EP2208547B1 - Magnesium hot rolling method and apparatus - Google Patents
Magnesium hot rolling method and apparatus Download PDFInfo
- Publication number
- EP2208547B1 EP2208547B1 EP08839763.3A EP08839763A EP2208547B1 EP 2208547 B1 EP2208547 B1 EP 2208547B1 EP 08839763 A EP08839763 A EP 08839763A EP 2208547 B1 EP2208547 B1 EP 2208547B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnesium
- downstream
- heating furnace
- upstream
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 title claims description 112
- 229910052749 magnesium Inorganic materials 0.000 title claims description 96
- 239000011777 magnesium Substances 0.000 title claims description 96
- 238000005098 hot rolling Methods 0.000 title claims description 47
- 238000000034 method Methods 0.000 title claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 74
- 238000005096 rolling process Methods 0.000 claims description 72
- 238000011144 upstream manufacturing Methods 0.000 claims description 39
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 19
- 230000032258 transport Effects 0.000 claims description 10
- 239000000463 material Substances 0.000 description 48
- 230000006866 deterioration Effects 0.000 description 3
- 238000001192 hot extrusion Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002680 magnesium Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/30—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
- B21B1/32—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
- B21B1/34—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work by hot-rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B3/00—Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2273/00—Path parameters
- B21B2273/12—End of product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/004—Heating the product
Definitions
- the present invention relates to a magnesium hot rolling method and to a magnesium hot rolling apparatus.
- a round bar-shaped billet having, for example, a diameter of approximately 300 to 400 mm and a length of approximately 500 to 600 mm is molded by hot extrusion molding into a thick plate having a thickness of, for example, 10 mm or less.
- This thick plate is then cut to a predetermined length (for example, 3 m) so as to form a cut plate material, and this cut plate material is then rolled to a thickness of not more than1 mm by rough rolling.
- magnesium alloy In order to roll magnesium alloy at room temperature a large amount of pressure is required. However, even if a large amount of pressure is applied, it still cracks easily. Accordingly, it is preferably rolled using hot rolling.
- FIG. 1 of patent document 1 Conventional examples of apparatuses for the hot rolling of magnesium alloy are disclosed in FIG. 1 of patent document 1 and FIG. 1 of patent document 2.
- the hot rolling apparatuses disclosed in these patent documents are provided with a rolling mill which rolls the magnesium alloy while transporting it reciprocatingly, and with two heating furnaces which are located on the upstream side and the downstream side of the rolling mill.
- the magnesium alloy is heated to a predetermined temperature by these heating furnaces and is rolled in the rolling mill.
- the present invention was conceived in view of the above described circumstances and it is an object thereof to provide a magnesium hot rolling method and a magnesium hot rolling apparatus which are able to prevent any reduction in the quality of a product which is due to temperature variations during the hot rolling of a magnesium alloy.
- a magnesium alloy hot rolling method which has: a first rolling step in which a magnesium plate is rolled reciprocatingly between an upstream heating furnace which is located on an upstream side of a rolling mill and which heats the magnesium plate, and a downstream heating furnace which is located on a downstream side of the rolling mill and which heats the magnesium plate; and a second rolling step in which the temperature of respective end portions of the magnesium plate on both the upstream and downstream sides is maintained while the magnesium plate is being rolled reciprocatingly between an upstream temperature maintaining apparatus which is located further on the upstream side than the upstream heating furnace and which transports the magnesium plate which has been heated by the upstream heating furnace while maintaining the temperature thereof, and a downstream temperature maintaining apparatus which is located further on the downstream side than the downstream heating furnace and which transports the magnesium plate which has been heated by the downstream heating furnace while maintaining the temperature thereof.
- a wind-on step in which, while tension is applied by a tension applying apparatus which is located on the downstream side of the downstream temperature maintaining apparatus to the magnesium plate which has been rolled to a predetermined thickness, the magnesium plate is wound onto a winder which is placed further on the downstream side than the downstream temperature maintaining apparatus.
- a magnesium alloy hot rolling apparatus which is provided with: a rolling mill which performs reciprocating rolling on a magnesium plate; an upstream heating furnace which is located on the upstream side of the rolling mill and which heats the magnesium plate; a downstream heating furnace which is located on the downstream side of the rolling mill and which heats the magnesium plate; an upstream temperature maintaining apparatus which is located further on the upstream side than the upstream heating furnace, and which transports the magnesium plate which has been heated by the upstream heating furnace and also maintains the temperature of upstream side end portions thereof; and a downstream temperature maintaining apparatus which is located further on the downstream side than the downstream heating furnace, and which transports the magnesium plate which has been heated by the downstream heating furnace and also maintains the temperature of downstream side end portions thereof.
- a tension applying apparatus which is located on the downstream side of the downstream temperature maintaining apparatus and which applies tension to the magnesium plate; and a winder which is located further on the downstream side than the tension applying apparatus and onto which the magnesium plate is wound.
- a magnesium plate is rolled while substantially the entire length thereof is being heated and held at a predetermined temperature, it is possible to suppress any drop in the temperature of the magnesium plate, and to prevent errors in the dimensional accuracy of a product as well as any consequent deterioration in product quality which are due to temperature variations during hot rolling, and to thus maintain a superior quality in a finished product.
- FIG. 1 is a schematic front view showing the schematic structure of a hot rolling apparatus 100 (i.e., a magnesium alloy hot rolling apparatus) in the present embodiment.
- a hot rolling apparatus 100 i.e., a magnesium alloy hot rolling apparatus
- the hot rolling apparatus 100 is provided with a rolling mill 1, a first heating furnace 2, a second heating furnace 3, pinch rollers 4, a first table roller 5, a second table roller 6, a winder 7, and pinch rollers 8.
