EP2215013B1 - Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide - Google Patents

Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide Download PDF

Info

Publication number
EP2215013B1
EP2215013B1 EP08849862.1A EP08849862A EP2215013B1 EP 2215013 B1 EP2215013 B1 EP 2215013B1 EP 08849862 A EP08849862 A EP 08849862A EP 2215013 B1 EP2215013 B1 EP 2215013B1
Authority
EP
European Patent Office
Prior art keywords
formamide
process according
evaporator
effected
catalytic dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08849862.1A
Other languages
German (de)
French (fr)
Other versions
EP2215013A1 (en
Inventor
Ralf Boehling
Andreas Deckers
Thomas Schneider
Guenther Achhammer
Hermann Luyken
Peter Pfab
Klaus Schubert
Manfred Kraut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Priority to EP08849862.1A priority Critical patent/EP2215013B1/en
Publication of EP2215013A1 publication Critical patent/EP2215013A1/en
Application granted granted Critical
Publication of EP2215013B1 publication Critical patent/EP2215013B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0204Preparation, separation or purification of hydrogen cyanide from formamide or from ammonium formate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00822Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00873Heat exchange

Definitions

  • the present invention relates to a process for the production of hydrocyanic acid, comprising the provision of gaseous formamide by evaporation of liquid formamide in an evaporator (step i)) and the catalytic dehydration of the gaseous formamide (step ii)) and the use of a micro-evaporator for the evaporation of Formamide in a process for the production of hydrogen cyanide from formamide.
  • Hydrocyanic acid is an important basic chemical used as starting material in numerous organic syntheses such as the production of adiponitrile, methacrylic acid esters, methionine and complexing agents (NTA, EDTA). In addition, hydrocyanic acid is required for the production of alkali cyanides used in the mining and metallurgical industries.
  • Ammonia is washed out with sulfuric acid from the raw gas. Due to the high selectivity, however, only very little ammonium sulfate is produced.
  • ammonia formed catalyzes the polymerization of the desired hydrocyanic acid and thus leads to an impairment of the quality of the hydrocyanic acid and a reduction in the yield of the desired hydrocyanic acid.
  • EP-A 0 209 039 discloses a process for the thermolytic cleavage of formamide on highly sintered alumina or alumina-silica moldings or on high-temperature corrosion-resistant chromium-nickel-stainless steel moldings.
  • WO 2006/027176 discloses a process for producing hydrocyanic acid by catalytic dehydration of gaseous formamide, in which a formamide containing from the product mixture upon dehydration is recovered and returned to the dehydration, wherein the formamide containing recycle stream 5 to 50 wt .-% water.
  • US 2,429,262 discloses a process for producing hydrocyanic acid by thermal decomposition of formamide, wherein for the catalytic decomposition of the formamide, a solution of a substance selected from the group consisting of phosphoric acid and compounds which form phosphoric acid upon thermal decomposition is added in a stream of formamide vapor is heated, the mixture to 300 to 700 ° C and the resulting products are cooled rapidly.
  • the evaporation of the formamide to formamide vapor is preferably very fast.
  • the formamide may be added in a thin stream or in small discrete amounts to a flash evaporator heated to a temperature above the boiling point of the formamide, preferably 230 to 300 ° C or higher.
  • US 2,529,546 discloses a process for the production of hydrocyanic acid by thermal decomposition of formamide, wherein the vapor phase formamide is thermally decomposed in the presence of a catalyst containing a metal tungstate.
  • US 2,529,546 will - as in US 2,429,262 - proposed to use a flash evaporator for the evaporation of formamide, with which the liquid formamide can be heated very quickly.
  • a special reactor system comprising a microstructured reactor having a reaction zone for conducting a chemical reaction wherein the reaction zone is heated by a heat source.
  • the heat source is a contactless heater.
  • the reactor system is suitable for catalytic gas phase applications, wherein the HCN synthesis according to the Andrussow method (oxidation of a mixture of ammonia and methane at about 1200 ° C on a Pt catalyst (generally a Pt mesh)), according to the Degussa -BMA process (catalytic conversion of ammonia and methane to hydrogen cyanide and hydrogen) and the Shavinigan process (reaction of propane and ammonia in the absence of a catalyst at temperatures of generally> 1500 ° C, in which the heat of reaction with the aid of a direct heated fluidized bed of coal particles is supplied) is mentioned.
  • Object of the present invention over the above-mentioned prior art is to provide a process for the production of hydrogen cyanide by catalytic dehydration of gaseous formamide, which has a high selectivity to the desired hydrogen cyanide and at the highest possible pressures (near normal pressure or higher) are operated can.
  • the formamide in step i) can be evaporated almost completely, preferably completely, without by-product formation.
  • formamide is vaporized with yield losses of ⁇ 2% (based on the total amount of formamide used), preferably ⁇ 0.5%.
  • the evaporation in step i) of the process according to the invention is preferably carried out at a pressure of 400 mbar to 4 bar, more preferably 600 mbar to 2 bar, most preferably 800 mbar to 1.4 bar.
  • the temperatures in step i) of the process according to the invention are generally from 185 ° C. to 265 ° C., preferably from 210 ° C. to 260 ° C., particularly preferably from 215 ° C. to 240 ° C.
  • the specified pressure is the absolute pressure.
  • Another important factor for the production of hydrocyanic acid by dehydration of gaseous formamide according to the method of the invention is not the surface load, ie also not the heat transfer coefficient of in Step i) for evaporation of formamide used evaporator.
  • the surface load of the evaporator is generally 5 to 500 kg / (m 2 h).
  • efficient prior art heat exchangers / evaporators achieve similar results Values.
  • the decisive factor is surprisingly the liquid load relative to the evaporator volume (volume-specific evaporator performance).
  • the volume-specific evaporator power of the evaporator used in step i) of the process according to the invention is preferably from 10 to 2000 MW / m 3 , particularly preferably from 50 to 1500 MW / m 3 , very particularly preferably from 100 to 1000 MW / m 3 .
  • the evaporator used in step i) of the process according to the invention - in the case of a condensing medium or a flowing liquid as a heat carrier - is heated at a temperature of at least 5 ° C, preferably 5 to 150 ° C, particularly preferably 10 to 100 ° C. , very particularly preferably 20 to 50 ° C above the boiling point of the formamide (219 ° C).
  • the temperature is generally at least 5 ° C, preferably 30 to 600 ° C, more preferably 50 to 400 ° C, most preferably 100 to 300 ° C above the boiling temperature of the formamide (210 ° C).
  • the temperature control medium can be any temperature control medium (heat transfer medium) known to the person skilled in the art, e.g. Steam, heating gas or heating fluid can be used. Furthermore, a temperature control of the evaporator by electrical heat, e.g. via heating wires or heating plugs, possible. Suitable devices or measures for controlling the temperature of the surfaces of the evaporator are known in the art.
  • micro-structured apparatus used as a suitable evaporator in step i) of the method according to the invention.
  • micro-structured apparatuses as evaporators-referred to below as micro-evaporators-is known to the person skilled in the art and is described, for example, in US Pat DE-A 101 32 370 .
  • WO 2005/016512 such as WO 2006/108796 described.
  • DE 101 32 370 a micro evaporator for fuel cells is described which is small and provides a uniformly vaporized medium.
  • the medium according to DE-A 101 32 370 is evaporated, is methanol.
  • microevaporator used in a process for removing at least one volatile compound from a reactive or non-reactive composition.
  • the microevaporator has channels for the guidance of the substance mixture with a hydraulic diameter of 5 to 1000 ⁇ m and a specific evaporator surface of at least 10 3 m 2 / m 3 .
  • WO 2006/108 796 describes a micro-evaporator, comprising a housing made of thermally conductive material, in which a liquid supply chamber and a vapor collection chamber are provided, between which microchannels are arranged with cross-sectional dimensions in the submillimeter range in a plane next to each other, as well as means for heating the liquid to be evaporated wherein the micro-evaporator channels are arranged in a trapezoidal region having a cross-sectionally smaller inlet region opening into the liquid feed chamber and a larger cross-sectional outlet region opening into the vapor collecting chamber.
  • the micro-evaporator is used to evaporate liquid media, such as water, alcohols or alcohol-water mixtures, liquid gases or liquid alkanes for further processing.
  • the microevaporators are used, for example, in the field of fuel cell technology.
  • micro-evaporators are thus known to the person skilled in the art. However, the use of micro-evaporators for the evaporation of formamide in a process for the production of hydrogen cyanide by dehydration of gaseous formamide is not disclosed in the prior art.
  • micro evaporator comprises a plurality of parallel, alternately superimposed and microstructured layers of evaporation and tempering, wherein the layers are preferably configured so that each layer has a plurality of mutually parallel channels, which of a Side of the situation to the opposite side of the situation form a continuous flow path.
  • a position is understood to mean a largely two-dimensional, flat structural unit, that is to say an assembly whose thickness is negligibly small in relation to its area.
  • the layer is a substantially flat plate.
  • the layers, in particular plates, are - as mentioned above - microstructured by having channels that are flowed through by formamide (so-called evaporator channels) or heat transfer medium (heating medium) (so-called tempering). If the temperature of the evaporator surfaces by electrical heat, for example via heating wires or plugs, the temperature control can be omitted.
  • microstructured means that the average hydraulic diameter of the channels is at most 1 mm.
  • Another object of the present invention is therefore a method according to the invention, wherein in step i) of the method according to the invention, a micro-evaporator is used, the channels for the leadership of formamide having a hydraulic diameter of 5 to 1000 .mu.m, more preferably 100 to 300 microns.
  • layers (B) are arranged alternately with the layers (A) through which the formamide flows, to which a heat carrier is fed on one side and drawn off on the other side. It is possible that the alternating arrangement of the layers A, B is formed so that each layer A is followed by a layer B, or that in each case two or more successive layers A follows a layer B or that in each case two or more successive layers B each followed by a layer A.
  • the preferred micro-evaporator used is generally composed of more than 30 layers, preferably more than 100 layers, more preferably more than 200 layers.
  • the channels of the layers A and B can be arranged so that a cross, counter or DC current results. Furthermore, any mixed forms are conceivable.
  • FIG. 1 a schematic three-dimensional section of a micro-evaporator is exemplified, wherein in FIG. 1 the layers A and B are arranged alternately, wherein each layer A is followed by a layer B and the arrangement of the layers A and B takes place so that there is a cross-flow guidance.
  • the arrows indicate in each case the flow direction of the formamide or of the heating medium.
  • the microevaporator preferably used in step i) of the method according to the invention comprises at least one distribution and at least one collecting device for distributing or collecting the formamide or the heat carrier.
  • the distribution and collection device is in each case as one outside or inside a stack of the layers A, B arranged chamber formed.
  • the walls of the chamber may be bent straight or, for example, semi-circular. It is essential that the geometric shape of the chamber is adapted to make flow and pressure loss so that a uniform flow through the channels of the micro-evaporator is achieved.
  • the liquid formamide is sprayed uniformly from above onto the openings of the evaporator channels, for example with nozzles known to the person skilled in the art or by flowing the channels from below.
  • the channels are tempered in the lower region, generally at temperatures ⁇ 150 ° C, where no decomposition takes place and the formamide is liquid, and heated in the following part - the actual evaporator section.
  • the distribution and collection devices are each arranged within a stack of layers A, B, preferably by the mutually parallel channels of each layer A in the region of the two ends of the layers A one, the channels arranged parallel to each other Transverse channel and all transverse channels within the stack of layers A, B are connected by a substantially perpendicular to the plane of the layers A, B arranged collecting channel. Also in this embodiment, a uniform flow through the channels is essential.
  • a distribution and collection device corresponding to the distribution and collection device for the layers A, which were described above, intended.
  • FIG. 2 is a schematic plan view of a layer, which may be a layer A or B, exemplified. Within the situation, a distributor V and a collector S is shown schematically.
  • step i) of the method according to the invention may be advantageous to carry out step i) of the method according to the invention in such a way that along the channels of each layer A a temperature profile is run through by two or more heating or cooling zones per layer, each with at least a distribution and collection device per heating or cooling zone of the layers B are provided for the corresponding temperature in the channels of the layers A.
  • the specific evaporator capacity of the microevaporator preferably used in step i) of the present invention is 5 to 200 kg / m 2 h, preferably 10 to 200 kg / m 2 h, particularly preferably 50 to 150 kg / m 2 H.
  • the volume-specific evaporator performance is generally 100 to 2000 MW / m 3 .
  • the preparation of the micro-evaporator used according to the invention can be carried out by methods known to the person skilled in the art. Suitable methods are, for example, in V. Hessel, H. Loewe, A. Muller, G. Kolb, Chemical Micro Process Engineering and Plants, Wiley-VCH, Weinheim, 2005, pp. 385-391 and W. Ehrfeld, V. Hessel, V. Haverkamp, Microreactors, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1999 disclosed.
  • the fabrication involves the creation of a microstructure in the individual layers by machining plates of materials suitable for the microevaporator, stacking the layers, joining the layers to assemble the microevaporator, and attaching terminals for the supply of the liquid formamide Derivation of the gaseous formamide and possibly for the supply and discharge of the heat carrier.
  • DE-A 10 2005 051 637 various production methods for microstructured reactors are described, which can be used according to the preparation of the micro-evaporator used in the invention.
  • step i) of the process according to the invention is carried out in such a way that liquid formamide is fed to the microevaporator. This is evaporated in step i) of the process according to the invention to gaseous formamide, which is subsequently used in the catalytic dehydration in step ii) of the process according to the invention.
  • the formamide is completely (completely) evaporated in step i) of the process according to the invention.
  • the formamide is completely evaporated in step i) and the resulting formamide vapor overheated to temperatures of generally 230 ° C or more.
  • the superheated formamide vapor can be used directly in step ii).
  • the gaseous formamide Before the feed of the gaseous formamide obtained in step i) in step ii) of the process according to the invention, can be oxygen, for example in the form of atmospheric oxygen or in the form of an oxygen-containing gas mixture may be supplied, wherein the oxygen content may optionally be supplied in a preheated state.
  • step ii) of the process according to the invention is carried out in the presence of oxygen, preferably atmospheric oxygen.
  • oxygen preferably atmospheric oxygen.
  • the amounts of oxygen, preferably atmospheric oxygen are generally> 0 to 10 mol%, based on the amount of formamide used, preferably 0.1 to 10 mol%, particularly preferably 0.5 to 3 mol%.
  • the gaseous formamide (formamide vapor) or the formamide-oxygen mixture, preferably the formamide-air mixture can be brought to temperatures of 350 ° C. or more in a heat exchanger before it is fed to step ii).
  • the gaseous formamide (formamide vapor) or the formamide-oxygen mixture preferably the formamide-air mixture
  • the gaseous formamide (formamide vapor) or the formamide-oxygen mixture can be brought to temperatures of 350 ° C. or more in a heat exchanger before it is fed to step ii).
  • the catalytic dehydration in step ii) of the process according to the invention is generally carried out at temperatures of from 350 to 650.degree. C., preferably from 380 to 550.degree. C., particularly preferably from 440 to 510.degree. But if higher temperatures are selected, deteriorated selectivities and conversions are to be expected.
  • the pressure in step ii) of the process according to the invention is generally from 400 mbar to 3 bar, preferably from 400 mbar to 1.5 bar, preferably from 600 mbar to 1.4 bar.
  • the reactor used in step ii) of the process according to the invention may be any of those known to the person skilled in the art for the dehydration of formamide. Preference is given to using tubular reactors in step ii) of the process according to the invention, suitable tubular reactors being known to the person skilled in the art.
  • the tube reactors are more preferably multi-tube reactors. Suitable multitubular reactors are also known to the person skilled in the art.
  • Suitable materials of the reactors used in step ii) of the process according to the invention are also known to the person skilled in the art.
  • an iron-containing surface is used as the inner surface of the reactor.
  • the inner reactor surface is made of steel, which particularly preferably contains iron and chromium and nickel.
  • the proportion of iron in the steel which preferably forms the inner reactor surface is generally> 50% by weight, preferably> 60% by weight, more preferably> 70% by weight.
  • the remainder are generally nickel and chromium, optionally with small amounts of other metals such as molybdenum, manganese, silicon, aluminum, titanium, tungsten, cobalt with a In general, from 0 to 5 wt .-%, preferably 0 to 2 wt .-%, may be contained.
  • Steel grades suitable for the inner surface of the reactor are generally steel grades according to standards 1.4541, 1.4571, 1.4573, 1.4580, 1.4401, 1.4404, 1.4435, 2.4816, 1.3401, 1.4876 and 1.4828. Steel grades according to standards 1.4541, 1.4571, 1.4828, 1.3401, 1.4876 and 1.4762, more preferably steel grades according to standards 1.4541, 1.4571, 1.4762 and 1.4828 are preferably used.
  • step ii) of the process according to the invention it is likewise possible for the catalytic dehydration in step ii) of the process according to the invention to be carried out in the presence of moldings as catalysts, the moldings preferably being highly sintered moldings composed of aluminum oxide and optionally silicon oxide, preferably from 50 to 100% by weight. % Alumina and 0 to 50 wt .-% silica, more preferably from 85 to 95 wt .-% alumina and 5 to 15 wt .-% silica, or of chromium-nickel stainless steel, such as in EP-A 0 209 039 described.
  • suitable catalysts used in step ii) of the process according to the invention may be packings of steel or iron oxide on porous support materials, for example aluminum oxide. Suitable packages are eg in DE-A 101 38 553 described.
  • moldings are used, it is possible to use both ordered and unordered moldings as possible moldings, e.g. Raschig rings, pal-rings, tablets, balls and similar shapes. It is essential here that the packings allow good heat transfer with moderate pressure loss.
  • the size or geometry of the moldings used generally depends on the inner diameter of the reactors to be filled with these moldings, preferably tubular reactors.
  • Suitable packings of steel or iron oxide are generally ordered packings.
  • the ordered packs are static mixers.
  • the static mixers may be of any geometry known to those skilled in the art.
  • Preferred static mixers are constructed from sheets, which may be perforated sheets and / or shaped sheets. Of course, also shaped perforated plates can be used.
  • Suitable moldings are in EP-A 0 209 039 described and suitable static mixers are in DE-A 101 38 553 described.
  • a reactor preferably a tube reactor, which has shaped bodies and / or packings of steel or iron oxide on a porous carrier whose reactor wall is additionally catalytically active.
  • Suitable reactor wall materials which are catalytically active in step ii) of the process according to the invention are mentioned above and, for example, in US Pat WO 2004/050587 described.
  • the optimal residence time of the formamide gas stream in step ii) of the process according to the invention results when using a tubular reactor (which is preferred) from the length-specific formamide load, which is preferably 0.02 to 0.4 kg / (mh), preferably 0.05 to 0.3, more preferably 0.08 to 0.2 in the laminar flow range.
  • the optimum residence time of the formamide gas stream in step ii) of the process according to the invention results when using a tubular reactor (which is preferred) from the area-specific formamide load, which is generally 0.1 to 100 kg / m 2 , preferably 0.2 to 50 kg / m 2 , more preferably 0.5 to 20 kg / m 2 .
  • the process according to the invention for producing hydrogen cyanide gives the desired hydrocyanic acid in high selectivities of generally> 85%, preferably> 90% and conversions of generally> 70%, preferably> 80%, such that yields of generally> 60% are preferred > 75%, particularly preferably> 88% can be achieved.
  • micro-evaporators can be provided in addition to the advantages mentioned above further plants for the production of hydrogen cyanide, which are substantially smaller than usually used for the production of hydrogen cyanide plants.
  • Such systems are more mobile and thus more versatile, and may e.g. where hydrocyanic acid is needed so that transport of hydrocyanic acid or salts of hydrocyanic acid (e.g., alkali and alkaline earth salts) over long distances can be avoided.
  • the devices for the production of hydrogen cyanide are small and thus flexible to use.
  • Another object of the present invention is the use of a micro-evaporator for the evaporation of formamide in a process for the production of hydrogen cyanide from formamide as defined in claim 13.
  • Preferred microevaporators, preferred tubular reactors and a preferred process for the production of hydrogen cyanide from formamide have already been mentioned above.
  • the experiments are carried out using a micro-evaporator constructed from 1700 rectangular channels.
  • the rectangular channels have the dimensions 200x100 ⁇ m and 14 mm length.
  • the rectangular channels are divided in half on the tempering and evaporation side and are arranged in layers alternately in cross flow to each other.
  • the micro-evaporator is made up of 50 layers.
  • the micro-evaporator is heated with 40 bar of steam via the temperature control channels.
  • the evaporator channels are charged with 100 g / h of formamide. This corresponds to a volume-specific evaporator capacity of 130 MW / m 3 . Over a period of 6 hours, no pressure drop increase across the channels is observed.
  • the formamide vapor is condensed with a conventional laboratory condenser.
  • the experiment is carried out with tubular reactors 40 mm in length and 12 mm in internal diameter.
  • the experimental setup is a silver block in which the reaction tube is inserted precisely.
  • the pipes are made of steel 1.4541.
  • the silver block is heated with heating rods. Due to the good heat transfer in the silver bed, an isothermal operation of the pipe wall can be ensured.
  • the reactor is charged with vaporous formamide and operated at 520 ° C.

