled carrier dissolution with controlled zeolite growth takes place. This results in a mountain and valley structure with dovetail-shaped knobs according to the embodiment of FIG. 5th
Ähnliche Oberflächenstrukturen lassen sich durch physikalische bzw. chemische Abscheideverfahren, beispielsweise einem thermischen Verdampfen, Elek- tronenstrahlverdampfen, einem Laserstrahl- oder einem Lichtbogenverdampfen, real isieren. Ebenfalls können molekülstrahlepitaktische Methoden, Sputtern oder ein Ionenplattieren mit oder ohne die Anwendung von Masken angewendet werden.Similar surface structures can be realized by physical or chemical deposition methods, for example thermal evaporation, electron beam evaporation, laser beam or arc vaporization. Likewise, molecular beam epitaxy methods, Sputtering or ion plating can be used with or without the use of masks.
Eine Zeolithschicht mit den erwähnten Eigenschaften lässt sich in einem naßchemischen Verfahren beispielsweise dadurch erzeugen, dass einer Reaktionslösung aus einem Teil Phosphorsäure (H3PO4), 0,38 Teilen Siliziumdioxid (SiO2) in Form von Kieselsol, 3 Teilen Morpholin und 70 Teilen Wasser ein Trägermaterial aus Aluminium oder einer Aluminiumlegierung in einer Menge hinzu gegeben wird, bei der das Verhältnis der in Quadratzentimer gemessenen Oberfläche des Trägermaterials zum in Milliliter angegebenen Volumen der Lösung etwa 2 bis 5 beträgt. Die so angesetzte Mischung wird in einem Druckgefäß für 96 Stunden auf eine Temperatur von 175 0C erwärmt und nachfolgend in Wasser ausgewaschen. Als Resultat der Behandlung entsteht eine SAPO-34- Zeolith-schicht auf der Oberfläche des Trägers.A zeolite layer having the mentioned properties can be produced in a wet chemical process, for example, by reacting a reaction solution comprising one part of phosphoric acid (H3PO4), 0.38 part of silicon dioxide (SiO.sub.2) in the form of silica sol, 3 parts of morpholine and 70 parts of water Aluminum or an aluminum alloy in an amount such that the ratio of the surface area of the carrier material measured in square centimeters to the volume of the solution indicated in milliliters is about 2 to 5. The thus prepared mixture is heated in a pressure vessel for 96 hours at a temperature of 175 0 C and subsequently washed in water. As a result of the treatment, a SAPO-34 zeolite layer is formed on the surface of the carrier.
Das erfindungsgemäße Kompositmaterial wurde anhand von Ausführungsbeispielen dargestellt. Im Rahmen fachmännischen Handelns können an den gezeigten Beispielen Änderungen vorgenommen werden, die dem erfindungsgemäßen Grundgedanken entsprechen. Weitere Ausführungsformen ergeben sich aus den Unteransprüchen.The composite material according to the invention was illustrated by means of exemplary embodiments. In the context of expert action changes can be made to the examples shown, which correspond to the inventive idea. Further embodiments emerge from the subclaims.
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 Trager1 carrier
2 Funktionelles Oberflächenmaterial2 Functional surface material
3 Grenzschicht3 boundary layer
4 untere Grenze4 lower limit
5 obere Grenze5 upper limit
6 Stoffgrenze6 material limit
7 Ausformung7 shaping
8 Zwischenraum8 space
9 Stoffgrenze einer planen Trägeroberfläche9 Material border of a planar carrier surface
10 Steg10 footbridge
11 Noppe 11 pimples