- the rolling mill 1 has a pair of working rollers 1a that are in parallel with each other and also face each other, and with a drive source (not shown) which drives the working rollers I a to rotate.
- the working rollers 1a are heating rollers whose surface temperature is raised to a suitable temperature and which, while feeding a magnesium cut plate material M0 (i.e., a magnesium plate) which is passing between the working rollers 1a in one direction, apply predetermined pressure to this magnesium cut plate material M0.
- a magnesium cut plate material M0 i.e., a magnesium plate
- the rolling mill 1 reduces the thickness of the magnesium cut plate material M0 so as to cause it to become elongated.
- the rolling mill 1 performs reciprocating rolling by reversing the feed direction of the magnesium cut plate material M0 at a predetermined timing. By doing this, the rolling mill 1 reduces the thickness of the magnesium cut plate material M0 from, for example, a thickness of approximately 6 mm and a length of approximately 3 m to a thickness of approximately 1 mm and a length of approximately 18 m.
- magnesium cut plate material M0 i.e., magnesium plate
- magnesium alloy M0 which forms a work piece for this hot rolling apparatus 100 is a plate material formed from magnesium alloy
- the first heating furnace 2 (i.e., the upstream heating furnace) is a heating furnace which is located on the upstream side of the rolling mill 1.
- the second heating furnace 3 (i.e., the downstream heating furnace) is a heating furnace which is located on the downstream side of the rolling mill 1.
- the pair of heating furnaces 2 and 3 have a length which is longer than that of the magnesium cut plate material M0 prior to rolling, and are also provided with heaters and transporting rollers (neither are shown).
- the magnesium cut plate material M0 is heated by the heaters to a predetermined temperature (approximately 100 to 350 °C with 200 to 300 °C being preferable), and the magnesium cut plate material M0 is transported by the transporting rollers.
- the pinch rollers 4 are heating rollers whose surface temperature is raised to a suitable temperature, and they provide auxiliary transporting for the magnesium cut plate material M0 which is traveling reciprocatingly in conjunction with the reciprocating rolling of the rolling mill 1.
- a plurality of sets of these pinch rollers 4 are provided respectively between the rolling mill 1 and the first heating furnace 2, and between the rolling mill 1 and the second heating furnace 3.
- the pinch rollers 4 can be made to apply suitable tension to the magnesium cut plate material M0 which is being rolled by the rolling mill 1.
- the first table roller 5 i.e., the upstream temperature maintaining apparatus
- the second table roller 6 i.e., the downstream temperature maintaining apparatus
- These table rollers 5 and 6 each have transporting rollers 5a and 6a and temperature maintaining covers 5b and 6b.
- the table rollers 5 and 6 transport and support the end portions of the magnesium cut plate material M0 which are protruding from the heating furnaces 2 and 3 using the transporting rollers 5a and 6a, and also shield them from the outside air by covering them with the temperature maintaining covers 5b and 6b.
- the table rollers 5 and 6 maintain the temperature of the magnesium cut plate material M0 by not allowing heat to escape therefrom.
- the temperature maintaining portion of the end portion of the magnesium cut plate material M0 which is positioned on the downstream side is moved inside the heating furnace during the subsequent rolling in the opposite direction.
- the heating portion of the end portion which is positioned on the downstream side is placed inside the temperature maintaining apparatus during the rolling in the opposite direction, and by repeating this process alternatingly, it is possible to minimize any reduction in the temperature of the end portions.
- the winder 7 is a machine onto which is wound the manufactured product obtained by rolling the magnesium cut plate material M0, namely, a magnesium sheet M1 (i.e., a magnesium plate).
- the pinch rollers 8 are located in front of the winder 7 and by adjusting the transporting speed of the magnesium sheet M1, they are able to apply tension to the magnesium sheet M1 in the opposite direction from the wind-on direction of the winder 7.
- the hot rolling apparatus 100 performs rough rolling on the magnesium cut plate material M0.
- an operation of the hot rolling apparatus 100 will be described.
- the magnesium cut plate materials M0 which are the objects to be rolled by this hot rolling apparatus 100 are manufactured by performing hot extrusion molding (at between approximately 100 and 300 °C with 200 °C being preferable) on a rod-shaped billet having, for example, a diameter of 300 to 400 mm and a length of 500 to 600 mm so as to mold it into a thick plate having a thickness of, for example, 10 mm or less (for example, 6 mm). This thick plate is then cut into predetermined lengths (for example, 3 m).
- the crystal grains of the magnesium forming the magnesium cut plates M0 which have been molded by hot extrusion molding are mechanically refined by being extruded, they are extremely strong and are of high quality. They are also difficult to break and have superior press-moldability.
- the magnesium cut plate materials M0 are transported from the first table rollers 5 to the first heating furnace 2. They are then heated to a predetermined temperature (approximately 100 to 350 °C with 200 to 300 °C being preferable) inside the first heating furnace 2 and are then transported to the rolling mill 1.
- a predetermined temperature approximately 100 to 350 °C with 200 to 300 °C being preferable
- the rolling mill 1 rolls the magnesium cut plate material M0 and, at the same time as this, transports it to the second heating furnace 3.
- the temperature of the magnesium cut plate materials M0 drops somewhat as it moves from the first heating furnace 2 to the second heating furnace 3.
- the working rollers 1a and the plurality of pinch rollers 4 are heating rollers, and because the magnesium cut plate material M0 is once again heated to the predetermined temperature inside the second heating furnace 3, there is little temperature variation.
- the hot rolling apparatus 100 When the terminal end of a magnesium cut plate material M0 has passed through the rolling mill 1, the hot rolling apparatus 100 reverses the rolling direction. The hot rolling apparatus 100 repeats this process so that the magnesium cut plate material M0 is rolled reciprocatingly, and the thickness of the magnesium cut plate material M0 is sequentially reduced. As a result, a magnesium sheet M1 is manufactured.
