EP2206912A2 - Kraftstoff-Injektor - Google Patents

Kraftstoff-Injektor Download PDF

Info

Publication number
EP2206912A2
EP2206912A2 EP09169850A EP09169850A EP2206912A2 EP 2206912 A2 EP2206912 A2 EP 2206912A2 EP 09169850 A EP09169850 A EP 09169850A EP 09169850 A EP09169850 A EP 09169850A EP 2206912 A2 EP2206912 A2 EP 2206912A2
Authority
EP
European Patent Office
Prior art keywords
fuel injector
volume
valve element
fuel
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09169850A
Other languages
English (en)
French (fr)
Other versions
EP2206912B1 (de
EP2206912A3 (de
Inventor
Matthias Burger
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2206912A2 publication Critical patent/EP2206912A2/de
Publication of EP2206912A3 publication Critical patent/EP2206912A3/de
Application granted granted Critical
Publication of EP2206912B1 publication Critical patent/EP2206912B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/167Means for compensating clearance or thermal expansion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention relates to a fuel injector, in particular a common rail injector, for injecting fuel into a combustion chamber of an internal combustion engine, according to the preamble of claim 1.
  • Hub-controlled common rail injectors whose injection valve element is servo-operated are known. Piezo and solenoid valves are used as pressure actuators, with which the servo circuit is controlled. For rapid needle closure, a permanent low pressure stage is often provided which exerts a permanent, closing hydraulic force on the needle. The disadvantage is the high leakage, which occurs between the high pressure and the low pressure stage. Leakage inevitably leads to the requirement for higher pump performance and thus to sacrifice in the efficiency of the system. This situation is problematic especially at high pressures. For this reason, the latest injectors are designed leak-free for highest injection pressures.
  • leak-free fuel injectors do not have a permanent low-pressure stage acting in the closing direction, which eliminates the leaks caused thereby. Due to the elimination of the low pressure stage, two-piece injection valve elements of the type that are used in practice for use fuel injectors used with low-pressure stage, no longer be used.
  • the invention has for its object to provide a simply constructed fuel injector, in which the coupling of the at least two injection valve element parts is realized with the lowest possible number of components.
  • the invention is based on the idea to introduce two relatively adjustable parts of the injection valve element into one another, so as to be able to dispense with a separate guide sleeve, as used in the prior art, as well as a spring-loaded spring the spring sleeve.
  • the at least, preferably exclusively two-part, construction has the advantage that the production of the individual injection valve element parts in total is less complicated and thus less expensive than the production of a one-piece long injection valve element.
  • existing production lines can be maintained and the existing logistics, which is aligned with a multi-part injection valve element.
  • the invention has also recognized that it would result in a solution with in-run injector element parts to a constant increase in the Kopplervolumens in operation of the fuel injector, if the coupler volume would be connected exclusively via a guide gap between the two parts with a Injektorvolumen, since the flow resistance of the guide gap is proportional to the applied pressure difference , The fact that the flow resistance of such a guide gap is linearly related to the magnitude of the pressure difference between the coupler volume and injector volume would cause much fuel to be drawn from the injector volume upon opening the fuel injector due to the very low pressure in the coupler volume and emptying the Kopplervolumens during the closing process due to the available (short) time would no longer be possible.
  • the coupler volume is additionally or alternatively connected to a guide gap via at least one throttle arrangement with the injector volume in a fuel injector designed according to the concept of the invention, wherein the throttle arrangement is designed such that the fuel volume flow flowing through it ( Flow volume flow) is not proportional to the pressure difference between the coupler volume and injector volume as a guide gap behaves, but disproportionately.
  • the flow volume flow passing through the throttle assembly does not increase to the same extent as a pressure difference between the volume of the coupler and the injector volume, ie, the flow volume flow and the pressure difference are not linearly related.
  • the flow volume flow increase becomes smaller and smaller with increasing pressure difference.
  • the flow volume flow is proportional to the root of the pressure difference between injector volume and coupler volume.
  • the throttle arrangement is to provide at least one, preferably only one, realized in particular in the first or second part, throttle bore, the throttle bore very particularly preferably in the manner of a drain throttle from a control chamber as in known servo-circuit fuel injectors is.
  • the throttle bore is preferably a stepped bore with a diameter step, which preferably leads to the formation of a turbulent, cavitating flow within the throttle bore.
  • the above-mentioned diameter stage is a possibility for realizing a degressive ratio between flow volume flow and pressure difference between the coupler volume and injector volume.
  • any throttle stages in particular hydraulically sharp-edged throttle stages, can be realized for this purpose, preferably with a small longitudinal extension in the flow direction.
  • the longitudinal extension of the at least one throttle stage is designed such that a turbulent flow is formed.
  • a hydraulically sharp-edged throttle stage while a length to hydraulic diameter ratio is less than or equal to 10 to understand.
  • the following applies to the hydraulic diameter of an annular gap reactor D Hyd 4 ⁇ perfused cross section flowed through Berandungsus ,
  • the boundary length in this equation is the sum of the inner and the outer boundary length.
  • the throttle arrangement comprises a plurality of hydraulically connected in series (arranged) throttles.
  • the throttles are formed radially between the two injection valve element parts, preferably in the guide region, with which the two parts are guided into one another.
  • the throttles are designed in such a way, ie have such a small extent in the flow direction, that the guide length is so small that forms a turbulent flow.
  • the flow volume flow would be by the throttle arrangement proportional to the pressure difference between the coupler volume and injector volume, which should be avoided.
  • One possibility for forming the throttle arrangement is to provide a plurality of axially juxtaposed (parallel) grooves on one of the injection valve element parts, wherein the throttles are formed radially between the webs delimiting the grooves and the other injection valve element part.
  • the webs Preferably, the webs, at least approximately, sharp-edged to realize a minimum guide length and thus to force the formation of a turbulent flow.
  • it is very particularly preferred to dispense with a throttle bore in the injection valve element parts.
  • the hydraulic coupler is designed as a joint, which allows a certain pivotability of the two hydraulically coupled injection valve element parts to compensate in this way tolerance-related angular errors and inclinations.
  • a particularly preferred possibility for forming such a pivot joint is to contour the guided injection valve element part in the region of the guide in order to allow a relative pivoting.
  • the fuel injector is leak-free except for leaks which may have been realized in the region of the control valve element.
  • a low-pressure stage acting on the injection valve element in the closing direction on the injection valve element is dispensed with.
  • Fig. 1 is a trained as a common rail injector fuel injector 1 for injecting fuel into a combustion chamber, not shown, also shown an internal combustion engine of a motor vehicle.
  • a high pressure pump 2 delivers fuel from a reservoir 3 in a high-pressure fuel storage 4 (Rail). In this fuel, especially diesel or gasoline, under high pressure, stored in this embodiment about 2000bar.
  • the fuel injector 1 is connected via other, not shown, fuel injectors via a supply line 5.
  • the supply line 5 opens into an annular space 6 radially between a valve body 7 and an injector body 8 (housing part).
  • the high-pressure fuel can flow essentially unthrottled in the axial direction in the plane of the drawing down into a pressure space 11 acting as a mini-rail for pressure oscillation minimization.
  • the fuel flows directly through axial passages 13 into a nozzle chamber 14 (annular space) also belonging to the injector volume 12 and out of this through at least one injection hole 15 into the combustion chamber of the internal combustion engine.