Claims

Patentansprüche claims
1. Funktionelles Kompositmaterial, bestehend aus einem Träger (1) und einem funktionellen Oberflächenmaterial (2), d a d u r c h g e k e n n z e i c h n e t, dass der Träger eine strukturierte Grenzschicht (3) mit einer unteren Grenze (4) und einer oberen Grenze (5) mit einer Vernetzungstiefe (d) zwischen der unteren und oberen Grenze und einer zwischen der unteren und oberen Grenze alternierenden Stoffgrenze (6) an der dem funktionellen Oberflächenmaterial zugewandten Oberflächen aufweist.A functional composite material comprising a support (1) and a functional surface material (2), characterized in that the support has a structured boundary layer (3) with a lower limit (4) and an upper limit (5) with a crosslinking depth (i.e. ) between the lower and upper limits and an edge of material (6) alternating between the lower and upper limits on the surface facing the functional surface material.
2. Funktionelles Kompositmaterial nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Stoffgrenze (6) als eine zusammenhängende Folge von oberflächlichen Ausformungen (7) des Trägers mit Zwischenräumen (8) ausgebildet ist, wobei jede Ausformung eine Höhe (h) aufweist, die gleich der Vernetzungstiefe ist, und innerhalb einer einem Vielfachen der Vernetzungstiefe entsprechenden horizontalen Breite (b) der Grenzschicht mindestens eine Ausformung und mindestens ein Zwischenraum (8) liegt.A functional composite material according to claim 1, characterized in that the fabric border (6) is formed as a continuous series of superficial formations (7) of the carrier with gaps (8), each formation having a height (h) equal to the depth of crosslinking and within a horizontal width (b) of the boundary layer corresponding to a multiple of the crosslinking depth is at least one formation and at least one intermediate space (8).
3. Funktionelles Kompositmaterial nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen (7) eine erste Formbreite (sl) im Bereich der unteren Grenze (4) und eine von der ersten Formbreite verschiedene zweite Formbreite (s2) im Bereich der oberen Grenze (4) der strukturierten Grenzschicht (3) aufweisen.3. Functional composite material according to claim 1 or 2, characterized in that the formations (7) have a first shape width (sl) in the region of the lower limit (4) and a second shape width different from the first shape width (s2) in the region of the upper limit ( 4) of the structured boundary layer (3).
4. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, dass die resultierende Stoffgrenze (6) auf einer mindestens der doppelten Vernetzungstiefe (2d) entsprechenden horizontalen Breite (b) wiederholt an der unteren Grenze (4) und an der oberen Grenze (5) der strukturierten Grenzschicht (3) verläuft.4. Functional composite material according to one of claims 1 to 3, characterized in that the resulting material boundary (6) on a at least twice the crosslinking depth (2d) corresponding horizontal width (b) repeatedly at the lower limit (4) and at the upper limit ( 5) of the structured boundary layer (3).
5. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, dass eine Länge der alternierenden Stoffgrenze (6) das mindestens 1,1-Fache, vorzugsweise 1,3 bis 2,5-Fache, einer Länge einer ebenen Stoffgrenze (9) des Trägers (1) beträgt.5. Functional composite material according to one of claims 1 to 4, characterized in that a length of the alternating material boundary (6) is at least 1.1 times, preferably 1.3 to 2.5 times, a length of a flat material boundary (9) of the carrier (1).
6. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass die Vernetzungstiefe (d) einen Wert von 5 bis 100 pm, insbesondere 5 bis 60 pm, aufweist.6. The functional composite material according to claim 1, wherein the crosslinking depth (d) has a value of from 5 to 100 .mu.m, in particular from 5 to 60 .mu.m.
7. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen als ein isotropes Muster (10) mit einer im Schnitt rechteckigen, trapezförmigen, schwalbenschwanzartigen und/oder welligen Kontur ausgebildet sind.7. Functional composite material according to one of claims 1 to 6, characterized in that the formations are formed as an isotropic pattern (10) with a rectangular, trapezoidal, dovetailed and / or wavy contour.
8. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen als ein Array von Noppen (11) mit einer glockenartigen, umgekehrt oder aufrecht pyramidenstumpfförmigen und/oder pi Iz- kopfartigen Kontur ausgebildet sind.8. Functional composite material according to one of claims 1 to 7, characterized in that the formations are formed as an array of nubs (11) with a bell-shaped, inverted or upright truncated pyramidal and / or pi lz head-like contour.
