EP2205835B1 - Anlage und verfahren zur umwandlung von wärme in mechanische energie - Google Patents

Anlage und verfahren zur umwandlung von wärme in mechanische energie Download PDF

Info

Publication number
EP2205835B1
EP2205835B1 EP08830925A EP08830925A EP2205835B1 EP 2205835 B1 EP2205835 B1 EP 2205835B1 EP 08830925 A EP08830925 A EP 08830925A EP 08830925 A EP08830925 A EP 08830925A EP 2205835 B1 EP2205835 B1 EP 2205835B1
Authority
EP
European Patent Office
Prior art keywords
container
fluid
converter
heat
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08830925A
Other languages
English (en)
French (fr)
Other versions
EP2205835A1 (de
Inventor
Hans Van Rij
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TIPSPIT INVENSTORS BV
Original Assignee
TIPSPIT INVENSTORS BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIPSPIT INVENSTORS BV filed Critical TIPSPIT INVENSTORS BV
Publication of EP2205835A1 publication Critical patent/EP2205835A1/de
Application granted granted Critical
Publication of EP2205835B1 publication Critical patent/EP2205835B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/02Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for the fluid remaining in the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/005Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for by means of hydraulic motors

Definitions

  • the present invention relates to an installation, as well as a method, for the conversion of heat into mechanical energy.
  • Patent application GB-2 109 868 discloses such a known installation and method. Such installations and methods are often used for generating electricity (whereby a generator is connected which converts the mechanical energy into electricity) in order to use thermal energy that would otherwise remain unused. Such thermal energy is often present in cooling water and waste gases. Such thermal energy is also present in ground-water.
  • the use of solar radiation is also known. It is also known that stone, asphalt and other such materials have the properties to retain heat under the effects of solar radiation and solar heat Likewise, it is also known that this solar heat can be extracted from stone and asphalt, for example, by providing them with water-containing pipes that pass through them.
  • This transfer medium can be a fluid which is circulated in a circuit by means of pumps. The liquid is then heated to a higher energy level with a higher pressure and temperature by means of available heat, lead through a converter in which the energy level drops, in particular the temperature and pressure, and then returned via a pump or compressor. This process is not efficient since the pump or compressor requires just as much or more energy to operate than the mechanical energy that is generated in the converter.
  • the object of the present invention is to provide an installation and method for the conversion of heat into mechanical energy, using a transfer medium in the form of a fluid, with which such a process can be efficiently achieved.
  • this object according to the invention can be achieved by providing an installation for the conversion of heat into mechanical energy, whereby the installation comprises:
  • the process that takes place in the installation is briefly as follows: at the high pressure side of the process there is a closed container filled with fluid. By heating this fluid in the closed container by means of available (residual) heat, the temperature and the pressure in that container increase. Here, a portion of the fluid in the container evaporates. The pressure and temperature in the container increase. This pressure will force fluid, in particular liquid-state fluid, from the container to the converter via a supply line. A fluid then arrives at the converter with a relatively high level of flow energy, with a relatively high temperature and pressure. This flow energy is then converted in the converter to mechanical energy, whereby the level of the flow energy (temperature and/or pressure) present in the fluid will drop.
  • the fluid with the low energy level originating from the converter is then collected at the low pressure side in another container.
  • the container at the high pressure side is empty, at least when the fluid contained therein drops to below the lower threshold, and/or when the container on the low pressure side is full, at least when the liquid level of the fluid contained therein exceeds an upper threshold, the container at the high pressure side or the container at the low pressure side can be exchanged, either by a full or an empty container respectively.
  • this means the immediate exchange of the containers at the low and the high pressure side.
  • the installation according to the invention is based on the principle that in the previously described circuit the pump or compressor used for pumping back the fluid from the low pressure side to the high pressure side is omitted and substituted by two or more closed containers which can be mutually interchanged in order to supply fluid at the high pressure side to the converter, or to collect fluid originating from the converter at the low pressure side.