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Blausäure, umfassend die Bereitstellung von gasförmigem Formamid durch Verdampfen von flüssigem Formamid in einem Verdampfer (Schritt i)) und die katalytische Dehydratisierung des gasförmigen Formamids (Schritt ii)) und die Verwendung eines Mikroverdampfers zur Verdampfung von Formamid in einem Verfahren zur Herstellung von Blausäure aus Formamid.The present invention relates to a process for the production of hydrocyanic acid, comprising the provision of gaseous formamide by evaporation of liquid formamide in an evaporator (step i)) and the catalytic dehydration of the gaseous formamide (step ii)) and the use of a micro-evaporator for the evaporation of Formamide in a process for the production of hydrogen cyanide from formamide.

Blausäure ist eine wichtige Grundchemikalie, die als Ausgangsprodukt zum Beispiel in zahlreichen organischen Synthesen wie der Herstellung von Adiponitril, Methacrylsäureestern, Methionin und Komplexbildnern (NTA, EDTA) dient. Darüber hinaus wird Blausäure für die Herstellung von Alkalicyaniden benötigt, die im Bergbau und in der metallurgischen Industrie eingesetzt werden.Hydrocyanic acid is an important basic chemical used as starting material in numerous organic syntheses such as the production of adiponitrile, methacrylic acid esters, methionine and complexing agents (NTA, EDTA). In addition, hydrocyanic acid is required for the production of alkali cyanides used in the mining and metallurgical industries.

Die größte Menge an Blausäure wird durch Umsetzung von Methan (Erdgas) und Ammoniak produziert. In dem so genannten Andrussow-Prozess wird simultan Luftsauerstoff zugegeben. Auf diese Weise verläuft die Herstellung von Blausäure autotherm. Im Gegensatz dazu wird bei dem so genannten BMA-Verfahren der Degussa AG sauerstofffrei gearbeitet. Die endotherme katalytische Umsetzung von Methan mit Ammoniak wird daher in dem BMA-Verfahren extern mit einem Heizmedium (Methan oder H2) betrieben. Nachteilig bei diesen Verfahren ist der hohe Zwangsanfall von Ammoniumsulfat, da die Umsetzung von Methan ökonomisch nur mit einem NH3-Überschuss gelingt. Das nicht umgesetzte Ammoniak wird mit Schwefelsäure aus dem Rohprozessgas ausgewaschen. Des Weiteren ist bei beiden vorstehend genannten Verfahren die erforderliche hohe Verfahrenstemperatur nachteilig.The largest amount of hydrogen cyanide is produced by the conversion of methane (natural gas) and ammonia. In the so-called Andrussow process, atmospheric oxygen is added simultaneously. In this way, the production of hydrogen cyanide is autothermal. In contrast, Degussa AG's so-called BMA process uses oxygen-free material. The endothermic catalytic conversion of methane with ammonia is therefore operated externally with a heating medium (methane or H 2 ) in the BMA process. A disadvantage of these methods is the high forced accumulation of ammonium sulfate, since the conversion of methane succeeds economically only with an NH 3 excess. The unreacted ammonia is washed out with sulfuric acid from the raw process gas. Furthermore, in both methods mentioned above, the required high process temperature is disadvantageous.

