EP2210306A1 - Method for making proton conducting membranes for fuel cells by radiografting - Google Patents

Method for making proton conducting membranes for fuel cells by radiografting

Info

Publication number
EP2210306A1
EP2210306A1 EP08804642A EP08804642A EP2210306A1 EP 2210306 A1 EP2210306 A1 EP 2210306A1 EP 08804642 A EP08804642 A EP 08804642A EP 08804642 A EP08804642 A EP 08804642A EP 2210306 A1 EP2210306 A1 EP 2210306A1
Authority
EP
European Patent Office
Prior art keywords
compound
matrix
group
membrane
acrylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804642A
Other languages
German (de)
French (fr)
Inventor
Thomas Berthelot
Marie-Claude Clochard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2210306A1 publication Critical patent/EP2210306A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to processes for producing fuel cell proton conductive membranes by a radiografting technique, which technique consists in creating on a polymer matrix free radicals which will be able to react with appropriate compounds by radical reaction.
  • the field of application of the invention is therefore that of fuel cells, and more particularly of fuel cells, comprising as electrolyte, a proton-conducting membrane, such as PEMFC fuel cells.
  • a fuel cell generally comprises a stack of elementary cells in which an electrochemical reaction takes place between two reactants which are introduced continuously.
  • the fuel such as hydrogen
  • the oxidant usually oxygen
  • the anode and the cathode are separated by an electrolyte of the ionic conductive membrane type.
  • the electrochemical reaction whose energy is converted in electrical energy, splits into two half-reactions:
  • the electrochemical reaction takes place, strictly speaking, at an electrode-membrane-electrode assembly.
  • the electrode-membrane-electrode assembly is a very thin assembly with a thickness of the order of a millimeter and each electrode is fed with the appropriate gases, for example using a fluted plate.
  • the ionic conducting membrane is generally an organic membrane containing ionic groups which, in the presence of water, allow the conduction of the protons produced at the anode by oxidation of hydrogen.
  • This membrane is generally between 50 and 150 microns and results from a compromise between the mechanical strength and the ohmic drop.
  • This membrane also allows the separation of gases.
  • the chemical and electrochemical resistance of these membranes allows, in general, a battery operation over periods greater than 1000 hours.
  • the polymer constituting the membrane must therefore fulfill a number of conditions relating to its mechanical, physicochemical and electrical properties which are, inter alia, those defined below.
  • the polymer must first be able to give thin films, generally 50 to 150 micrometers, dense, without defects.
  • the mechanical properties, elastic modulus, tensile strength, ductility, must make it compatible with assembly operations including, for example, clamping between metal frames.
  • the properties must be preserved by changing from dry to wet.
  • the polymer must have good thermal stability to hydrolysis and have good resistance to reduction and oxidation. This thermomechanical stability is appreciated in terms of variation of ionic resistance, and in terms of variation of the mechanical properties.
  • the polymer must finally have a high ionic conductivity, this conductivity being provided by acidic groups, such as carboxylic acid, phosphoric acid or sulfonic acid groups connected to the polymer chain.
  • acidic groups such as carboxylic acid, phosphoric acid or sulfonic acid groups connected to the polymer chain.
  • the sulphonated polystyrene derivatives which have a higher stability than the sulphonated phenolic resins, can then be used, but can not be used at more than 50-60 ° C.
  • polymers consisting of a perfluorinated linear main chain and a side chain carrying a sulfonic acid group.
  • This polymer has a minimum proton conductivity of 0.10 S / cm and a total acid capacity ranging from 0.95 to 1.01 meq / g.
  • this polymer has a high cost in the constitution of a battery (20 to 30% of the total cost of the battery), a limitation in working temperature (of the order of 80 0 C) and a high rate of hydration.
  • the invention relates to a method for producing a fuel cell proton conducting membrane comprising successively:
  • a grafting step of said polymeric matrix thus irradiated by radical reaction with a first compound consisting in bringing said first compound into contact with said irradiated polymeric matrix, said first compound comprising at least one group capable of forming a covalent bond by reaction radical with said matrix and comprising at least one reactive group capable of reacting with a group of a second compound comprising at least one proton-conducting acid group, optionally in the form of salts, to form a covalent bond; - A step of contacting the second compound of the matrix thus grafted, whereby there is reaction with the reactive groups from the first compound and the appropriate groups of the second compound.
  • the aforementioned method is based on the principle of radiografting, that is to say on the principle of grafting by radical reaction with a previously irradiated polymeric matrix.
  • the introduction of proton conducting acid groups takes place in two stages: firstly, grafting the irradiated matrix by radical reaction of a first compound with said matrix, said first compound comprising a group capable of reacting with a group of a second compound to form a covalent bond;
  • the method of the invention comprises a step of irradiating a polymer matrix, this irradiation step having the function of creating free radicals in the material constituting the matrix, this creation of free radicals being a consequence of the transfer of energy of irradiation to said material.
  • the step of irradiating a polymeric matrix may consist in subjecting said matrix to an electron beam (also called electron irradiation). More particularly, this step may consist in scanning the polymer matrix with an accelerated electron beam, this beam being able to be emitted by an electron accelerator (for example, a Van de Graaf accelerator, 2.5 MeV).
  • an electron accelerator for example, a Van de Graaf accelerator, 2.5 MeV.
  • the energy deposition is homogeneous, which means that the free radicals created by this irradiation will be evenly distributed in the volume of the matrix.
  • the step of irradiating a polymeric matrix may also include subjecting said matrix to heavy ion bombardment. It is specified that heavy ions are ions, whose mass is greater than that of carbon. Generally, these are ions selected from krypton, lead, xenon.
  • this step may consist in bombarding the polymer matrix with a heavy ion beam, such as a 4.5 MeV / mau Pb ion beam or a 10 MeV Kr ion beam. / fc.
  • a heavy ion beam such as a 4.5 MeV / mau Pb ion beam or a 10 MeV Kr ion beam. / fc.
  • the heavy energy vector ion passes through the matrix, its speed decreases.
  • the ion gives up its energy, creating damaged areas, whose shape is approximately cylindrical.
  • These areas are called latent traces and include two regions: the heart and the halo of the trace.
  • the core of the trace is a totally degraded zone, namely an area where there is rupture of the constituent bonds of the material generating free radicals.
  • This core is also the region where the heavy ion transmits a considerable amount of energy to the electrons of the material. Then, from this heart, there is emission of secondary electrons, which will cause defects away from the heart, thus generating a halo.
  • the energy deposition is distributed according to the irradiation angle and is inhomogeneous. It is possible to create traces arranged in a predetermined pattern, and thereby to induce grafting of compounds only in the above-mentioned traces. Thus, it is possible to induce different grafting patterns, by modulating the irradiation angle relative to the normal of the faces of the matrix. This angle is advantageously between 15 ° and 60 °, for example, of the order of 30 °. It is possible to create, for example, a matrix comprising latent traces traversing the oriented matrix in two symmetrical directions. It is possible to use two separate ion sources or to successively proceed to irradiation in two directions to create grafting patterns, where the latent traces are crossed.
  • the irradiation step may proceed as follows: irradiation of the polymer matrix with heavy ions; chemical revelation, generally by hydrolysis, of latent traces created by the passage of heavy ions, at the end of which open channels are obtained; electronic irradiation of said open channels, from which the radiografting can proceed.
  • the chemical revelation consists of bringing the matrix into contact with a reagent able to hydrolyze the latent traces so as to form hollow channels instead of these.
  • the latent traces generated have short chains of polymers formed by splitting existing chains during the passage of the ion in the material during the irradiation.
  • the rate of hydrolysis during the revelation is greater than that of the non-irradiated parts.
  • the reagents capable of revealing the latent traces are a function of the material constituting the matrix.
  • the latent traces can in particular be treated with a strongly basic and oxidizing solution, such as a KOH ION solution in the presence of KMnO 4 at 0.25% by weight at a temperature of 65 ° C.
  • a strongly basic and oxidizing solution such as a KOH ION solution in the presence of KMnO 4 at 0.25% by weight at a temperature of 65 ° C.
  • the polymeric matrix is, for example, constituted polyvinylidene fluoride (PVDF), poly (VDF-co-HFP) (vinylidene fluoride-co-hexafluoropropene), poly (VDF-co-TrFE) (vinylidene fluoride-co-trifluoroethylene), poly (VDF-co- co-TrFE-co-ChloroTrFE) (vinylidene fluoride-co-trifluoroethylene-co-monochlorotrifluoroethylene) and other perfluorinated polymers.
  • PVDF
  • a treatment with a Basic solution may be sufficient for example for polymers such as polyethylene terephthalate (PET) and polycarbonate (PC).
  • PET polyethylene terephthalate
  • PC polycarbonate
  • the treatment leads to the formation of hollow cylindrical pores whose diameter is adjustable as a function of the attack time with the basic and oxidizing solution.
  • heavy ion irradiation will be carried out so that the membrane has a number of traces per cm 2 between 10 6 and 10 11 . Typically it will be from 5.10 7 to 5.10 10 , more especially to 10 10 . In any case it should be verified that the mechanical properties of the membrane are not significantly reduced by the amount of traces.
  • the electron irradiation is carried out to induce the formation of free radicals on the wall of the channels, the implementation being in this case similar to that which has been exposed for the electronic irradiation in general and allows the formation of a polymeric coating to fill the pores.
  • the beam is oriented in a direction normal to the surface of the membrane and the surface thereof is scanned homogeneously.
  • the irradiation dose generally ranges from 10 to 200 kGy for radiografting later, it will typically be close to 100 kGy for PVDF.
  • the dose is generally such that it is greater than the gel dose, which corresponds to the dose from which the recombinations between radicals are favored resulting in the creation of interchain bonds leading to the formation of a three-dimensional network (or crosslinking) that is to say the formation of a gel, in order to induce at the same time crosslinking thus making it possible to improve the mechanical properties of the final polymer.
  • the dose be at least 30 kGy.
  • the base polymer matrix may be a matrix made of a polymer chosen from polyurethanes, polyolefins, polycarbonates and polyethylene terephthalates, these polymers being advantageously fluorinated or even perfluorinated.
  • the polymeric matrix may be chosen from matrices made of fluorinated polymers such as polyvinylidene fluoride, copolymers of tetrafluoroethylene and tetrafluoropropylene
  • polymeric matrices based on fluoropolymers are advantageous in that they are resistant to corrosion, have good mechanical properties and low gas permeation. They are therefore particularly suitable for constituting fuel cell membranes.
  • a particularly advantageous matrix of this type is a polyvinylidene fluoride matrix.
  • Polyvinylidene fluoride is chemically inert (especially resistant to corrosion), has good mechanical properties, has a glass transition temperature, which varies from -42 ° C. to -38 ° C., a melting temperature of 170 ° C. and a density of 1.75 g / cm 3 . It also has low gas permeation, which makes it particularly useful as a basis for building fuel cell membranes operating with hydrogen as fuel.
  • This polymer is easily extruded and can be in particular in two crystalline forms, depending on the orientation of the crystallites: the ⁇ phase and the ⁇ phase, the ⁇ phase being characterized in particular by piezoelectric properties.
  • the irradiation step of the polymeric matrix will make it possible to create free radicals in the matrix material.
  • the creation of these free radicals is allowed by the energy generated by the irradiation, which energy is transferred to the material, being concretized by chain breaks and consequently by the creation of these radicals.
  • the free radicals created are alkyl groups carrying a free electron.
  • the radicals present in such an irradiated matrix can be trapped in crystallites in order to prolong the life of the matrix in irradiated form. It is therefore recommended to use matrices containing crystallites and preferably between 30% and 50%, generally 40%.
  • PVDF is of a semi-crystalline nature
  • PVDF which is a thermoplastic polymer which can be melted and then molded, mainly of ⁇ phase is generally obtained by cooling from the molten state, for example after simple extrusion.