  • a container at the high pressure side is empty, this can then be exchanged with a filled container at the low pressure side.
  • This therefore changes the continual circuit process, in which a pump or compressor is used, into an interrupted circuit process.
  • the exchange of the containers requires very little or no energy.
  • the containers do not need to be physically moved, but can be connected at specific desired times by means of a switching system to the high pressure side or to the low pressure side of the process.
  • this evaporator comprises a heat-exchanger connected to the heat supply system. In this manner therefore, evaporation can be achieved using the same available heat source as that with which the container at the high pressure side is heated.
  • the discharge line is provided with a cooler for cooling the fluid flowing through the discharge line.
  • a cooler for cooling the fluid flowing through the discharge line.
  • the saturated gaseous particles of the fluid are easily evaporated.
  • the process can be controlled more effectively with the use of such a cooler.
  • a further advantage of the invention is when the cooler is a heat-exchanger and when the cooler is arranged to supply the heat-exchanger with a cooling medium, the temperature of which is determined by the ambient temperature.
  • the ambient temperature can be the temperature of the air, surface water, seawater, a rock formation, the ground etc. Therefore, in this way, the ambient temperature is used to cool.
  • the ambient temperature is essentially a freely available medium which enables one to use essentially freely available cooling energy.
  • each container can act cooperatively with a heater positioned in a space isolated in respect of, or at least for a substantial part of the internal volume of the respective container, from which heaters each respective container is connected to the switching system.
  • each isolated space contains a relatively small amount of fluid, only a relatively small amount of which is required for the purpose of heating. This is beneficial in that a considerable expansion of gaseous fluid can be obtained with only a relatively small amount of energy. In this way, a liquid or gas can be supplied in an efficient manner to the converter.
  • each heater can be positioned externally to the container and be connected to the container by means of connecting lines; however, it is also possible to isolate said space within the interior of the container in relation to the remaining space therein.
  • each container can act cooperatively with a cooler, which is preferably present within the container.
  • This cooler can be in continual operation, whereby said cooler can cool the gaseous phase directly, as soon as the fluid level in the container is so low that the cooler is disengaged. In this way a rapid cooling of the gaseous phase is achieved, which is beneficial to a short cycle period. Subsequently, the respective cooler can then be quickly re-filled with liquid from another container as a result of the low pressure thus achieved.
  • the installation for the conversion of thermal energy into mechanical energy may comprise:
  • This installation may be provided with a heat discharge system; whereby each container acts cooperatively with a cooler; whereby the heat discharge system is connected to each of the coolers of the containers for cooling the fluid in said containers.
  • the converter comprises a turbine, in particular a liquid turbine.
  • Gaseous and/or liquid flows with high efficiencies can be converted into mechanical energy by the use of a turbine.
  • the converter comprises a flywheel. This enables the converter to compensate for any interruptions or irregularities in the supply of fluid.
  • the invention relates to an assembly comprising an installation according to the invention, including an electricity generator, whereby the generator is coupled to the converter for generating electricity from the mechanical energy generated from the converter.
  • the invention relates to the use of an installation according to the invention for the conversion of thermal energy into mechanical energy.
  • the invention relates to the use of an assembly according to the invention for the conversion of thermal energy into electricity.
  • the object of the invention is achieved by applying a method for the conversion of heat into mechanical energy, whereby the method is applied with the use of at least two containers, whereby the method comprises the following steps:
  • the fluid used in the installation and by the method according to the invention can essentially be any fluid which is evaporable from its liquid state.
  • the liquid may be water, for example.