  • the fuel injector 1 is connected via an injector return port 16 to a return line 17. About the return line 17 can be explained later on a control amount of fuel from the fuel injector 1 to the reservoir 3 drain and be fed from there from the high pressure circuit again.
  • a two-part injection valve element 18 in this exemplary embodiment is arranged to be adjustable in the axial direction.
  • the injection valve element 18 projects with its lower, designed as a nozzle needle first part 19 in a stepped bore 20 of a nozzle body 21 into it.
  • the first part 19 is guided axially displaceably with a guide portion 22.
  • the axial channels 13 are formed by bevels 9 in the guide section 22 radially between the first part 19 and the nozzle body 21.
  • the nozzle body 21 is screwed by means of a union nut, not shown, with the injector body 8.
  • the first part 19 (nozzle needle) of the injection valve element 18 is guided in an end blind bore 23 of a second part 24 (control rod) of the injection valve element 18.
  • the injection valve element 18 has a closing surface 26 (sealing surface) on a (lower) tip 25 formed on the first part 19, with which the injection valve element 18 can be brought into tight contact with an injection valve element seat 27 formed inside the nozzle body 21.
  • the injection valve element 18 abuts against its injection valve element seat 27, ie is in a closed position, the fuel outlet from the at least one injection hole 15 is blocked. If, on the other hand, it is lifted off its injection valve element seat 27, fuel can flow from the pressure chamber 11 via the axial channels 13 and the annular chamber 14 to the injection valve element seat 27 to the injection hole 15 where it is injected substantially under high pressure (rail pressure) into the combustion chamber become.
  • a control chamber 29 is limited, which extends over a radially extending in the sleeve-shaped portion of the valve body 7 inlet throttle 30 with high-pressure fuel from the Annulus 6 is supplied.
  • the sleeve-shaped portion with control chamber 29 enclosed therein is enclosed radially on the outside with high-pressure fuel, so that an annular Guide gap 31 radially between the sleeve-shaped portion of the valve body 7 and the injection valve element 18, here the second part 24, is comparatively fuel-tight.
  • the control chamber 29 is connected via a, extending perpendicularly in the valve body 7 axial channel 32 with outlet throttle 33 with a valve chamber 34 radially outwardly of an axially adjustable, sleeve-shaped control valve element 35 of a pressure-balanced in the axial direction in the closed state control valve 36 (servo valve) is limited.
  • fuel can flow into a low-pressure region 37 of the fuel injector 1 and thence to the injector return port 16 when the sleeve-shaped control valve element 35 is lifted from its control valve element seat 38 formed on the valve body 7, i. when the control valve 36 is open.
  • an electromagnetic actuator 39 is provided with an electromagnet 40 which cooperates with an integrally formed with the control valve element 35 anchor plate 41 and subsequently with the sleeve-shaped control valve element 35.
  • the electromagnetic actuator 39 raises the control valve element 35 from its formed on the valve body 7, designed in this embodiment as a flat seat control valve element seat 38 from.
  • the flow cross-sections of the inlet throttle 30 and the outlet throttle 33 are matched to one another such that when open control valve 36, a net outflow of fuel (control amount) from the control chamber 29 in the low pressure region 37 of the fuel injector 1 and from there via the Injektor Weglaufan gleich 16 and Return line 17 results in the reservoir 3.
  • the pressure in the control chamber 29 decreases rapidly, whereby the injection valve element 18, more precisely the first part 19, lifts off from its injection valve element seat 27 so that fuel can flow out of the injector volume 12 through the injection hole 15 into the combustion chamber.
  • the energization of the electromagnetic actuator 39 is interrupted, whereby the sleeve-shaped control valve element 35 is adjusted by means of a control spring 42 which is supported on the armature plate 41 in the drawing plane down on its control valve element seat 38.
  • the fuel flowing in through the inlet throttle 30 into the control chamber 29 provides for a rapid pressure increase in the control chamber 29 and thus for a force acting on the injection valve element 18 closing force.
  • the resulting closing movement of the injection valve element 18 is assisted by a closing spring 43, which is supported at one end on a circumferential collar 44 of the second part 24 and at the other end on a lower, annular end side 45 of the valve body 7.
  • a loose pressure pin 47 is accommodated, which is designed as a separate component from the valve body 7.
  • the purpose of the cylindrical pressure pin 47 is to seal the valve chamber 34 in the axial direction in order to prevent fuel from the control chamber 29 being able to flow into the low-pressure region 37 when the control valve element 35 is closed, except for an unavoidable amount of leakage.
  • the pressure pin 47 also serves to guide the control valve element 35 at its inner periphery formed by the bore 46.
  • Fig. 1 results, it is in the fuel injector 1 to a so-called leak-free injector, which has no leakage except for a leak in the region of the control valve 36, since no permanent, acting on the injection valve element 18 in the closing direction low pressure stage is provided.
  • the first part 19 is guided into the second part 24 of the injection valve element 18 and guided on the inner circumference of the blind hole 23.
  • a hydraulic coupler volume 50 is formed, which couples the movement of the parts 19, 24. How to get out Fig. 1 results, the coupler volume 50 is hydraulically connected to the Injektorvolumen 12 via a consisting of a single throttle bore 51 throttle assembly 52.
  • the pressure in the coupler volume 50 drops rapidly and the opening force is transmitted to the first part 19 due to the suction effect in the sequence of its injection valve element seat 27 lifts. Due to the aforementioned negative pressure in the coupler volume 50, this increases because fuel from the injector 12 via the throttle assembly 52 in a range between axially the end face 48 of the first part 19 and the bottom 49 of the blind hole 23 flows.
  • the throttle arrangement 52 is designed such that the filling or the increase of the coupler volume 50 does not lead to any functionally relevant change in the maximum stroke of the injection valve element 18. This can also be realized in the case of a multiple injection.
  • the fit between the first part 19 and the inner circumference of the blind hole 23 is dimensioned so that the volume flow occurring here compared to the flow volume flow through the throttle assembly 52 is negligible - so the guide gap 53 is to be described as substantially hydraulic tight.
  • Fig. 1 is the first part 19 formed in the region of the guide gap 53 and thus formed as a pivot joint, so as to be able to compensate for angular errors and inclinations between the nozzle-side guide and the guide of the injection valve element 18 in the valve body 7.
  • FIG. 2 shown embodiment of a fuel injector 1 substantially corresponds to the embodiment according to Fig. 1 , so as to avoid repetition in terms of similarities to the preceding description of the figures as well as on Fig. 1 is referenced. In the following, only differences to the preceding embodiment are explained essentially.
  • a throttle bore for connecting the coupler volume 50 to the injector volume 12 has been dispensed with.
  • the coupler volume 50 is also formed between the bottom 49 of the blind bore 23 and the upper side 48 in the plane of the drawing of the first part 19 of the injection valve element 18.
  • the throttle arrangement 52 is realized in the region of a guide 54 between the outer circumference of the first part 19 and the inner circumference of the blind bore 23.
  • the throttle arrangement 52 comprises in the exemplary embodiment shown a number of throttles 55 arranged one behind the other in the axial direction.
  • the throttles 55 are each formed between an annular web 56 with a radially tapered outer edge and the inner circumference of the blind bore 23.
  • the axial extent of the webs 56 in a voltage applied to the inner circumference of the blind hole 23 area is so short that can form a turbulent flow, with the result that the flow rate through the throttle assembly 52 only disproportionately increases with increasing pressure difference between the coupler volume 50 and 12 injector.
  • the two adjacent in the axial direction, annular webs 56 define between them a groove 57 (circumferential groove) on the outer periphery of the first part 19.
  • a groove 57 (circumferential groove) on the outer periphery of the first part 19.
  • the first part 19 in the region of the guide 54 formed somewhat spherical, so that the first part 19 is pivotable relative to the second part 24 within certain limits, so that angle errors can be compensated.