- the magnesium cut plate material M0 has a material quality of AZ31B, and has dimensions of a thickness of 6.00 mm, a width of 300 mm, and a length of 3000 mm.
- the diameter of the working rollers 1a is 400 mm and the barrel length thereof is 500 mm, while the diameter of the pinch rollers 4 is 250 mm.
- the heating temperature in the heating furnaces 2 and 3 is 220 °C
- the pinch rollers 4 and the working rollers 1 a are heating rollers having internal heaters and the surface temperature of these heating rollers is 200 °C.
- a magnesium cut plate material M0 having a thickness of 6.00 mm is changed by five passes of reciprocating rolling (i.e., by two and a half reciprocations) into a magnesium sheet M1 having a thickness of 1.01 mm, and this is then wound onto the winder 7 after the five passes.
- the magnesium cut plate material M0 becomes gradually more elongated as it is rolled, and when the terminal end thereof has passed through the rolling mill 1, the end portions including the starting end protrude from the heating furnaces 2 and 3.
- the table rollers 5 and 6 support the end portions which are protruding from the heating furnaces 2 and 3 using the transporting rollers 5a and 6a, and also maintain the temperature thereof by means of the temperature maintaining covers 5b and 6b.
- a magnesium cut plate material M0 having a length L0 prior to rolling is rolled in a section A1 until it attains a length L1 (first rolling step). It is then rolled in a section A2 until it exceeds the length L1 and attains a length L2 (second rolling step). It is then wound on (winding-on step).
- this hot rolling apparatus 100 performs reciprocating rolling using the first rolling step in the section A1, namely, in the section formed by the first heating furnace 2, the rolling mill 1, and the second heating furnace 3 while the magnesium cut plate material M0 has a length between L0 and L1.
- the hot rolling apparatus 100 then performs reciprocating rolling using the second rolling step in the section A2, that is, in the section formed by the first table roller 5, the first heating furnace 2, the rolling mill 1, the second heating furnace 3, and the second table roller 6 after the magnesium cut plate material M0 has exceeded the length L1 and until it attains the length L2.
- the finished product, namely, the magnesium sheet M1 is then wound onto the winder 7.
- the magnesium cut plate M0 is heated or has its temperature maintained over its entire length, and is kept at a temperature which remains substantially within a fixed range. Accordingly, it is possible to prevent any reduction in the quality of a product which is due to temperature variations in the magnesium cut plate material M0, and it is possible to maintain a superior quality in the finished product, namely, in the magnesium sheet M1.
- the magnesium cut plate material M0 is soft during the rolling process due to the high temperature, and there is a possibility that pitting will remain if high pressure is also applied to areas other than those areas where the rolling mill 1 is used.
- this hot rolling apparatus 100 because the magnesium cut plate material M0 is nipped in a plurality of locations by a plurality of groups of pinch rollers 4, the force with which each pinch roller 4 nips the magnesium cut plate material M0 is small as a result of being dispersed, and any concern that pitting from the pinch rollers 4 will remain is reduced.
- the hot rolling apparatus 100 winds this magnesium sheet M1 onto the winder 7 so as to form a coil material.
- the pinch rollers 8 adjust the transporting speed of the magnesium sheet M1 so that predetermined tension is applied to the magnesium sheet M1 being wound onto the winder 7, and thereby apply tensile force to the magnesium sheet M1 in the opposite direction from the wind-on direction of the winder 7.
- the hot rolling apparatus 100 of the present invention because the magnesium cut plate material M0 is rolled while substantially the entire length thereof is being heated and held at a predetermined temperature, it is possible to suppress any drop in the temperature of the magnesium cut plate material M0, and to prevent any reduction in the product quality which is due to temperature variations during the hot rolling, and it is thereby possible to maintain a superior quality in the finished product, namely, in the magnesium sheet M1.
- the pinch rollers 8 function as a tension applying apparatus, however, the tension applying apparatus may also be formed by a leveler which flattens the magnesium sheet M1.
- the leveler is formed by alternatingly combining three or more rollers in two rows in a beehive pattern when viewed in cross-section, and the magnesium sheet M1 is flattened as a result of the sheet-shaped material being passed between these rollers.
- the magnesium hot rolling apparatus of the present invention and to the magnesium hot rolling method of the present invention which uses this apparatus, it is possible to prevent errors in the dimensional accuracy of a product as well as any consequent deterioration in product quality which are due to temperature variations during hot rolling, and to also maintain a superior quality in a finished product.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Description
- The present invention relates to a magnesium hot rolling method and to a magnesium hot rolling apparatus.
- To manufacture a magnesium sheet from magnesium alloy, a round bar-shaped billet having, for example, a diameter of approximately 300 to 400 mm and a length of approximately 500 to 600 mm is molded by hot extrusion molding into a thick plate having a thickness of, for example, 10 mm or less. This thick plate is then cut to a predetermined length (for example, 3 m) so as to form a cut plate material, and this cut plate material is then rolled to a thickness of not more than1 mm by rough rolling.
- In order to roll magnesium alloy at room temperature a large amount of pressure is required. However, even if a large amount of pressure is applied, it still cracks easily. Accordingly, it is preferably rolled using hot rolling.
- Conventional examples of apparatuses for the hot rolling of magnesium alloy are disclosed in
FIG. 1 of patent document 1 andFIG. 1 ofpatent document 2. - The hot rolling apparatuses disclosed in these patent documents are provided with a rolling mill which rolls the magnesium alloy while transporting it reciprocatingly, and with two heating furnaces which are located on the upstream side and the downstream side of the rolling mill. The magnesium alloy is heated to a predetermined temperature by these heating furnaces and is rolled in the rolling mill.