  • the fluid will be a fluid typically applied in cooling systems, such as R407C, R134a, Freon and Freon-substitues etc.
  • containers are highly suited to being constructed as containers in a modular fashion.
  • containers would be, for example, freight containers and sea containers, such as those used in road transport, sea transport or for other means of transport over water.
  • Figure 1 shows an installation 1 according to the invention.
  • 2 indicates a converter for the conversion of flow energy into mechanical energy
  • 3 indicates a generator 3 for generating electricity from the axle 16 driven by converter 2
  • 4 indicates an optional cooling system which is optionally operable with the use of a heat-exchanger 5
  • 6 indicates an optional evaporator to which the energy required for evaporation is optionally supplied by means of heat exchanger 7
  • 8 indicates a switching system
  • 9 and 11 indicate closed containers
  • 10 and 12 indicate heat-exchangers.
  • the switching system 8 here is shown schematically as a block that can be caused to move between two positions in accordance with the twin arrow 84, in which a multiple of connecting channels 85 are positioned, illustrated in inclined positions, which, depending on the position of the switching system 8 connect the lines 20, 30, 40 and 50, lying on the upper surface of the block, either with the lines 21, 31, 41, and 51 respectively, or with the lines 22, 32, 42 and 52 respectively.
  • Line 20 is indicated together with the supply line and connects the switching system 8 with the inlet 13 of the converter 2.
  • This supply line 20 can optionally comprise an evaporator 6 in order to evaporate the liquid-state fluid flowing through the line 20.
  • Line 30 is indicated as discharge line and connects the outlet 14 of the converter 2 with the switching system 8.
  • This discharge line 30 may optionally comprise a cooler 4 for cooling the fluid flowing through the discharge line 30.
  • the present invention uses at least 2 closed containers 9 and 11, the example according to figure 1 showing exactly 2.
  • the closed container 9 contains a fluid which is heated by means of a heat-exchanger 10.
  • the pressure and temperature in the closed container 9 will rise as a result of this, for example, to 15 to 20 bar and 40°C.
  • the non-return valve 91 of the installation will open and force liquid-state fluid from the closed container 9 into the line 21.
  • the switching system 8 connects line 21 with supply line 20 and in this manner enables the liquid-state fluid to be transferred to the turbine 2 via the evaporator 6.
  • the flow energy present in the fluid is converted into mechanical energy, in the form of a rotating axle 16, after which the energy-reduced fluid, which, for example, still has a pressure of 5 bar and a temperature of 20°C, is discharged from the converter 2 via discharge line 30.
  • Discharge line 30 is connected to a line 32 via switching system 8, from which the energy-reduced fluid is collected in the other closed container 11.
  • the switching system 8 will be switched from the switching position shown in figure 1 to another switching position by sliding the block 8 to the left.
  • the line 22 which was closed off by the block 8 whilst in its initial position is connected to the supply line 20
  • the line 21 that was previously connected to supply line 20 is closed off
  • the line 32 that was previously connected with the discharge line 30 is closed off
  • the line 31 that was previously closed off is connected to the discharge line 30.
  • the switch system 8 can be switched back to the position shown in Figure 1 . In principle, this continual switching of the switching system 8 can be infinitely repeated.
  • the heat-exchangers 10 and 12 can be supplied with cooling water originating from, for example, an industrial process or an electric power station, or with groundwater, or otherwise with a warm fluid (such as a gas liquid, or gas/liquid mixture) which does not necessarily need to be water.
  • the heat for supplying the heat-exchangers 10 and 12, for example, can also be obtained by laying a pipe system containing water within the asphalt, so that the water can absorb solar heat via the asphalt,
  • the heat supplied for heating the fluid in container 9 or 11 is supplied via line 38 which, as shown in figure 1 , is connected via line 40 to the switching system 8.
  • Line 40 can be connected via the switching system 8 either with line 41 or line 42.
  • the switching position according to Fig. 1 is line 40 connected to line 41 in order to supply the heat-exchanger 10.
  • the return flow from the heat-exchanger 10 is returned via line 51, via switching system 8, line 50 and line 48.
  • the switching system 8 is set to the position to the left, the heat will supply heat-exchanger 12 via line 42 and the backflow will flow via line 52 to line 50 and line 48.
  • the same heat flow 38 can also be used to supply the heat-exchanger 7 in the evaporator 6. This occurs via a branch line 39.