  • PVDF mainly based on ⁇ phase is generally obtained by cold bi-stretching, at less than 50 0 C, PVDF predominantly in ⁇ phase. It is recommended to use PVDF mainly comprising the ⁇ phase, since the crystallinity is greater in this case.
  • the first compound intended to be brought into contact with the irradiated matrix is advantageously a compound comprising, as a group capable of reacting by radical reaction to form a covalent bond, an ethylenic group, and as a group a group selected from -CO2H, -NH2, while the second compound will advantageously comprise, as a group reactive with the reactive group of the first compound to form a covalent bond, an -NH2 group when the reactive group of the first compound is a CO 2 H group or a -CO 2 H group, when the reactive group of the first compound is a - NH 2 group .
  • the reaction between the reactive group of the first compound and the group of the second compound is an amidation reaction.
  • the activation may proceed through the reaction of the -CO 2 H-function with a succinimide compound, so as to create a -CO-N-succinimide group which is more reactive with the -NH 2 functions.
  • the first compound comprising, as a reactive group, a group -CO 2 H, acrylic acid may be mentioned.
  • the first compound comprising, as a reactive group -NH 2 group, vinyl amines.
  • the grafting step of the first compound when the group capable of grafting is an ethylenic group, is divided into two phases:
  • reaction phase of the first compound with the irradiated matrix this phase being materialized by an opening of the double bond by reaction with a radical center of the matrix, the radical center thus "moving" from the matrix to a carbon atom from said first compound; a polymerization phase of this first compound from the radical center created on the first grafted compound.
  • the free radicals of the material constituting the matrix cause the propagation of the polymerization reaction of the first compound placed in contact with the matrix.
  • the radical reaction is thus, in this case, a radical polymerization reaction of the first compound contacted, from the irradiated matrix.
  • the membranes obtained will thus comprise a polymer matrix grafted with polymers comprising repeating units resulting from the polymerization of the first compound placed in contact with the irradiated matrix.
  • reaction scheme can be as follows:
  • the membranes at the end of the grafting step comprise a polymeric matrix grafted with grafts of the poly (acrylic acid) type.
  • Such grafts carry -CO2H groups capable of reacting with groups of a second compound (for example, -NH 2 groups) to form a covalent bond.
  • the membranes prepared with such a first compound will thus have grafts of the poly (acrylic acid) type, thus comprising a sequence of the following type:
  • X can represent -CO 2 H.
  • amino acids that is to say compounds comprising both an acidic group, such as a -CO 2 H, -SO 3 group. H, -PO 3 H 2 , and an amino group -NH 2 .
  • amino acids that may be suitable, mention may be made of those corresponding to one of the following formulas:
  • a particular example of a process according to the invention is a process comprising:
  • a step of grafting said polymeric matrix thus irradiated consisting in bringing acrylic acid into contact with said irradiated polymeric matrix; a step of contacting the matrix thus grafted with taurine.
  • the grafts resulting from the reaction of the first compound and optionally of the second compound comprise -CO 2 H groups
  • the methods of the invention are simple and inexpensive implementation methods. They allow a control of the introduced amount of proton conductive groups in the membrane. By playing on the nature of the grafted compounds, it is possible to access membranes having a wide variety of stoichiometries of proton donor species.
  • total acid capacities may be greater than 0.95 to 1.1 meq / g (the meq / g corresponding to the number of moles of proton exchange molecules or equivalents (here acidic) per gram of membrane) .
  • the capacities Total acids are directly dependent on the degree of grafting used, the number of proton exchange functions introduced during the functionalization and thus the nature of the graft.
  • the invention also relates to fuel cell proton conducting membranes obtainable by the method of the invention.
  • the membranes of the invention may correspond to membranes comprising a polymer matrix grafted with grafts obtained by:
  • radical polymerization of a first compound comprising an ethylenic group and as a reactive group a group capable of reacting with a -CO2H group, or a -NH2 group, this first compound possibly being acrylic acid ;
  • reaction of the grafts resulting from the radical polymerization with a second compound comprising, as a group reacting with the group of the first compound to form a covalent bond, an -NH 2 group when the reactive group of the first compound is a CO 2 H group or a -CO 2 H group, when the reactive group of the first compound is a group -NH 2 , said second compound may be taurine, when the first compound is acrylic acid.
  • a particular membrane of the invention is a membrane comprising a polymeric matrix of polyvinylidene fluoride grafted with grafts obtained by: radical polymerization of acrylic acid, generating poly (acrylic acid) chains;
  • the membranes of the invention can be nanostructured.
  • they may consist of: a fluorinated polymeric matrix having a nanostructuration induced by irradiation with heavy ions;
  • nano-domains covalently linked to said matrix consisting of grafts bearing proton-conducting functions, and / or nano-domains containing chains of said matrix that are covalently bound and interpenetrated with the various polymers (modified or otherwise). ) mentioned above.
  • the orientation of these nano-domains between them is a function of the conditions of irradiation with heavy ions of said matrix.
  • the route of the heavy ion being rectilinear, the nanodomains are continuous and form conduction channels.
  • an orientation of the nano-domains perpendicular to the surfaces of said matrix and parallel to each other an orientation of the nano-domains in cross or mesh.
  • nano-domains are covalently bound to said matrix and are impermeable to gases. They constitute privileged conduction pathways for protons. These membranes are intended to be incorporated in fuel cell devices.
  • the invention also relates to a fuel cell device comprising at least one membrane as defined above.
  • This device comprises one or more electrode-membrane-electrode assemblies.
  • the membrane may be placed between two electrodes, for example carbon fabric impregnated with a catalyst.
  • the assembly is then pressed to a suitable temperature in order to obtain good electrode-membrane adhesion.
  • the electrode-membrane-electrode assembly obtained is then placed between two plates, providing electrical conduction and supply of reagents to the electrodes. These plaques are commonly referred to as bipolar plates.
  • FIG. 1 is a photograph obtained by field effect scanning electron microscopy (SEM) comprising two parts: a part (a) representing a PVDF matrix comprising revealed latent traces and a part (b) representing said radiografted membrane in FIGS. latent traces, obtained according to Example 1.3, before coupling with taurine.
  • Figure 2 is a diagram showing a device for measuring the relative proton conductivity of a membrane.
  • FIG. 3 is a graph showing the resistivity R (in ⁇ ) (solid curve) and the proton conductivity C (in mS / cm) (dashed curve) as a function of the fluence F (ions / cm 2 ) for a membrane obtained according to Example 1.1, before coupling with taurine.
  • a matrix with acrylic acid was used.
  • the number of moles of acid introduced was estimated using spectroscopic analyzes.
  • a matrix (6 ⁇ 30 cm, 9 ⁇ m thick) of polyvinylidene fluoride was subjected to heavy Pb 2+ ion bombardment.
  • the fluence varied from 5.10 7 to 5.10 10 ions per cm 2 . This corresponds to a dose ranging from Gy to 1000 kGy.
  • the electron energy loss (dE / dx) ranged from 2.2 to 72.6 MeV cm 2 mg- 1 (0.39 to 12.8 keV nm -1 ) .
  • the irradiation angle was set at 90 ° This stage allowed the creation of latent traces including radical species.
  • the matrices prepared according to this modality were used immediately or stored under an inert atmosphere, such as nitrogen, and generally cold (-18 ° C.), for several months before their use.
  • the irradiated matrix was contacted with acrylic acid by immersion in an aqueous solution, sparged with nitrogen for 15 minutes, containing 25% by weight of acid and 0.1 % by mass Mohr salt at 60 0 C for 1h with stirring.
  • Mohr salt has been used to limit the homopolymerization of acrylic acid.
  • the same protocol was carried out with ethyl acetate as a solvent.
  • the membrane obtained was then extracted from the solution and then washed with water and extracted with boiling water using a Sohxlet apparatus for
  • the degree of grafting defined with respect to the caking of the membrane before and after radiografting, is between 10 and 20% by weight.
  • the matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3), N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix, this value varies from 3 to 10 mmol / l and is generally located around 8 ⁇ mol / l) and carbodiimide (1 equivalent relative to the number of moles of acrylic acid introduced into the matrix) and placed under stirring for 12 hours at room temperature (25 ° C). The matrix was then immersed during
  • the resulting membrane was then washed with water and acetonitrile and dried under vacuum.
  • an acrylic acid grafting rate ranging from 10 to 20% by weight (yield defined by compared to the mass setting of the membrane before and after radiografting), and a functionalization efficiency of 40 to 50 mol% (yield established as a function of the number of modifiable functions introduced by radiografting)
  • the membranes obtained have a total acid capacity of at least 0.58 meq / g. This capacity corresponds to the number of moles of proton exchange molecules or equivalents (here acidic) per gram of membrane.
  • a matrix grafted with acrylic acid was used. This matrix was obtained as follows:
  • a matrix (6 ⁇ 30 cm), 9 ⁇ m thick polyvinylidene fluoride was subjected to electron irradiation.
  • the dose varied from 50 to 150 kGy.
  • the irradiation angle was set at 90 °. This step allowed the creation of radicals trapped within the crystallites of PVDF.
  • the irradiated matrix was brought into contact with acrylic acid.
  • the matrix was immersed in a solution, previously degassed, at 25% by weight of acid in water or ethyl acetate and 0.1% by weight of Mohr salt at 60 ° C. during Ih with stirring. Mohr salt has been used to limit the homopolymerization of acrylic acid.
  • the membrane obtained was then extracted from the solution and then cleaned with water and extracted with boiling water using a Sohxlet machine for 24 hours. It was then dried for 12 hours under high vacuum.
  • the degree of grafting defined with respect to the caking of the membrane before and after radiografting, is between 10 and 40% by weight.
  • the matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3) and N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix). and carbodiimide (1 equivalent based on the number of moles of acrylic acid introduced into the matrix) and stirred for 12h at room temperature (25 ° C).
  • the matrix was then immersed for 12 hours under stirring and at room temperature in a solution of taurine (3 equivalents relative to the number of moles of acrylic acid introduced into the matrix) in a water / acetonitrile mixture (30/70) to which 6 equivalents (relative to taurine) of DIEA 6 equivalents were previously added.
  • the resulting membrane was then washed with water and acetonitrile and dried under vacuum.
  • the membranes obtained have a total acid capacity of at least 1.3 meq / g.
  • a matrix grafted with acrylic acid was used.
  • a matrix was irradiated as explained in section 1.1.
  • the irradiated matrix was put in contact with a solution of KOH ION in the presence of KMnO 4 at 0.25% by weight at a temperature of 65 ° C. for a variable time of 15 min at 1 h.
  • the treatment led to the formation of hollow cylindrical pores whose diameter varies linearly with the etching time of 25 nm to 100 nm.
  • the previously obtained membrane is subjected to the electron irradiation treatment and brought into contact with the acrylic acid as described in section 1.2.
  • the grafting rate defined with respect to the caking of the membrane before and after radiografting is between 5 and 30% by weight.
  • FIG. 1 shows an image obtained by Field Scanning Electron Microscopy (SEM) of an acid-grafted membrane. acrylic. Part (a) corresponds to a zone for which traces have been revealed, part (b) corresponds to a part for which radiografting has been carried out in the revealed traces irradiated with electrons after irradiation.
  • SEM Field Scanning Electron Microscopy
  • the matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3), N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix) and carbodiimide (1 equivalent relative to the number of moles of acrylic acid introduced into the matrix) and placed under stirring for 12 hours at room temperature
  • the resulting membrane was then washed with water and acetonitrile and dried under vacuum.
  • the membranes obtained have a total acid capacity of at least 1.5 meq / g.
  • radiografted membranes following the protocol of Example 1-1, with acrylic acid, before coupling with taurine, were tested dry on a device, represented in FIG. 2, measuring a relative proton conductivity, this device comprising: a Plexiglas tank 1 filled with deionized water 3; a pair of platinum electrodes 5, 7; the membrane 9 disposed between the pair of platinum electrodes 5, 7.
  • the maximum conductivity was obtained for a radiografted PVDF membrane at a fluence of 10 traces per square centimeter, ie 10 channels per square centimeter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Graft Or Block Polymers (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)