- [Patent document 1] Japanese Patent Publication No.
3521863 - [Patent document 2] Japanese Patent Publication No.
3821074 - However, in the hot rolling apparatuses disclosed in the aforementioned patent documents, because heating furnaces are only provided on both sides of the rolling mill, as the magnesium cut plate material becomes gradually elongated by the reciprocating rolling, the ends of the magnesium cut plate material begin to protrude from the heating furnaces and these protruding portions cool down. The reason why this is a problem is because temperature variations in the magnesium cut plate material during the hot rolling cause errors in the dimensional accuracy and a deterioration in the quality of a finished product.
- The present invention was conceived in view of the above described circumstances and it is an object thereof to provide a magnesium hot rolling method and a magnesium hot rolling apparatus which are able to prevent any reduction in the quality of a product which is due to temperature variations during the hot rolling of a magnesium alloy.
- In order to solve the above described problems, the following apparatuses and methods are employed in the present invention.
- As a first aspect of the present invention, a magnesium alloy hot rolling method is employed which has: a first rolling step in which a magnesium plate is rolled reciprocatingly between an upstream heating furnace which is located on an upstream side of a rolling mill and which heats the magnesium plate, and a downstream heating furnace which is located on a downstream side of the rolling mill and which heats the magnesium plate; and a second rolling step in which the temperature of respective end portions of the magnesium plate on both the upstream and downstream sides is maintained while the magnesium plate is being rolled reciprocatingly between an upstream temperature maintaining apparatus which is located further on the upstream side than the upstream heating furnace and which transports the magnesium plate which has been heated by the upstream heating furnace while maintaining the temperature thereof, and a downstream temperature maintaining apparatus which is located further on the downstream side than the downstream heating furnace and which transports the magnesium plate which has been heated by the downstream heating furnace while maintaining the temperature thereof.
- In the magnesium alloy hot rolling method according to the above described first aspect of the present invention, it is also possible for there to be provided a wind-on step in which, while tension is applied by a tension applying apparatus which is located on the downstream side of the downstream temperature maintaining apparatus to the magnesium plate which has been rolled to a predetermined thickness, the magnesium plate is wound onto a winder which is placed further on the downstream side than the downstream temperature maintaining apparatus.
- As a second aspect of the present invention, a magnesium alloy hot rolling apparatus is employed which is provided with: a rolling mill which performs reciprocating rolling on a magnesium plate; an upstream heating furnace which is located on the upstream side of the rolling mill and which heats the magnesium plate; a downstream heating furnace which is located on the downstream side of the rolling mill and which heats the magnesium plate; an upstream temperature maintaining apparatus which is located further on the upstream side than the upstream heating furnace, and which transports the magnesium plate which has been heated by the upstream heating furnace and also maintains the temperature of upstream side end portions thereof; and a downstream temperature maintaining apparatus which is located further on the downstream side than the downstream heating furnace, and which transports the magnesium plate which has been heated by the downstream heating furnace and also maintains the temperature of downstream side end portions thereof.
- In the magnesium alloy hot rolling apparatus according to the above described second aspect of the present invention, it is also possible for a plurality of groups of pinch rollers which sandwich the magnesium plate in the thickness direction thereof and adjust the transporting speed thereof to be provided respectively between the rolling mill and the upstream heating furnace and between the rolling mill and the downstream heating furnace.
- In the magnesium alloy hot rolling apparatus according to the above described second aspects of the present invention, it is also possible for working rollers of the rolling mill and the plurality of groups of pinch rollers which are located on the upstream and downstream sides of the rolling mill to be heating rollers.
- In the magnesium alloy hot rolling apparatus according to the above described second aspects of the present invention, it is also possible for there to be provided: a tension applying apparatus which is located on the downstream side of the downstream temperature maintaining apparatus and which applies tension to the magnesium plate; and a winder which is located further on the downstream side than the tension applying apparatus and onto which the magnesium plate is wound.
- According to the present invention, because a magnesium plate is rolled while substantially the entire length thereof is being heated and held at a predetermined temperature, it is possible to suppress any drop in the temperature of the magnesium plate, and to prevent errors in the dimensional accuracy of a product as well as any consequent deterioration in product quality which are due to temperature variations during hot rolling, and to thus maintain a superior quality in a finished product.
-
- [
FIG. 1] FIG. 1 is a schematic front view showing the schematic structure of a hot rolling apparatus in an embodiment of the present invention. - [
FIG. 2] FIG. 2 is a typical view showing the schematic structure of a leveler. -
- 100
- Hot rolling apparatus (magnesium hot rolling apparatus)
- 1
- Rolling mill
- 2
- First heating furnace (upstream heating furnace)
- 3
- Second heating furnace (downstream heating furnace)
- 4
- Pinch roller (feed roller pair)
- 5
- First table roller (upstream temperature maintaining apparatus)
- 6
- Second table roller (downstream temperature maintaining apparatus)
- 7
- Winder
- 8
- Pinch rollers (tension applying apparatus)
- M0
- Magnesium cut plate material (magnesium plate)
- M1
- Magnesium sheet (magnesium plate)
- An embodiment of the present invention will now be described with reference made to the drawings.