Abstract

Die Erfindung betrifft einen Kraftstoff-Injektor (1), insbesondere Common-Rail-Injektor, zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem zwischen einer Schließstellung und einer Öffnungsstellung verstellbaren, mehrteiligen Einspritzventilelement (18), umfassend ein erstes und mindestens ein relativ zu dem ersten Teil (19) verstellbares zweites Teil (24), die über ein hydraulisches Kopplervolumen (50) miteinander gekoppelt sind. Erfindungsgemäß ist vorgesehen, dass das erste Teil (19) im zweiten Teil (24) oder das zweite Teil (24) im ersten Teil (19) geführt ist und dass das Kopplervolumen (50) mit einem Injektorvolumen (12) über mindestens eine Drosselanordnung (52) verbunden ist, die derart ausgebildet ist, dass der Durchflussvolumenstrom mit steigender Druckdifferenz zwischen Kopplervolumen (50) und Injektorvolumen (12) lediglich unterproportional zunimmt.

Description

    Stand der Technik
  • Die Erfindung betrifft einen Kraftstoff-Injektor, insbesondere einen Common-Rail-Injektor, zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, gemäß dem Oberbegriff des Anspruchs 1.
  • Die Einhaltung von Schadstoffgrenzwerten hat bei der Entwicklung von Verbrennungsmotoren die höchste Priorität. Gerade das Common-Rail-Einspritzsystem hat einen entscheidenden Beitrag zur Reduzierung der Schadstoffe geleistet. Der Vorteil der Common-Rail-Systeme liegt in ihrer Unabhängigkeit des Einspritzdrucks von Drehzahl und Last. Für die Einhaltung zukünftiger Abgasgrenzwerte ist jedoch gerade bei Dieselmotoren eine signifikante Erhöhung des Einspritzdrucks notwendig.
  • Bekannt sind hubgesteuerte Common-Rail-Injektoren, deren Einspritzventilelement servobetrieben ist. Als Drucksteller sind Piezo- und Magnetventile im Einsatz, mit denen der Servokreislauf gesteuert wird. Zum schnellen Nadelschließen wird häufig eine dauerhafte Niederdruckstufe vorgesehen, die eine permanente, schließende hydraulische Kraft auf die Nadel ausübt. Der Nachteil ist die hohe Leckage, die sich zwischen der Hochdruck- und der Niederdruckstufe einstellt. Eine Leckage führt unweigerlich zu dem Erfordernis einer höheren Pumpenleistung und somit zu Einbußen in der Effizienz des Systems. Dieser Sachverhalt wird insbesondere bei hohen Drücken problematisch. Aus diesem Grund werden neueste Injektoren für höchste Einspritzdrücke leckagefrei ausgeführt.
  • Im Gegensatz zu herkömmlichen Bauformen haben diese, so genannten leckagefreien, Kraftstoff-Injektoren keine dauerhafte in Schließrichtung wirkende Niederdruckstufe, wodurch die dadurch begründeten Leckagestellen entfallen. Aufgrund der wegfallenden Niederdruckstufe können zweiteilige Einspritzventilelemente in der Art, wie sie bei in der Praxis zum Einsatz kommenden Kraftstoff-Injektoren mit Niederdruckstufe eingesetzt werden, nicht mehr verwendet werden.
  • Während die beiden Einspritzventilelementteile (Steuerstange und Düsennadel) bei heutigen Serien-Injektoren mit Niederdruckstufe durch die resultierenden Druckkräfte aufeinander gedrückt werden, muss bei leckagefreien Kraftstoff-Injektoren eine separate form- oder kraftschlüssige Verbindung hergestellt werden. Zur Kopplung zweier Einspritzventilelemente ist es bekannt geworden, axial zwischen diesen ein hydraulisches Kopplervolumen vorzusehen. Dabei ist das Kopplervolumen üblicherweise in einer Kopplerhülse realisiert, in der eines der Einspritzventilelementteile geführt ist. Dabei wird das Kopplervolumen durch Herausdrücken von Kraftstoff durch den Führungsspalt zwischen dem in der Hülse geführten Einspritzventilelementteil und der Hülse verkleinert.
  • Offenbarung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, einen einfach aufgebauten Kraftstoff-Injektor vorzuschlagen, bei dem die Kopplung der mindestens zwei Einspritzventilelementteile mit einer möglichst geringen Bauteilzahl realisiert ist.
  • Diese Aufgabe wird mit einem Kraftstoff-Injektor mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben. In den Rahmen der Erfindung fallen sämtliche Kombinationen aus zumindest zwei von in der Beschreibung, den Ansprüchen und/oder den Figuren offenbarten Merkmalen.
  • Der Erfindung liegt der Gedanke zugrunde, zwei relativ zueinander verstellbare Teile des Einspritzventilelementes ineinander zu führen, um somit auf eine separate Führungshülse, wie sie im Stand der Technik zum Einsatz kommt, sowie eine die Führungshülse federkraftbeaufschlagende Feder verzichten zu können. Im Gegensatz zu dem Vorsehen eines einteiligen, langen Einspritzventilelementes hat die mindestens, vorzugsweise ausschließlich zweiteilige, Ausbildung den Vorteil, dass die Fertigung der einzelnen Einspritzventilelementteile in Summe weniger aufwändig und damit kostengünstiger ist als die Fertigung eines einteiligen langen Einspritzventilelementes. Zudem können bestehende Fertigungslinien beibehalten werden sowie die bestehende Logistik, die auf ein mehrteiliges Einspritzventilelement ausgerichtet ist. Die Erfindung hat zudem erkannt, dass es bei einer Lösung mit ineinander geführten Einspritzventilelementteilen zu einer ständigen Vergrößerung des Kopplervolumens im Betrieb des Kraftstoff-Injektors kommen würde, wenn das Kopplervolumen ausschließlich über einen Führungsspalt zwischen den beiden Teilen mit einem Injektorvolumen verbunden wäre, da sich der Strömungswiderstand des Führungsspaltes proportional zur anliegenden Druckdifferenz verhält. Die Tatsache, dass der Strömungswiderstand eines derartigen Führungsspaltes in einem linearen Zusammenhang zu der Größe der Druckdifferenz zwischen Kopplervolumen und Injektorvolumen steht, würde dazu führen, dass beim Öffnen des Kraftstoff-Injektors aufgrund des sehr niedrigen Drucks im Kopplervolumen sehr viel Kraftstoff aus dem Injektorvolumen angesaugt würde und eine Entleerung des Kopplervolumens beim Schließvorgang aufgrund der zur Verfügung stehenden (kurzen) Zeit nicht mehr möglich wäre. Im Extremfall würde dies zu einer axialen Verstemmung des Einspritzventilelementes im Kraftstoff-Injektor und damit zu einem Verstellen des Kraftstoff-Injektors führen. Um einen derartigen Effekt zu vermeiden, ist das Kopplervolumen bei einem nach dem Konzept der Erfindung ausgebildeten Kraftstoff-Injektor zusätzlich oder alternativ zu einem Führungsspalt über mindestens eine Drosselanordnung mit dem Injektorvolumen verbunden, wobei die