9. Funktionelles Kompositmaterial nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der Träger (1) ein metallischer Werkstoff ist.9. Functional composite material according to one of the preceding claims, characterized in that the carrier (1) is a metallic material.
10. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass der Träger (1) ein keramischer Werkstoff ist.10. The functional composite material according to claim 1, wherein the carrier is a ceramic material.
11. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, dass der Träger (1) ein Glaswerkstoff ist. 11. Functional composite material according to one of claims 1 to 8, characterized in that the carrier (1) is a glass material.
12. Funktionelles Kompositmaterial nach einem der Ansprüche 9 bis 11, d a d u r c h g e k e n n z e i c h n e t, dass der Träger ein Rohr, Schwamm oder Blech ist oder die Form einer Platte aufweist.12. The functional composite material according to claim 9, wherein the carrier is a tube, sponge or sheet or has the shape of a plate.
13. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t, dass das Oberflächenmaterial (2) ein Adsorbens ist.13. A functional composite material according to any one of claims 1 to 12, wherein a surface material (2) is an adsorbent.
14. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t, dass das Oberflächenmaterial (2) ein katalytisch aktives Material, ein Isolator oder ein elektrisch aktives Material ist.14. A functional composite material according to any one of claims 1 to 12, wherein a surface material (2) is a catalytically active material, an insulator or an electrically active material.
15. Funktionelles Kompositmaterial nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t, dass das Oberflächenmaterial (2) ein Korrosions- und/oder Antifoulingschutz ist.15. Functional composite material according to one of claims 1 to 12, characterized in that the surface material (2) is a corrosion and / or antifouling protection.
16. Verfahren zur Herstellung eines funktionellen Kompositmaterials nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n et, dass zum Erzeugen der Ausformungen ein Verfahren zum Aufbringen, Abscheiden und/oder Aufwachsen einer Oberflächenstruktur angewendet wird.16. A method for producing a functional composite material according to one of the preceding claims, characterized in that for producing the formations, a method for applying, depositing and / or growing a surface structure is used.
17. Verfahren nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen durch eine in-situ-Kristallisation auf dem Träger erzeugt werden.17. The method according to claim 16, wherein the formations are produced by in-situ crystallization on the carrier.
18. Verfahren nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen auf den Träger aufkristallisiert werden. 18. The method according to claim 16, characterized in that the formations are crystallized on the support.
19. Verfahren nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen durch ein chemisches oder physikalisches Abscheiden aus einer Gasphase erzeugt werden.19. A method according to claim 16, wherein the formations are produced by a chemical or physical deposition from a gas phase.
20. Verfahren zur Herstellung eines funktionellen Kompositmaterials nach einem der Ansprüche 1 bis 15, d a d u r c h g e k e n n z e i c h n e t, dass zum Erzeugen der Ausformungen ein materialabtragendes, insbesondere ein materialauflösendes, Verfahren zum Herausarbeiten der Ausformungen aus der Oberfläche des Trägers angewendet wird.20. A method for producing a functional composite material according to one of claims 1 to 15, in which a material-removing, in particular a material-dissolving, method for working out the formations from the surface of the carrier is used to produce the formations.
21. Verfahren nach Anspruch 20, d a d u r c h g e k e n n z e i c h n e t, dass die Ausformungen durch ein Ätzverfahren erzeugt werden. 21. Method according to claim 20, characterized in that the formations are produced by an etching process.
EP08852078A 2007-11-23 2008-11-19 Functional composite material Withdrawn EP2219861A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13183271.9A EP2671717B1 (en) 2007-11-23 2008-11-19 Production of a functional composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007056587A DE102007056587A1 (en) 2007-11-23 2007-11-23 Functional composite material
PCT/EP2008/065825 WO2009065852A2 (en) 2007-11-23 2008-11-19 Functional composite material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP13183271.9A Division EP2671717B1 (en) 2007-11-23 2008-11-19 Production of a functional composite material