-
FIG. 1 is a schematic front view showing the schematic structure of a hot rolling apparatus 100 (i.e., a magnesium alloy hot rolling apparatus) in the present embodiment. - As is shown in
FIG. 1 , the hot rollingapparatus 100 according to the present embodiment is provided with a rolling mill 1, afirst heating furnace 2, asecond heating furnace 3,pinch rollers 4, a first table roller 5, a second table roller 6, a winder 7, andpinch rollers 8. - The rolling mill 1 has a pair of working
rollers 1a that are in parallel with each other and also face each other, and with a drive source (not shown) which drives the working rollers I a to rotate. - The working
rollers 1a are heating rollers whose surface temperature is raised to a suitable temperature and which, while feeding a magnesium cut plate material M0 (i.e., a magnesium plate) which is passing between theworking rollers 1a in one direction, apply predetermined pressure to this magnesium cut plate material M0. As a result of this, the rolling mill 1 reduces the thickness of the magnesium cut plate material M0 so as to cause it to become elongated. - Moreover, the rolling mill 1 performs reciprocating rolling by reversing the feed direction of the magnesium cut plate material M0 at a predetermined timing. By doing this, the rolling mill 1 reduces the thickness of the magnesium cut plate material M0 from, for example, a thickness of approximately 6 mm and a length of approximately 3 m to a thickness of approximately 1 mm and a length of approximately 18 m.
- Note that the above described magnesium cut plate material M0 (i.e., magnesium plate) which forms a work piece for this hot
rolling apparatus 100 is a plate material formed from magnesium alloy - The first heating furnace 2 (i.e., the upstream heating furnace) is a heating furnace which is located on the upstream side of the rolling mill 1. The second heating furnace 3 (i.e., the downstream heating furnace) is a heating furnace which is located on the downstream side of the rolling mill 1.
- The pair of
heating furnaces - The
pinch rollers 4 are heating rollers whose surface temperature is raised to a suitable temperature, and they provide auxiliary transporting for the magnesium cut plate material M0 which is traveling reciprocatingly in conjunction with the reciprocating rolling of the rolling mill 1. A plurality of sets of thesepinch rollers 4 are provided respectively between the rolling mill 1 and thefirst heating furnace 2, and between the rolling mill 1 and thesecond heating furnace 3. - By adjusting the transporting speed, the
pinch rollers 4 can be made to apply suitable tension to the magnesium cut plate material M0 which is being rolled by the rolling mill 1. - The first table roller 5 (i.e., the upstream temperature maintaining apparatus) is located on the upstream side of the
first heating furnace 2, while the second table roller 6 (i.e., the downstream temperature maintaining apparatus) is located on the downstream side of thesecond heating furnace 3. These table rollers 5 and 6 each have transportingrollers temperature maintaining covers - When the magnesium cut plate material M0 becomes elongated by being reverse rolled by the rolling mill 1, the end portions thereof protrude from the
heating furnaces heating furnaces rollers temperature maintaining covers - The winder 7 is a machine onto which is wound the manufactured product obtained by rolling the magnesium cut plate material M0, namely, a magnesium sheet M1 (i.e., a magnesium plate).
- The pinch rollers 8 (i.e., the tension applying apparatus) are located in front of the winder 7 and by adjusting the transporting speed of the magnesium sheet M1, they are able to apply tension to the magnesium sheet M1 in the opposite direction from the wind-on direction of the winder 7.
- Using this type of structure, the
hot rolling apparatus 100 performs rough rolling on the magnesium cut plate material M0. Hereinafter, an operation of thehot rolling apparatus 100 will be described. - Firstly, the magnesium cut plate materials M0 which are the objects to be rolled by this hot
rolling apparatus 100 are manufactured by performing hot extrusion molding (at between approximately 100 and 300 °C with 200 °C being preferable) on a rod-shaped billet having, for example, a diameter of 300 to 400 mm and a length of 500 to 600 mm so as to mold it into a thick plate having a thickness of, for example, 10 mm or less (for example, 6 mm). This thick plate is then cut into predetermined lengths (for example, 3 m). - Because the crystal grains of the magnesium forming the magnesium cut plates M0 which have been molded by hot extrusion molding are mechanically refined by being extruded, they are extremely strong and are of high quality. They are also difficult to break and have superior press-moldability.
- The magnesium cut plate materials M0 are transported from the first table rollers 5 to the
first heating furnace 2. They are then heated to a predetermined temperature (approximately 100 to 350 °C with 200 to 300 °C being preferable) inside thefirst heating furnace 2 and are then transported to the rolling mill 1. - The rolling mill 1 rolls the magnesium cut plate material M0 and, at the same time as this, transports it to the
second heating furnace 3. The temperature of the magnesium cut plate materials M0 drops somewhat as it moves from thefirst heating furnace 2 to thesecond heating furnace 3. However, because the workingrollers 1a and the plurality ofpinch rollers 4 are heating rollers, and because the magnesium cut plate material M0 is once again heated to the predetermined temperature inside thesecond heating furnace 3, there is little temperature variation. - When the terminal end of a magnesium cut plate material M0 has passed through the rolling mill 1, the
hot rolling apparatus 100 reverses the rolling direction. Thehot rolling apparatus 100 repeats this process so that the magnesium cut plate material M0 is rolled reciprocatingly, and the thickness of the magnesium cut plate material M0 is sequentially reduced. As a result, a magnesium sheet M1 is manufactured. - Here, specific examples of the respective numerical values for the rough rolling performed by this hot
rolling apparatus 100 are shown below in Table 1.[Table 1] Pass No. Entry side thickness (mm) Reduction amount (mm) Rolling temperature (°C) Rolling speed (m/min) Rolling load (ton) 1 6.00 1.80 200 10 180 2 4.20 1.26 200 10 165 3 2.94 0.88 200 10 150 4 2.06 0.62 200 10 140 5 1.44 0.43 200 10 135 Final thickness 1.01 mm - In the above specific examples, the magnesium cut plate material M0 has a material quality of AZ31B, and has dimensions of a thickness of 6.00 mm, a width of 300 mm, and a length of 3000 mm. The diameter of the working
rollers 1a is 400 mm and the barrel length thereof is 500 mm, while the diameter of thepinch rollers 4 is 250 mm. - Moreover, in the above described examples, the heating temperature in the
heating furnaces pinch rollers 4 and the workingrollers 1 a are heating rollers having internal heaters and the surface temperature of these heating rollers is 200 °C. - In addition, in the above example, a magnesium cut plate material M0 having a thickness of 6.00 mm is changed by five passes of reciprocating rolling (i.e., by two and a half reciprocations) into a magnesium sheet M1 having a thickness of 1.01 mm, and this is then wound onto the winder 7 after the five passes.