Drosselanordnung derart ausgebildet ist, dass der durch diese durchströmende Kraftstoffvolumenstrom (Durchflussvolumenstrom) sich nicht proportional zur Druckdifferenz zwischen Kopplervolumen und Injektorvolumen wie bei einem Führungsspalt verhält, sondern unterproportional. Anders ausgedrückt steigt der Durchflussvolumenstrom, der durch die Drosselanordnung strömt, nicht im gleichen Maße an wie eine Druckdifferenz zwischen Kopplervolumen und Injektorvolumen, d.h. der Durchflussvolumenstrom und die Druckdifferenz stehen nicht in einem linearen Zusammenhang. Noch anders ausgedrückt ist es bevorzugt, wenn der Durchflussvolumenstromanstieg bei größer werdender Druckdifferenz immer geringer wird. Idealerweise ist der Durchflussvolumenstrom proportional zu der Wurzel der Druckdifferenz zwischen Injektorvolumen und Kopplervolumen. Bei einem nach dem Konzept der Erfindung ausgebildeten Kraftstoff-Injektor wird erreicht, dass auch bei einer extrem großen Druckdifferenz zwischen Kopplervolumen und Injektorvolumen zu Beginn eines Öffnungsvorgangs nur eine moderate Kraftstoffmenge durch die Drosselanordnung in das Kopplervolumen angesaugt wird, wobei die Zeit beim Schließvorgang, bei der das Einspritzventilelement, vorzugsweise mittels einer Schließfeder, in Richtung Einspritzventilelementsitz bewegt wird, ausreicht, um das zuvor angesaugte Kraftstoffvolumen wieder durch die Drosselanordnung in das Injektorvolumen abgeben zu können, um somit den Ursprungszustand wieder herzustellen.
  • Eine Möglichkeit zur Ausbildung der Drosselanordnung besteht darin, mindestens eine, vorzugsweise ausschließlich eine, insbesondere im ersten oder zweiten Teil realisierte, Drosselbohrung vorzusehen, wobei die Drosselbohrung ganz besonders bevorzugt in der Art einer Ablaufdrossel aus einer Steuerkammer wie bei bekannten Servokreislauf-Kraftstoff-Injektoren ausgebildet ist. Bevorzugt handelt es sich also bei der Drosselbohrung um eine Stufenbohrung mit einer Durchmesserstufe, die vorzugsweise zur Ausbildung einer turbulenten, kavitierenden Strömung innerhalb der Drosselbohrung führt.
  • Die vorerwähnte Durchmesserstufe ist eine Möglichkeit zur Realisierung eines degressiven Verhältnisses zwischen Durchflussvolumenstrom und Druckdifferenz zwischen Kopplervolumen und Injektorvolumen. Grundsätzlich können hierzu beliebige Drosselstufen, insbesondere hydraulisch scharfkantige Drosselstufen, vorzugsweise mit einer geringen Längserstreckung in Strömungsrichtung realisiert werden. Bevorzugt ist die Längserstreckung der mindestens einen Drosselstufe derart ausgelegt, dass sich eine turbulente Strömung ausbildet. Unter einer hydraulisch scharfkantigen Drosselstufe ist dabei eine Länge zu hydraulisches Durchmesser-Verhältnis kleiner gleich 10 zu verstehen. Dabei gilt für den hydraulischen Durchmesser einer Ringspaltdrossel D Hyd = 4 durchströmter Querschnitt durchströmte Berandungslänge .
    Figure imgb0001
  • Die Berandungslänge ist in dieser Gleichung die Summe der inneren und der äußeren Berandungslänge.
  • Besonders bevorzugt ist es, wenn die Drosselanordnung mehrere hydraulisch in Reihe geschaltete (angeordnete) Drosseln umfasst. Bevorzugt sind die Drosseln dabei radial zwischen den beiden Einspritzventilelementteilen ausgebildet, vorzugsweise im Führungsbereich, mit dem die beiden Teile ineinander geführt sind. Wie zuvor bereits angedeutet, ist es besonders bevorzugt, wenn die Drosseln derart ausgebildet sind, also eine so geringe Erstreckung in Strömungsrichtung aufweisen, dass die Führungslänge so gering ist, dass sich eine turbulente Strömung ausbildet. Bei einer laminaren Strömung wäre der Durchflussvolumenstrom durch die Drosselanordnung proportional zur Druckdifferenz zwischen Kopplervolumen und Injektorvolumen, was es zu vermeiden gilt.
  • Eine Möglichkeit zur Ausbildung der Drosselanordnung besteht darin, an einem der Einspritzventilelementteile mehrere axial nebeneinander (parallel) angeordnete Rillen vorzusehen, wobei die Drosseln radial zwischen den die Rillen begrenzenden Stegen und dem anderen Einspritzventilelementteil gebildet sind. Bevorzugt sind die Stege, zumindest näherungsweise, scharfkantig, um eine minimale Führungslänge zu realisieren und damit die Ausbildung einer turbulenten Strömung zu erzwingen. Ganz besonders bevorzugt wird bei einer Ausführungsform mit mehreren axial in Strömungsrichtung hintereinander angeordneten Drosseln auf eine Drosselbohrung in den Einspritzventilelementteilen verzichtet.
  • Besonders zweckmäßig ist eine Ausführungsform des Kraftstoff-Injektors, bei der der hydraulische Koppler als Gelenk ausgeführt ist, was eine gewisse Verschwenkbarkeit der beiden hydraulisch gekoppelten Einspritzventilelementteile ermöglicht, um auf diese Weise toleranzbedingte Winkelfehler und Schrägstellungen ausgleichen zu können.
  • Eine besonders bevorzugte Möglichkeit zur Ausbildung eines derartigen Schwenkgelenks besteht darin, das geführte Einspritzventilelementteil im Bereich der Führung ballig zu konturieren, um eine relative Verschwenkung zu ermöglichen.
  • In Weiterbildung der Erfindung ist mit Vorteil vorgesehen, dass der Kraftstoff-Injektor bis auf ggf. im Bereich des Steuerventilelementes realisierte Leckagen leckagefrei ausgebildet ist. Hierzu wird auf eine in Schließrichtung auf das Einspritzventilelement wirkende Niederdruckstufe am Einspritzventilelement verzichtet.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen.
  • Diese zeigen in:
  • Fig. 1
    ein erstes Ausführungsbeispiel eines Kraftstoff-Injektors, bei dem zwei Teile eines Einspritzventilelementes ineinander geführt und hydraulisch gekoppelt sind, wobei das Kopplervolumen über eine Drosselbohrung mit einem Injektorvolumen verbunden ist, und
    Fig. 2
    ein weiteres Ausführungsbeispiel eines Kraftstoff-Injektors, bei dem zwei Teile eines Einspritzventilelementes hydraulisch miteinander gekoppelt sind, derart, dass auf eine Drosselbohrung verzichtet werden kann.
  • In den Figuren sind gleiche Elemente und Elemente mit der gleichen Funktion mit den gleichen Bezugszeichen gekennzeichnet.