Abstract

The invention relates to a method for making a proton-conducting membrane for a fuel cell, that successively comprises: the step of irradiating a polymer matrix; the step of grafting the polymer matrix thus irradiated by a radical reaction with a first compound, that comprises contacting the irradiated polymer matrix with said first compound, wherein said compound includes at least one group capable of forming a covalent bond by radical reaction with said matrix, and includes at least one reactive group capable of reacting with a group of a second compound containing at least one proton-conducting acid group for forming a covalent bond; and the step of contacting the matrix thus grafted with the second compound, whereby a reaction occurs between the reactive groups from the first compound and the appropriate groups of the second compound.

Description

PROCEDE D'ELABORATION DE MEMBRANES CONDUCTRICES DE PROTONS DE PILE A COMBUSTIBLE PAR RADIOGREFFAGE PROCESS FOR PRODUCING FUEL CELL PROTONS CONDUCTIVE MEMBRANES BY RADIOGRAPHY
DESCRIPTION DOMAINE TECHNIQUEDESCRIPTION TECHNICAL FIELD
La présente invention a trait à des procédés d'élaboration de membranes conductrices de protons de pile à combustible par une technique de radiogreffâge, cette technique consistant à créer sur une matrice polymérique des radicaux libres qui vont pouvoir réagir avec des composés appropriés par réaction radicalaire.The present invention relates to processes for producing fuel cell proton conductive membranes by a radiografting technique, which technique consists in creating on a polymer matrix free radicals which will be able to react with appropriate compounds by radical reaction.
Le domaine d'application de l'invention est donc celui des piles à combustible, et plus particulièrement des piles à combustible, comprenant en tant qu' électrolyte, une membrane conductrice de protons, tels que les piles à combustible PEMFCThe field of application of the invention is therefore that of fuel cells, and more particularly of fuel cells, comprising as electrolyte, a proton-conducting membrane, such as PEMFC fuel cells.
(« Proton Exchange Membrane Fuel CeIl » pour Pile à combustible à membrane échangeuse de protons) .("Proton Exchange Membrane Fuel CeIl" for Proton Exchange Membrane Fuel Cell).
ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART
Une pile à combustible comporte, généralement, un empilement de cellules élémentaires, au sein desquelles a lieu une réaction électrochimique entre deux réactifs qui sont introduits de manière continue. Le combustible, tel que l'hydrogène, pour les piles fonctionnant avec des mélanges hydrogène/oxygène, est amené au contact de l'anode, alors que le comburant, généralement l'oxygène, est amené au contact de la cathode. L'anode et la cathode sont séparées par un électrolyte du type membrane conductrice ionique. La réaction électrochimique, dont l'énergie est convertie en énergie électrique, se scinde en deux demi- réactions :A fuel cell generally comprises a stack of elementary cells in which an electrochemical reaction takes place between two reactants which are introduced continuously. The fuel, such as hydrogen, for the cells operating with hydrogen / oxygen mixtures, is brought into contact with the anode, while the oxidant, usually oxygen, is brought into contact with the cathode. The anode and the cathode are separated by an electrolyte of the ionic conductive membrane type. The electrochemical reaction, whose energy is converted in electrical energy, splits into two half-reactions:
- une oxydation du combustible, se déroulant à l'interface anode/électrolyte produisant, dans le cas des piles à hydrogène des protons H+, qui vont traverser l' électrolyte en direction de la cathode, et des électrons, qui rejoignent le circuit extérieur, afin de concourir à la production d'énergie électrique ; - une réduction du comburant, se déroulant à l'interface électrolyte/cathode, avec production d'eau, dans le cas des piles à hydrogène.an oxidation of the fuel, taking place at the anode / electrolyte interface producing, in the case of hydrogen cells, H + protons, which will cross the electrolyte in the direction of the cathode, and electrons, which join the external circuit, to contribute to the production of electrical energy; a reduction of the oxidant, taking place at the electrolyte / cathode interface, with production of water, in the case of hydrogen cells.
La réaction électrochimique a lieu, à proprement parler, au niveau d'un assemblage électrode- membrane-électrode.The electrochemical reaction takes place, strictly speaking, at an electrode-membrane-electrode assembly.
L' assemblage électrode-membrane-électrode est un assemblage très mince d'une épaisseur de l'ordre du millimètre et chaque électrode est alimentée par les gaz appropriés, par exemple à l'aide d'une plaque cannelée.The electrode-membrane-electrode assembly is a very thin assembly with a thickness of the order of a millimeter and each electrode is fed with the appropriate gases, for example using a fluted plate.
La membrane conductrice ionique est généralement une membrane organique contenant des groupes ioniques qui, en présence d'eau, permettent la conduction des protons produits à l'anode par oxydation de l'hydrogène.The ionic conducting membrane is generally an organic membrane containing ionic groups which, in the presence of water, allow the conduction of the protons produced at the anode by oxidation of hydrogen.
L'épaisseur de cette membrane est comprise en général entre 50 et 150 μm et résulte d'un compromis entre la tenue mécanique et la chute ohmique . Cette membrane permet également la séparation des gaz. La résistance chimique et électrochimique de ces membranes permet, en général, un fonctionnement en pile sur des durées supérieures à 1 000 heures.The thickness of this membrane is generally between 50 and 150 microns and results from a compromise between the mechanical strength and the ohmic drop. This membrane also allows the separation of gases. The chemical and electrochemical resistance of these membranes allows, in general, a battery operation over periods greater than 1000 hours.
Le polymère constituant la membrane doit donc remplir un certain nombre de conditions relatives à ses propriétés mécaniques, physico-chimiques et électriques qui sont, entre autres, celles définies ci-après .The polymer constituting the membrane must therefore fulfill a number of conditions relating to its mechanical, physicochemical and electrical properties which are, inter alia, those defined below.
Le polymère doit tout d' abord pouvoir donner des films minces, en général, de 50 à 150 micromètres, denses, sans défauts. Les propriétés mécaniques, module élastique, contrainte à la rupture, ductilité, doivent le rendre compatible avec les opérations d'assemblage comprenant, par exemple, un serrage entre des cadres métalliques. Les propriétés doivent être préservées en passant de l'état sec à l'état humide.The polymer must first be able to give thin films, generally 50 to 150 micrometers, dense, without defects. The mechanical properties, elastic modulus, tensile strength, ductility, must make it compatible with assembly operations including, for example, clamping between metal frames. The properties must be preserved by changing from dry to wet.
Le polymère doit avoir une bonne stabilité thermique à l'hydrolyse et présenter une bonne résistance à la réduction et à l'oxydation. Cette stabilité thermomécanique s'apprécie en termes de variation de résistance ionique, et en termes de variation des propriétés mécaniques.The polymer must have good thermal stability to hydrolysis and have good resistance to reduction and oxidation. This thermomechanical stability is appreciated in terms of variation of ionic resistance, and in terms of variation of the mechanical properties.
Le polymère doit enfin posséder une forte conductivité ionique, cette conductivité étant apportée par des groupements acides, tels que des groupements acide carboxylique, acide phosphorique ou acide sulfonique reliés à la chaîne du polymère.The polymer must finally have a high ionic conductivity, this conductivity being provided by acidic groups, such as carboxylic acid, phosphoric acid or sulfonic acid groups connected to the polymer chain.
Depuis plusieurs décennies, il a été proposé différents types de polymères conducteurs protoniques utilisables pour constituer des membranes de pile à combustible. On a tout d'abord mis en oeuvre des résines de type phénolique sulfonées préparées par sulfonation de produits polycondensés, tels que les polymères phénol-formaldéhyde . Les membranes préparées avec ces produits sont peu coûteuses, mais n'ont pas une stabilité à l'hydrogène suffisante à 50-600C pour des applications de longue durée.For several decades, it has been proposed various types of proton conductive polymers used to form fuel cell membranes. Sulfonated phenolic resins prepared by sulfonation of polycondensed products, such as phenol-formaldehyde polymers, were first used. The membranes prepared with these products are inexpensive but do not have sufficient hydrogen stability at 50-60 ° C. for long-term applications.
On s'est ensuite tourné vers les dérivés du polystyrène sulfoné qui présentent une stabilité supérieure à celle des résines phénoliques sulfonées, mais ne peuvent être utilisés à plus de 50-600C.The sulphonated polystyrene derivatives, which have a higher stability than the sulphonated phenolic resins, can then be used, but can not be used at more than 50-60 ° C.
Actuellement, des performances acceptables sont obtenues à partir de polymères constitués d'une chaîne principale linéaire perfluorée et d'une chaîne latérale portant un groupement acide sulfonique.Currently, acceptable performance is obtained from polymers consisting of a perfluorinated linear main chain and a side chain carrying a sulfonic acid group.
Parmi ces polymères les plus connus, et qui sont disponibles dans le commerce, on peut citer les polymères déposés sous les marques NAFION® de la société Dupont de Nemours.Among these known polymers, which are commercially available, mention may be made of the polymers deposited under the NAFION® brands of the Dupont de Nemours Company.
Ce polymère présente une conductivité protonique minimale de 0,10 S/cm et une capacité totale acide allant de 0,95 à 1,01 méq/g. Toutefois, ce polymère présente un coût élevé dans la constitution d'une pile (20 à 30% du coût total de la pile), une limitation en température de travail (de l'ordre de 800C) et un taux élevé d'hydratation.This polymer has a minimum proton conductivity of 0.10 S / cm and a total acid capacity ranging from 0.95 to 1.01 meq / g. However, this polymer has a high cost in the constitution of a battery (20 to 30% of the total cost of the battery), a limitation in working temperature (of the order of 80 0 C) and a high rate of hydration.
Il existe donc un véritable besoin d'élaborer des membranes conductrices de protons qui soient moins onéreuses, en permettant de travailler avec des matériaux de base moins coûteux et dont la conductivité puisse être contrôlée.There is therefore a real need to develop proton conducting membranes that are less expensive, allowing to work with less expensive base materials and whose conductivity can be controlled.
EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION
Ainsi, l'invention a trait à un procédé d'élaboration d'une membrane conductrice de protons de pile à combustible comprenant successivement :Thus, the invention relates to a method for producing a fuel cell proton conducting membrane comprising successively:
- une étape d'irradiation d'une matrice polymérique ;a step of irradiating a polymeric matrix;
- une étape de greffage de ladite matrice polymérique ainsi irradiée par réaction radicalaire avec un premier composé, consistant en la mise en contact dudit premier composé avec ladite matrice polymérique irradiée, ledit premier composé comprenant au moins un groupe apte à former une liaison covalente par réaction radicalaire avec ladite matrice et comprenant au moins un groupe réactif apte à réagir avec un groupe d'un second composé comprenant au moins un groupe acide conducteur de protons, éventuellement sous forme de sels, pour former une liaison covalente ; - une étape de mise en contact avec le second composé de la matrice ainsi greffée, moyennant quoi il y a réaction avec les groupes réactifs issus du premier composé et les groupes appropriés du deuxième composé . Le procédé susmentionné est basé sur le principe du radiogreffâge, c'est-à-dire sur le principe du greffage par réaction radicalaire avec une matrice polymérique préalablement irradiée.a grafting step of said polymeric matrix thus irradiated by radical reaction with a first compound, consisting in bringing said first compound into contact with said irradiated polymeric matrix, said first compound comprising at least one group capable of forming a covalent bond by reaction radical with said matrix and comprising at least one reactive group capable of reacting with a group of a second compound comprising at least one proton-conducting acid group, optionally in the form of salts, to form a covalent bond; - A step of contacting the second compound of the matrix thus grafted, whereby there is reaction with the reactive groups from the first compound and the appropriate groups of the second compound. The aforementioned method is based on the principle of radiografting, that is to say on the principle of grafting by radical reaction with a previously irradiated polymeric matrix.
L' introduction de groupes acides conducteurs de protons se déroule en deux temps : - premièrement, le greffage de la matrice irradiée par réaction radicalaire d'un premier composé avec ladite matrice, ledit premier composé comprenant un groupe apte à réagir avec un groupe d'un deuxième composé pour former une liaison covalente ;The introduction of proton conducting acid groups takes place in two stages: firstly, grafting the irradiated matrix by radical reaction of a first compound with said matrix, said first compound comprising a group capable of reacting with a group of a second compound to form a covalent bond;