Ein weiteres wichtiges Verfahren zur Herstellung von HCN ist der so genannte SOHIO-Prozess. Bei der Ammon-Oxidation von Propen/Propan zu Acrylnitril entstehen ca. 10% (bezogen auf Propen/Propan) Blausäure als Nebenprodukt.Another important process for the production of HCN is the so-called SOHIO process. In the ammonia oxidation of propene / propane to acrylonitrile, about 10% (based on propene / propane) produces hydrocyanic acid as a by-product.

Ein weiteres wichtiges Verfahren zur industriellen Herstellung von Blausäure ist die thermische Dehydratisierung von Formamid im Vakuum, die nach der folgenden Gleichung (I) abläuft:

        HCONH2 → HCN + H2O     (I)

Another important process for the industrial production of hydrocyanic acid is the thermal dehydration of formamide in vacuo, which proceeds according to the following equation (I):

HCONH 2 → HCN + H 2 O (I)

Diese Umsetzung ist von der Zersetzung des Formamids gemäß folgender Gleichung (II) unter Bildung von Ammoniak und Kohlenmonoxid begleitet:

        HCONH2 → NH3 + CO     (II)

This reaction is accompanied by the decomposition of formamide according to the following equation (II) to form ammonia and carbon monoxide:

HCONH 2 → NH 3 + CO (II)

Ammoniak wird mit Schwefelsäure aus dem Rohgas ausgewaschen. Aufgrund der hohen Selektivität fällt jedoch nur sehr wenig Ammoniumsulfat an.Ammonia is washed out with sulfuric acid from the raw gas. Due to the high selectivity, however, only very little ammonium sulfate is produced.

Der gebildete Ammoniak katalysiert die Polymerisation der gewünschten Blausäure und führt somit zu einer Beeinträchtigung der Qualität der Blausäure und einer Verringerung der Ausbeute an der gewünschten Blausäure.The ammonia formed catalyzes the polymerization of the desired hydrocyanic acid and thus leads to an impairment of the quality of the hydrocyanic acid and a reduction in the yield of the desired hydrocyanic acid.

Die Polymerisation von Blausäure und die damit verbundene Russbildung kann durch die Zugabe von geringen Mengen Sauerstoff in Form von Luft, wie in EP-A 0 209 039 offenbart ist, unterdrückt werden. In EP-A 0 209 039 ist ein Verfahren zur thermolytischen Spaltung von Formamid an hoch gesinterten Aluminiumoxid- oder Aluminiumoxid-Siliziumdioxid-Formkörpern oder an Hochtemperatur-korrosionsfesten Chrom-Nickel-Edelstahl-Formkörpern offenbart.The polymerization of hydrocyanic acid and the associated soot formation can be achieved by the addition of small amounts of oxygen in the form of air, as in EP-A 0 209 039 is disclosed, be suppressed. In EP-A 0 209 039 discloses a process for the thermolytic cleavage of formamide on highly sintered alumina or alumina-silica moldings or on high-temperature corrosion-resistant chromium-nickel-stainless steel moldings.

Im Stand der Technik sind weitere Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid bekannt, z. B. DE-973173 , GB-800158 , FR-646815 .In the prior art, other processes for the production of hydrogen cyanide by catalytic dehydration of gaseous formamide are known, for. B. DE-973173 . GB-800158 . FR-646815 ,

So betrifft WO 2004/050587 ein Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid in einem Reaktor, der eine innere Reaktoroberfläche aus einem Stahl enthaltend Eisen sowie Chrom und Nickel aufweist, wobei der Reaktor bevorzugt keine zusätzlichen Einbauten und/oder Katalysatoren enthält.So concerns WO 2004/050587 a process for the production of hydrogen cyanide by catalytic dehydration of gaseous formamide in a reactor having an inner reactor surface made of a steel containing iron and chromium and nickel, wherein the reactor preferably contains no additional internals and / or catalysts.

In WO 2006/027176 ist ein Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid offenbart, bei dem aus dem Produktgemisch bei Dehydratisierung ein Formamid enthaltender Rückstrom gewonnen wird und in die Dehydratisierung zurückgeführt wird, wobei der Formamid enthaltende Rückführstrom 5 bis 50 Gew.-% Wasser enthält.In WO 2006/027176 discloses a process for producing hydrocyanic acid by catalytic dehydration of gaseous formamide, in which a formamide containing from the product mixture upon dehydration is recovered and returned to the dehydration, wherein the formamide containing recycle stream 5 to 50 wt .-% water.

In US 2,429,262 ist ein Verfahren zur Herstellung von Blausäure durch thermische Zersetzung von Formamid offenbart, wobei zur katalytischen Zersetzung des Formamids eine Lösung einer Substanz, ausgewählt aus der Gruppe bestehend aus Phosphorsäure und Verbindungen, die bei thermischer Zersetzung Phosphorsäure bilden, in einem Strom aus Formamid-Dampf gegeben wird, die Mischung auf 300 bis 700°C aufgeheizt wird und die erhaltenen Produkte schnell gekühlt werden. Gemäß US 2,429,262 erfolgt die Verdampfung des Formamids zur Bildung von Formamid-Dampf bevorzugt sehr schnell. Beispielsweise kann das Formamid in einem dünnen Strom oder in kleinen diskreten Mengen in einen auf eine Temperatur oberhalb des Siedepunktes des Formamids, bevorzugt 230 bis 300°C oder höher aufgeheizten Schnellverdampfer gegeben werden.In US 2,429,262 discloses a process for producing hydrocyanic acid by thermal decomposition of formamide, wherein for the catalytic decomposition of the formamide, a solution of a substance selected from the group consisting of phosphoric acid and compounds which form phosphoric acid upon thermal decomposition is added in a stream of formamide vapor is heated, the mixture to 300 to 700 ° C and the resulting products are cooled rapidly. According to US 2,429,262 the evaporation of the formamide to form formamide vapor is preferably very fast. For example, the formamide may be added in a thin stream or in small discrete amounts to a flash evaporator heated to a temperature above the boiling point of the formamide, preferably 230 to 300 ° C or higher.

In US 2,529,546 ist ein Verfahren zur Herstellung von Blausäure durch thermische Zersetzung von Formamid offenbart, wobei das Formamid in der Dampfphase in Anwesenheit eines Katalysators enthaltend ein Metallwolframat thermisch zersetzt wird. In US 2,529,546 wird - wie in US 2,429,262 - vorgeschlagen, zur Verdampfung von Formamid einen Schnellverdampfer einzusetzen, mit dem das flüssige Formamid sehr schnell aufgeheizt werden kann.In US 2,529,546 discloses a process for the production of hydrocyanic acid by thermal decomposition of formamide, wherein the vapor phase formamide is thermally decomposed in the presence of a catalyst containing a metal tungstate. In US 2,529,546 will - as in US 2,429,262 - proposed to use a flash evaporator for the evaporation of formamide, with which the liquid formamide can be heated very quickly.

Gemäß den Beispielen in US 2,429,262 und US 2,529,546 wird die Verdampfung von Formamid bei Normaldruck bei 250°C durchgeführt. Aus den Beispielen in US 2,529,546 ergibt sich jedoch, dass die Selektivität in dem in US 2,529,546 offenbarten Verfahren zur Herstellung von Blausäure gering ist.According to the examples in US 2,429,262 and US 2,529,546 the evaporation of formamide is carried out at atmospheric pressure at 250 ° C. From the examples in US 2,529,546 However, it turns out that the selectivity in the in US 2,529,546 disclosed method for the production of hydrogen cyanide is low.

In DE-A 10 2005 051637 ist ein spezielles Reaktorsystem offenbart, mit einem eine Reaktionszone zur Durchführung einer chemischen Reaktion aufweisenden mikrostrukturierten Reaktor, wobei die Reaktionszone mittels einer Wärmequelle aufgeheizt wird. Bei der Wärmequelle handelt es sich um eine kontaktlose Heizung. Das Reaktorsystem ist für katalytische Gasphasenanwendungen geeignet, wobei die HCN-Synthese nach dem Andrussow-Verfahren (Oxidation eines Gemisches aus Ammoniak und Methan bei ca. 1200°C an einem Pt-Katalysator (im Allgemeinen ein Pt-Netz)), nach dem Degussa-BMA-Verfahren (katalytische Umsetzung von Ammoniak und Methan zu Blausäure und Wasserstoff) und nach dem Shavinigan-Verfahren (Umsetzung von Propan und Ammoniak in Abwesenheit eines Katalysators bei Temperaturen von im Allgemeinen > 1500°C, bei dem die Reaktionswärme mit Hilfe eines direkt beheizten Wirbelbetts aus Kohleteilchen zugeführt wird) erwähnt ist. Diese typischen Hochtemperatur-Gasphasenreaktionen unterscheiden sich aus verfahrenstechnischer Sicht wesentlich von dem Verfahren zur Herstellung von Blausäure mittels Formamid-Spaltung, das zwei Stufen umfasst, nämlich die Verdampfung von bei Raumtemperatur flüssigem Formamid (Siedepunkt: 210°C) und die anschließende katalytische Spaltung zu Blausäure und Wasser (katalytische Dehydratisierung). Neben einem Reaktor, in dem die Spaltung des Formamid-Dampfes erfolgt, muss somit in diesem Verfahren ein Verdampfer bereitgestellt werden, worin das flüssige Formamid zunächst verdampft wird. Da die Ausgangsprodukte in den anderen vorstehend genannten Verfahren bei Raumtemperatur gasförmig sind, umfassen diese Verfahren keinen der Verdampfung von Formamid entsprechenden Schritt.In DE-A 10 2005 051637 discloses a special reactor system comprising a microstructured reactor having a reaction zone for conducting a chemical reaction wherein the reaction zone is heated by a heat source. The heat source is a contactless heater. The reactor system is suitable for catalytic gas phase applications, wherein the HCN synthesis according to the Andrussow method (oxidation of a mixture of ammonia and methane at about 1200 ° C on a Pt catalyst (generally a Pt mesh)), according to the Degussa -BMA process (catalytic conversion of ammonia and methane to hydrogen cyanide and hydrogen) and the Shavinigan process (reaction of propane and ammonia in the absence of a catalyst at temperatures of generally> 1500 ° C, in which the heat of reaction with the aid of a direct heated fluidized bed of coal particles is supplied) is mentioned. These typical high-temperature gas-phase reactions differ significantly from the process engineering point of view at the process for the production of hydrogen cyanide by formamide cleavage, which comprises two stages, viz. Evaporation of room-temperature liquid formamide (boiling point: 210 ° C) and subsequent catalytic cleavage to hydrocyanic acid and water (catalytic dehydration). In addition to a reactor in which the cleavage of the formamide vapor takes place, an evaporator must thus be provided in this process, in which the liquid formamide is first evaporated. Since the starting materials in the other above-mentioned processes are gaseous at room temperature, these processes do not include any step corresponding to the evaporation of formamide.

Aufgabe der vorliegenden Erfindung gegenüber dem vorstehend genannten Stand der Technik ist es, ein Verfahren zur Herstellung von Blausäure durch katalytische Dehydratisierung von gasförmigem Formamid bereitzustellen, das eine hohe Selektivität zu der gewünschten Blausäure aufweist und bei möglichst hohen Drucken (nahe Normaldruck oder höher) betrieben werden kann.Object of the present invention over the above-mentioned prior art is to provide a process for the production of hydrogen cyanide by catalytic dehydration of gaseous formamide, which has a high selectivity to the desired hydrogen cyanide and at the highest possible pressures (near normal pressure or higher) are operated can.