  • In Fig. 1 ist ein als Common-Rail-Injektor ausgebildeter Kraftstoff-Injektor 1 zum Einspritzen von Kraftstoff in einen nicht gezeigten Brennraum einer ebenfalls nicht gezeigten Brennkraftmaschine eines Kraftfahrzeugs dargestellt. Eine Hochdruckpumpe 2 fördert Kraftstoff aus einem Vorratsbehälter 3 in einen Kraftstoff-Hochdruckspeicher 4 (Rail). In diesem ist Kraftstoff, insbesondere Diesel oder Benzin, unter hohem Druck, von in diesem Ausführungsbeispiel über 2000bar, gespeichert. An den Kraftstoff-Hochdruckspeicher 4 ist der Kraftstoff-Injektor 1 neben anderen, nicht gezeigten Kraftstoff-Injektoren über eine Versorgungsleitung 5 angeschlossen. Die Versorgungsleitung 5 mündet in einen Ringraum 6 radial zwischen einem Ventilkörper 7 und einem Injektorkörper 8 (Gehäuseteil). Über durch Anschliffe 9 am Außenumfang des Ventilkörpers 7 gebildete Axialkanäle 10 kann der unter Hochdruck stehende Kraftstoff im Wesentlichen ungedrosselt in axialer Richtung in der Zeichnungsebene nach unten in einen als Mini-Rail zur Druckschwingungsminimierung fungierenden Druckraum 11 strömen. Der Druckraum 11 begrenzt ein Injektorvolumen 12. Bei einem Einspritzvorgang strömt der Kraftstoff unmittelbar durch Axialkanäle 13 in einen ebenfalls zum Injektorvolumen 12 gehörenden Düsenraum 14 (Ringraum) und aus diesem durch mindestens ein Einspritzloch 15 in den Brennraum der Brennkraftmaschine. Der Kraftstoff-Injektor 1 ist über einen Injektorrücklaufanschluss 16 an einer Rücklaufleitung 17 angeschlossen. Über die Rücklaufleitung 17 kann eine später noch zu erläuternde Steuermenge an Kraftstoff von dem Kraftstoff-Injektor 1 zu dem Vorratsbehälter 3 abfließen und von dort aus dem Hochdruckkreislauf wieder zugeführt werden.
  • Innerhalb des Injektorkörpers 8 ist ein in diesem Ausführungsbeispiel zweiteiliges Einspritzventilelement 18 in axialer Richtung verstellbar angeordnet. Das Einspritzventilelement 18 ragt mit seinem unteren, als Düsennadel ausgebildeten ersten Teil 19 in eine Stufenbohrung 20 eines Düsenkörpers 21 hinein. In diesem ist das erste Teil 19 mit einem Führungsabschnitt 22 axial verschieblich geführt. Die Axialkanäle 13 sind durch Anschliffe 9 im Führungsabschnitt 22 radial zwischen dem ersten Teil 19 und dem Düsenkörper 21 ausgebildet. Der Düsenkörper 21 ist mittels einer nicht dargestellten Überwurfmutter mit dem Injektorkörper 8 verschraubt.
  • Das erste Teil 19 (Düsennadel) des Einspritzventilelementes 18 ist in einer stirnseitigen Sacklochbohrung 23 eines zweiten Teils 24 (Steuerstange) des Einspritzventilelementes 18 geführt.
  • Wie sich aus Fig. 1 weiter ergibt, weist das Einspritzventilelement 18 an einer am ersten Teil 19 ausgebildeten (unteren) Spitze 25 eine Schließfläche 26 (Dichtfläche) auf, mit welcher das Einspritzventilelement 18 in eine dichte Anlage an einen innerhalb des Düsenkörpers 21 ausgebildeten Einspritzventilelementsitz 27 bringbar ist. Wenn das Einspritzventilelement 18 an seinem Einspritzventilelementsitz 27 anliegt, d.h. sich in einer Schließstellung befindet, ist der Kraftstoffaustritt aus dem mindestens einen Einspritzloch 15 gesperrt. Ist es dagegen von seinem Einspritzventilelementsitz 27 abgehoben, kann Kraftstoff aus dem Druckraum 11 über die Axialkanäle 13 und den als Ringraum ausgebildeten Düsenraum 14 an dem Einspritzventilelementsitz 27 vorbei zum Einspritzloch 15 strömen und dort im Wesentlichen unter dem Hochdruck (Raildruck) stehend in den Brennraum gespritzt werden.
  • Von einer oberen Stirnseite 28 des zweiten Teils 24 des Einspritzventilelementes 18 und einem in der Zeichnungsebene unteren hülsenförmigen Abschnitt des Ventilkörpers 7 wird eine Steuerkammer 29 begrenzt, die über eine radial in dem hülsenförmigen Abschnitt des Ventilkörpers 7 verlaufende Zulaufdrossel 30 mit unter Hochdruck stehendem Kraftstoff aus dem Ringraum 6 versorgt wird. Der hülsenförmige Abschnitt mit darin eingeschlossener Steuerkammer 29 ist radial außen mit unter Hochdruck stehendem Kraftstoff umschlossen, so dass ein ringförmiger Führungsspalt 31 radial zwischen dem hülsenförmigen Abschnitt des Ventilkörpers 7 und dem Einspritzventilelement 18, hier dem zweiten Teil 24, vergleichsweise kraftstoffdicht ist.
  • Die Steuerkammer 29 ist über einen, senkrecht in dem Ventilkörper 7 verlaufenden Axialkanal 32 mit Ablaufdrossel 33 mit einer Ventilkammer 34 verbunden, die radial außen von einem in axialer Richtung verstellbaren, hülsenförmigen Steuerventilelement 35 eines in axialer Richtung im geschlossenen Zustand druckausgeglichenen Steuerventils 36 (Servoventil) begrenzt ist. Aus der Ventilkammer 34 kann Kraftstoff in einen Niederdruckbereich 37 des Kraftstoff-Injektors 1 und von dort aus zum Injektorrücklaufanschluss 16 strömen, wenn das hülsenförmige Steuerventilelement 35 von seinem am Ventilkörper 7 ausgebildeten Steuerventilelementsitz 38 abgehoben, d.h. wenn das Steuerventil 36 geöffnet ist. Zum Verstellen des hülsenförmigen Steuerventilelementes 35 in der Zeichnungsebene nach oben ist ein elektromagnetischer Aktuator 39 mit einem Elektromagnet 40 vorgesehen, der mit einer einstückig mit dem Steuerventilelement 35 ausgebildeten Ankerplatte 41 zusammenwirkt und in der Folge auch mit dem hülsenförmigen Steuerventilelement 35. Bei Bestromung des elektromagnetischen Aktuators 39 hebt das Steuerventilelement 35 von seinem am Ventilkörper 7 ausgebildeten, in diesem Ausführungsbeispiel als Flachsitz ausgebildeten Steuerventilelementsitz 38 ab. Die Durchflussquerschnitte der Zulaufdrossel 30 und der Ablaufdrossel 33 sind dabei derart aufeinander abgestimmt, dass bei geöffnetem Steuerventil 36 ein Nettoabfluss von Kraftstoff (Steuermenge) aus der Steuerkammer 29 in den Niederdruckbereich 37 des Kraftstoff-Injektors 1 und von dort aus über den Injektorrücklaufanschluss 16 und die Rücklaufleitung 17 in den Vorratsbehälter 3 resultiert. Hierdurch sinkt der Druck in der Steuerkammer 29 rapide ab, wodurch das Einspritzventilelement 18, genauer das erste Teil 19, von seinem Einspritzventilelementsitz 27 abhebt, so dass Kraftstoff aus dem Injektorvolumen 12 durch das Einspritzloch 15 in den Brennraum ausströmen kann.
  • Zum Beenden des Einspritzvorgangs wird die Bestromung des elektromagnetischen Aktuators 39 unterbrochen, wodurch das hülsenförmige Steuerventilelement 35 mittels einer Steuerfeder 42, die sich auf der Ankerplatte 41 abstützt, in der Zeichnungsebene nach unten auf seinem Steuerventilelementsitz 38 verstellt wird. Der durch die Zulaufdrossel 30 in die Steuerkammer 29 nachströmende Kraftstoff sorgt für eine schnelle Druckerhöhung in der Steuerkammer 29 und damit für eine auf das Einspritzventilelement 18 wirkende Schließkraft. Die daraus resultierende Schließbewegung des Einspritzventilelementes 18 wird von einer Schließfeder 43 unterstützt, die sich einenends an einem Umfangsbund 44 des zweiten Teils 24 und anderenends an einer unteren, ringförmigen Stirnseite 45 des Ventilkörpers 7 abstützt.