  • the return flow from the heat-exchanger 7 is supplied via a line 49 back to line 48.
  • Figure 2 shows a schematic view of an alternative lower section of the installation 1, other than that indicated in figure 1 by means of parentheses II.
  • the switching system is indicated by 88, and in addition, the containers 110 and 101 are added, which, incidentally correspond to the containers 9 and 11.
  • Container 100 is provided with lines 23, 33, 43 and 53 which correspond to the respective lines 21, 31, 41 and 51 of container 9 and the respective lines 22, 32, 42, and 52 of container 11.
  • container 101 is provided with the respective lines 24, 34, 44 and 54.
  • the liquid level in containers 100 and 101 is indicated by 85 and 86 respectively.
  • the reference numerals used in figure 2 correspond to the reference numerals used in figure 1 .
  • the yield of mechanical energy or, possibly, electricity can be increased. Consequently, when the containers 9 and 11, for example, are in use for supplying the converter or for the return flow of fluid from the converter 2, the fluid in container 101, which is filled to a high level 86, can in the meantime be heated in order to bring this container 101 up to the pressure and temperature level of container 9 whilst, in the meantime, container 100 can be allowed to cool to the pressure and temperature level of container 11. Subsequently, when container 11 is full and container 9 is empty, the switching system 8 can continue switching in order to connect container 101 to the supply line 20 in order to supply converter 2 and container 100 to the discharge line 30 in order to return collected fluid. The process is then effectuated by means of the containers 100 and 101.
  • container 11 can be heated and container 9 can be cooled.
  • switching may continue in order to supply converter 2 from container 11 and to receive back the fluid in container 9, whilst, in the meantime, container 100 is heated and container 101 cools.
  • container 11 empties and/or container 9 is filled, switching can be continued, and so forth.
  • more than four containers can be used, for example, when the time required for the transfer of the content from the container at the high pressure side to the container at the low pressure side is shorter than the time required for heating the filled container(s) to the desired heat level or cooling the empty container(s). So, in this manner, an essentially continual process can be achieved by using an appropriate number of containers.
  • external heat-exchangers or heaters 102 are applied at each container 9, 11 and incorporated within the housings 103.
  • These housings 103 are each connected to a line 104 with the upper side of the containers 9, 11 and with a line 105 with the lower side of the containers 9, 11.
  • the volume of the housings 103 is substantially smaller than the volume of the containers 9,11.
  • the heaters 102 which are supplied via the lines 105 with liquid-state fluid, only need to heat a small quantity of fluid in order to reach the gaseous phase, which is supplied to the respective containers 9, 11 via the lines 104.
  • a heat pump 110 is provided, which is supplied via the line 11 with a portion of the electrical energy generated by generator 3.
  • the heat pump enables the reclamation of heat which would otherwise be discharged from the installation and be lost.
  • the heat pump 110 absorbs heat from the heat-exchanger 5 via line 109, and transfers the heat thus absorbed to the line 38. Cooling is then supplied to the heat-exchanger via line 108.
  • the heat-exchangers 10, 12 or coolers may cool the container after the liquid has been forced out, as described hereinbefore, in order to obtain a low pressure in the interior of said container.
  • these coolers 10, 12 are connected via the lines 106 to the line 109 and via the line 107 to the line 108.
  • the coolers are therefore continually operative when the heat pump is in use. They cool the liquid in the containers 9, 11 and, as soon as the liquid level in the containers has dropped partially or entirely to below the level of the heat-exchangers 10, 12, they will immediately begin to cool the gas present above the liquid.
  • External heat can be supplied via the heat-exchanger to the installation via the lines 38' and 48'. Also, even if the heat-exchanger is not in operation, external heat can be supplied to the installation via lines 38" and 48"; in connection with the exchange of operations with or without a exchanger, appropriate switching means (not shown) can be provided for using the respective lines 38' and 48' or 38" and 48".
  • coolers 102 are cooled by the operation of the heat pump, this is not a requirement. Cooling by a different means may also ensure the desired cooling effect, such as cooling by means of a cold ambient environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (18)