Publications (1)

Publication Number Publication Date
EP2219861A2 true EP2219861A2 (en) 2010-08-25

Family

ID=40404281

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08852078A Withdrawn EP2219861A2 (en) 2007-11-23 2008-11-19 Functional composite material
EP13183271.9A Active EP2671717B1 (en) 2007-11-23 2008-11-19 Production of a functional composite material

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13183271.9A Active EP2671717B1 (en) 2007-11-23 2008-11-19 Production of a functional composite material

Country Status (9)

Country Link
US (1) US9259909B2 (en)
EP (2) EP2219861A2 (en)
JP (1) JP5364720B2 (en)
KR (1) KR101467613B1 (en)
CN (1) CN101909872B (en)
BR (1) BRPI0819793B1 (en)
DE (1) DE102007056587A1 (en)
ES (1) ES2645404T3 (en)
WO (1) WO2009065852A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102145555A (en) * 2011-03-22 2011-08-10 江苏武进液压启闭机有限公司 Structure for improving bonding strength of belt groove substrate and coating
EP3783028A1 (en) 2011-08-12 2021-02-24 Omeros Corporation Anti-fzd10 monoclonal antibodies and methods for their use
CN103129031A (en) * 2013-03-11 2013-06-05 方显峰 High-brightness long-afterglow illuminant and manufacturing method thereof
DE102013107933A1 (en) * 2013-07-24 2015-02-26 Phitea GmbH Laser-induced catalyst
EP2871206B1 (en) 2013-08-02 2020-09-30 LG Chem, Ltd. Anti-fingerprint films and electrical and electronic apparatus
US20160201129A1 (en) * 2013-08-26 2016-07-14 President And Fellows Of Harvard College Determination of immune cells and other cells
WO2015161888A1 (en) * 2014-04-24 2015-10-29 Ardex Anlagen Gmbh Decoupling mat for a surface covering structure that can be covered by covering elements
DE102014109327A1 (en) * 2014-07-03 2016-01-07 Aixtron Se Coated flat disc-shaped component in a CVD reactor
WO2023171226A1 (en) * 2022-03-11 2023-09-14 Agc株式会社 Water-repellent glass

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277298A (en) * 1973-06-25 1981-07-07 The Cly-Del Manufacturing Company Method of making a hollow article
IT1096985B (en) * 1978-07-05 1985-08-26 Nuovo Pignone Spa PROCESS FOR THE STRONG THICKNESSING OF AN ANTI-FRICTION RESIN ON A SURFACE
US4402714A (en) * 1982-04-08 1983-09-06 Union Carbide Corporation Method for retarding corrosion in mufflers
US5204302A (en) * 1991-09-05 1993-04-20 Technalum Research, Inc. Catalyst composition and a method for its preparation
JPH07136460A (en) * 1993-11-19 1995-05-30 Matsushita Refrig Co Ltd Deodorization apparatus
US5486414A (en) * 1994-07-18 1996-01-23 Henkel Corporation Dual coated metal substrates and method of making
JP3732252B2 (en) 1995-05-18 2006-01-05 大日本印刷株式会社 Manufacturing method of light control functional sheet for liquid crystal display device
DE19718177A1 (en) 1997-04-29 1998-11-05 Fraunhofer Ges Forschung Process for roughening plastics
JP4390869B2 (en) * 1998-03-19 2009-12-24 大日本印刷株式会社 Cosmetic material with line-like uneven pattern
JP4046253B2 (en) * 1998-05-20 2008-02-13 大日本印刷株式会社 Synchronized embossed decorative sheet and method for producing the same
JP3247876B2 (en) * 1999-03-09 2002-01-21 日本板硝子株式会社 Glass substrate with transparent conductive film
US6500490B1 (en) * 2000-03-23 2002-12-31 Honeywell International Inc. Hydrophilic zeolite coating
KR100538367B1 (en) * 2000-08-17 2005-12-21 휘트포드 코포레이션 Multiple coat non-stick coating system and articles coated with same
WO2002040744A1 (en) * 2000-11-16 2002-05-23 Triton Systems, Inc. Laser fabrication of ceramic parts
JP2003183089A (en) * 2001-10-11 2003-07-03 Ngk Insulators Ltd Ceramic layered article, method of manufacturing it and ceramic layered body
US20050208275A1 (en) * 2002-05-30 2005-09-22 Kazuhiro Abe Decorative material and decorative sheet
JP4488793B2 (en) * 2003-05-26 2010-06-23 大日本印刷株式会社 Polarizing plate, liquid crystal display device using the same, and manufacturing method of polarizing plate
US20050068476A1 (en) * 2003-05-26 2005-03-31 Masato Okabe Polarizing plate, liquid crystal display using the same and method for manufacturing polarizing plate
JP2005081292A (en) * 2003-09-10 2005-03-31 Nippon Sheet Glass Co Ltd Production method of substrate bearing coating having fine recessed part and liquid composition to be used therefor
DE102004052976A1 (en) * 2004-10-29 2006-05-04 Sortech Ag Process for the preparation of a substrate coated with a zeolite layer
US7179547B2 (en) * 2004-10-29 2007-02-20 The Regents Of The University Of California High aluminum zeolite coatings on corrodible metal surfaces
US7891799B2 (en) * 2005-09-12 2011-02-22 Electronics For Imaging, Inc. Metallic ink jet printing system for graphics applications
US8318282B2 (en) * 2007-12-12 2012-11-27 3M Innovative Properties Company Microstructured antimicrobial film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009065852A3 *