- deuxièmement, la réaction dudit deuxième composé comprenant au moins un groupe acide conducteur de protons avec les groupes réactifs issus du premier composé, pour former une liaison covalente. Grâce au procédé de l'invention, en jouant sur le taux d'irradiation de la matrice, il est possible de jouer sur la quantité introduite de composés comportant un groupe acide conducteur de protons et ainsi il est possible de moduler la conductivité protonique du matériau résultant. Il est aussi possible d' introduire différents types de groupes conducteurs de protons en fonction de la nature des composés mis à réagir avec la matrice irradiée.second, reacting said second compound comprising at least one proton-conducting acid group with the reactive groups derived from the first compound, to form a covalent bond. By means of the method of the invention, by varying the irradiation rate of the matrix, it is possible to modify the quantity of compounds comprising a proton-conducting acid group and thus it is possible to modulate the proton conductivity of the material. resulting. It is also possible to introduce different types of proton conductive groups depending on the nature of the compounds reacted with the irradiated matrix.
Le procédé de l'invention comprend une étape d'irradiation d'une matrice polymérique, cette étape d' irradiation ayant pour fonction de créer des radicaux libres dans le matériau constitutif de la matrice, cette création de radicaux libres étant une conséquence du transfert d'énergie de l'irradiation audit matériau.The method of the invention comprises a step of irradiating a polymer matrix, this irradiation step having the function of creating free radicals in the material constituting the matrix, this creation of free radicals being a consequence of the transfer of energy of irradiation to said material.
L'étape d'irradiation d'une matrice polymérique peut consister à soumettre ladite matrice à un faisceau d'électrons (appelée également irradiation électronique) . Plus particulièrement, cette étape peut consister à balayer la matrice polymérique avec un faisceau d'électrons accélérés, ce faisceau pouvant être émis par un accélérateur d'électrons (par exemple, un accélérateur Van de Graaf, 2,5 MeV) . Dans le cas de l'irradiation par faisceau d'électrons, le dépôt d'énergie est homogène, ce qui signifie que les radicaux libres créés par cette irradiation seront répartis uniformément dans le volume de la matrice.The step of irradiating a polymeric matrix may consist in subjecting said matrix to an electron beam (also called electron irradiation). More particularly, this step may consist in scanning the polymer matrix with an accelerated electron beam, this beam being able to be emitted by an electron accelerator (for example, a Van de Graaf accelerator, 2.5 MeV). In the case of electron beam irradiation, the energy deposition is homogeneous, which means that the free radicals created by this irradiation will be evenly distributed in the volume of the matrix.
L'étape d'irradiation d'une matrice polymérique peut consister également à soumettre ladite matrice à un bombardement par des ions lourds. On précise que par ions lourds, on entend des ions, dont la masse est supérieure à celle du carbone. Généralement, il s'agit d'ions choisis parmi le krypton, le plomb, le xénon.The step of irradiating a polymeric matrix may also include subjecting said matrix to heavy ion bombardment. It is specified that heavy ions are ions, whose mass is greater than that of carbon. Generally, these are ions selected from krypton, lead, xenon.
Plus particulièrement, cette étape peut consister à bombarder la matrice polymérique avec un faisceau d'ions lourds, tel qu'un faisceau d'ions Pb d'intensité 4,5 MeV/mau ou un faisceau d'ions Kr d'intensité 10 MeV/mau.More particularly, this step may consist in bombarding the polymer matrix with a heavy ion beam, such as a 4.5 MeV / mau Pb ion beam or a 10 MeV Kr ion beam. / fc.
D'un point de vue mécanistique, lorsque l'ion lourd vecteur d'énergie traverse la matrice, sa vitesse diminue. L'ion cède son énergie, en créant des zones endommagées, dont la forme est approximativement cylindrique. Ces zones sont appelées traces latentes et comprennent deux régions : le cœur et le halo de la trace. Le cœur de la trace est une zone totalement dégradée, à savoir une zone où il y a rupture des liaisons constitutives du matériau générant des radicaux libres. Ce cœur est également la région où l'ion lourd transmet une quantité considérable d'énergie aux électrons du matériau. Puis, à partir de ce cœur, il y a émission d'électrons secondaires, qui vont provoquer des défauts loin du cœur, générant ainsi un halo.From a mechanistic point of view, when the heavy energy vector ion passes through the matrix, its speed decreases. The ion gives up its energy, creating damaged areas, whose shape is approximately cylindrical. These areas are called latent traces and include two regions: the heart and the halo of the trace. The core of the trace is a totally degraded zone, namely an area where there is rupture of the constituent bonds of the material generating free radicals. This core is also the region where the heavy ion transmits a considerable amount of energy to the electrons of the material. Then, from this heart, there is emission of secondary electrons, which will cause defects away from the heart, thus generating a halo.
Dans le cas de l'irradiation par ions lourds, le dépôt d'énergie se répartit en fonction de l'angle d'irradiation et est inhomogène. Il est possible de créer des traces disposées selon un schéma prédéterminé, et d'induire ainsi par voie de conséquence le greffage de composés uniquement dans les traces susmentionnées. Ainsi, il est possible d'induire différents schémas de greffage, en modulant l'angle d' irradiation par rapport à la normale des faces de la matrice. Cet angle est avantageusement compris entre 15° et 60°, par exemple, de l'ordre de 30°. Il est possible de créer, par exemple, une matrice comprenant des traces latentes traversant la matrice orientée dans deux directions symétriques. Il est possible d'utiliser deux sources d'ions distincts ou de procéder successivement à une irradiation selon deux directions pour créer des schémas de greffage, où les traces latentes sont croisées.In the case of heavy ion irradiation, the energy deposition is distributed according to the irradiation angle and is inhomogeneous. It is possible to create traces arranged in a predetermined pattern, and thereby to induce grafting of compounds only in the above-mentioned traces. Thus, it is possible to induce different grafting patterns, by modulating the irradiation angle relative to the normal of the faces of the matrix. This angle is advantageously between 15 ° and 60 °, for example, of the order of 30 °. It is possible to create, for example, a matrix comprising latent traces traversing the oriented matrix in two symmetrical directions. It is possible to use two separate ion sources or to successively proceed to irradiation in two directions to create grafting patterns, where the latent traces are crossed.
Selon un mode de réalisation particulier, l'étape d'irradiation peut se dérouler de la manière suivante : - irradiation de la matrice polymérique par des ions lourds ; révélation chimique, généralement par hydrolyse, des traces latentes créées par le passage des ions lourds, à l'issue de laquelle l'on obtient des canaux ouverts ; irradiation électronique desdits canaux ouverts, à partir desquels pourra se dérouler le radiogreffâge .According to a particular embodiment, the irradiation step may proceed as follows: irradiation of the polymer matrix with heavy ions; chemical revelation, generally by hydrolysis, of latent traces created by the passage of heavy ions, at the end of which open channels are obtained; electronic irradiation of said open channels, from which the radiografting can proceed.
La révélation chimique consiste à mettre en contact la matrice avec un réactif apte à hydrolyser les traces latentes, de façon à former des canaux creux à la place de celles-ci.The chemical revelation consists of bringing the matrix into contact with a reagent able to hydrolyze the latent traces so as to form hollow channels instead of these.
Selon ce mode de réalisation particulier, suite à l'irradiation de la matrice polymérique par des ions lourds, les traces latentes générées présentent des chaînes courtes de polymères formées par scission des chaînes existantes lors du passage de l'ion dans la matière durant l'irradiation. Dans ces traces latentes, la vitesse d'hydrolyse lors de la révélation est plus importante que celle des parties non irradiées. Ainsi, il est possible de procéder à une révélation sélective. Les réactifs susceptibles d'assurer la révélation des traces latentes sont fonction du matériau constitutif de la matrice. Ainsi, les traces latentes peuvent notamment être traitées par une solution fortement basique et oxydante, comme une solution KOH ION en présence de KMnO4 à 0,25% en poids à une température de 65°C, lorsque la matrice polymérique est par exemple constituée de polyfluorure de vinylidène (PVDF) , de poly (VDF-co-HFP) (fluorure de vinylidène-co- hexafluoropropène) , de poly (VDF-co-TrFE) (fluorure de vinylidène-co-trifluoroéthylène) , poly (VDF-co-TrFE-co- ChloroTrFE) (fluorure de vinylidène-co- trifluoroéthylène-co- monochlorotrifluoroéthylène) et autres polymères perfluorés. Un traitement avec une solution basique, éventuellement couplée avec une sensibilisation des traces par UV, peut suffire par exemple pour des polymères comme du polyéthylene téréphthalate (PET) et du polycarbonate (PC) . Le traitement conduit à la formation de pores cylindriques creux dont le diamètre est modulable en fonction du temps d'attaque avec la solution basique et oxydante. Généralement l'irradiation par ions lourds sera effectuée de telle sorte que la membrane comporte un nombre de traces par cm2 compris entre 106 et 1011. Typiquement il sera compris entre 5.107 et 5.1010, plus spécialement vers 1010. En tout état de cause il convient de vérifier que les propriétés mécaniques de la membrane ne sont pas amoindries de façon significative par la quantité de traces.According to this particular embodiment, following the irradiation of the polymer matrix with heavy ions, the latent traces generated have short chains of polymers formed by splitting existing chains during the passage of the ion in the material during the irradiation. In these latent traces, the rate of hydrolysis during the revelation is greater than that of the non-irradiated parts. Thus, it is possible to carry out a selective revelation. The reagents capable of revealing the latent traces are a function of the material constituting the matrix. Thus, the latent traces can in particular be treated with a strongly basic and oxidizing solution, such as a KOH ION solution in the presence of KMnO 4 at 0.25% by weight at a temperature of 65 ° C., when the polymeric matrix is, for example, constituted polyvinylidene fluoride (PVDF), poly (VDF-co-HFP) (vinylidene fluoride-co-hexafluoropropene), poly (VDF-co-TrFE) (vinylidene fluoride-co-trifluoroethylene), poly (VDF-co- co-TrFE-co-ChloroTrFE) (vinylidene fluoride-co-trifluoroethylene-co-monochlorotrifluoroethylene) and other perfluorinated polymers. A treatment with a Basic solution, optionally coupled with trace sensitization by UV, may be sufficient for example for polymers such as polyethylene terephthalate (PET) and polycarbonate (PC). The treatment leads to the formation of hollow cylindrical pores whose diameter is adjustable as a function of the attack time with the basic and oxidizing solution. Generally heavy ion irradiation will be carried out so that the membrane has a number of traces per cm 2 between 10 6 and 10 11 . Typically it will be from 5.10 7 to 5.10 10 , more especially to 10 10 . In any case it should be verified that the mechanical properties of the membrane are not significantly reduced by the amount of traces.
D' autres informations concernant les réactifs et les conditions opératoires utilisables pour la révélation chimique en fonction du matériau constitutif de la matrice peuvent être trouvées dans Rev.Mod.Phys. , Vol. 55, N° 4, oct.1983, p.925.Further information regarding the reagents and operating conditions that can be used for chemical revelation as a function of the material constituting the matrix can be found in Rev.Mod.Phys. , Flight. 55, No. 4, Oct. 1986, p.925.
Après cette étape de révélation, l'irradiation aux électrons est effectuée pour induire la formation de radicaux libres sur la paroi des canaux, la mise en œuvre étant dans ce cas similaire à celle qui a été exposée pour l' irradiation électronique en général et permet la formation d'un revêtement polymérique pour combler les pores. Généralement le faisceau est orienté dans une direction normale à la surface de la membrane et la surface de celle-ci est balayée de façon homogène. La dose d'irradiation varie généralement de 10 à 200 kGy pour le radiogreffâge ultérieur, elle sera typiquement proche de 100 kGy pour le PVDF. La dose est généralement telle qu'elle est supérieure à la dose gel, qui correspond à la dose à partir de laquelle les recombinaisons entre radicaux sont favorisées entraînant la création de liaisons interchaînes menant à la formation d'un réseau tridimensionnel (ou encore réticulation) c'est-à-dire la formation d'un gel, afin d'induire en même temps des réticulations permettant ainsi d'améliorer les propriétés mécaniques du polymère final. Ainsi, pour le PVDF, il est recommandé, que la dose soit au moins égale à 30 kGy.After this step of revelation, the electron irradiation is carried out to induce the formation of free radicals on the wall of the channels, the implementation being in this case similar to that which has been exposed for the electronic irradiation in general and allows the formation of a polymeric coating to fill the pores. Generally the beam is oriented in a direction normal to the surface of the membrane and the surface thereof is scanned homogeneously. The irradiation dose generally ranges from 10 to 200 kGy for radiografting later, it will typically be close to 100 kGy for PVDF. The dose is generally such that it is greater than the gel dose, which corresponds to the dose from which the recombinations between radicals are favored resulting in the creation of interchain bonds leading to the formation of a three-dimensional network (or crosslinking) that is to say the formation of a gel, in order to induce at the same time crosslinking thus making it possible to improve the mechanical properties of the final polymer. Thus, for PVDF, it is recommended that the dose be at least 30 kGy.