  • Aus Fig. 1 ist weiter zu entnehmen, dass innerhalb einer in das Steuerventilelement 35 eingebrachten Bohrung 46 ein loser Druckstift 47 aufgenommen ist, der als von dem Ventilkörper 7 separates Bauteil ausgebildet ist. Der zylindrische Druckstift 47 hat die Aufgabe, die Ventilkammer 34 in axialer Richtung nach oben abzudichten, um zu verhindern, dass bei geschlossenem Steuerventilelement 35 - bis auf eine nicht zu vermeidende Leckagemenge - Kraftstoff aus der Steuerkammer 29 in den Niederdruckbereich 37 strömen kann. Der Druckstift 47 dient weiterhin zur Führung des Steuerventilelementes 35 an seinem von der Bohrung 46 gebildeten Innenumfang.
  • Wie sich des Weiteren aus Fig. 1 ergibt, handelt es sich bei dem Kraftstoff-Injektor 1 um einen so genannten leckagefreien Injektor, der bis auf eine Leckage im Bereich des Steuerventils 36 keine Leckage aufweist, da keine permanente, auf das Einspritzventilelement 18 in Schließrichtung wirkende Niederdruckstufe vorgesehen ist.
  • Wie bereits erläutert, ist das erste Teil 19 in das zweite Teil 24 des Einspritzventilelementes 18 hineingeführt und am Innenumfang der Sacklochbohrung 23 geführt. Axial zwischen einer in der Zeichnungsebene oberen Stirnseite 48 und dem in der Zeichnungsebene oberen Grund 49 der Sacklochbohrung 23 ist ein hydraulisches Kopplervolumen 50 ausgebildet, welches die Bewegung der Teile 19, 24 koppelt. Wie sich weiter aus Fig. 1 ergibt, ist das Kopplervolumen 50 über eine aus einer einzigen Drosselbohrung 51 bestehenden Drosselanordnung 52 hydraulisch mit dem Injektorvolumen 12 verbunden. Wird der elektromagnetische Aktuator 39 bestromt und dadurch das in der Zeichnungsebene obere zweite Teil 24 des Einspritzventilelementes 18 stark beschleunigt nach oben bewegt, fällt zunächst der Druck im Kopplervolumen 50 rapide ab und die öffnende Kraft wird aufgrund der Sogwirkung auf das erste Teil 19 übertragen, welches in der Folge von seinem Einspritzventilelementsitz 27 abhebt. Aufgrund des vorerwähnten Unterdrucks im Kopplervolumen 50 vergrößert sich dieses, da Kraftstoff aus dem Injektorvolumen 12 über die Drosselanordnung 52 in einen Bereich axial zwischen der Stirnseite 48 des ersten Teils 19 und dem Grund 49 der Sacklochbohrung 23 nachströmt. Die Drosselanordnung 52 ist dabei so ausgelegt, dass die Befüllung bzw. die Zunahme des Kopplervolumens 50 zu keiner funktionsrelevanten Veränderung des Maximalhubs des Einspritzventilelementes 18 führt. Dies ist auch im Falle einer Mehrfacheinspritzung zu realisieren. Die Passung zwischen dem ersten Teil 19 und dem Innenumfang der Sacklochbohrung 23 ist so bemessen, dass der hier auftretende Volumenstrom gegenüber dem Durchflussvolumenstrom durch die Drosselanordnung 52 zu vernachlässigen ist - der Führungsspalt 53 ist also als im Wesentlichen hydraulisch dicht zu bezeichnen.
  • Wird die Bestromung des Aktuators 39 unterbrochen, steigt, wie zuvor erläutert, der Druck in der Steuerkammer 29 rapide an, wodurch sich zunächst das zweite Teil 24 des Einspritzventilelementes 18 in axialer Richtung in der Zeichnungsebene nach unten bewegt. Sobald das erste Teil 19 am Einspritzventilelementsitz 27 anliegt, ist die Einspritzung beendet und das Kopplervolumen 50 wird mittels der Schließfeder 43 leergedrückt, bis der Ursprungszustand wieder erreicht wird. Die Entleerung des Kopplervolumens 50 ist nur möglich, da die Drosselanordnung 52 derart ausgebildet ist, dass der Durchflussvolumenstrom sich unterproportional, d.h. nicht linear zum Druckdifferenzanstieg zwischen Kopplervolumen 50 und Injektorvolumen 12 verhält. Es ist kein linearer Zusammenhang wie bei einer herkömmlichen Führung (Schmierspalttheorie) gegeben.
  • Bei dem Ausführungsbeispiel gemäß Fig. 1 ist das erste Teil 19 im Bereich des Führungsspaltes 53 ausgeformt und somit als Schwenkgelenk ausgebildet, um somit Winkelfehler und Schrägstellungen zwischen der düsenseitigen Führung und der Führung des Einspritzventilelementes 18 im Ventilkörper 7 ausgleichen zu können.
  • Das in Fig. 2 gezeigte Ausführungsbeispiel eines Kraftstoff-Injektors 1 entspricht im Wesentlichen dem Ausführungsbeispiel gemäß Fig. 1, so dass zur Vermeidung von Wiederholungen im Hinblick auf Gemeinsamkeiten auf die vorangehende Figurenbeschreibung sowie auf Fig. 1 verwiesen wird. Im Folgenden werden im Wesentlichen nur Unterschiede zum vorangehenden Ausführungsbeispiel erläutert.
  • Aus Fig. 2 ist zu entnehmen, dass auf eine Drosselbohrung zur Anbindung des Kopplervolumens 50 an das Injektorvolumen 12 verzichtet wurde. Das Kopplervolumen 50 ist ebenfalls zwischen dem Grund 49 der Sacklochbohrung 23 und der in der Zeichnungsebene oberen Stirnseite 48 des ersten Teils 19 des Einspritzventilelementes 18 ausgebildet. In dem gezeigten Ausführungsbeispiel ist die Drosselanordnung 52 im Bereich einer Führung 54 zwischen dem Außenumfang des ersten Teils 19 und dem Innenumfang der Sacklochbohrung 23 realisiert. Die Drosselanordnung 52 umfasst in dem gezeigten Ausführungsbeispiel eine Anzahl von in axialer Richtung hintereinander angeordneten Drosseln 55. Die Drosseln 55 sind jeweils gebildet zwischen einem ringförmigen Steg 56 mit einer in radialer Richtung spitz zulaufenden Außenkante und dem Innenumfang der Sacklochbohrung 23. Die Axialerstreckung der Stege 56 in einem am Innenumfang der Sacklochbohrung 23 anliegenden Bereich ist so kurz bemessen, dass sich eine turbulente Strömung ausbilden kann, mit der Folge, dass sich der Durchflussvolumenstrom durch die Drosselanordnung 52 nur unterproportional mit zunehmender Druckdifferenz zwischen Kopplervolumen 50 und Injektorvolumen 12 zunimmt. Die jeweils zwei in axialer Richtung benachbarten, ringförmigen Stege 56 begrenzen zwischen sich eine Rille 57 (Umfangsnut) am Außenumfang des ersten Teils 19. Wie bei dem Ausführungsbeispiel gemäß Fig. 1 ist das erste Teil 19 im Bereich der Führung 54 etwas ballig ausgeformt, so dass das erste Teil 19 relativ zu dem zweiten Teil 24 in gewissen Grenzen verschwenkbar ist, so dass Winkelfehler ausgeglichen werden können.