- The magnesium cut plate material M0 becomes gradually more elongated as it is rolled, and when the terminal end thereof has passed through the rolling mill 1, the end portions including the starting end protrude from the
heating furnaces - The table rollers 5 and 6 support the end portions which are protruding from the
heating furnaces rollers temperature maintaining covers - This will now be described in more detail using
FIG. 1 . For example, a magnesium cut plate material M0 having a length L0 prior to rolling is rolled in a section A1 until it attains a length L1 (first rolling step). It is then rolled in a section A2 until it exceeds the length L1 and attains a length L2 (second rolling step). It is then wound on (winding-on step). - Thus, this hot
rolling apparatus 100 performs reciprocating rolling using the first rolling step in the section A1, namely, in the section formed by thefirst heating furnace 2, the rolling mill 1, and thesecond heating furnace 3 while the magnesium cut plate material M0 has a length between L0 and L1. Thehot rolling apparatus 100 then performs reciprocating rolling using the second rolling step in the section A2, that is, in the section formed by the first table roller 5, thefirst heating furnace 2, the rolling mill 1, thesecond heating furnace 3, and the second table roller 6 after the magnesium cut plate material M0 has exceeded the length L1 and until it attains the length L2. The finished product, namely, the magnesium sheet M1 is then wound onto the winder 7. - As a result, the magnesium cut plate M0 is heated or has its temperature maintained over its entire length, and is kept at a temperature which remains substantially within a fixed range. Accordingly, it is possible to prevent any reduction in the quality of a product which is due to temperature variations in the magnesium cut plate material M0, and it is possible to maintain a superior quality in the finished product, namely, in the magnesium sheet M1.
- The magnesium cut plate material M0 is soft during the rolling process due to the high temperature, and there is a possibility that pitting will remain if high pressure is also applied to areas other than those areas where the rolling mill 1 is used. However, in contrast to this, in this hot
rolling apparatus 100, because the magnesium cut plate material M0 is nipped in a plurality of locations by a plurality of groups ofpinch rollers 4, the force with which each pinchroller 4 nips the magnesium cut plate material M0 is small as a result of being dispersed, and any concern that pitting from thepinch rollers 4 will remain is reduced. - In addition, once the thickness of the magnesium cut plate material M0 has been rolled down to a predetermined thickness (for example, 1 mm) so as to form the magnesium sheet M1, the
hot rolling apparatus 100 winds this magnesium sheet M1 onto the winder 7 so as to form a coil material. - At this time, the
pinch rollers 8 adjust the transporting speed of the magnesium sheet M1 so that predetermined tension is applied to the magnesium sheet M1 being wound onto the winder 7, and thereby apply tensile force to the magnesium sheet M1 in the opposite direction from the wind-on direction of the winder 7. - According to the
hot rolling apparatus 100 of the present invention, because the magnesium cut plate material M0 is rolled while substantially the entire length thereof is being heated and held at a predetermined temperature, it is possible to suppress any drop in the temperature of the magnesium cut plate material M0, and to prevent any reduction in the product quality which is due to temperature variations during the hot rolling, and it is thereby possible to maintain a superior quality in the finished product, namely, in the magnesium sheet M1. - Note that in the present embodiment, the
pinch rollers 8 function as a tension applying apparatus, however, the tension applying apparatus may also be formed by a leveler which flattens the magnesium sheet M1. - Here, as is shown in
FIG. 2 , the leveler is formed by alternatingly combining three or more rollers in two rows in a beehive pattern when viewed in cross-section, and the magnesium sheet M1 is flattened as a result of the sheet-shaped material being passed between these rollers. - According to the magnesium hot rolling apparatus of the present invention and to the magnesium hot rolling method of the present invention which uses this apparatus, it is possible to prevent errors in the dimensional accuracy of a product as well as any consequent deterioration in product quality which are due to temperature variations during hot rolling, and to also maintain a superior quality in a finished product.
Claims (6)
- A magnesium alloy hot rolling method comprising:a first rolling step in which a magnesium plate (M1) is rolled reciprocatingly between an upstream heating furnace (2) which is located on an upstream side of a rolling mill (1) and which heats the magnesium plate, and a downstream heating furnace (3) which is located on a downstream side of the rolling mill (1) and which heats the magnesium plate (M1); characterized by further comprising:a second rolling step in which the temperature of respective end portions of the magnesium plate (M1) on both the upstream and downstream sides is maintained while the magnesium plate (M1) is being rolled reciprocatingly between an upstream temperature maintaining apparatus (5) which is located further on the upstream side than the upstream heating furnace (2) and which transports the magnesium plate (M1) which has been heated by the upstream heating furnace (2) while maintaining the temperature thereof, and a downstream temperature maintaining apparatus (6) which is located further on the downstream side than the downstream heating furnace (3) and which transports the magnesium plate (M1) which has been heated by the downstream heating furnace (3) while maintaining the temperature thereof.
- The magnesium alloy hot rolling method according to claim 1, wherein there is provided a wind-on step in which, while tension is applied by a tension applying apparatus (8) which is located on the downstream side of the downstream temperature maintaining apparatus (6) to the magnesium plate (M1) which has been rolled to a predetermined thickness, the magnesium plate (M1) is wound onto a winder (7) which is placed further on the downstream side than the downstream temperature maintaining apparatus (6).