La matrice polymérique de base peut être une matrice en un polymère choisi parmi les polyuréthanes, les polyoléfines, les polycarbonates, les polyéthylènetéréphtalates, ces polymères étant avantageusement fluorés voire perfluorés.The base polymer matrix may be a matrix made of a polymer chosen from polyurethanes, polyolefins, polycarbonates and polyethylene terephthalates, these polymers being advantageously fluorinated or even perfluorinated.
De préférence, la matrice polymérique peut être choisie parmi les matrices en polymères fluorés tels que le polyfluorure de vinylidène, les copolymères de tétrafluoroéthylène et de tétrafluoropropylènePreferably, the polymeric matrix may be chosen from matrices made of fluorinated polymers such as polyvinylidene fluoride, copolymers of tetrafluoroethylene and tetrafluoropropylene
(connus sous l'abréviation FEP), les copolymères d' éthylène et de tétrafluoroéthylène (connus sous l'abréviation ETFE), les copolymères d' hexafluoropropène et de fluorure de vinylidène(known under the abbreviation FEP), copolymers of ethylene and tetrafluoroethylene (known by the abbreviation ETFE), copolymers of hexafluoropropene and of vinylidene fluoride
(connus sous l'abréviation HFP-co-VDF) , de fluorure de vinylidène et de trifluoroéthylène (connus sous l'abréviation VDF-co-TrFE) , de fluorure de vinylidène, de trifluoroéthylène et de monochlorotrifluoroéthylène (connu sous l'abréviation VDF-co-TrFE-co-chloroTrFE) . Les matrices polymériques à base de polymères fluorés sont avantageuses, en ce sens qu'elles sont résistantes à la corrosion, présentent de bonnes propriétés mécaniques et une faible perméation aux gaz. Elles sont donc particulièrement adaptées pour constituer des membranes de piles à combustible.(known under the abbreviation HFP-co-VDF), vinylidene fluoride and trifluoroethylene (known under the abbreviation VDF-co-TrFE), vinylidene fluoride, trifluoroethylene and monochlorotrifluoroethylene (known under the abbreviation VDF) -co-TrFE-co-chloroTrFE). Polymeric matrices based on fluoropolymers are advantageous in that they are resistant to corrosion, have good mechanical properties and low gas permeation. They are therefore particularly suitable for constituting fuel cell membranes.
Une matrice de ce type particulièrement avantageuse est une matrice en polyfluorure de vinylidène. Le polyfluorure de vinylidène est inerte chimiquement (résistant notamment à la corrosion) , présente de bonnes propriétés mécaniques, a une température de transition vitreuse, qui varie de -420C à -38°C, une température de fusion de 1700C et une densité de 1,75 g/cm3. Il présente également une faible perméation aux gaz, ce qui le rend particulièrement intéressant comme base pour constituer des membranes de pile à combustible fonctionnant avec de l'hydrogène comme combustible. Ce polymère s'extrude aisément et peut se présenter notamment sous deux formes cristallines, selon l'orientation des cristallites : la phase α et la phase β, la phase β se caractérisant notamment par des propriétés piézoélectriques.A particularly advantageous matrix of this type is a polyvinylidene fluoride matrix. Polyvinylidene fluoride is chemically inert (especially resistant to corrosion), has good mechanical properties, has a glass transition temperature, which varies from -42 ° C. to -38 ° C., a melting temperature of 170 ° C. and a density of 1.75 g / cm 3 . It also has low gas permeation, which makes it particularly useful as a basis for building fuel cell membranes operating with hydrogen as fuel. This polymer is easily extruded and can be in particular in two crystalline forms, depending on the orientation of the crystallites: the α phase and the β phase, the β phase being characterized in particular by piezoelectric properties.
Comme mentionné précédemment, l'étape d' irradiation de la matrice polymérique va permettre de créer des radicaux libres dans le matériau de la matrice. D'un point de vue mécanistique, la création de ces radicaux libres est permise par l'énergie générée par l' irradiation, laquelle énergie est transférée au matériau, se concrétisant par des ruptures de chaînes et par voie de conséquence par la création de ces radicaux . Par exemple, dans le cas du polyflurorure de vinylidène, les radicaux libres créés sont des groupes alkyles porteurs d'un électron libre.As mentioned above, the irradiation step of the polymeric matrix will make it possible to create free radicals in the matrix material. From a mechanistic point of view, the creation of these free radicals is allowed by the energy generated by the irradiation, which energy is transferred to the material, being concretized by chain breaks and consequently by the creation of these radicals. For example, in the case of polyvinylidene fluoride, the free radicals created are alkyl groups carrying a free electron.
Les radicaux présents dans une telle matrice irradiée peuvent être piégés dans des cristallites, afin de prolonger la durée de vie de la matrice sous forme irradiée. Il est donc recommander d'employer des matrices comportant des cristallites et de préférence entre 30% et 50%, généralement 40%. Ainsi par exemple, le PVDF est de nature semi-cristallinneThe radicals present in such an irradiated matrix can be trapped in crystallites in order to prolong the life of the matrix in irradiated form. It is therefore recommended to use matrices containing crystallites and preferably between 30% and 50%, generally 40%. For example, PVDF is of a semi-crystalline nature
(il présente généralement 40% de cristallinité et 60% de forme amorphe) et peut se présenter sous plusieurs phases cristallines, CC, β, γ et δ constituées par l'association, planaire ou en hélice, de chaînes. Les phases α et β sont les plus courantes. Le PVDF, qui est un polymère thermoplastique qui peut donc être fondu puis moulé, majoritairement de phase α est généralement obtenu par refroidissement à partir de l'état fondu, par exemple après extrusion simple. Le PVDF majoritairement à base de phase β est généralement obtenu par bi-étirage à froid, à moins de 500C, de PVDF majoritairement sous phase α. Il est recommandé d'employé du PVDF comportant majoritairement de la phase β, car la cristalinnité est plus grande dans ce cas .(It generally has 40% crystallinity and 60% amorphous form) and can be in several crystalline phases, CC, β, γ and δ formed by the association, planar or helical, chains. The α and β phases are the most common. PVDF, which is a thermoplastic polymer which can be melted and then molded, mainly of α phase is generally obtained by cooling from the molten state, for example after simple extrusion. PVDF mainly based on β phase is generally obtained by cold bi-stretching, at less than 50 0 C, PVDF predominantly in α phase. It is recommended to use PVDF mainly comprising the β phase, since the crystallinity is greater in this case.
Le premier composé destiné à être mis en contact avec la matrice irradiée est avantageusement un composé comprenant, en tant que groupe apte à réagir par réaction radicalaire pour former une liaison covalente, un groupe éthylénique, et en tant que groupe réactif un groupe choisi parmi -CO2H, -NH2, tandis que le deuxième composé comprendra, avantageusement, en tant que groupe réagissant avec le groupe réactif du premier composé pour former une liaison covalente, un groupe -NH2 lorsque le groupe réactif du premier composé est un groupe CO2H ou un groupe -CO2H, lorsque le groupe réactif du premier composé est un groupe - NH2. Dans ces deux cas, la réaction entre le groupe réactif du premier composé et le groupe du second composé est une réaction d'amidation. Il peut être nécessaire d'activer la fonction carboxyle de façon à faciliter la réaction avec une fonction -NH2 du deuxième composé. I/ activation peut passer par la réaction de la fonction -CO2H avec un composé succinimide, de façon à créer un groupe -CO-N- succinimide plus réactif vis-à-vis des fonctions -NH2.The first compound intended to be brought into contact with the irradiated matrix is advantageously a compound comprising, as a group capable of reacting by radical reaction to form a covalent bond, an ethylenic group, and as a group a group selected from -CO2H, -NH2, while the second compound will advantageously comprise, as a group reactive with the reactive group of the first compound to form a covalent bond, an -NH2 group when the reactive group of the first compound is a CO 2 H group or a -CO 2 H group, when the reactive group of the first compound is a - NH 2 group . In both cases, the reaction between the reactive group of the first compound and the group of the second compound is an amidation reaction. It may be necessary to activate the carboxyl function so as to facilitate the reaction with an -NH 2 function of the second compound. The activation may proceed through the reaction of the -CO 2 H-function with a succinimide compound, so as to create a -CO-N-succinimide group which is more reactive with the -NH 2 functions.
On peut citer comme premier composé comprenant, en tant que groupe réactif un groupe -CO2H, l'acide acrylique. On peut citer comme premier composé comprenant, en tant que groupe réactif un groupe -NH2, des aminés vinyliques.As the first compound comprising, as a reactive group, a group -CO 2 H, acrylic acid may be mentioned. The first compound comprising, as a reactive group -NH 2 group, vinyl amines.
L'étape de greffage du premier composé, lorsque le groupe apte à se greffer est un groupe éthylénique, se répartit en deux phases :The grafting step of the first compound, when the group capable of grafting is an ethylenic group, is divided into two phases:
- une phase de réaction du premier composé avec la matrice irradiée, cette phase se matérialisant par une ouverture de la double liaison par réaction avec un centre radicalaire de la matrice, le centre radicalaire se « déplaçant » ainsi de la matrice vers un atome de carbone issu dudit premier composé ; - une phase de polymérisation de ce premier composé à partir du centre radicalaire créé sur le premier composé greffé.a reaction phase of the first compound with the irradiated matrix, this phase being materialized by an opening of the double bond by reaction with a radical center of the matrix, the radical center thus "moving" from the matrix to a carbon atom from said first compound; a polymerization phase of this first compound from the radical center created on the first grafted compound.
En d'autres termes, les radicaux libres du matériau constitutif de la matrice engendrent la propagation de la réaction de polymérisation du premier composé mis en contact avec la matrice. La réaction radicalaire est ainsi, dans ce cas de figure, une réaction de polymérisation radicalaire du premier composé mis en contact, à partir de la matrice irradiée .In other words, the free radicals of the material constituting the matrix cause the propagation of the polymerization reaction of the first compound placed in contact with the matrix. The radical reaction is thus, in this case, a radical polymerization reaction of the first compound contacted, from the irradiated matrix.
A l'issue de la phase de polymérisation, les membranes obtenues comprendront ainsi une matrice polymérique greffée par des polymères comprenant des unités répétitives issues de la polymérisation du premier composé mis en contact avec la matrice irradiée .At the end of the polymerization phase, the membranes obtained will thus comprise a polymer matrix grafted with polymers comprising repeating units resulting from the polymerization of the first compound placed in contact with the irradiated matrix.
Si l'on représente le premier composé par la formule =-R (R représentant un groupe réactif apte à réagir avec un groupe du second composé) , le schéma réactionnel peut être le suivant : If the first compound is represented by the formula = -R (R representing a reactive group capable of reacting with a group of the second compound), the reaction scheme can be as follows:
Matrice Matrice Matrix Matrix
Matrice Matrix
Lorsque le premier composé est l'acide acrylique, les membranes à l'issue de l'étape de greffage, comprennent une matrice polymérique greffée par des greffons du type poly (acide acrylique) . De tels greffons sont porteurs de groupes -CO2H aptes à réagir avec des groupes d'un deuxième composé (par exemple, des groupes -NH2) pour former une liaison covalente.When the first compound is acrylic acid, the membranes at the end of the grafting step comprise a polymeric matrix grafted with grafts of the poly (acrylic acid) type. Such grafts carry -CO2H groups capable of reacting with groups of a second compound (for example, -NH 2 groups) to form a covalent bond.
Les membranes préparées avec un tel premier composé présenteront ainsi des greffons du type poly (acide acrylique) comprenant ainsi un enchaînement du type suivant : The membranes prepared with such a first compound will thus have grafts of the poly (acrylic acid) type, thus comprising a sequence of the following type:
X pouvant représenter -CO2H.X can represent -CO 2 H.
Les distances théoriques entre deux protons acides peuvent être évaluées entre 2,3 et 7 Â, ce qui laisse envisager que la conduction protonique pourra prendre place même à de très faibles taux d' hydratation .The theoretical distances between two acidic protons can be evaluated between 2.3 and 7 Å, which suggests that proton conduction may take place even at very low levels of hydration.
En tant que second composé comprenant un groupe -NH2, on peut citer avantageusement des acides aminés, c'est-à-dire des composés comprenant à la fois un groupe acide, tel qu'un groupe -CO2H, -SO3H, -PO3H2, et un groupe aminé -NH2. A titres d'exemples d'aminés aminés susceptibles de convenir, on peut citer ceux répondant à l'une des formules suivantes : As a second compound comprising an -NH 2 group, it is advantageous to mention amino acids, that is to say compounds comprising both an acidic group, such as a -CO 2 H, -SO 3 group. H, -PO 3 H 2 , and an amino group -NH 2 . As examples of amino amines that may be suitable, mention may be made of those corresponding to one of the following formulas:
En tant que second composé comprenant un groupe -COOH, on peut citer les composés correspondant à l'une des formules suivantes :As a second compound comprising a -COOH group, there may be mentioned compounds corresponding to one of the following formulas:
Un exemple particulier de procédé conforme à l'invention est un procédé comprenant : A particular example of a process according to the invention is a process comprising:
- une étape d'irradiation d'une matrice en polyfluorure de vinylidène ;a step of irradiating a polyvinylidene fluoride matrix;
- une étape de greffage de ladite matrice polymérique ainsi irradiée consistant en la mise en contact d'acide acrylique avec ladite matrice polymérique irradiée; - une étape de mise en contact de la matrice ainsi greffée, avec de la taurine.a step of grafting said polymeric matrix thus irradiated consisting in bringing acrylic acid into contact with said irradiated polymeric matrix; a step of contacting the matrix thus grafted with taurine.
Lorsque les greffons résultant de la réaction du premier composé et éventuellement du second composé comportent des groupes -CO2H, il peut être envisageable de soumettre les membranes résultantes à une étape de sulfonation permettant la transformation des groupes -CO2H en groupes -SO3H par action, par exemple, d'acide chlorosulfonique .When the grafts resulting from the reaction of the first compound and optionally of the second compound comprise -CO 2 H groups, it may be possible to subject the resulting membranes to a sulfonation step allowing the conversion of -CO 2 H groups into -SO groups. 3 H by action, for example, chlorosulfonic acid.
Les procédés de l'invention sont des procédés de mise en œuvre simple et peu onéreux. Ils permettent un contrôle de la quantité introduite de groupes conducteurs de protons dans la membrane. En jouant sur la nature des composés greffés, il est possible d'accéder à des membranes présentant une large variété de stoechiométries d'espèces donneuses de protons .The methods of the invention are simple and inexpensive implementation methods. They allow a control of the introduced amount of proton conductive groups in the membrane. By playing on the nature of the grafted compounds, it is possible to access membranes having a wide variety of stoichiometries of proton donor species.
Il est envisageable d'obtenir des capacités acides totales pouvant être supérieures à 0,95 à 1,1 méq/g (les méq/g correspondant au nombre de moles de molécules échangeuses de protons ou d'équivalents (ici acide) par gramme de membrane) . Les capacités acides totales sont directement dépendantes du taux de greffage utilisé, du nombre de fonctions échangeuses de protons introduites au cours de la fonctionnalisation et donc de la nature du greffon.It is conceivable to obtain total acid capacities that may be greater than 0.95 to 1.1 meq / g (the meq / g corresponding to the number of moles of proton exchange molecules or equivalents (here acidic) per gram of membrane) . The capacities Total acids are directly dependent on the degree of grafting used, the number of proton exchange functions introduced during the functionalization and thus the nature of the graft.
Ainsi, l'invention a trait également à des membranes conductrices de protons de pile à combustible susceptibles d'être obtenues par le procédé de 1' invention . En particulier, les membranes de l'invention peuvent correspondre à des membranes comprenant une matrice polymère greffée par des greffons obtenus par :Thus, the invention also relates to fuel cell proton conducting membranes obtainable by the method of the invention. In particular, the membranes of the invention may correspond to membranes comprising a polymer matrix grafted with grafts obtained by:
- polymérisation radicalaire d'un premier composé comprenant un groupe éthylénique et en tant que groupe réactif un groupe apte à réagir avec un groupe -CO2H, ou un groupe -NH2, ce premier composé pouvant être l'acide acrylique ; radical polymerization of a first compound comprising an ethylenic group and as a reactive group a group capable of reacting with a -CO2H group, or a -NH2 group, this first compound possibly being acrylic acid ;
- réaction des greffons issus de la polymérisation radicalaire avec une deuxième composé comprenant en tant que groupe réagissant avec le groupe du premier composé pour former une liaison covalente, un groupe -NH2 lorsque le groupe réactif du premier composé est un groupe CO2H ou un groupe -CO2H, lorsque le groupe réactif du premier composé est un groupe -NH2, ledit deuxième composé pouvant être la taurine, lorsque le premier composé est l'acide acrylique.reaction of the grafts resulting from the radical polymerization with a second compound comprising, as a group reacting with the group of the first compound to form a covalent bond, an -NH 2 group when the reactive group of the first compound is a CO 2 H group or a -CO 2 H group, when the reactive group of the first compound is a group -NH 2 , said second compound may be taurine, when the first compound is acrylic acid.
Plus précisément, une membrane particulière de l'invention est une membrane comprenant une matrice polymérique en polyfluorure de vinylidène greffée par des greffons obtenus par : - polymérisation radicalaire de l'acide acrylique, générant des chaînes poly (acide acrylique) ;More specifically, a particular membrane of the invention is a membrane comprising a polymeric matrix of polyvinylidene fluoride grafted with grafts obtained by: radical polymerization of acrylic acid, generating poly (acrylic acid) chains;
- réaction des chaînes poly (acide acrylique) avec de la taurine. Les membranes de l'invention peuvent être nanostructurées . En particulier, elles peuvent être constituées : d'une matrice polymérique fluorée possédant une nanostructuration induite par l'irradiation aux ions lourds ;reaction of poly (acrylic acid) chains with taurine. The membranes of the invention can be nanostructured. In particular, they may consist of: a fluorinated polymeric matrix having a nanostructuration induced by irradiation with heavy ions;
- de nano-domaines liés de façon covalente à ladite matrice, constitués des greffons portant des fonctions conductrices de protons, et/ou de nano- domaines contenant des chaînes de la dite matrice liées de façon covalente et interpénétrées aux différents polymères (modifiés ou non) cités précédemment.nano-domains covalently linked to said matrix, consisting of grafts bearing proton-conducting functions, and / or nano-domains containing chains of said matrix that are covalently bound and interpenetrated with the various polymers (modified or otherwise). ) mentioned above.
L'orientation de ces nano-domaines entre eux est fonction des conditions d' irradiation aux ions lourds de ladite matrice. Le parcours de l'ion lourd étant rectiligne, les nanodomaines sont continus et forment des canaux de conduction. On peut citer à titre illustratif et non limitatif : une orientation des nano-domaines perpendiculaires aux surfaces de la dite matrice et parallèles entre eux, une orientation des nano-domaines en croix ou maillage.The orientation of these nano-domains between them is a function of the conditions of irradiation with heavy ions of said matrix. The route of the heavy ion being rectilinear, the nanodomains are continuous and form conduction channels. There may be mentioned by way of non-limiting illustration: an orientation of the nano-domains perpendicular to the surfaces of said matrix and parallel to each other, an orientation of the nano-domains in cross or mesh.
Ces nano-domaines sont liés de façon covalente à ladite matrice et sont imperméables aux gaz. Ils constituent des voies de conduction privilégiées des protons. Ces membranes sont destinées à être incorporées dans des dispositifs de pile à combustible.These nano-domains are covalently bound to said matrix and are impermeable to gases. They constitute privileged conduction pathways for protons. These membranes are intended to be incorporated in fuel cell devices.
Ainsi, l'invention a également pour objet un dispositif de pile à combustible comprenant au moins une membrane telle que définie ci-dessus.Thus, the invention also relates to a fuel cell device comprising at least one membrane as defined above.
Ce dispositif comprend un ou plusieurs assemblages électrode-membrane-électrode .This device comprises one or more electrode-membrane-electrode assemblies.
Pour préparer un tel assemblage, la membrane peut être placée entre deux électrodes, par exemple, en tissu de carbone imprégné d'un catalyseur.To prepare such an assembly, the membrane may be placed between two electrodes, for example carbon fabric impregnated with a catalyst.
L'ensemble est ensuite pressé à une température adéquate afin d'obtenir une bonne adhésion électrode-membrane .The assembly is then pressed to a suitable temperature in order to obtain good electrode-membrane adhesion.
L' assemblage électrode-membrane-électrode obtenu est ensuite placé entre deux plaques, assurant la conduction électrique et l'alimentation en réactifs aux électrodes. Ces plaques sont communément désignées sous le terme de plaques bipolaires.The electrode-membrane-electrode assembly obtained is then placed between two plates, providing electrical conduction and supply of reagents to the electrodes. These plaques are commonly referred to as bipolar plates.
L' invention va maintenant être décrite par rapport aux exemples suivants donnés à titre illustratif et non limitatif.The invention will now be described with reference to the following examples given for illustrative and not limiting.
BREVE DESCRIPTION DES FIGURESBRIEF DESCRIPTION OF THE FIGURES
La figure 1 est une photographie obtenue par microscopie électronique à balayage à effet de champ (MEB) comprenant deux parties : une partie (a) représentant une matrice en PVDF comprenant des traces latentes révélées et une partie (b) représentant ladite membrane radiogreffée dans les traces latentes, obtenue conformément à l'exemple 1.3, avant couplage avec la taurine. La figure 2 est un schéma représentant un dispositif de mesure de la conductivité protonique relative d'une membrane.FIG. 1 is a photograph obtained by field effect scanning electron microscopy (SEM) comprising two parts: a part (a) representing a PVDF matrix comprising revealed latent traces and a part (b) representing said radiografted membrane in FIGS. latent traces, obtained according to Example 1.3, before coupling with taurine. Figure 2 is a diagram showing a device for measuring the relative proton conductivity of a membrane.
La figure 3 est un graphique représentant la résistivité R (en Ω) (courbe pleine) et la conductivité protonique C (en mS/cm) (courbe en pointillés) en fonction de la fluence F (ions/cm2) pour une membrane obtenue selon l'exemple 1.1, avant couplage avec la taurine.FIG. 3 is a graph showing the resistivity R (in Ω) (solid curve) and the proton conductivity C (in mS / cm) (dashed curve) as a function of the fluence F (ions / cm 2 ) for a membrane obtained according to Example 1.1, before coupling with taurine.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
Exemple 1Example 1
Cet exemple illustre la préparation d'une membrane conformément à l'invention selon trois variantes :This example illustrates the preparation of a membrane according to the invention according to three variants:
- une première variante faisant intervenir uniquement une irradiation avec des ions lourds Pb2+ ; - une seconde variante faisant intervenir une irradiation électronique ;a first variant involving only irradiation with heavy ions Pb 2+ ; a second variant involving an electron irradiation;
- une troisième variante faisant intervenir successivement une irradiation avec des ions lourds Pb2+, une révélation chimique suivie d'une irradiation électronique. 1.1 - Première variantea third variant successively involving irradiation with heavy Pb 2+ ions, chemical revelation followed by electron irradiation. 1.1 - First variant
Une matrice avec de l'acide acrylique, a été employée. Le nombre de moles d'acide introduites a été estimé à l'aide des analyses spectroscopiques .A matrix with acrylic acid was used. The number of moles of acid introduced was estimated using spectroscopic analyzes.
Cette matrice a été obtenue de la façon suivante :This matrix was obtained as follows:
Dans un premier temps, une matrice de (6 x 30 cm, 9 μm d'épaisseur) en polyfluorure de vinylidène a été soumise à un bombardement d'ions lourds Pb2+. La fluence a varié de 5.107 à 5.1010 ions par cm2. Ceci correspond à une dose allant du Gy à 1000 kGy. La perte d'énergie électronique (dE/dx) varie de 2,2 à 72,6 MeV cm2 mg-1 (0,39 à 12,8 keV nm"1) . L'angle d'irradiation a été fixé à 90°. Cette étape a permis la création de traces latentes comprenant des espèces radicalaires .Initially, a matrix (6 × 30 cm, 9 μm thick) of polyvinylidene fluoride was subjected to heavy Pb 2+ ion bombardment. The fluence varied from 5.10 7 to 5.10 10 ions per cm 2 . This corresponds to a dose ranging from Gy to 1000 kGy. The electron energy loss (dE / dx) ranged from 2.2 to 72.6 MeV cm 2 mg- 1 (0.39 to 12.8 keV nm -1 ) .The irradiation angle was set at 90 ° This stage allowed the creation of latent traces including radical species.
Les matrices préparées selon cette modalité ont été employées immédiatement ou stockées sous atmosphère inerte, comme de l'azote, et généralement au froid (-180C), durant plusieurs mois avant leur utilisation .The matrices prepared according to this modality were used immediately or stored under an inert atmosphere, such as nitrogen, and generally cold (-18 ° C.), for several months before their use.
Dans un deuxième temps, la matrice irradiée a été mise en contact avec de l'acide acrylique par immersion dans une solution aqueuse, ayant subi un barbotage à l'azote durant 15 minutes, contenant 25% en masse d'acide et 0,1% en masse de sel de Mohr, à 600C pendant Ih sous agitation. Le sel de Mohr a été employé afin de limiter l' homopolymérisation de l'acide acrylique. Le même protocole a été réalisé avec de l'acétate d' éthyle à titre de solvant. La membrane obtenue a alors été extraite de la solution puis nettoyée à l'eau et extraite à l'eau bouillante à l'aide d'un appareil de Sohxlet pendantIn a second step, the irradiated matrix was contacted with acrylic acid by immersion in an aqueous solution, sparged with nitrogen for 15 minutes, containing 25% by weight of acid and 0.1 % by mass Mohr salt at 60 0 C for 1h with stirring. Mohr salt has been used to limit the homopolymerization of acrylic acid. The same protocol was carried out with ethyl acetate as a solvent. The membrane obtained was then extracted from the solution and then washed with water and extracted with boiling water using a Sohxlet apparatus for