Claims (10)

  1. Kraftstoff-Injektor, insbesondere Common-Rail-Injektor, zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, mit einem zwischen einer Schließstellung und einer Öffnungsstellung verstellbaren, mehrteiligen Einspritzventilelement (18), umfassend ein erstes und mindestens ein relativ zu dem ersten Teil (19) verstellbares zweites Teil (24), die über ein hydraulisches Kopplervolumen (50) miteinander gekoppelt sind,
    dadurch gekennzeichnet,
    dass das erste Teil (19) im zweiten Teil (24) oder das zweite Teil (24) im ersten Teil (19) geführt ist, und dass das Kopplervolumen (50) mit einem Injektorvolumen (12) über mindestens eine Drosselanordnung (52) verbunden ist, die derart ausgebildet ist, dass der Durchflussvolumenstrom mit steigender Druckdifferenz zwischen Kopplervolumen (50) und Injektorvolumen (12) lediglich unterproportional zunimmt.
  2. Kraftstoff-Injektor nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Drosselanordnung (52) mindestens eine, vorzugsweise ausschließlich eine, insbesondere im ersten oder zweiten Teil (19, 24) eingebrachte, Drosselbohrung (51) umfasst.
  3. Kraftstoff-Injektor nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass die Drosselanordnung (52) mindestens eine, insbesondere hydraulisch scharfkantige, Drosselstufe mit einer geringen Längserstreckung in Strömungsrichtung aufweist, die vorzugsweise so bemessen ist, dass sich eine turbulente Strömung ausbildet.
  4. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Drosselanordnung (52) mehrere hydraulisch in Reihe angeordnete Drosseln (55) umfasst.
  5. Kraftstoff-Injektor nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Drosseln (55) radial zwischen dem ersten und dem zweiten Teil (19, 24) ausgebildet sind.
  6. Kraftstoff-Injektor nach Anspruch 5,
    dadurch gekennzeichnet,
    dass die Drosselanordnung (52) mehrere axial hintereinander angeordnete, im ersten oder im zweiten Teil (19, 24) eingebrachte Rillen (57) umfasst.
  7. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das erste Teil (19) ein eine Steuerkammer (29) begrenzender Steuerkolben und das zweite Teil (24) mit einem Düsennadelsitz zusammenwirkende Düsennadel ist.
  8. Kraftstoff-Injektor nach Anspruch 7,
    dadurch gekennzeichnet,
    dass die Führung (54) als eine Relativverstellbarkeit des ersten und des zweiten Teils (19, 24) relativ zu der Längsmittelachse des Einspritzventilelementes (18) ermöglichendes Schwenkgelenk ausgebildet ist.
  9. Kraftstoff-Injektor nach Anspruch 8,
    dadurch gekennzeichnet,
    dass das erste oder das zweite Teil (19, 24) im Bereich der Führung (54) ballig ausgeformt ist.
  10. Kraftstoff-Injektor nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Kraftstoff-Injektor (1) keine dauerhafte Niederdruckstufe aufweist.
EP09169850A 2009-01-13 2009-09-09 Kraftstoff-Injektor Not-in-force EP2206912B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009000181A DE102009000181A1 (de) 2009-01-13 2009-01-13 Kraftstoff-Injektor

Publications (3)

Publication Number Publication Date
EP2206912A2 true EP2206912A2 (de) 2010-07-14
EP2206912A3 EP2206912A3 (de) 2010-07-21
EP2206912B1 EP2206912B1 (de) 2011-08-03

Family

ID=42124568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09169850A Not-in-force EP2206912B1 (de) 2009-01-13 2009-09-09 Kraftstoff-Injektor

Country Status (4)