- A magnesium alloy hot rolling apparatus comprising:a rolling mill (1) which performs reciprocating rolling on a magnesium plate (M1);an upstream heating furnace (2) which is located on the upstream side of the rolling mill (1) and which heats the magnesium plate (M1); anda downstream heating furnace (3) which is located on the downstream side of the rolling mill (1) and which heats the magnesium plate (M1);
characterized in that the apparatus further comprises:an upstream temperature maintaining apparatus (5) which is located further on the upstream side than the upstream heating furnace (2), and which transports the magnesium plate (M1) which has been heated by the upstream heating furnace (2) and also maintains the temperature of upstream side end portions thereof; anda downstream temperature maintaining apparatus (6) which is located further on the downstream side than the downstream heating furnace(3), and which transports the magnesium plate (M1) which has been heated by the downstream heating furnace (3) and also maintains the temperature of downstream side end portions thereof. - The magnesium alloy hot rolling apparatus according to claim 3, wherein a plurality of groups of pinch rollers (4) which sandwich the magnesium plate (M1) in the thickness direction thereof and adjust the transporting speed thereof are provided respectively between the rolling mill (1) and the upstream heating furnace (2) and between the rolling mill (1) and the downstream heating furnace (3).
- The magnesium alloy hot rolling apparatus according to claim 4, wherein working rollers of the rolling mill (1) and the plurality of groups of pinch rollers (4) which are located on the upstream and downstream sides of the rolling mill (1) are heating rollers.
- The magnesium hot rolling apparatus according to claim 3 or 4, wherein there are provided:a tension applying apparatus (8) which is located on the downstream side of the downstream temperature maintaining apparatus (6) and which applies tension to the magnesium plate (M1); anda winder (7) which is located further on the downstream side than the tension applying apparatus (8) and onto which the magnesium plate (M1) is wound.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007269058A JP5173347B6 (en) | 2007-10-16 | Magnesium alloy hot rolling method and magnesium alloy hot rolling apparatus | |
PCT/JP2008/068654 WO2009051134A1 (en) | 2007-10-16 | 2008-10-15 | Magnesium hot rolling method and magnesium hot rolling apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2208547A1 EP2208547A1 (en) | 2010-07-21 |
EP2208547A4 EP2208547A4 (en) | 2013-04-03 |
EP2208547B1 true EP2208547B1 (en) | 2014-07-30 |
Family
ID=40567396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08839763.3A Not-in-force EP2208547B1 (en) | 2007-10-16 | 2008-10-15 | Magnesium hot rolling method and apparatus |
Country Status (8)
Country | Link |
---|---|
US (1) | US20110100083A1 (en) |
EP (1) | EP2208547B1 (en) |
KR (1) | KR101204494B1 (en) |
CN (1) | CN101821025B (en) |
CA (1) | CA2702659A1 (en) |
RU (1) | RU2438806C1 (en) |
TW (1) | TW200927315A (en) |
WO (1) | WO2009051134A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011003046A1 (en) * | 2011-01-24 | 2012-07-26 | ACHENBACH BUSCHHüTTEN GMBH | Finishing roll device and method for producing a magnesium strip in such |
US9248482B2 (en) | 2011-03-11 | 2016-02-02 | Fata Hunter, Inc. | Magnesium roll mill |
KR101428308B1 (en) * | 2012-12-21 | 2014-08-07 | 주식회사 포스코 | Endless Rolling System and Method |
CN105149352B (en) * | 2015-09-30 | 2017-11-07 | 中镁镁业有限公司 | Wrought magnesium alloy Strip mends the method for temperature, constant temperature rolling with batching online |
CN108787762B (en) * | 2017-04-26 | 2019-10-25 | 中国宝武钢铁集团有限公司 | A kind of method and system of the adaptive temperature control continuous rolling of magnesium alloy |
CN108787779B (en) * | 2017-04-26 | 2019-10-08 | 中国宝武钢铁集团有限公司 | A kind of magnesium alloy even squeezes temperature control continuous rolling process and system |
EP3711873B1 (en) | 2019-03-22 | 2022-07-20 | SSAB Technology AB | Method and hot-rolling equipment |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59191502A (en) * | 1983-04-15 | 1984-10-30 | Hitachi Ltd | Steckel mill |
US4675974A (en) * | 1985-10-17 | 1987-06-30 | Tippins Machinery Co., Inc. | Method of continuous casting and rolling strip |
US4782683A (en) * | 1986-03-03 | 1988-11-08 | Tippins Incorporated | Hot strip mill shape processor and method |
JPS63220901A (en) * | 1987-03-06 | 1988-09-14 | Nkk Corp | Warm rolling equipment for strip coil |
US5195344A (en) * | 1987-03-06 | 1993-03-23 | Nippon Kokan Kabushiki Kaisha | Warm rolling facility for steel strip coils |
EP0484882B1 (en) * | 1990-11-08 | 1996-02-07 | Hitachi, Ltd. | Continuous hot strip rolling system and method thereof |
JP3119692B2 (en) * | 1990-11-08 | 2000-12-25 | 株式会社日立製作所 | Continuous hot strip rolling equipment and rolling method |
JPH0515905A (en) * | 1991-05-24 | 1993-01-26 | Sumitomo Metal Ind Ltd | Method for rolling austenitic stainless steel |
JPH0810805A (en) * | 1994-06-22 | 1996-01-16 | Nippon Steel Corp | Method for rolling high silicon steel sheet |
JPH08264261A (en) * | 1995-03-27 | 1996-10-11 | Nippon Steel Corp | Reverse type rolling device |
DE19512953A1 (en) * | 1995-03-28 | 1996-10-02 | Mannesmann Ag | Method and device for producing hot-rolled steel strip |
DE10052423C1 (en) * | 2000-10-23 | 2002-01-03 | Thyssenkrupp Stahl Ag | Production of a magnesium hot strip comprises continuously casting a magnesium alloy melt to a pre-strip, and hot rolling the pre-strip directly from the casting heat at a specified roller starting temperature to form a hot strip |