24h. Elle a ensuite été séchée pendant 12 h sous vide poussé.24. It was then dried for 12 hours under high vacuum.
Le taux de greffage, défini par rapport à la prise en masse de la membrane avant et après radiogreffâge, est compris entre 10 et 20% en masse.The degree of grafting, defined with respect to the caking of the membrane before and after radiografting, is between 10 and 20% by weight.
La matrice obtenue a été immergée dans une solution d' acétonitrile ou d'un mélange eau/acétonitrile (1/3), de N-hydroxysuccinimide (1,2 équivalent par rapport au nombre de moles d' acide acrylique introduites dans la matrice, cette valeur varie de 3 à 10 mmol/1 et est située généralement vers 8 iπmol/1) et de carbodiimide (1 équivalent par rapport au nombre de moles d'acide acrylique introduites dans la matrice) et placée sous agitation durant 12h à température ambiante (25°C) . La matrice a ensuite été immergée durantThe matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3), N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix, this value varies from 3 to 10 mmol / l and is generally located around 8 μmol / l) and carbodiimide (1 equivalent relative to the number of moles of acrylic acid introduced into the matrix) and placed under stirring for 12 hours at room temperature (25 ° C). The matrix was then immersed during
12h sous agitation et à température ambiante dans une solution de taurine (3 équivalents par rapport au nombre de moles d'acide acrylique introduites dans la matrice) dans un mélange eau/acétonitrile (30/70) à laquelle ont été préalablement ajoutés 6 équivalents (par rapport à la taurine) de diisopropylethylamine (DIEA) .12 h with stirring and at room temperature in a solution of taurine (3 equivalents relative to the number of moles of acrylic acid introduced into the matrix) in a water / acetonitrile mixture (30/70) to which 6 equivalents have been previously added ( compared to taurine) diisopropylethylamine (DIEA).
La membrane obtenue a ensuite été lavée à l'eau et l' acétonitrile puis séchée sous vide. Avec un taux de greffage d'acide acrylique allant de 10 à 20% en masse (rendement défini par rapport à la prise en masse de la membrane avant et après radiogreffâge) , et un rendement de fonctionnalisation de 40 à 50% molaire (rendement établi en fonction du nombre de fonctions modifiables introduites par radiogreffâge) les membranes obtenues présentent une capacité acide totale d' au moins 0,58 méq/g. Cette capacité correspond au nombre de moles de molécules échangeuses de protons ou d'équivalents (ici acide) par gramme de membrane.The resulting membrane was then washed with water and acetonitrile and dried under vacuum. With an acrylic acid grafting rate ranging from 10 to 20% by weight (yield defined by compared to the mass setting of the membrane before and after radiografting), and a functionalization efficiency of 40 to 50 mol% (yield established as a function of the number of modifiable functions introduced by radiografting) the membranes obtained have a total acid capacity of at least 0.58 meq / g. This capacity corresponds to the number of moles of proton exchange molecules or equivalents (here acidic) per gram of membrane.
1.2 - Deuxième variante1.2 - Second variant
Une matrice greffée par l'acide acrylique a été employée. Cette matrice a été obtenue de la façon suivante :A matrix grafted with acrylic acid was used. This matrix was obtained as follows:
Dans un premier temps, une matrice (6 x 30 cm), 9 μm d'épaisseur en polyfluorure de vinylidène a été soumise à une irradiation électronique. La dose a varié de 50 à 150 kGy. L'angle d'irradiation a été fixé à 90°. Cette étape a permis la création de radicaux piégés au sein des cristallites du PVDF.Initially, a matrix (6 × 30 cm), 9 μm thick polyvinylidene fluoride was subjected to electron irradiation. The dose varied from 50 to 150 kGy. The irradiation angle was set at 90 °. This step allowed the creation of radicals trapped within the crystallites of PVDF.
Dans un deuxième temps, la matrice irradiée a été mise en contact avec de l'acide acrylique. Pour cela, la matrice a été immergée dans une solution, préalablement dégazée, à 25% en masse d'acide dans l'eau ou l'acétate d' éthyle et de 0,1% en masse de sel de Mohr à 600C pendant Ih sous agitation. Le sel de Mohr a été employé afin de limiter l' homopolymérisation de l'acide acrylique. La membrane obtenue a alors été extraite de la solution puis nettoyée à l'eau et extraite à l'eau bouillante à l'aide d'un appareil de Sohxlet pendant 24h. Elle a ensuite été séchée pendant 12 h sous vide poussé.In a second step, the irradiated matrix was brought into contact with acrylic acid. For this purpose, the matrix was immersed in a solution, previously degassed, at 25% by weight of acid in water or ethyl acetate and 0.1% by weight of Mohr salt at 60 ° C. during Ih with stirring. Mohr salt has been used to limit the homopolymerization of acrylic acid. The membrane obtained was then extracted from the solution and then cleaned with water and extracted with boiling water using a Sohxlet machine for 24 hours. It was then dried for 12 hours under high vacuum.
Le taux de greffage, défini par rapport à la prise en masse de la membrane avant et après radiogreffâge, est compris entre 10 et 40% en masse.The degree of grafting, defined with respect to the caking of the membrane before and after radiografting, is between 10 and 40% by weight.
La matrice obtenue a été immergée dans une solution d' acétonitrile ou d'un mélange eau/acétonitrile (1/3), de N-hydroxysuccinimide (1,2 équivalent par rapport au nombre de moles d' acide acrylique introduites dans la matrice) et de carbodiimide (1 équivalent par rapport au nombre de moles d'acide acrylique introduites dans la matrice) et placée sous agitation durant 12h à température ambiante (25°C) .The matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3) and N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix). and carbodiimide (1 equivalent based on the number of moles of acrylic acid introduced into the matrix) and stirred for 12h at room temperature (25 ° C).
La matrice a ensuite été immergée durant 12h sous agitation et à température ambiante dans une solution de taurine (3 équivalents par rapport au nombre de moles d'acide acrylique introduites dans la matrice) dans un mélange eau/acétonitrile (30/70) à laquelle ont été préalablement ajoutés 6 équivalents (par rapport à la taurine) de DIEA 6 équivalents.The matrix was then immersed for 12 hours under stirring and at room temperature in a solution of taurine (3 equivalents relative to the number of moles of acrylic acid introduced into the matrix) in a water / acetonitrile mixture (30/70) to which 6 equivalents (relative to taurine) of DIEA 6 equivalents were previously added.
La membrane obtenue a ensuite été lavée à l'eau et l' acétonitrile puis séchée sous vide.The resulting membrane was then washed with water and acetonitrile and dried under vacuum.
Avec un taux de greffage d'acide acrylique allant de 10 à 40% en masse (rendement défini par rapport à la prise en masse de la membrane avant et après radiogreffâge) , et un rendement de fonctionnalisation de 70 à 80 % molaire (rendement établi en fonction du nombre de fonctions modifiables introduites par radiogreffâge) les membranes obtenues présentent une capacité acide totale d' au moins 1, 3 méq/g.With an acrylic acid grafting rate ranging from 10 to 40% by weight (defined yield relative to the setting of the membrane mass before and after radiografting), and a functionalization efficiency of 70 to 80 mol% (yield established according to the number of modifiable functions introduced by radiografting) the membranes obtained have a total acid capacity of at least 1.3 meq / g.
1.3-Troisième variante1.3-Third variant
Une matrice greffée par l'acide acrylique a été employée.A matrix grafted with acrylic acid was used.
Cette matrice a été obtenue de la façon suivante :This matrix was obtained as follows:
Dans un premier temps, une matrice a été irradiée comme explicité au paragraphe 1.1.In a first step, a matrix was irradiated as explained in section 1.1.
Dans un deuxième temps, la matrice irradiée a été mise en contact avec une solution de KOH ION en présence de KMnO4 à 0,25% en poids à une température de 65°C pendant un temps variable de 15 min à Ih. Le traitement a conduit à la formation de pores cylindriques creux dont le diamètre varie linéairement avec le temps d'attaque soit de 25 nm à 100 nm.In a second step, the irradiated matrix was put in contact with a solution of KOH ION in the presence of KMnO 4 at 0.25% by weight at a temperature of 65 ° C. for a variable time of 15 min at 1 h. The treatment led to the formation of hollow cylindrical pores whose diameter varies linearly with the etching time of 25 nm to 100 nm.
Dans un troisième temps, la membrane obtenue précédemment est soumise au traitement d' irradiation aux électrons et mise au contact avec l'acide acrylique comme décrit dans le paragraphe 1.2. Le taux de greffage défini par rapport à la prise en masse de la membrane avant et après radiogreffâge, est compris entre 5 et 30% en masse.In a third step, the previously obtained membrane is subjected to the electron irradiation treatment and brought into contact with the acrylic acid as described in section 1.2. The grafting rate defined with respect to the caking of the membrane before and after radiografting is between 5 and 30% by weight.
Sur la figure 1 est représentée une image obtenue par Microscopie Electronique à Balayage à effet de champ (MEB) d'une membrane greffée par l'acide acrylique. La partie (a) correspond à une zone pour laquelle les traces ont été révélées, la partie (b) correspond à une partie pour laquelle le radiogreffâge a été effectué dans les traces révélées irradiées aux électrons après l'irradiation.FIG. 1 shows an image obtained by Field Scanning Electron Microscopy (SEM) of an acid-grafted membrane. acrylic. Part (a) corresponds to a zone for which traces have been revealed, part (b) corresponds to a part for which radiografting has been carried out in the revealed traces irradiated with electrons after irradiation.
Ensuite, la matrice obtenue a été immergée dans une solution d' acétonitrile ou d'un mélange eau/acétonitrile (1/3), de N-hydroxysuccinimide (1,2 équivalent par rapport au nombre de moles d' acide acrylique introduites dans la matrice) et de carbodiimide (1 équivalent par rapport au nombre de moles d'acide acrylique introduites dans la matrice) et placée sous agitation durant 12h à température ambianteThen, the matrix obtained was immersed in a solution of acetonitrile or a mixture of water / acetonitrile (1/3), N-hydroxysuccinimide (1.2 equivalents relative to the number of moles of acrylic acid introduced into the matrix) and carbodiimide (1 equivalent relative to the number of moles of acrylic acid introduced into the matrix) and placed under stirring for 12 hours at room temperature
(25°C) . La matrice a ensuite été immergée durant(25 ° C). The matrix was then immersed during
12h sous agitation et à température ambiante dans une solution de taurine (3 équivalents par rapport au nombre de moles d'acide acrylique introduites dans la matrice) dans un mélange eau/acétonitrile (30/70) à laquelle ont été préalablement ajoutés 6 équivalents (par rapport à la taurine) de DIEA.12 h with stirring and at room temperature in a solution of taurine (3 equivalents relative to the number of moles of acrylic acid introduced into the matrix) in a water / acetonitrile mixture (30/70) to which 6 equivalents have been previously added ( compared to taurine) from DIEA.
La membrane obtenue a ensuite été lavée à l'eau et l' acétonitrile puis séchée sous vide.The resulting membrane was then washed with water and acetonitrile and dried under vacuum.
Avec un taux de greffage d'acide acrylique allant de 5 à 30% en masse (rendement défini par rapport à la prise en masse de la membrane avant et après radiogreffâge) , et un rendement de fonctionnalisation de 80 à 90 % molaire (rendement établi en fonction du nombre de fonctions modifiables introduites par radiogreffâge) les membranes obtenues présentent une capacité acide totale d' au moins 1, 5 méq/g.With a degree of acrylic acid grafting ranging from 5 to 30% by weight (defined performance with respect to the setting of the mass of the membrane before and after radiografting), and a functionalization yield of 80 to 90 mol% (yield established depending on the number of modifiable functions introduced by radiografting) the membranes obtained have a total acid capacity of at least 1.5 meq / g.
Exemple 2Example 2
Afin d'étudier l'influence de la fluence sur la conductivité protonique, des membranes radiogreffées suivant le protocole de l'exemple 1-1, avec l'acide acrylique, avant couplage avec la taurine, ont été testées sèches sur un dispositif, représenté sur la figure 2, mesurant une conductivité protonique relative, ce dispositif comprenant : une cuve en plexiglas 1 remplie d'eau déminéralisée 3 ; - une paire d'électrodes en platine 5,7 ; la membrane 9 disposée entre la paire d'électrodes en platine 5, 7.In order to study the influence of the fluence on the proton conductivity, radiografted membranes following the protocol of Example 1-1, with acrylic acid, before coupling with taurine, were tested dry on a device, represented in FIG. 2, measuring a relative proton conductivity, this device comprising: a Plexiglas tank 1 filled with deionized water 3; a pair of platinum electrodes 5, 7; the membrane 9 disposed between the pair of platinum electrodes 5, 7.
Ainsi que le montre les courbes de la figure 3, la conductivité maximale a été obtenue pour une membrane PVDF radiogreffée pour une fluence de 1010 traces par centimètre carré soit 1010 canaux par centimètre carré. As shown by the curves of FIG. 3, the maximum conductivity was obtained for a radiografted PVDF membrane at a fluence of 10 traces per square centimeter, ie 10 channels per square centimeter.