Country Link
US (1) US8302888B2 (de)
EP (1) EP2206912B1 (de)
AT (1) ATE519031T1 (de)
DE (1) DE102009000181A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130452A1 (de) * 2011-03-31 2012-10-04 Fuechslin Raphael Einspritzventil
CN104533683A (zh) * 2014-11-26 2015-04-22 中国北方发动机研究所(天津) 一种高压共轨喷油器滑阀结构
WO2016020469A1 (de) * 2014-08-08 2016-02-11 Continental Automotive Gmbh Drosseleinrichtung zum steuern einer einer kraftstoff-einspritzdüse zuzuführenden kraftstoffmenge sowie einspritzeinrichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220657A1 (de) 2012-11-13 2014-05-15 Robert Bosch Gmbh Brennstoffeinspritzventil
JP6145652B2 (ja) * 2014-01-06 2017-06-14 株式会社Soken 燃料噴射弁
GB201412086D0 (en) * 2014-07-08 2014-08-20 Delphi International Operations Luxembourg S.�.R.L. Fuel injector for an internal combustion engine
US11506162B2 (en) * 2020-11-17 2022-11-22 Caterpillar Inc. Trapped volume split check assembly in fuel injector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690223A2 (de) * 1994-07-01 1996-01-03 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Vorrichtung zum Einstellen des Nadelhubes eines Kraftstoffeinspritzventils
WO1999049209A1 (de) * 1998-03-26 1999-09-30 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Hochdruck-kolbenzylindereinheit
DE102007014359A1 (de) * 2006-09-01 2008-03-06 Robert Bosch Gmbh Injektor für eine Kraftstoffeinspritzanlage
DE102007001363A1 (de) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennkraftmaschinen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10104618A1 (de) * 2001-02-02 2002-08-08 Bosch Gmbh Robert Ventil zum Steuern von Flüssigkeiten
EP1431567B1 (de) * 2001-07-03 2010-06-02 CRT Common Rail Technologies AG Brennstoffeinspritzventil für Verbrennungskraftmaschinen
DE102004024527A1 (de) * 2004-05-18 2005-12-15 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung
DE102005026514B4 (de) * 2005-02-18 2008-12-24 Robert Bosch Gmbh Einspritzdüse
DE102005059169A1 (de) * 2005-12-12 2007-06-14 Robert Bosch Gmbh Kraftstoffinjektor mit direkt betätigbarem Einspritzventilglied
US8544771B2 (en) * 2006-03-03 2013-10-01 Ganser-Hydromag Ag Fuel injection valve for internal combustion engines
DE102006036780A1 (de) * 2006-08-07 2008-02-21 Robert Bosch Gmbh Krafstoffinjektor mit direkter Nadelsteuerung und Servoventil-Unterstützung
DE102008040680A1 (de) * 2008-07-24 2010-01-28 Robert Bosch Gmbh Kraftstoff-Injektor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0690223A2 (de) * 1994-07-01 1996-01-03 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Vorrichtung zum Einstellen des Nadelhubes eines Kraftstoffeinspritzventils
WO1999049209A1 (de) * 1998-03-26 1999-09-30 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh Hochdruck-kolbenzylindereinheit
DE102007014359A1 (de) * 2006-09-01 2008-03-06 Robert Bosch Gmbh Injektor für eine Kraftstoffeinspritzanlage
DE102007001363A1 (de) * 2007-01-09 2008-07-10 Robert Bosch Gmbh Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennkraftmaschinen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130452A1 (de) * 2011-03-31 2012-10-04 Fuechslin Raphael Einspritzventil
WO2016020469A1 (de) * 2014-08-08 2016-02-11 Continental Automotive Gmbh Drosseleinrichtung zum steuern einer einer kraftstoff-einspritzdüse zuzuführenden kraftstoffmenge sowie einspritzeinrichtung
US20170226974A1 (en) * 2014-08-08 2017-08-10 Continental Automotive Gmbh Throttle device for controlling an amount of fuel to be supplied to a fuel injection nozzle, as well as an injection device
US10240566B2 (en) * 2014-08-08 2019-03-26 Continental Automotive Gmbh Throttle device for controlling an amount of fuel to be supplied to a fuel injection nozzle, as well as an injection device
CN104533683A (zh) * 2014-11-26 2015-04-22 中国北方发动机研究所(天津) 一种高压共轨喷油器滑阀结构

Also Published As

Publication number Publication date
ATE519031T1 (de) 2011-08-15
DE102009000181A1 (de) 2010-07-15
EP2206912B1 (de) 2011-08-03
US20100175665A1 (en) 2010-07-15
US8302888B2 (en) 2012-11-06
EP2206912A3 (de) 2010-07-21

Similar Documents

Publication Publication Date Title
EP2108080B1 (de) Injektor zum einspritzen von kraftstoff in brennräume von brennkraftmaschinen
EP2206912B1 (de) Kraftstoff-Injektor
EP2387661B1 (de) Kraftstoffinjektor für brennkraftmaschinen
WO2018082855A1 (de) Brennstoffeinspritzventil zum einspritzen eines gasförmigen und/oder flüssigen brennstoffs
WO2012123130A1 (de) Ventileinrichtung zum schalten oder zumessen eines fluids
EP2310662B1 (de) Kraftstoff-injektor
EP2294309A1 (de) Kraftstoff-injektor
DE19946766C2 (de) Injektor für eine Brennkraftmaschine mit Direkteinspritzung
EP1574701A1 (de) Common-Rail Injektor
EP3055549A1 (de) Kolben-fluidleitung-anordnung, insbesondere steuerkolben-steuerbohrung-anordnung
DE102008001907A1 (de) Kraftstoff-Injektor
EP3380715B1 (de) Kraftstoff-injektor
EP1541859B1 (de) Einspritzventil
EP2022975B1 (de) Injektor
WO2005040598A1 (de) Ventil zur steuerung einer verbindung in einem hochdruckflüssigkeitssystem, insbesondere einer kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP2019198B1 (de) Injektor
DE10147830B4 (de) Kraftstoffinjektor
WO2009135712A1 (de) Kraftstoff-injektor sowie herstellungsverfahren
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
WO2016058969A1 (de) Einspritzventil zum einspritzen von fluid in einen brennraum einer brennkraftmaschine
EP1360407A2 (de) Ventil zum steuern von flüssigkeiten
DE102008041561A1 (de) Kraftstoffinjektor sowie Auslegungsverfahren für einen Kraftstoffinjektor
DE10160490A1 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
WO2003040544A1 (de) Steuermodul für einen injektor eines speichereinspritzsystems
EP2035685A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 61/16 20060101ALI20100614BHEP

Ipc: F02M 61/12 20060101ALI20100614BHEP

Ipc: F02M 47/02 20060101AFI20100511BHEP

17P Request for examination filed

Effective date: 20110121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 61/12 20060101ALI20110303BHEP

Ipc: F02M 47/02 20060101AFI20110303BHEP

Ipc: F02M 61/16 20060101ALI20110303BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009001034

Country of ref document: DE

Effective date: 20110929

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110803

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

26N No opposition filed

Effective date: 20120504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009001034

Country of ref document: DE

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111114

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 519031

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20190920

Year of fee payment: 11

Ref country code: FR

Payment date: 20190923

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191125

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009001034

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200909