Diese Aufgabe wird durch ein Verfahren zur Herstellung von Blausäure wie im Anspruch 1 definiert, umfassend

  1. i) Bereitstellung von gasförmigem Formamid durch Verdampfen von flüssigem Formamid in einem Verdampfer; und
  2. ii) katalytische Dehydratisierung des gasförmigen Formamids
gelöst, wobei in Schritt i) die Verweilzeit des Formamids in dem Verdampfer < 20 s, bevorzugt < 10 s, bezogen auf das flüssige Formamid, beträgt. Das erfindungsgemäße Verfahren ist dann dadurch gekennzeichnet, dass als Verdampfer in Schritt i) ein Mikroverdampfer eingesetzt wird, dessen Kanäle für die Führung des Formamids einen hydraulischen Durchmesser von 5 bis 1000 µm aufweisen. Die Verdampfung in Schritt i) erfolgt bei Temperaturen von 185°C bis 265°C.This object is achieved by a method for producing hydrogen cyanide as defined in claim 1, comprising
  1. i) providing gaseous formamide by evaporating liquid formamide in an evaporator; and
  2. ii) catalytic dehydration of the gaseous formamide
dissolved, wherein in step i) the residence time of the formamide in the evaporator <20 s, preferably <10 s, based on the liquid formamide. The method according to the invention is then characterized in that the evaporator used in step i) is a microevaporator whose channels for the guidance of the formamide have a hydraulic diameter of 5 to 1000 μm. The evaporation in step i) takes place at temperatures of 185 ° C to 265 ° C.

Überraschenderweise wurde gefunden, dass aufgrund der sehr kurzen Verweilzeiten im Verdampfer das Formamid in Schritt i) nahezu vollständig, bevorzugt vollständig, ohne Nebenprodukt-Bildung verdampft werden kann. Üblicherweise wird mithilfe des erfindungsgemäßen Verfahrens Formamid mit Ausbeute-Verlusten von < 2 % (bezogen auf die Gesamtmenge an eingesetztem Formamid), bevorzugt < 0,5 % verdampft.Surprisingly, it has been found that due to the very short residence times in the evaporator, the formamide in step i) can be evaporated almost completely, preferably completely, without by-product formation. Usually, with the aid of the process according to the invention formamide is vaporized with yield losses of <2% (based on the total amount of formamide used), preferably <0.5%.

Bevorzugt wird die Verdampfung in Schritt i) des erfindungsgemäßen Verfahrens bei einem Druck von 400 mbar bis 4 bar, besonders bevorzugt 600 mbar bis 2 bar, ganz besonders bevorzugt 800 mbar bis 1,4 bar durchgeführt. Die Temperaturen in Schritt i) des erfindungsgemäßen Verfahrens betragen im Allgemeinen 185°C bis 265°C, bevorzugt 210°C bis 260°C, besonders bevorzugt 215°C bis 240°C.The evaporation in step i) of the process according to the invention is preferably carried out at a pressure of 400 mbar to 4 bar, more preferably 600 mbar to 2 bar, most preferably 800 mbar to 1.4 bar. The temperatures in step i) of the process according to the invention are generally from 185 ° C. to 265 ° C., preferably from 210 ° C. to 260 ° C., particularly preferably from 215 ° C. to 240 ° C.

Vorstehend und im Folgenden wird unter dem angegebenen Druck jeweils der Absolutdruck verstanden.Above and below, the specified pressure is the absolute pressure.

Ein weiterer wesentlicher Faktor zur Herstellung von Blausäure durch Dehydratisierung von gasförmigem Formamid gemäß dem erfindungsgemäßen Verfahren ist nicht die Oberflächenbelastung, d.h. ebenso nicht der Wärmedurchgangskoeffizient des in Schritt i) zur Verdampfung von Formamid eingesetzten Verdampfers. Die Oberflächenbelastung des Verdampfers beträgt im Allgemeinen 5 bis 500 kg/(m2h). Hier erreichen effiziente dem Stand der Technik entsprechende Wärmetauscher/Verdampfer ähnliche Werte. Entscheidend ist überraschenderweise die Flüssigbelastung bezogen auf das Verdampfervolumen (volumenspezifische Verdampferleistung). Bevorzugt beträgt die volumenspezifische Verdampferleistung des in Schritt i) des erfindungsgemäßen Verfahrens eingesetzten Verdampfers 10 bis 2000 MW/m3, besonders bevorzugt 50 bis 1500 MW/m3, ganz besonders bevorzugt 100 bis 1000 MW/m3.Another important factor for the production of hydrocyanic acid by dehydration of gaseous formamide according to the method of the invention is not the surface load, ie also not the heat transfer coefficient of in Step i) for evaporation of formamide used evaporator. The surface load of the evaporator is generally 5 to 500 kg / (m 2 h). Here, efficient prior art heat exchangers / evaporators achieve similar results Values. The decisive factor is surprisingly the liquid load relative to the evaporator volume (volume-specific evaporator performance). The volume-specific evaporator power of the evaporator used in step i) of the process according to the invention is preferably from 10 to 2000 MW / m 3 , particularly preferably from 50 to 1500 MW / m 3 , very particularly preferably from 100 to 1000 MW / m 3 .

Bevorzugt wird der in Schritt i) des erfindungsgemäßen Verfahrens eingesetzte Verdampfer - im Falle eines kondensierenden Mediums oder einer strömenden Flüssigkeit als Wärmeträger - mit einer Temperatur beheizt, die mindestens 5°C, bevorzugt 5 bis 150°C, besonders bevorzugt 10 bis 100°C, ganz besonders bevorzugt 20 bis 50°C oberhalb der Siedetemperatur des Formamids (219°C) liegt.Preferably, the evaporator used in step i) of the process according to the invention - in the case of a condensing medium or a flowing liquid as a heat carrier - is heated at a temperature of at least 5 ° C, preferably 5 to 150 ° C, particularly preferably 10 to 100 ° C. , very particularly preferably 20 to 50 ° C above the boiling point of the formamide (219 ° C).

Im Falle strömender Gase als Wärmeträger, z.B. Rauchgase, liegt die Temperatur im Allgemeinen mindestens 5°C, bevorzugt 30 bis 600°C, besonders bevorzugt 50 bis 400°C, ganz besonders bevorzugt 100 bis 300°C oberhalb der Siedetemperatur des Formamids (210°C).In the case of flowing gases as heat transfer medium, e.g. Flue gases, the temperature is generally at least 5 ° C, preferably 30 to 600 ° C, more preferably 50 to 400 ° C, most preferably 100 to 300 ° C above the boiling temperature of the formamide (210 ° C).

Als Temperiermedium kann jedes dem Fachmann bekannte Temperiermedium (Wärmeträger), z.B. Wasserdampf, Heizgas oder Heizflüssigkeit eingesetzt werden. Des Weiteren ist eine Temperierung des Verdampfers durch elektrische Wärmezufuhr, z.B. über Heizdrähte oder Heizkerzen, möglich. Geeignete Vorrichtungen bzw. Maßnahmen zur Temperierung der Oberflächen des Verdampfers sind dem Fachmann bekannt.The temperature control medium can be any temperature control medium (heat transfer medium) known to the person skilled in the art, e.g. Steam, heating gas or heating fluid can be used. Furthermore, a temperature control of the evaporator by electrical heat, e.g. via heating wires or heating plugs, possible. Suitable devices or measures for controlling the temperature of the surfaces of the evaporator are known in the art.

Als geeignete Verdampfer in Schritt i) des erfindungsgemäßen Verfahrens mikrostrukturierte Apparate ein-gesetzt. Der Einsatz mikrostrukturierter Apparate als Verdampfer - im Folgenden Mikroverdampfer genannt - ist dem Fachmann bekannt und z.B. in DE-A 101 32 370 , WO 2005/016512 sowie WO 2006/108796 beschrieben.As a suitable evaporator in step i) of the method according to the invention micro-structured apparatus used. The use of microstructured apparatuses as evaporators-referred to below as micro-evaporators-is known to the person skilled in the art and is described, for example, in US Pat DE-A 101 32 370 . WO 2005/016512 such as WO 2006/108796 described.

In DE 101 32 370 ist ein Mikroverdampfer für Brennstoffzellen beschrieben, der klein ist und ein gleichmäßig verdampftes Medium bereitstellt. Das Medium, das gemäß DE-A 101 32 370 verdampft wird, ist Methanol.In DE 101 32 370 a micro evaporator for fuel cells is described which is small and provides a uniformly vaporized medium. The medium according to DE-A 101 32 370 is evaporated, is methanol.

In WO 2005/016512 ist ein Mikroverdampfer beschrieben, der in einem Verfahren zur Entfernung von wenigstens einer flüchtigen Verbindung aus einem reaktiven oder nicht reaktiven Stoffgemisch eingesetzt wird. Der Mikroverdampfer weist Kanäle für die Führung des Stoffgemisches mit einem hydraulischen Durchmesser von 5 bis 1000 µm und eine spezifische Verdampferfläche von mindestens 103m2/m3 auf.In WO 2005/016512 there is described a microevaporator used in a process for removing at least one volatile compound from a reactive or non-reactive composition. The microevaporator has channels for the guidance of the substance mixture with a hydraulic diameter of 5 to 1000 μm and a specific evaporator surface of at least 10 3 m 2 / m 3 .

In WO 2006/108 796 wird ein Mikroverdampfer beschrieben, mit einem aus wärmeleitendem Material bestehenden Gehäuse, in dem eine Flüssigkeit-Zuführkammer und eine Dampfsammelkammer vorgesehen sind, zwischen denen Mikrokanäle mit Querschnittsabmessungen im Submillimeter-Bereich in einer Ebene nebeneinander angeordnet sind, sowie mit Mitteln zum Erhitzen der zu verdampfenden Flüssigkeit, wobei die Mikroverdampferkanäle in einem trapezförmigem Bereich angeordnet sind, der einen in die Flüssigkeit-Zuführkammer mündenden querschnittskleineren Eintrittsbereich und einen in die Dampfsammelkammer mündenden querschnittsgrößeren Austrittsbereich aufweist. Gemäß WO 2006/108796 wird der Mikroverdampfer eingesetzt, um flüssige Medien, z.B. Wasser, Alkohole oder Alkohol-Wasser-Gemische, Flüssiggase oder Flüssigalkane für eine Weiterverarbeitung zu verdampfen. Die Mikroverdampfer werden beispielsweise im Bereich der Brennstoffzellentechnik eingesetzt.In WO 2006/108 796 describes a micro-evaporator, comprising a housing made of thermally conductive material, in which a liquid supply chamber and a vapor collection chamber are provided, between which microchannels are arranged with cross-sectional dimensions in the submillimeter range in a plane next to each other, as well as means for heating the liquid to be evaporated wherein the micro-evaporator channels are arranged in a trapezoidal region having a cross-sectionally smaller inlet region opening into the liquid feed chamber and a larger cross-sectional outlet region opening into the vapor collecting chamber. According to WO 2006/108796 the micro-evaporator is used to evaporate liquid media, such as water, alcohols or alcohol-water mixtures, liquid gases or liquid alkanes for further processing. The microevaporators are used, for example, in the field of fuel cell technology.

Geeignete Mikroverdampfer sind dem Fachmann somit bekannt. Der Einsatz von Mikroverdampfern zur Verdampfung von Formamid in einem Verfahren zur Herstellung von Blausäure durch Dehydratisierung von gasförmigem Formamid ist im Stand der Technik jedoch nicht offenbart.Suitable micro-evaporators are thus known to the person skilled in the art. However, the use of micro-evaporators for the evaporation of formamide in a process for the production of hydrogen cyanide by dehydration of gaseous formamide is not disclosed in the prior art.

Ein bevorzugt in Schritt i) des erfindungsgemäßen Verfahrens eingesetzter Mikroverdampfer umfasst mehrere parallele, alternierend übereinander angeordnete und mikrostrukturierte Lagen von Verdampfungs- und Temperierkanälen, wobei die Lagen bevorzugt so ausgestaltet sind, dass jede Lage eine Vielzahl von parallel zueinander angeordneten Kanälen aufweist, die von einer Seite der Lage bis zur gegenüberliegenden Seite der Lage einen durchgehenden Strömungsweg ausbilden.A preferably used in step i) of the method according to the invention micro evaporator comprises a plurality of parallel, alternately superimposed and microstructured layers of evaporation and tempering, wherein the layers are preferably configured so that each layer has a plurality of mutually parallel channels, which of a Side of the situation to the opposite side of the situation form a continuous flow path.

Als Lage wird im Sinne der vorliegenden Erfindung eine weitgehend zweidimensionale, flächige Baueinheit verstanden, d.h., eine Baueinheit, deren Dicke im Verhältnis zu ihrer Fläche vernachlässigbar gering ist. Bevorzugt handelt es sich bei der Lage um eine im Wesentlichen ebene Platte.For the purposes of the present invention, a position is understood to mean a largely two-dimensional, flat structural unit, that is to say an assembly whose thickness is negligibly small in relation to its area. Preferably, the layer is a substantially flat plate.