Also Published As

Publication number Publication date
CN101909872A (en) 2010-12-08
WO2009065852A2 (en) 2009-05-28
CN101909872B (en) 2016-08-10
EP2671717B1 (en) 2017-08-02
US20110027506A1 (en) 2011-02-03
WO2009065852A3 (en) 2009-08-13
EP2671717A1 (en) 2013-12-11
JP5364720B2 (en) 2013-12-11
KR20100102109A (en) 2010-09-20
KR101467613B1 (en) 2014-12-01
JP2011509192A (en) 2011-03-24
BRPI0819793B1 (en) 2018-12-18
BRPI0819793A2 (en) 2015-05-05
US9259909B2 (en) 2016-02-16
ES2645404T3 (en) 2017-12-05
DE102007056587A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
EP2219861A2 (en) Functional composite material
EP2136905B1 (en) Ion-permeable membrane and its manufacture
DE10353894B4 (en) Filter element and method for its production
DE2646308C3 (en) Process for producing electrically conductive layers lying close together
EP2670880B1 (en) Method for producing a three-dimensional structure and three-dimensional structure
DE10392223T5 (en) Line or area evaporator for controlling the layer thickness profile
EP0755067A1 (en) Method of fabrication for sublithographic etching masks
DE102006007293A1 (en) Method for manufacturing quasi-substrate wafer, which is used in manufacturing semiconductor body, involves connecting epitaxial growth substrate wafer with auxiliary support wafer
DE102004002030A1 (en) Composite material and method for its production
EP0009097B1 (en) Process for manufacturing an insulating structure in a semiconductor body
EP1854104A1 (en) Method for production of a thin-layer structure
DE2313106A1 (en) METHOD OF MAKING AN ELECTRICAL CONNECTION SYSTEM
DE102009043414B4 (en) Three-dimensional microstructure, arrangement with at least two three-dimensional micro-structures, method for producing the micro-structure and use of the micro-structure
DE4323117C1 (en) Process for coating household and kitchen equipment and household and kitchen equipment
DE69825387T2 (en) Corrosion resistant component, process for its preparation and apparatus for heating a corrosive substance
DE872065C (en) Process for the production of sheets provided with deformable foils, for television sets and the like. like
EP1026313B1 (en) Band for making a web material
EP0579007A2 (en) Reinforcing mat for plaster layers of buildings
DE2230254C3 (en) Process for the production of a stabilized superconductor and application of the process
DE10196506B3 (en) Manufacturing method for a thin-film structural body
DE102018213735B4 (en) Component and method for producing a component
DE10240056B4 (en) High temperature stable metal emitter and method of manufacture
WO2014173750A1 (en) Process for producing a bipolar plate and also a layer structure, bipolar plate and layer structure having a bipolar plate
DE4219347C2 (en) Process for producing a structured alkali halide layer and phosphor layer produced therewith
DE1955522A1 (en) Method of manufacturing semiconductor devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100610

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUER, JUERGEN

Inventor name: HERRMANN, RALPH

Inventor name: MITTELBACH, WALTER

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120810

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERRMANN, RALPH

Inventor name: BAUER, JUERGEN

Inventor name: MITTELBACH, WALTER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131202