EP1407836A4 (en) * | 2001-07-17 | 2006-06-07 | Haruna Co Ltd | Structural body and method for cold rolling |
JP3659208B2 (en) * | 2001-09-28 | 2005-06-15 | 住友金属工業株式会社 | Manufacturing method and manufacturing apparatus for Mg or Mg alloy strip |
JP2004066302A (en) * | 2002-08-07 | 2004-03-04 | Tadamasa Fujimura | Manufacturing apparatus of magnesium alloy material, manufacturing method of magnesium alloy material, and magnesium alloy material |
JP2004090065A (en) * | 2002-09-02 | 2004-03-25 | Jfe Steel Kk | Heavy reduction rolling method and method for manufacturing hot-rolled steel strip by using the same |
JP3503898B1 (en) * | 2003-03-07 | 2004-03-08 | 権田金属工業株式会社 | Method and apparatus for manufacturing magnesium metal sheet |
JP2007269058A (en) | 2006-03-30 | 2007-10-18 | Mazda Motor Corp | Structure of rear part of vehicle equipped with curtain airbag apparatus |
CN1827250A (en) * | 2006-04-19 | 2006-09-06 | 北京科技大学 | Rolling device for the production of magnesium alloy strip coil |
-
2008
- 2008-10-14 TW TW097139317A patent/TW200927315A/en unknown
- 2008-10-15 EP EP08839763.3A patent/EP2208547B1/en not_active Not-in-force
- 2008-10-15 WO PCT/JP2008/068654 patent/WO2009051134A1/en active Application Filing
- 2008-10-15 RU RU2010119167/02A patent/RU2438806C1/en not_active IP Right Cessation
- 2008-10-15 CN CN200880112339.3A patent/CN101821025B/en not_active Expired - Fee Related
- 2008-10-15 CA CA2702659A patent/CA2702659A1/en not_active Abandoned
- 2008-10-15 US US12/682,945 patent/US20110100083A1/en not_active Abandoned
- 2008-10-15 KR KR1020107010398A patent/KR101204494B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US20110100083A1 (en) | 2011-05-05 |
RU2438806C1 (en) | 2012-01-10 |
EP2208547A1 (en) | 2010-07-21 |
JP5173347B2 (en) | 2013-04-03 |
JP2009095849A (en) | 2009-05-07 |
WO2009051134A1 (en) | 2009-04-23 |
KR20100072349A (en) | 2010-06-30 |
CN101821025B (en) | 2013-10-30 |
TW200927315A (en) | 2009-07-01 |
EP2208547A4 (en) | 2013-04-03 |
CN101821025A (en) | 2010-09-01 |
KR101204494B1 (en) | 2012-11-26 |
CA2702659A1 (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2213387B1 (en) | Magnesium alloy hot-rolling mill | |
EP2208547B1 (en) | Magnesium hot rolling method and apparatus | |
KR101913853B1 (en) | Manufacturing system for platening and cutting of metal plate | |
WO2017056759A1 (en) | Separator production method | |
EP2210679B1 (en) | Recoiling facility of magnesium alloy sheet | |
CN100441331C (en) | Electrical steel producing process | |
US4171632A (en) | Method of and apparatus for hot-rolling a thin metal sheet | |
JP6172109B2 (en) | Hot rolled steel sheet rolling method | |
US20180141095A1 (en) | Method for the stepped rolling of a metal strip | |
JP3659208B2 (en) | Manufacturing method and manufacturing apparatus for Mg or Mg alloy strip | |
JPH10175001A (en) | Hot rolling equipment and hot rolling method | |
JP5173347B6 (en) | Magnesium alloy hot rolling method and magnesium alloy hot rolling apparatus | |
US20100162784A1 (en) | Flattening device | |
KR101873046B1 (en) | Manufacturing system for platening and cutting of metal plate | |
JP4165723B2 (en) | Hot rolling method and equipment | |
JP2006272439A (en) | Production method of thick steel strip and its manufacturing apparatus | |
KR101438774B1 (en) | Rolling mill and rolling method | |
TWI413556B (en) | Cooling apparatus and cooling method for hot rolling | |
JP5058657B2 (en) | Straightening method for edge forming slab | |
JP2001105026A (en) | Device and method for leveling | |
JP3294797B2 (en) | Strip steel production method | |
JP3349425B2 (en) | Plate rolling method and apparatus | |
KR101443083B1 (en) | Apparatus for winding material | |
JP2000126803A (en) | Hot rolling method and facility | |
WO2020193112A1 (en) | Method & hot-rolling equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100419 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20130301 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B21B 1/26 20060101ALI20130225BHEP Ipc: B21B 3/00 20060101AFI20130225BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IHI CORPORATION Owner name: IHI METALTECH CO., LTD. |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: IHI CORPORATION |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140224 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 679697 Country of ref document: AT Kind code of ref document: T Effective date: 20140815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008033623 Country of ref document: DE Effective date: 20140911 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 679697 Country of ref document: AT Kind code of ref document: T Effective date: 20140730 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140730 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141030 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141030 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141031 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141202 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141130 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008033623 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141030 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
26N | No opposition filed |
Effective date: 20150504 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141030 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141015 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20081015 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210908 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602008033623 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230503 |