Die Lagen, insbesondere Platten, sind - wie vorstehend erwähnt - mikrostrukturiert, indem sie Kanäle aufweisen, die von Formamid (so genannte Verdampferkanäle) bzw. Wärmeträger (Heizmedium) (so genannte Temperierkanäle) durchströmt sind. Falls die Temperierung der Verdampferoberflächen durch elektrische Wärmezufuhr, z.B. über Heizdrähte oder Heizkerzen erfolgt, können die Temperierkanäle entfallen. Unter dem Begriff mikrostrukturiert wird verstanden, dass der mittlere, hydraulische Durchmesser der Kanäle maximal 1 mm ist.The layers, in particular plates, are - as mentioned above - microstructured by having channels that are flowed through by formamide (so-called evaporator channels) or heat transfer medium (heating medium) (so-called tempering). If the temperature of the evaporator surfaces by electrical heat, for example via heating wires or plugs, the temperature control can be omitted. The term microstructured means that the average hydraulic diameter of the channels is at most 1 mm.

Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein erfindungsgemäßes Verfahren, worin in Schritt i) des erfindungsgemäßen Verfahrens ein Mikroverdampfer eingesetzt wird, der Kanäle für die Führung des Formamids mit einem hydraulischen Durchmesser von 5 bis 1000 µm, besonders bevorzugt 100 bis 300 µm aufweist.Another object of the present invention is therefore a method according to the invention, wherein in step i) of the method according to the invention, a micro-evaporator is used, the channels for the leadership of formamide having a hydraulic diameter of 5 to 1000 .mu.m, more preferably 100 to 300 microns.

In einer bevorzugten Ausführungsform des in Schritt i) des erfindungsgemäßen Verfahrens eingesetzten Mikroverdampfers sind alternierend zu den vom Formamid durchströmten Lagen (A) Lagen (B) angeordnet, denen auf einer Seite ein Wärmeträger zugeführt und auf der anderen Seite abgezogen wird. Hierbei ist es möglich, dass die alternierende Anordnung der Lagen A, B so ausgebildet ist, dass auf jede Lage A jeweils eine Lage B folgt, oder dass auf jeweils zwei oder mehr aufeinander folgende Lagen A eine Lage B folgt oder dass auf jeweils zwei oder mehr aufeinander folgende Lagen B jeweils eine Lage A folgt.In a preferred embodiment of the microvaporizer used in step i) of the process according to the invention, layers (B) are arranged alternately with the layers (A) through which the formamide flows, to which a heat carrier is fed on one side and drawn off on the other side. It is possible that the alternating arrangement of the layers A, B is formed so that each layer A is followed by a layer B, or that in each case two or more successive layers A follows a layer B or that in each case two or more successive layers B each followed by a layer A.

Der bevorzugt eingesetzte Mikroverdampfer ist je nach im Allgemeinen aus mehr als 30 Lagen, bevorzugt mehr als 100 Lagen, besonders bevorzugt mehr als 200 Lagen aufgebaut.The preferred micro-evaporator used is generally composed of more than 30 layers, preferably more than 100 layers, more preferably more than 200 layers.

Die Kanäle der Lagen A und B können so angeordnet werden, dass sich eine Kreuz-, Gegen- oder Gleichstromführung ergibt. Des Weiteren sind beliebige Mischformen denkbar.The channels of the layers A and B can be arranged so that a cross, counter or DC current results. Furthermore, any mixed forms are conceivable.

In Figur 1 ist ein schematischer dreidimensionaler Ausschnitt eines Mikroverdampfers beispielhaft dargestellt, wobei in Figur 1 die Lagen A und B alternierend angeordnet sind, wobei auf jede Lage A eine Lage B folgt und die Anordnung der Lagen A und B so erfolgt, dass sich eine Kreuzstromführung ergibt.In FIG. 1 a schematic three-dimensional section of a micro-evaporator is exemplified, wherein in FIG. 1 the layers A and B are arranged alternately, wherein each layer A is followed by a layer B and the arrangement of the layers A and B takes place so that there is a cross-flow guidance.

In Figur 1 bedeuten:

  1. A Formamid durchströmte Lagen A
  2. B von Wärmeträger (Heizmedium) durchströmte Lagen B
In FIG. 1 mean:
  1. A formamide flowed through layers A
  2. B of heat carrier (heating medium) flows through layers B

Die Pfeile geben jeweils die Strömungsrichtung des Formamids bzw. des Heizmediums an.The arrows indicate in each case the flow direction of the formamide or of the heating medium.

Der bevorzugt in Schritt i) des erfindungsgemäßen Verfahrens eingesetzte Mikroverdampfer umfasst mindestens eine Verteil- und mindestens eine Sammeleinrichtung zur Verteilung bzw. Sammlung des Formamids bzw. des Wärmeträgers. In einer Ausführungsform ist die Verteil- und Sammeleinrichtung jeweils als eine außerhalb oder innerhalb eines Stapels der Lagen A, B angeordnete Kammer ausgebildet. Hierbei können die Wände der Kammer gerade oder beispielsweise halb kreisförmig gebogen sein. Wesentlich ist, dass die geometrische Form der Kammer geeignet ist, Strömung und Druckverlust so zu gestalten, dass eine gleichmäßige Durchströmung der Kanäle des Mikroverdampfers erreicht wird. In einer besonders bevorzugten Ausführungsform eines Verteilers wird das flüssige Formamid gleichmäßig von oben auf die Öffnungen der Verdampferkanäle versprüht z.B. mit dem Fachmann bekannten Düsen oder durch Anströmen der Kanäle von unten. Die Kanäle sind dabei im unteren Bereich temperiert, im Allgemeinen bei Temperaturen < 150°C, bei denen keine Zersetzung stattfindet und das Formamid flüssig vorliegt, und im folgenden Teil beheizt - dem eigentlichen Verdampferteil.The microevaporator preferably used in step i) of the method according to the invention comprises at least one distribution and at least one collecting device for distributing or collecting the formamide or the heat carrier. In one embodiment, the distribution and collection device is in each case as one outside or inside a stack of the layers A, B arranged chamber formed. Here, the walls of the chamber may be bent straight or, for example, semi-circular. It is essential that the geometric shape of the chamber is adapted to make flow and pressure loss so that a uniform flow through the channels of the micro-evaporator is achieved. In a particularly preferred embodiment of a distributor, the liquid formamide is sprayed uniformly from above onto the openings of the evaporator channels, for example with nozzles known to the person skilled in the art or by flowing the channels from below. The channels are tempered in the lower region, generally at temperatures <150 ° C, where no decomposition takes place and the formamide is liquid, and heated in the following part - the actual evaporator section.

In einer Ausführungsform der vorliegenden Erfindung sind die Verteil- und Sammeleinrichtungen jeweils innerhalb eines Stapels der Lagen A, B angeordnet, bevorzugt indem die parallel zueinander angeordneten Kanäle jeder Lage A im Bereich der beiden Enden der Lagen A jeweils einen, die parallel zueinander angeordneten Kanäle verbindenden Querkanal aufweisen und alle Querkanäle innerhalb des Stapels der Lagen A, B durch einen im Wesentlichen senkrecht zur Ebene der Lagen A, B angeordneten Sammelkanal verbunden sind. Auch in dieser Ausführungsform ist eine gleichmäßige Durchströmung der Kanäle wesentlich.In one embodiment of the present invention, the distribution and collection devices are each arranged within a stack of layers A, B, preferably by the mutually parallel channels of each layer A in the region of the two ends of the layers A one, the channels arranged parallel to each other Transverse channel and all transverse channels within the stack of layers A, B are connected by a substantially perpendicular to the plane of the layers A, B arranged collecting channel. Also in this embodiment, a uniform flow through the channels is essential.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist sowohl für die Lagen A als auch für die Lagen B, deren Kanäle von einem Wärmeträger durchströmt werden, jeweils eine Verteil- und Sammeleinrichtung entsprechend der Verteil- und Sammeleinrichtung für die Lagen A, die vorstehend beschrieben wurden, vorgesehen.In a preferred embodiment of the present invention, for both the layers A and B, whose channels are traversed by a heat transfer medium, in each case a distribution and collection device corresponding to the distribution and collection device for the layers A, which were described above, intended.

In Figur 2 ist eine schematische Draufsicht einer Lage, wobei es sich um eine Lage A oder B handeln kann, beispielhaft dargestellt. Innerhalb der Lage ist eine Verteileinrichtung V und eine Sammeleinrichtung S schematisch dargestellt.In FIG. 2 is a schematic plan view of a layer, which may be a layer A or B, exemplified. Within the situation, a distributor V and a collector S is shown schematically.

In Figur 2 bedeuten

V
Verteileinrichtung
S
Sammeleinrichtung
K
Kanäle
In FIG. 2 mean
V
distributor
S
collecting device
K
channels

Es kann vorteilhaft sein, Schritt i) des erfindungsgemäßen Verfahrens in der Weise durchzuführen, dass entlang der Kanäle jeder Lage A ein Temperaturprofil durchlaufen wird, indem pro Lage zwei oder mehrere Heiz- oder Kühlzonen mit jeweils mindestens einer Verteil- und Sammeleinrichtung pro Heiz- oder Kühlzone der Lagen B zur entsprechenden Temperierung in den Kanälen der Lagen A vorgesehen sind.It may be advantageous to carry out step i) of the method according to the invention in such a way that along the channels of each layer A a temperature profile is run through by two or more heating or cooling zones per layer, each with at least a distribution and collection device per heating or cooling zone of the layers B are provided for the corresponding temperature in the channels of the layers A.

Die spezifische Verdampferleistung des bevorzugt in Schritt i) des erfindungsgemäßen Verfahrens eingesetzten Mikroverdampfers beträgt in einer bevorzugten Ausführungsform der vorliegenden Erfindung 5 bis 200 kg/m2h, bevorzugt 10 bis 200 kg/m2h, besonders bevorzugt 50 bis 150 kg/m2h. Die volumenspezifische Verdampferleistung beträgt im Allgemeinen 100 bis 2000 MW/m3.In a preferred embodiment of the present invention, the specific evaporator capacity of the microevaporator preferably used in step i) of the present invention is 5 to 200 kg / m 2 h, preferably 10 to 200 kg / m 2 h, particularly preferably 50 to 150 kg / m 2 H. The volume-specific evaporator performance is generally 100 to 2000 MW / m 3 .

Die Herstellung des erfindungsgemäß eingesetzten Mikroverdampfers kann nach dem Fachmann bekannten Verfahren erfolgen. Geeignete Verfahren sind z.B. in V. Hessel, H. Löwe, A. Müller, G. Kolb, Chemical Micro Process Engineering-Processing and Plants, Wiley-VCH, Weinheim, 2005, S. 385 bis 391 und W. Ehrfeld, V. Hessel, V. Haverkamp, Microreactors, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1999 offenbart. Üblicherweise umfasst die Herstellung die Erzeugung einer Mikrostruktur in den einzelnen Lagen durch Bearbeitung von Platten aus für den Mikroverdampfer geeigneten Materialien, das Stapeln der Lagen, das Fügen der Lagen zum Zusammenbau des Mikroverdampfers und das Anbringen von Anschlüssen für die Zuleitung des flüssigen Formamids bzw. die Ableitung des gasförmigen Formamids und ggf. für die Zu- und Ableitung des Wärmeträgers. In DE-A 10 2005 051 637 sind verschiedene Herstellungsverfahren für mikrostrukturierte Reaktoren beschrieben, die entsprechend zur Herstellung des erfindungsgemäß eingesetzten Mikroverdampfers angewendet werden können.The preparation of the micro-evaporator used according to the invention can be carried out by methods known to the person skilled in the art. Suitable methods are, for example, in V. Hessel, H. Loewe, A. Muller, G. Kolb, Chemical Micro Process Engineering and Plants, Wiley-VCH, Weinheim, 2005, pp. 385-391 and W. Ehrfeld, V. Hessel, V. Haverkamp, Microreactors, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim 1999 disclosed. Typically, the fabrication involves the creation of a microstructure in the individual layers by machining plates of materials suitable for the microevaporator, stacking the layers, joining the layers to assemble the microevaporator, and attaching terminals for the supply of the liquid formamide Derivation of the gaseous formamide and possibly for the supply and discharge of the heat carrier. In DE-A 10 2005 051 637 various production methods for microstructured reactors are described, which can be used according to the preparation of the micro-evaporator used in the invention.