Claims

REVENDICATIONS
1. Procédé d'élaboration d'une membrane conductrice de protons de pile à combustible comprenant successivement :A method of producing a fuel cell proton conducting membrane comprising successively:
- une étape d'irradiation d'une matrice polymérique ;a step of irradiating a polymeric matrix;
- une étape de greffage de ladite matrice polymérique ainsi irradiée par réaction radicalaire avec un premier composé, consistant en la mise en contact de ladite matrice polymérique irradiée avec ledit premier composé, lequel comprend au moins un groupe apte à former une liaison covalente par réaction radicalaire avec ladite matrice et comprend au moins un groupe réactif apte à réagir avec un groupe d'un second composé comprenant au moins un groupe acide conducteur de protons, pour former une liaison covalente ;a step of grafting said polymeric matrix thus irradiated by radical reaction with a first compound, consisting in bringing said irradiated polymeric matrix into contact with said first compound, which comprises at least one group capable of forming a covalent bond by radical reaction; with said matrix and comprises at least one reactive group capable of reacting with a group of a second compound comprising at least one proton-conducting acid group, to form a covalent bond;
- une étape de mise en contact avec le second composé de la matrice ainsi greffée, moyennant quoi il y a réaction entre les groupes réactifs issus du premier composé et les groupes appropriés du second composé .- A step of contacting the second compound of the matrix thus grafted, whereby there is reaction between the reactive groups from the first compound and the appropriate groups of the second compound.
2. Procédé selon la revendication 1, dans lequel l'étape d'irradiation consiste à soumettre ladite matrice à un faisceau d'électrons.The method of claim 1, wherein the irradiating step comprises subjecting said array to an electron beam.
3. Procédé selon la revendication 1, dans lequel l'étape d'irradiation consiste à soumettre ladite matrice à un bombardement par des ions lourds. The method of claim 1, wherein the irradiating step comprises subjecting said matrix to heavy ion bombardment.
4. Procédé selon la revendication 3, dans lequel les ions lourds sont choisis parmi le plomb, le krypton, le xénon.4. The method of claim 3, wherein the heavy ions are selected from lead, krypton, xenon.
5. Procédé selon la revendication 1, dans lequel l'étape d'irradiation consiste en la succession d'étapes suivantes :The method of claim 1, wherein the irradiating step consists of the following sequence of steps:
- irradiation de la matrice polymérique par des ions lourds ; - révélation chimique des traces latentes créées par le passage des ions lourds, à l'issue de laquelle l'on obtient des canaux ouverts ; irradiation électronique desdits canaux ouverts .irradiation of the polymer matrix with heavy ions; - chemical revelation of latent traces created by the passage of heavy ions, after which we obtain open channels; electron irradiation of said open channels.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel la matrice polymérique est choisie parmi les matrices en polyuréthane, polyoléfine, polycarbonate ou polyéthylènetéréphtalate .6. Process according to any one of the preceding claims, in which the polymeric matrix is chosen from polyurethane, polyolefin, polycarbonate or polyethylene terephthalate matrices.
7. Procédé selon l'une quelconque des revendications précédentes, dans la matrice polymérique est une matrice en polymère fluoré.7. The method of any of the preceding claims, wherein the polymeric matrix is a fluoropolymer matrix.
8. Procédé selon la revendication 7, dans lequel la matrice est en polyfluorure de vinylidène, en copolymère de tétrafluoroéthylène et de tétrafluoropropylène, en copolymère d' éthylène et de tétrafluoroéthylène, en copolymère d' hexafluoropropène et de fluorure de vinylidène, en copolymère de fluorure de vinylidène et de trifluoroéthylène, en copolymère de fluorure de vinylidène, de trifluoroéthylène et de monochlorotrifluoroéthylène .8. The method of claim 7, wherein the matrix is polyvinylidene fluoride, copolymer of tetrafluoroethylene and tetrafluoropropylene, copolymer of ethylene and tetrafluoroethylene, copolymer of hexafluoropropene and vinylidene fluoride, fluoride copolymer of vinylidene and trifluoroethylene, a copolymer of vinylidene fluoride, trifluoroethylene and monochlorotrifluoroethylene.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel la matrice est en polyfluorure de vinylidène.9. A process according to any one of the preceding claims, wherein the matrix is polyvinylidene fluoride.
10. Procédé selon l'une quelconque des revendications précédentes, dans lequel le premier composé destiné à être mis en contact avec la matrice irradiée est un composé comprenant, en tant que groupe apte à réagir par réaction radicalaire pour former une liaison covalente, un groupe éthylénique, et en tant que groupe réactif un groupe -CO2H ou -NH2.The method according to any one of the preceding claims, wherein the first compound to be contacted with the irradiated matrix is a compound comprising, as a group capable of reacting by radical reaction to form a covalent bond, a group ethylene, and as a reactive group a -CO2H or -NH 2 group .
11. Procédé selon la revendication 10, dans lequel le premier composé comprenant en tant que groupe réactif un groupe -CO2H est l'acide acrylique.The process according to claim 10, wherein the first compound comprising as a reactive group a -CO 2 H group is acrylic acid.
12. Procédé selon la revendication 10, dans lequel le premier composé comprenant en tant que groupe réactif un groupe -NH2 est choisi parmi les aminés vinyliques .12. The method of claim 10, wherein the first compound comprising as a reactive group -NH 2 group is selected from vinyl amines.
13. Procédé selon l'une quelconque des revendications précédentes, dans lequel le deuxième composé comprend, en tant que groupe réagissant avec le groupe du premier composé pour former une liaison covalente, un groupe -NH2 lorsque le groupe réactif du premier composé est un groupe -CO2H ou un groupe -CO2H, lorsque le groupe réactif du premier composé est un groupe -NH2.A process according to any one of the preceding claims, wherein the second compound comprises, as a group reacting with the group of the first compound to form a covalent bond, an -NH 2 group when the reactive group of the first compound is a -CO 2 H group or a -CO 2 H group, when the reactive group of the first compound is -NH 2 .
14. Procédé selon la revendication 13, dans lequel le deuxième composé est un acide aminé.The method of claim 13, wherein the second compound is an amino acid.
15. Procédé selon la revendication 14, dans lequel le deuxième composé est choisi parmi les acides aminés de formules suivantes : 15. The method of claim 14, wherein the second compound is selected from amino acids of the following formulas:
16. Procédé d'élaboration selon la revendication 13, dans lequel le deuxième composé est choisi parmi les composés de formules suivantes :16. Process for producing according to claim 13, in which the second compound is chosen from compounds of the following formulas:
17. Procédé selon la revendication 1, dans lequel la matrice polymérique est une matrice en polyfluorure de vinylidène, le premier composé est l'acide acrylique et le second composé est la taurine.The method of claim 1, wherein the polymeric matrix is a polyvinylidene fluoride matrix, the first compound is acrylic acid and the second compound is taurine.
18. Membrane conductrice de protons de pile à combustible susceptible d'être obtenue par un procédé tel que défini selon l'une quelconque des revendications 1 à 17.18. A fuel cell proton conducting membrane obtainable by a process as defined in any one of claims 1 to 17.
19. Membrane selon la revendication 18, comprenant une matrice polymérique en polyfluorure de vinylidène greffée par des greffons obtenus par : - polymérisation radicalaire de l'acide acrylique, générant des chaînes poly (acide acrylique) ;19. Membrane according to claim 18, comprising a polymeric polyvinylidene fluoride matrix grafted with grafts obtained by: - radical polymerization of acrylic acid, generating poly (acrylic acid) chains;
- réaction des chaînes poly (acide acrylique) avec de la taurine.reaction of poly (acrylic acid) chains with taurine.
20. Membrane selon l'une quelconque des revendications 18 ou 19, qui est nanostructurée .20. Membrane according to any one of claims 18 or 19, which is nanostructured.
21. Dispositif de pile à combustible comprenant au moins une membrane telle que définie selon l'une quelconque des revendications 18 à 20. Fuel cell device comprising at least one membrane as defined in any one of claims 18 to 20.
EP08804642A 2007-09-26 2008-09-24 Method for making proton conducting membranes for fuel cells by radiografting Withdrawn EP2210306A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0757875A FR2921518B1 (en) 2007-09-26 2007-09-26 PROCESS FOR PRODUCING FUEL CELL PROTONS CONDUCTIVE MEMBRANES BY RADIOGRAPHY
PCT/EP2008/062732 WO2009040365A1 (en) 2007-09-26 2008-09-24 Method for making proton conducting membranes for fuel cells by radiografting

Publications (1)

Publication Number Publication Date
EP2210306A1 true EP2210306A1 (en) 2010-07-28

Family

ID=39432937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804642A Withdrawn EP2210306A1 (en) 2007-09-26 2008-09-24 Method for making proton conducting membranes for fuel cells by radiografting

Country Status (6)

Country Link
US (1) US20100311860A1 (en)
EP (1) EP2210306A1 (en)
JP (1) JP2011501857A (en)
CN (1) CN101809799A (en)
FR (1) FR2921518B1 (en)
WO (1) WO2009040365A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921517B1 (en) * 2007-09-26 2010-12-03 Commissariat Energie Atomique PROTON CONDUCTIVE MEMBRANES FOR FUEL CELL HAVING PROTON GRADIENT AND METHODS FOR PREPARING THE SAME
JP2009144067A (en) * 2007-12-14 2009-07-02 Toyota Motor Corp Method for producing functional membrane and method for producing electrolyte membrane for fuel cell
FR2944982B1 (en) 2009-04-30 2011-10-14 Commissariat Energie Atomique PROCESS FOR PREPARING A METALLIZED SUBSTRATE, ANDTHE SUBSTRATE AND USES THEREOF
FR2949608B1 (en) * 2009-08-27 2017-11-03 Commissariat A L'energie Atomique PROTON CONDUCTIVE MEMBRANES FOR FUEL CELL AND PROCESS FOR THE PREPARATION OF SAID MEMBRANES
US12052084B2 (en) * 2019-04-18 2024-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Virtual beam sweeping for a physical random access channel in new radio and long term evolution active antenna systems
CN110391440B (en) * 2019-07-17 2021-03-30 深圳质子航新能源科技有限公司 Polymer proton exchange membrane and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656767B2 (en) * 1987-03-09 1994-07-27 住友電気工業株式会社 Redox flow battery
JP3656244B2 (en) * 1999-11-29 2005-06-08 株式会社豊田中央研究所 High durability solid polymer electrolyte, electrode-electrolyte assembly using the high durability solid polymer electrolyte, and electrochemical device using the electrode-electrolyte assembly
JP2001229936A (en) * 2000-02-16 2001-08-24 Toyota Central Res & Dev Lab Inc Electrolytic film and its production method
JP3932338B2 (en) * 2002-06-11 2007-06-20 独立行政法人 日本原子力研究開発機構 Electrolyte membrane for fuel cell made of fluoropolymer ion exchange membrane
WO2004051782A1 (en) * 2002-06-28 2004-06-17 Dubitsky Yuri A Fuel cell incorporating a polymer electrolyte membrane grafted by irradiation
GB0216834D0 (en) * 2002-07-19 2002-08-28 Accentus Plc Porous polymeric membrane
JP2004288497A (en) * 2003-03-24 2004-10-14 Teijin Ltd Solid polymer electrolyte and manufacturing method of the same, as well as film , catalytic electrode layer, film/electrode junction and fuel cell using the same
JP2004330056A (en) * 2003-05-07 2004-11-25 Ebara Corp Filter cartridge for electronic element substrate surface treatment liquid
JP4670073B2 (en) * 2003-08-28 2011-04-13 独立行政法人 日本原子力研究開発機構 Method for producing nano space control polymer ion exchange membrane
US7148314B2 (en) * 2004-07-07 2006-12-12 General Electric Company Process for preparation of functionalized polyimides
JP4429851B2 (en) * 2004-09-08 2010-03-10 日東電工株式会社 Durable electrolyte membrane
JP4748410B2 (en) * 2004-12-22 2011-08-17 独立行政法人 日本原子力研究開発機構 Method for producing a polymer electrolyte membrane for a highly durable fuel cell incorporating a crosslinked structure
JP4747241B2 (en) * 2005-02-25 2011-08-17 独立行政法人 日本原子力研究開発機構 Functional membrane, method for producing electrolyte membrane for fuel cell, and electrolyte membrane for fuel cell
JP4514643B2 (en) * 2005-04-12 2010-07-28 信越化学工業株式会社 Solid polymer electrolyte membrane for direct methanol fuel cell, method for producing the same, and direct methanol fuel cell
JP4825446B2 (en) * 2005-05-06 2011-11-30 信越化学工業株式会社 Solid polymer electrolyte membrane, method for producing the same, and fuel cell
US20070077478A1 (en) * 2005-10-03 2007-04-05 The Board Of Management Of Saigon Hi-Tech Park Electrolyte membrane for fuel cell utilizing nano composite
JP2008270177A (en) * 2007-03-23 2008-11-06 Honda Motor Co Ltd Proton conductor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009040365A1 *

Also Published As

Publication number Publication date
CN101809799A (en) 2010-08-18
US20100311860A1 (en) 2010-12-09
FR2921518B1 (en) 2009-12-11
JP2011501857A (en) 2011-01-13
WO2009040365A1 (en) 2009-04-02
FR2921518A1 (en) 2009-03-27

Similar Documents

Publication Publication Date Title
CA2690842C (en) Composite for fuel cell membrane based on organomodified inorganic particles and a process for preparing same
WO2009040365A1 (en) Method for making proton conducting membranes for fuel cells by radiografting
EP2989149B1 (en) Process for preparing an ion-exchange composite material comprising a specific polymer matrix and a filler consisting of ion-exchange particles
Prakash et al. Fabrication of a low-cost functionalized poly (vinylidene fluoride) nanohybrid membrane for superior fuel cells
FR2853456A1 (en) FUEL MICROPILES, PARTICULARLY FOR PORTABLE ELECTRONIC DEVICES AND TELECOMMUNICATION DEVICES
EP2513205A1 (en) Cation exchange membrane having enhanced selectivity, method for preparing same, and uses thereof
EP1926170B1 (en) Silicon electrolyte material for a fuel cell, manufacturing method and fuel cell implementing such a material
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
BE1011218A3 (en) PROCESS FOR THE MANUFACTURE OF AN ION EXCHANGE MEMBRANE FOR USE AS A SEPARATOR IN A FUEL CELL.
FR2869032A1 (en) PROCESS FOR THE PREPARATION OF PROTON-CONDUCTIVE CLAY PARTICLES AND MATERIAL COMPRISING SUCH PARTICLES
JP4532494B2 (en) Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
JP3883052B2 (en) Battery separator manufacturing method and battery
EP2471138A1 (en) Proton-conducting membranes for a fuel cell, and method for preparing such membranes
EP2582451B1 (en) Method for preparing a composite material comprising a polymer matrix and a filler consisting of inorganic ion-exchange particles
WO2004091026A2 (en) Micro fuel cell, particularly for use with portable electronic devices and telecommunication devices
EP2989148B1 (en) Method for preparing an ion-exchange composite material comprising a polymer matrix and a filler consisting of ion-exchange particles
JP2009146758A (en) Electrolyte membrane for fuel cell, and manufacturing method thereof
JP2008127534A (en) Method for producing functional membrane and method for producing electrolyte membrane for fuel battery
JP5836028B2 (en) Proton conductive polymer electrolyte membrane production method
WO2024023694A1 (en) Current collector for an electrochemical device for storing or generating electrical power
KR100661096B1 (en) Surface-treated polymer electrolyte membrane and method for preparation thereof
FR3123508A1 (en) PROTON EXCHANGE MEMBRANE
JP2008181860A (en) Method of forming electrolyte membrane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100423

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110429

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180404