  1. Anlage zur Umwandlung von thermischer Energie in mechanische Energie, wobei die Anlage aufweist:
    - zumindest zwei geschlossene Behälter (9) (11) zum Enthalten eines Fluids;
    - einen Umwandler (2) zur Umwandlung von Flussenergie in mechanische Energie;
    - ein Schaltsystem (8);
    - eine Zuführleitung (20) mit einem Einlassendabschnitt und einem Auslassendabschnitt;
    - eine Abflussleitung (30) mit einem Einlassendabschnitt und einem Auslassendabschnitt;
    - ein Wärmezuführungssystem;
    wobei der Einlassendabschnitt der Zuführleitung mit dem Schaltsystem für die Aufnahme eines Fluids vom Schaltsystem verbunden ist;
    wobei der Auslassendabschnitt der Zuführleitung mit dem Umwandler für die Versorgung des Umwandlers mit dem Fluid verbunden ist;
    wobei der Einlassendabschnitt der Abflussleitung mit dem Umwandler für das Abfließen des Fluids aus dem Umwandler verbunden ist;
    wobei der Auslassendabschnitt der Abflussleitung mit dem Schaltsystem zur Versorgung des Schaltsystems mit dem Fluid verbunden ist;
    wobei das Wärmezuführungssystem über das Schaltsystem mit jedem der Behälter zur Erwärmung des Fluids in den Behältern verbindbar ausgebildet ist;
    wobei jeder Behälter über das Schaltsystem mit der Zuführleitung zur Zuführung von Fluid zum Umwandler und mit der Abflussleitung zur Aufnahme des von dem Umwandler abgeflossenen Fluids verbindbar ausgebildet ist;
    wobei das Schaltsystem zwischen zumindest zwei Schaltpositionen schaltbar ist;
    wobei das Schaltsystem so ausgebildet ist, dass wenn es von einer Schaltposition in eine andere geschaltet wird, es wiederholend andere Behälter als jene in der vorigen Schaltposition mit der Zuführleitung oder Abflussleitung verbindet;
    wobei einerseits das Schaltsystem weiter ausgebildet ist, um in jeder Schaltposition zumindest einen der Behälter mit dem Wärmezuführungssystem zu verbinden, um das Fluid in dem Behälter zu erhitzen, und andererseits die Zuführleitung für die Zuführung des Fluids zum Umwandler, wobei gleichzeitig ein anderer jener Behälter von dem Wärmezuführungssystem entkoppelt ist und mit der Abflussleitung verbunden ist, um das von dem Umwandler abgelaufene Fluid zu sammeln, dadurch gekennzeichnet, dass
    jeder Behälter (9, 11) mit einem Erwärmer (102) zusammenwirkt, welcher in einem Raum (103) vorhanden ist, der in Bezug auf zumindest den substanziellsten Teil des inneren Volumens des entsprechenden Behälters isoliert ist, durch welche genannten Erwärmer (102) jeder entsprechende Behälter (9, 11) mit dem Schaltsystem verbunden ist.
  2. Anlage nach Anspruch 1, wobei die Zuführleitung mit einem Verdampfer (6) ausgestattet ist, um das Fluid im flüssigen Zustand zu verdampfen.
  3. Anlage nach Anspruch 2, wobei der Verdampfer einen Wärmetauscher aufweist, welcher mit dem Wärmezuführungssystem verbunden ist.
  4. Anlage nach einem der vorhergehenden Ansprüche, wobei die Abflussleitung mit einem Kühler (4) ausgestattet ist, um das durch die Abflussleitung fließende Fluid zu kühlen.
  5. Anlage nach Anspruch 4, wobei der Kühler ausgebildet ist, um den Wärmetauscher mit dem Kühlmedium zu versorgen, dessen Temperatur durch die Umgebungstemperatur bestimmt ist.
  6. Anlage nach einem der vorhergehenden Ansprüche, wobei der Umwandler eine Turbine umfasst, insbesondere eine Flüssigkeitsturbine.
  7. Anlage nach einem der vorhergehenden Ansprüche, wobei der Umwandler ein Schwungrad umfasst.
  8. Anlage nach einem der vorhergehenden Ansprüche, wobei jeder Erwärmer (102) außerhalb des Behälters (9, 11) angeordnet ist, und mit dem Behälter über Verbindungsleitungen (104, 105) verbunden ist.