Im Allgemeinen wird Schritt i) des erfindungsgemäßen Verfahrens so durchgeführt, dass dem Mikroverdampfer flüssiges Formamid zugeführt wird. Dieses wird in Schritt i) des erfindungsgemäßen Verfahrens zu gasförmigem Formamid verdampft, welches anschließend in der katalytischen Dehydratisierung in Schritt ii) des erfindungsgemäßen Verfahrens eingesetzt wird.In general, step i) of the process according to the invention is carried out in such a way that liquid formamide is fed to the microevaporator. This is evaporated in step i) of the process according to the invention to gaseous formamide, which is subsequently used in the catalytic dehydration in step ii) of the process according to the invention.

Bevorzugt wird das Formamid in Schritt i) des erfindungsgemäßen Verfahrens vollständig (restlos) verdampft. Besonders bevorzugt wird das Formamid in Schritt i) vollständig verdampft und der entstehende Formamiddampf auf Temperaturen von im Allgemeinen 230°C oder mehr überhitzt. Der überhitzte Formamiddampf kann direkt in Schritt ii) eingesetzt werden.Preferably, the formamide is completely (completely) evaporated in step i) of the process according to the invention. Particularly preferably, the formamide is completely evaporated in step i) and the resulting formamide vapor overheated to temperatures of generally 230 ° C or more. The superheated formamide vapor can be used directly in step ii).

Vor der Zuführung des in Schritt i) erhaltenen gasförmigen Formamids in Schritt ii) des erfindungsgemäßen Verfahrens kann dem gasförmigen Formamid Sauerstoff z.B. in Form von Luftsauerstoff oder in Form eines Sauerstoff enthaltenden Gasgemisches zugeführt werden, wobei der Sauerstoffanteil gegebenenfalls in einem vorgewärmten Zustand zugeführt werden kann.Before the feed of the gaseous formamide obtained in step i) in step ii) of the process according to the invention, the gaseous formamide can be oxygen, for example in the form of atmospheric oxygen or in the form of an oxygen-containing gas mixture may be supplied, wherein the oxygen content may optionally be supplied in a preheated state.

In einer bevorzugten Ausführungsform wird Schritt ii) des erfindungsgemäßen Verfahrens in Anwesenheit von Sauerstoff, bevorzugt Luftsauerstoff, durchgeführt. Die Mengen an Sauerstoff, bevorzugt Luftsauerstoff, betragen im Allgemeinen > 0 bis 10 mol-%, bezogen auf die eingesetzte Formamidmenge, bevorzugt 0,1 bis 10 mol-%, besonders bevorzugt 0,5 bis 3 mol-%.In a preferred embodiment, step ii) of the process according to the invention is carried out in the presence of oxygen, preferably atmospheric oxygen. The amounts of oxygen, preferably atmospheric oxygen, are generally> 0 to 10 mol%, based on the amount of formamide used, preferably 0.1 to 10 mol%, particularly preferably 0.5 to 3 mol%.

Anschließend kann das gasförmige Formamid (Formamid-Dampf) bzw. das Formamid-Sauerstoff-Gemisch, bevorzugt das Formamid-Luft-Gemisch, in einem Wärmetauscher auf Temperaturen von 350°C oder mehr gebracht werden, bevor es Schritt ii) zugeführt wird. Es ist jedoch ebenfalls möglich, den vorstehend erwähnten in Schritt i) erhaltenen gering überhitzten Formamiddampf direkt, ggf. nach Zumischung von Sauerstoff, in Schitt ii) einzusetzen.Subsequently, the gaseous formamide (formamide vapor) or the formamide-oxygen mixture, preferably the formamide-air mixture, can be brought to temperatures of 350 ° C. or more in a heat exchanger before it is fed to step ii). However, it is likewise possible to use the above-mentioned slightly overheated formamide vapor obtained in step i) directly, if appropriate after addition of oxygen, in step ii).

Die katalytische Dehydratisierung in Schritt ii) des erfindungsgemäßen Verfahrens erfolgt im Allgemeinen bei Temperaturen von 350 bis 650°C, bevorzugt 380 bis 550°C, besonders bevorzugt 440 bis 510°C. Werden aber höhere Temperaturen gewählt, ist mit verschlechterten Selektivitäten und Umsätzen zu rechnen.The catalytic dehydration in step ii) of the process according to the invention is generally carried out at temperatures of from 350 to 650.degree. C., preferably from 380 to 550.degree. C., particularly preferably from 440 to 510.degree. But if higher temperatures are selected, deteriorated selectivities and conversions are to be expected.

Der Druck in Schritt ii) des erfindungsgemäßen Verfahrens beträgt im Allgemeinen 400 mbar bis 3 bar, bevorzugt 400 mbar bis 1,5 bar, bevorzugt 600 mbar bis 1,4 bar.The pressure in step ii) of the process according to the invention is generally from 400 mbar to 3 bar, preferably from 400 mbar to 1.5 bar, preferably from 600 mbar to 1.4 bar.

Als Reaktor können in Schritt ii) des erfindungsgemäßen Verfahrens alle dem Fachmann zur Dehydratisierung von Formamid bekannten Reaktoren eingesetzt werden. Bevorzugt werden in Schritt ii) des erfindungsgemäßen Verfahrens Rohrreaktoren eingesetzt, wobei geeignete Rohrreaktoren dem Fachmann bekannt sind. Besonders bevorzugt handelt es sich bei den Rohrreaktoren um Mehrrohrreaktoren. Geeignete Mehrrohrreaktoren sind dem Fachmann ebenfalls bekannt.The reactor used in step ii) of the process according to the invention may be any of those known to the person skilled in the art for the dehydration of formamide. Preference is given to using tubular reactors in step ii) of the process according to the invention, suitable tubular reactors being known to the person skilled in the art. The tube reactors are more preferably multi-tube reactors. Suitable multitubular reactors are also known to the person skilled in the art.

Geeignete Materialien der in Schritt ii) des erfindungsgemäßen Verfahrens eingesetzten Reaktoren sind dem Fachmann ebenfalls bekannt. Bevorzugt wird als innere Oberfläche des Reaktors eine eisenhaltige Oberfläche eingesetzt. In einer besonders bevorzugten Ausführungsform ist die innere Reaktoroberfläche aus Stahl aufgebaut, der besonders bevorzugt Eisen sowie Chrom und Nickel enthält. Der Anteil an Eisen in dem bevorzugt die innere Reaktoroberfläche bildenden Stahl beträgt im Allgemeinen > 50 Gew.-%, bevorzugt > 60 Gew.-%, besonders bevorzugt > 70.Gew.-%. Der Rest sind im Allgemeinen Nickel und Chrom, wobei gegebenenfalls geringe Mengen weiterer Metalle wie Molybdän, Mangan, Silizium, Aluminium, Titan, Wolfram, Kobalt mit einem Anteil von im Allgemeinen 0 bis 5 Gew.-%, bevorzugt 0 bis 2 Gew.-%, enthalten sein können. Für die innere Reaktoroberfläche geeignete Stahlqualitäten sind im Allgemeinen Stahlqualitäten entsprechend den Normen 1.4541, 1.4571, 1.4573, 1.4580, 1.4401, 1.4404, 1.4435, 2.4816, 1.3401, 1.4876 und 1.4828. Bevorzugt werden Stahlqualitäten entsprechend den Normen 1.4541, 1.4571, 1.4828, 1.3401, 1.4876 und 1.4762, besonders bevorzugt Stahlqualitäten entsprechend den Normen 1.4541, 1.4571, 1.4762 und 1.4828 eingesetzt.Suitable materials of the reactors used in step ii) of the process according to the invention are also known to the person skilled in the art. Preferably, an iron-containing surface is used as the inner surface of the reactor. In a particularly preferred embodiment, the inner reactor surface is made of steel, which particularly preferably contains iron and chromium and nickel. The proportion of iron in the steel which preferably forms the inner reactor surface is generally> 50% by weight, preferably> 60% by weight, more preferably> 70% by weight. The remainder are generally nickel and chromium, optionally with small amounts of other metals such as molybdenum, manganese, silicon, aluminum, titanium, tungsten, cobalt with a In general, from 0 to 5 wt .-%, preferably 0 to 2 wt .-%, may be contained. Steel grades suitable for the inner surface of the reactor are generally steel grades according to standards 1.4541, 1.4571, 1.4573, 1.4580, 1.4401, 1.4404, 1.4435, 2.4816, 1.3401, 1.4876 and 1.4828. Steel grades according to standards 1.4541, 1.4571, 1.4828, 1.3401, 1.4876 and 1.4762, more preferably steel grades according to standards 1.4541, 1.4571, 1.4762 and 1.4828 are preferably used.

Mithilfe eines solchen Rohrreaktors ist eine katalytische Dehydratisierung von gasförmigem Formamid zu Blausäure in Schritt ii) des erfindungsgemäßen Verfahrens möglich, ohne dass zusätzliche Katalysatoren eingesetzt werden müssen bzw. der Reaktor zusätzliche Einbauten aufweist.By means of such a tubular reactor, a catalytic dehydration of gaseous formamide to hydrocyanic acid in step ii) of the process according to the invention is possible without additional catalysts having to be used or the reactor having additional internals.

Es ist jedoch ebenfalls möglich, dass die katalytische Dehydratisierung in Schritt ii) des erfindungsgemäßen Verfahrens in Anwesenheit von Formkörpern als Katalysatoren durchgeführt wird, wobei die Formkörper bevorzugt hoch gesinterte Formkörper, aufgebaut aus Aluminiumoxid und gegebenenfalls Siliziumoxid sind, bevorzugt aus 50 bis 100 Gew.-% Aluminiumoxid und 0 bis 50 Gew.-% Siliziumoxid, besonders bevorzugt aus 85 bis 95 Gew.-% Aluminiumoxid und 5 bis 15 Gew.-% Siliziumoxid, oder aus Chrom-Nickel-Edelstahl, wie z.B. in EP-A 0 209 039 beschrieben. Des Weiteren kann es sich bei geeigneten in Schritt ii) des erfindungsgemäßen Verfahrens eingesetzten Katalysatoren um Packungen aus Stahl oder Eisenoxid auf porösen Trägermaterialien, z.B. Aluminiumoxid, handeln. Geeignete Packungen sind z.B. in DE-A 101 38 553 beschrieben.However, it is likewise possible for the catalytic dehydration in step ii) of the process according to the invention to be carried out in the presence of moldings as catalysts, the moldings preferably being highly sintered moldings composed of aluminum oxide and optionally silicon oxide, preferably from 50 to 100% by weight. % Alumina and 0 to 50 wt .-% silica, more preferably from 85 to 95 wt .-% alumina and 5 to 15 wt .-% silica, or of chromium-nickel stainless steel, such as in EP-A 0 209 039 described. Furthermore, suitable catalysts used in step ii) of the process according to the invention may be packings of steel or iron oxide on porous support materials, for example aluminum oxide. Suitable packages are eg in DE-A 101 38 553 described.

Werden Formkörper eingesetzt, so können als mögliche Formkörper sowohl geordnete als auch ungeordnete Formlinge eingesetzt werden, z.B. Raschig-Ringe, Pal-Ringe, Tabletten, Kugeln und ähnliche Formlinge. Wesentlich ist hierbei, dass die Packungen bei mäßigem Druckverlust guten Wärmeübergang ermöglichen. Die Größe bzw. Geometrie der verwendeten Formlinge richtet sich im Allgemeinen nach dem Innendurchmesser der mit diesen Formkörpern zu füllenden Reaktoren, bevorzugt Rohrreaktoren.If moldings are used, it is possible to use both ordered and unordered moldings as possible moldings, e.g. Raschig rings, pal-rings, tablets, balls and similar shapes. It is essential here that the packings allow good heat transfer with moderate pressure loss. The size or geometry of the moldings used generally depends on the inner diameter of the reactors to be filled with these moldings, preferably tubular reactors.

Geeignete Packungen aus Stahl oder Eisenoxid sind im Allgemeinen geordnete Packungen. Bevorzugt handelt es sich bei den geordneten Packungen um statische Mischer. Durch den Einsatz der statischen Mischer kann ein einheitlicher Druck sowie ein hervorragender Wärmeübergang im Rohrreaktor erreicht werden. Die statischen Mischer können beliebige Geometrien aufweisen, wie sie dem Fachmann bekannt sind. Bevorzugte statische Mischer sind aus Blechen aufgebaut, wobei es sich um Lochbleche und/oder geformte Bleche handeln kann. Es können selbstverständlich ebenfalls geformte Lochbleche eingesetzt werden.Suitable packings of steel or iron oxide are generally ordered packings. Preferably, the ordered packs are static mixers. Through the use of static mixers, a uniform pressure and excellent heat transfer in the tubular reactor can be achieved. The static mixers may be of any geometry known to those skilled in the art. Preferred static mixers are constructed from sheets, which may be perforated sheets and / or shaped sheets. Of course, also shaped perforated plates can be used.

Geeignete Formkörper sind in EP-A 0 209 039 beschrieben und geeignete statische Mischer sind in DE-A 101 38 553 beschrieben.Suitable moldings are in EP-A 0 209 039 described and suitable static mixers are in DE-A 101 38 553 described.

Es ist ebenfalls möglich, dass in Schritt ii) des erfindungsgemäßen Verfahrens ein Reaktor, bevorzugt ein Rohrreaktor, eingesetzt wird, der Formkörper und/oder Packungen aus Stahl oder Eisenoxid auf einem porösen Träger aufweist, dessen Reaktorwand zusätzlich katalytisch aktiv ist. Geeignete Reaktorwand-Materialien, die in Schritt ii) des erfindungsgemäßen Verfahrens katalytisch aktiv sind, sind vorstehend genannt und z.B. in WO 2004/050587 beschrieben.It is likewise possible that in step ii) of the process according to the invention a reactor, preferably a tube reactor, is used which has shaped bodies and / or packings of steel or iron oxide on a porous carrier whose reactor wall is additionally catalytically active. Suitable reactor wall materials which are catalytically active in step ii) of the process according to the invention are mentioned above and, for example, in US Pat WO 2004/050587 described.

Die optimale Verweilzeit des Formamid-Gasstroms in Schritt ii) des erfindungsgemäßen Verfahrens ergibt sich bei Einsatz eines Rohrreaktors (was bevorzugt ist) aus der längenspezifischen Formamidbelastung, die bevorzugt 0,02 bis 0,4 kg/(mh), bevorzugt 0,05 bis 0,3, besonders bevorzugt 0,08 bis 0,2 im Bereich laminarer Strömung beträgt. Die optimale Verweilzeit des Formamid-Gasstroms in Schritt ii) des erfindungsgemäßen Verfahrens ergibt sich bei Einsatz eines Rohrreaktors (was bevorzugt ist) aus der flächenspezifischen Formamidbelastung, die im Allgemeinen 0,1 bis 100 kg/m2, bevorzugt 0,2 bis 50 kg/m2, besonders bevorzugt 0,5 bis 20 kg/m2 beträgt.The optimal residence time of the formamide gas stream in step ii) of the process according to the invention results when using a tubular reactor (which is preferred) from the length-specific formamide load, which is preferably 0.02 to 0.4 kg / (mh), preferably 0.05 to 0.3, more preferably 0.08 to 0.2 in the laminar flow range. The optimum residence time of the formamide gas stream in step ii) of the process according to the invention results when using a tubular reactor (which is preferred) from the area-specific formamide load, which is generally 0.1 to 100 kg / m 2 , preferably 0.2 to 50 kg / m 2 , more preferably 0.5 to 20 kg / m 2 .

Das erfindungsgemäße Verfahren zur Herstellung von Blausäure liefert die gewünschte Blausäure in hohen Selektivitäten von im Allgemeinen > 85%, bevorzugt > 90% und Umsätzen von im Allgemeinen > 70%, bevorzugt > 80%, so dass Ausbeuten von im Allgemeinen > 60%, bevorzugt > 75%, besonders bevorzugt > 88% erreicht werden.The process according to the invention for producing hydrogen cyanide gives the desired hydrocyanic acid in high selectivities of generally> 85%, preferably> 90% and conversions of generally> 70%, preferably> 80%, such that yields of generally> 60% are preferred > 75%, particularly preferably> 88% can be achieved.

Bei dem Einsatz von Mikroverdampfern können neben den vorstehend genannten Vorteilen des Weiteren Anlagen zur Herstellung von Blausäure bereitgestellt werden, die wesentlich kleiner sind, als üblicherweise zur Herstellung von Blausäure eingesetzte Anlagen. Solche Anlagen sind mobiler und somit vielseitiger einsetzbar, und können z.B. dort aufgebaut werden, wo Blausäure benötigt wird, so dass ein Transport von Blausäure oder Salzen der Blausäure (z.B. Alkali- und Erdalkalisalze) über weitere Strecken vermieden werden kann.In the use of micro-evaporators can be provided in addition to the advantages mentioned above further plants for the production of hydrogen cyanide, which are substantially smaller than usually used for the production of hydrogen cyanide plants. Such systems are more mobile and thus more versatile, and may e.g. where hydrocyanic acid is needed so that transport of hydrocyanic acid or salts of hydrocyanic acid (e.g., alkali and alkaline earth salts) over long distances can be avoided.

Wie vorstehend erwähnt, sind die Vorrichtungen zur Herstellung von Blausäure klein und somit flexibel einsetzbar.As mentioned above, the devices for the production of hydrogen cyanide are small and thus flexible to use.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung eines Mikroverdampfers zur Verdampfung von Formamid in einem Verfahren zur Herstellung von Blausäure aus Formamid wie im Anspruch 13 definiert.Another object of the present invention is the use of a micro-evaporator for the evaporation of formamide in a process for the production of hydrogen cyanide from formamide as defined in claim 13.

Bevorzugte Mikroverdampfer, bevorzugte Rohrreaktoren sowie ein bevorzugtes Verfahren zur Herstellung von Blausäure aus Formamid sind bereits vorstehend erwähnt.Preferred microevaporators, preferred tubular reactors and a preferred process for the production of hydrogen cyanide from formamide have already been mentioned above.

Die nachfolgenden Beispiele erläutern die Erfindung zusätzlich.The following examples further illustrate the invention.

BeispieleExamples Verdampfung:Evaporation: Beispiel 1example 1

Die Versuche werden in einer diskontinuierlichen Labordestillationsapparatur bestehend aus Dreihalskolben, Thermometer und wassergekühlter Destillationsbrücke durchgeführt. In den Kolben werden jeweils 50 g Formamid vorgelegt, bei verschiedenen Drucken möglichst rasch auf Siedetemperatur gebracht und überdestilliert. Die Beheizung erfolgt mit einem elektrisch betriebenen Heizpilz. Als Maß für die Formamidzersetzung dient die Massendifferenz zwischen vorgelegtem Formamid und ausgewogener Destillatmenge. Tabelle 1: Übersicht des Ergebnisses zur Formamidverdampfung im Kolben. Druck [mbar] Siedetemperatur Messung [°C] Formamidzersetzung [%] 1010 (Normaldruck) 198 50,5 The experiments are carried out in a batch laboratory distillation apparatus consisting of three-necked flask, thermometer and water-cooled distillation bridge. In each case 50 g of formamide are introduced into the flask, brought to boiling temperature as quickly as possible at different pressures and distilled over. The heating takes place with an electrically operated heating mushroom. As a measure of the Formamidzersetzung the mass difference between submitted formamide and balanced distillate serves. Table 1: Overview of the result for Formamidverdampfung in the flask. Pressure [mbar] Boiling temperature measurement [° C] Formamide decomposition [%] 1010 (normal pressure) 198 50.5

Beispiel 2Example 2

Die Versuche werden mit einem Mikroverdampfer aufgebaut aus 1700 Rechteckkanälen durchgeführt. Die Rechteckkanäle haben die Abmessungen 200x100 µm und 14 mm Länge. Die Rechteckkanäle teilen sich hälftig auf die Temperier- und Verdampfungsseite auf und sind lagenweise alternierend im Kreuzstrom zueinander angeordnet. In Summe ist der Mikroverdampfer aus 50 Lagen aufgebaut. Der Mikroverdampfer wird mit 40 bar Dampf über die Temperierkanäle beheizt. Die Verdampferkanäle werden mit 100 g/h Formamid beaufschlagt. Dies entspricht einer volumenspezifische Verdampferleistung von 130 MW/m3. Über eine Versuchsdauer von 6 h wird kein Druckverlustanstieg über die Kanäle beobachtet. Der Formamiddampf wird mit einem üblichen Laborkondensator kondensiert. Als Maß für die Formamidzersetzung dient die Massendifferenz zwischen vorgelegtem Formamid und ausgewogener Kondensatmenge. Tabelle 2: Übersicht des Ergebnisses zur Formamidverdampfung im Mikroverdampfer Druck [mbar] Temperatur des Formamid-Dampfes am Austritt [°C] Formamidzersetzung [%] 1010 (Normaldruck) 225°C 0,5 The experiments are carried out using a micro-evaporator constructed from 1700 rectangular channels. The rectangular channels have the dimensions 200x100 μm and 14 mm length. The rectangular channels are divided in half on the tempering and evaporation side and are arranged in layers alternately in cross flow to each other. In total, the micro-evaporator is made up of 50 layers. The micro-evaporator is heated with 40 bar of steam via the temperature control channels. The evaporator channels are charged with 100 g / h of formamide. This corresponds to a volume-specific evaporator capacity of 130 MW / m 3 . Over a period of 6 hours, no pressure drop increase across the channels is observed. The formamide vapor is condensed with a conventional laboratory condenser. As a measure of the Formamidzersetzung the mass difference between submitted formamide and balanced amount of condensate is used. Table 2: Overview of the result for formamide evaporation in the microevaporator Pressure [mbar] Temperature of the formamide vapor at the outlet [° C] Formamide decomposition [%] 1010 (normal pressure) 225 ° C 0.5

Zersetzungdecomposition

Das Experiment wird mit Rohrreaktoren mit 40 mm Länge und 12 mm Innendurchmesser durchgeführt. Beim Versuchsaufbau handelt es sich um einen Silberblock, in dem das Reaktionsrohr passgenau eingelassen wird. Die Rohre bestehen aus dem Stahl 1.4541. Beheizt wird der Silberblock mit Heizstäben. Durch den guten Wärmeübergang im Silberbett kann ein isothermer Betrieb der Rohrwand gewährleistet werden. Der Reaktor wird mit dampfförmigem Formamid beaufschlagt und bei 520°C betrieben.The experiment is carried out with tubular reactors 40 mm in length and 12 mm in internal diameter. The experimental setup is a silver block in which the reaction tube is inserted precisely. The pipes are made of steel 1.4541. The silver block is heated with heating rods. Due to the good heat transfer in the silver bed, an isothermal operation of the pipe wall can be ensured. The reactor is charged with vaporous formamide and operated at 520 ° C.