  9. Anlage nach einem der vorhergehenden Ansprüche, wobei jeder Behälter (9, 11) mit einem Kühler (10, 12) zusammenwirkt.
  10. Anlage nach einem der vorhergehenden Ansprüche, wobei eine Wärmepumpe (110) bereitgestellt ist, welche mit dem Wärmezuführungssystem und der Abflussleitung zur Entnahme von Wärme aus der Abflussleitung und zur Zuführung der aus der Abflussleitung entnommenen Wärme zu dem Wärmezuführungssystem verbunden ist.
  11. Anordnung umfassend eine Anlage nach einem der vorhergehenden Ansprüche, welche einen Elektrizitätsgenerator (3) umfasst, wobei der Generator an den Umwandler gekoppelt ist zur Erzeugung von Elektrizität aus der von dem Umwandler erzeugten mechanischen Energie.
  12. Verwendung einer Anlage nach einem der Ansprüche 1 bis 10 zur Umwandlung von thermischer Energie in mechanische Energie.
  13. Verwendung einer Anordnung nach Anspruch 11 zur Umwandlung von thermischer Energie in Elektrizität.
  14. Verfahren zur Umwandlung von thermischer Energie in mechanische Energie,
    wobei das Verfahren unter Verwendung von zumindest zwei Behältern (9)(11) ausgeführt wird,
    wobei das Verfahren die folgenden Schritte umfasst:
    a) Erwärmen eines Flüssigkeit enthaltenden Fluids, welches in einem ersten der Behälter vorhanden ist mittels eines Mediums mit einer hohen Temperatur, derart dass ein Teil der Flüssigkeit in eine Gasphase umgewandelt wird und der Druck in dem Behälter steigt;
    b) Verwenden des erhöhten Drucks im ersten Behälter, um das flüssigphasige Fluid, wie beispielsweise ein Fluid im flüssigen Zustand, von dem ersten Behälter zu einem Umwandler (2) zu übertragen;
    c) Umwandeln der in dem Fluid, welches dem Umwandler zugeführt wurde, vorhandenen Flussenergie in mechanische Energie im Umwandler;
    d) Abfließen des energiereduzierten Fluids in einen zweiten Behälter;
    e) Sammeln allen vom Umwandler abgeflossenen Fluids im zweiten Behälter;
    f) Austauschen des ersten Behälters durch einen anderen Behälter mit einem höheren Flüssigkeitspegel, wenn der Flüssigkeitspegel des ersten Behälters unter einen bestimmten Minimumpegel fällt;
    g) Austauschen des verwendeten Behälters durch einen anderen Behälter mit einem niedrigeren Füllpegel, wenn der Flüssigkeitspegel des zweiten Behälters eine vorbestimmte obere Schranke überschritten hat;
    wobei ein in Schritt g) verfügbar gemachter Behälter in Schritt f) verwendet wird; wobei ein in Schritt f) verfügbar gemachter Behälter in Schritt g) verwendet wird, dadurch gekennzeichnet, dass
    in Schritt a) ein Teil der Flüssigkeit in dem Behälter von dem Rest der Flüssigkeit getrennt wird und dessen getrennter Anteil erwärmt wird und wobei die so von dem getrennten Anteil erhaltene gasförmige Phase zurück zum Behälter transportiert wird.
  15. Verfahren nach Anspruch 14, wobei die Schritte f) und g) gleichzeitig stattfinden.
  16. Verfahren nach Anspruch 15, wobei das Verfahren unter Verwendung von zwei Behältern ausgeführt wird, welche, wenn die Schritte f) und g) ausgeführt werden, beide gegenseitig ausgetauscht werden.
  17. Verfahren nach einem der Ansprüche 14 bis 16, wobei das Fluid in Schritt b) verdampft wird.
  18. Verfahren nach einem der Ansprüche 14 bis 17, wobei das Fluid während des Schritts d) gekühlt wird.
EP08830925A 2007-09-10 2008-09-10 Anlage und verfahren zur umwandlung von wärme in mechanische energie Not-in-force EP2205835B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2000849A NL2000849C2 (nl) 2007-09-10 2007-09-10 Inrichting en werkwijze voor het omzetten van warmte in mechanische energie.
PCT/NL2008/050596 WO2009035326A1 (en) 2007-09-10 2008-09-10 Installation and method for the conversion of heat into mechanical energy