Beispiel 3Example 3

Das Experiment wird in der Apparatur wie vorstehend unter "Zersetzung" beschrieben durchgeführt. Der Reaktionsdruck beträgt 600 mbar. Tabelle 3: Übersicht zur Formamidzersetzung in einem Rohrreaktor bei 600 mbar Formamidzufuhr Umsatz HCN-Selektivität 100 g/h 92% 94 The experiment is carried out in the apparatus as described above under "decomposition". The reaction pressure is 600 mbar. Table 3: Overview of formamide decomposition in a tube reactor at 600 mbar Formamidzufuhr sales HCN selectivity 100 g / h 92% 94

Beispiel 4Example 4

Das Experiment wird in der Apparatur wie vorstehend unter "Zersetzung" beschrieben durchgeführt. Der Reaktionsdruck beträgt 400 mbar. Tabelle 4: Übersicht zur Formamidzersetzung in einem Rohrreaktor bi 400 mbar Formamidzufuhr Umsatz HCN-Selektivität [%] 100 g/h 94% 94% The experiment is carried out in the apparatus as described above under "decomposition". The reaction pressure is 400 mbar. Table 4: Overview of formamide decomposition in a tubular reactor bi 400 mbar Formamidzufuhr sales HCN selectivity [%] 100 g / h 94% 94%

Beispiel 5Example 5

Das Experiment wird in der Apparatur wie vorstehend unter "Zersetzung" beschrieben durchgeführt. Der Reaktionsdruck beträgt 230 mbar. Tabelle 5: Übersicht zur Formamidzersetzung in einem Rohrreaktor bei 230 mbar Formamidzufuhr Umsatz HCN-Selektivität [%] 100 g/h 93% 95% The experiment is carried out in the apparatus as described above under "decomposition". The reaction pressure is 230 mbar. Table 5: Overview of formamide decomposition in a tube reactor at 230 mbar Formamidzufuhr sales HCN selectivity [%] 100 g / h 93% 95%

Claims (13)

  1. A process for preparing hydrogen cyanide, comprising
    i) providing gaseous formamide by evaporating liquid formamide in an evaporator; and
    ii) catalytically dehydrating the gaseous formamide,
    where the residence time of the formamide in the evaporator in step i) is < 20 s based on the liquid formamide,
    wherein the evaporator used in step i) is a microevaporator having channels to guide the formamide which have a hydraulic diameter of from 5 to 1000 µm and the evaporation in step i) is effected at temperatures of from 185°C to 265°C.
  2. The process according to claim 1, wherein the evaporation in step i) is effected at a pressure of from 400 mbar to 4 bar absolute.
  3. The process according to claim 1 or 2, wherein the evaporation in step i) is effected at temperatures of from 210°C to 260°C.
  4. The process according to any one of claims 1 to 3, wherein the microevaporator has channels to guide the formamide which have a hydraulic diameter of from 10 to 300 µm.
  5. The process according to any one of claims 1 to 4, wherein the microevaporator has a volume-specific evaporator output of from 100 to 2000 MW/m3.
  6. The process according to any one of claims 1 to 5, wherein the catalytic dehydration in step ii) is effected at temperatures of from 350 to 650°C.
  7. The process according to any one of claims 1 to 6, wherein the catalytic dehydration in step ii) is performed at a pressure of from 400 mbar to 3 bar absolute.
  8. The process according to claim 7, wherein the dehydration in step ii) is performed at a pressure of from 400 mbar to 1.5 bar absolute.
  9. The process according to any one of claims 1 to 8, wherein the catalytic dehydration in step ii) is effected in a tubular reactor, preferably a multitube reactor.
  10. The process according to claim 9, wherein the catalytic dehydration in step ii) is effected in the presence of shaped bodies selected from highly sintered shaped bodies formed from alumina and optionally silica, and chromium-nickel-stainless steel shaped bodies, or in the presence of packings made of steel or iron oxide on porous support materials as catalysts, and/or the inner reactor surface of the tubular reactor is formed from steel and serves as a catalyst.
  11. The process according to any one of claims 1 to 10, wherein the catalytic dehydration in step ii) is performed in the presence of oxygen.
  12. The process according to any one of claims 9 to 11, wherein the catalytic dehydration in step ii) is effected at a length-specific formamide loading of from 0.02 to 0.4 kg/(mh) in the range of laminar flow.
  13. The use of a microevaporator for evaporating formamide in a process for preparing hydrogen cyanide from formamide according to any one of claims 1 to 12, where the microevaporator has channels to guide the formamide which have a hydraulic diameter of from 5 to 1000 µm.
EP08849862.1A 2007-11-13 2008-11-10 Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide Active EP2215013B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08849862.1A EP2215013B1 (en) 2007-11-13 2008-11-10 Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07120540 2007-11-13
EP08849862.1A EP2215013B1 (en) 2007-11-13 2008-11-10 Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide
PCT/EP2008/065185 WO2009062897A1 (en) 2007-11-13 2008-11-10 Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide

Publications (2)

Publication Number Publication Date
EP2215013A1 EP2215013A1 (en) 2010-08-11
EP2215013B1 true EP2215013B1 (en) 2017-04-19

Family

ID=40336454

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08849862.1A Active EP2215013B1 (en) 2007-11-13 2008-11-10 Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide

Country Status (15)

Country Link
US (1) US20100316552A1 (en)
EP (1) EP2215013B1 (en)
CN (1) CN101910063B (en)
AP (1) AP2010005263A0 (en)
AR (1) AR069296A1 (en)
AU (1) AU2008323040A1 (en)
BR (1) BRPI0820289A2 (en)
CA (1) CA2705658A1 (en)
CL (1) CL2008003381A1 (en)
CO (1) CO6290748A2 (en)
MX (1) MX2010005157A (en)
PE (1) PE20091288A1 (en)
RU (1) RU2496717C2 (en)
WO (1) WO2009062897A1 (en)
ZA (1) ZA201004142B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009121827A2 (en) * 2008-03-31 2009-10-08 Basf Se Improved method for producing hydrogen cyanide through catalytic dehydration of gaseous formamide–direct heating
KR20120127465A (en) * 2010-01-22 2012-11-21 바스프 에스이 Single-chamber evaporator and the use thereof in chemical synthesis
US9249029B2 (en) 2010-01-22 2016-02-02 Basf Se Single chamber vaporizer and use thereof in chemical synthesis
EP2468383A1 (en) * 2010-12-22 2012-06-27 Evonik Degussa GmbH Method for thermal post-combustion of waste gases from the production of acrylic acid and prussic acid
EP2644263A1 (en) 2012-03-28 2013-10-02 Aurotec GmbH Pressure-controlled reactor
EP2644264A1 (en) 2012-03-28 2013-10-02 Aurotec GmbH Pressure-controlled multi-reactor system
CN105164051A (en) * 2013-03-01 2015-12-16 巴斯夫欧洲公司 Method for synthesizing prussic acid from formamide, and secondary packing reactor
CN105307978A (en) * 2013-04-10 2016-02-03 巴斯夫欧洲公司 Method for synthesizing hydrocyanic acid from formamide-catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051637A1 (en) * 2005-10-26 2007-05-03 Atotech Deutschland Gmbh Reactor system with a microstructured reactor and method for carrying out a chemical reaction in such a reactor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR646815A (en) * 1927-01-27 1928-11-16 Ig Farbenindustrie Ag Process for the vaporization of formamide and for the destruction of parasites by hydrocyanic gas
US1934485A (en) * 1929-10-04 1933-11-07 Du Pont Treatment of formamide
SU44242A1 (en) * 1935-04-03 1935-09-30 М.Б. Гольдберг The method of producing hydrogen cyanide
US2429262A (en) * 1944-02-01 1947-10-21 British Celanese Manufacture of hydrogen cyanide
US2529546A (en) * 1945-01-09 1950-11-14 Celanese Corp Manufacture of hydrogen cyanide
DE973173C (en) * 1955-03-15 1959-12-17 Degussa Process for the production of hydrocyanic acid from formamide
DE2913925C2 (en) * 1979-04-06 1982-06-03 Degussa Ag, 6000 Frankfurt Process for the production of hydrogen cyanide
DE3525749A1 (en) * 1985-07-19 1987-01-29 Basf Ag METHOD FOR CLEAVING FORMAMIDE TO BLUE ACID AND WATER
DE10109846A1 (en) 2001-03-01 2002-09-05 Basf Ag Process for the preparation of aqueous polymer dispersions
DE10132370B4 (en) 2001-07-04 2007-03-08 P21 - Power For The 21St Century Gmbh Apparatus and method for vaporizing liquid media
DE10138553A1 (en) 2001-08-06 2003-05-28 Basf Ag Hydrogen cyanide production by dehydration of gaseous formamide containing atmospheric oxygen, uses a catalyst containing metallic iron or iron oxide, especially in the form of Raschig rings or a static packing mixer
DE10256578A1 (en) * 2002-12-04 2004-06-17 Basf Ag Hydrogen cyanide from formamide
DE10335451A1 (en) * 2003-08-02 2005-03-10 Bayer Materialscience Ag Method for removing volatile compounds from mixtures by means of micro-evaporator
DE102004042986A1 (en) * 2004-09-06 2006-03-09 Basf Ag Process for the production of hydrocyanic acid
DE102005017452B4 (en) * 2005-04-15 2008-01-31 INSTITUT FüR MIKROTECHNIK MAINZ GMBH microevaporator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005051637A1 (en) * 2005-10-26 2007-05-03 Atotech Deutschland Gmbh Reactor system with a microstructured reactor and method for carrying out a chemical reaction in such a reactor

Also Published As

Publication number Publication date
WO2009062897A1 (en) 2009-05-22
PE20091288A1 (en) 2009-09-25
RU2010123683A (en) 2011-12-20
MX2010005157A (en) 2010-11-26
AR069296A1 (en) 2010-01-13
AP2010005263A0 (en) 2010-06-30
RU2496717C2 (en) 2013-10-27
CL2008003381A1 (en) 2010-01-11
EP2215013A1 (en) 2010-08-11
AU2008323040A1 (en) 2009-05-22
CN101910063B (en) 2012-10-10
CN101910063A (en) 2010-12-08
BRPI0820289A2 (en) 2015-05-26
CO6290748A2 (en) 2011-06-20
ZA201004142B (en) 2011-08-31
CA2705658A1 (en) 2009-05-22
US20100316552A1 (en) 2010-12-16

Similar Documents

Publication Publication Date Title
EP2215013B1 (en) Improved method for the production of hydrocyanic acid by means of catalytic dehydration of gaseous formamide
EP1945345B1 (en) Reactor system comprising a microstructured reactor and method for carrying out a chemical reaction in such a reactor
EP1232004B1 (en) Method for catalytic gas phase oxidation to (meth)acrolein and/or (meth)acrylic acid
EP2215012A1 (en) Improved method for producing hydrocyanic acid by catalytic dehydration of gaseous formamide
EP2262734B1 (en) Improved method for producing hydrogen cyanide through catalytic dehydration of gaseous formamide direct heating
EP1185494B1 (en) Method of gas phase catalytic oxidation to give maleic acid anhydride
EP2526058B1 (en) Single-chamber evaporator and the use thereof in chemical synthesis
EP0244632A2 (en) Tube bundle reactor, its use in exothermal organic reactions and process for the preparation of ketones and aldehydes
WO2009010181A1 (en) Method for producing chlorine by gas phase oxidation
US20100010268A1 (en) Reaction device
WO2009039946A1 (en) Reactor and method for the production thereof
EP2379487B1 (en) Process for preparing bis(para-aminocyclohexyl)methane
DE10138553A1 (en) Hydrogen cyanide production by dehydration of gaseous formamide containing atmospheric oxygen, uses a catalyst containing metallic iron or iron oxide, especially in the form of Raschig rings or a static packing mixer
EP2064151B1 (en) Improved method for producing prussic acid
WO2009149809A1 (en) Method for producing formaldehyde
WO2009143971A1 (en) Process for preparing phosgene
WO2009056470A1 (en) Improved method for producing hydrocyanic acid
WO2009146794A1 (en) Method and device for producing cyclohexanone
EP2961691A1 (en) Method for synthesizing prussic acid from formamide, and secondary packing reactor
WO2010069482A1 (en) Process for preparing sulphur trioxide
WO2009149808A1 (en) Method for producing maleic anhydride
DE102007033106A1 (en) Production of chlorine by catalytic gas-phase oxidation of hydrogen chloride with oxygen, involves using a multi-zone reactor with special heat exchangers between successive zones to cool the process gas
WO2014166975A1 (en) Method for synthesizing hydrocyanic acid from formamide - catalyst
WO2010069483A1 (en) Process for preparing diaminotoluene by multistage adiabatic hydrogenation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100614

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008015246

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C01C0003020000

Ipc: B01J0019000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C01C 3/02 20060101ALI20160906BHEP

Ipc: B01J 19/00 20060101AFI20160906BHEP

INTG Intention to grant announced

Effective date: 20160923

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHE INSTITUTE OF TECHNOLOGY

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 885413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008015246

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008015246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171110

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221118

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231122

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 16

Ref country code: DE

Payment date: 20231120

Year of fee payment: 16

Ref country code: CH

Payment date: 20231201

Year of fee payment: 16

Ref country code: AT

Payment date: 20231117

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231121

Year of fee payment: 16