Publications (2)

Publication Number Publication Date
EP2205835A1 EP2205835A1 (de) 2010-07-14
EP2205835B1 true EP2205835B1 (de) 2011-11-30

Family

ID=39415004

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08830925A Not-in-force EP2205835B1 (de) 2007-09-10 2008-09-10 Anlage und verfahren zur umwandlung von wärme in mechanische energie

Country Status (5)

Country Link
US (1) US20100263378A1 (de)
EP (1) EP2205835B1 (de)
AT (1) ATE535681T1 (de)
NL (1) NL2000849C2 (de)
WO (1) WO2009035326A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5083836B2 (ja) * 2009-07-06 2012-11-28 国立大学法人長岡技術科学大学 熱機関サイクル多連結システム
JP5083835B2 (ja) * 2009-07-06 2012-11-28 国立大学法人長岡技術科学大学 熱機関サイクル装置
US8800280B2 (en) * 2010-04-15 2014-08-12 Gershon Machine Ltd. Generator
US9540963B2 (en) 2011-04-14 2017-01-10 Gershon Machine Ltd. Generator
GB2508193A (en) * 2012-11-23 2014-05-28 Mark Trebilcock Heat pump arrangement with an expander for extracting work from heat energy input
CN104564196B (zh) * 2013-10-17 2018-05-01 郭颂玮 利用液体热能发电的装置
DE102019127431B4 (de) * 2019-10-11 2021-05-06 Enolcon Gmbh Thermischer Stromspeicher mit Festbett-Wärmespeicher und Festbett-Kältespeicher und Verfahren zum Betreiben eines thermischen Stromspeichers
WO2024047380A1 (en) * 2022-08-31 2024-03-07 Karahan Ahmet Micro electrical power generation from external combustion heat energy, using pressure swing on hot-oil liquid pistons (pslp)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4006595A (en) * 1975-12-30 1977-02-08 Orange State, Inc. Refrigerant-powered engine
US4209982A (en) * 1977-04-07 1980-07-01 Arthur W. Fisher, III Low temperature fluid energy conversion system
US4301654A (en) * 1979-11-06 1981-11-24 Hayden David W Pressurized fluid motor
CH650313A5 (fr) * 1981-11-19 1985-07-15 Sorelec Moteur a conversion thermomecanique, notamment moteur a fluide a basse temperature d'ebullition.
JPH0713469B2 (ja) * 1986-12-23 1995-02-15 千代田化工建設株式会社 水素貯蔵合金を利用した発電方法及び装置
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
US20060059912A1 (en) * 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system

Also Published As

Publication number Publication date
NL2000849C2 (nl) 2009-03-11
US20100263378A1 (en) 2010-10-21
ATE535681T1 (de) 2011-12-15
WO2009035326A1 (en) 2009-03-19
EP2205835A1 (de) 2010-07-14

Similar Documents

Publication Publication Date Title
EP2205835B1 (de) Anlage und verfahren zur umwandlung von wärme in mechanische energie
KR102263742B1 (ko) 열역학 사이클 장치 및 방법
US20110146939A1 (en) Energy absorption and release devices and systems
JP2013531218A (ja) 圧縮ガスを用いる熱交換装置を有する熱エネルギー貯蔵および回収装置ならびにシステム
MX2013002944A (es) Un sistema y metodo para almacenar energia y purificar fluido.
CN104196584B (zh) 一种利用高炉冲渣水余热进行动力回收及供冷系统
JP5990711B2 (ja) エネルギを貯蔵するための装置及び方法
CA2678584C (en) Self-powered pump for heated liquid and heat driven liquid close-loop automatic circulating system employing same
JP2012523815A (ja) 二つの蓄熱槽を有する熱電エネルギー貯蔵システム及び熱電エネルギーを貯蔵するための方法
CN103987925B (zh) 有开放式蓄能回路的存储季节性过剩电能的能量存储设备
WO2013119145A2 (ru) Способ накопления, хранения и возврата механической энергии и установка для его осуществления (варианты)
JP2011518270A (ja) 吸着強化圧縮空気エネルギー蓄積
DK144772B (da) Kraftproducerende anlaeg med midler til oplagring og udnyttelse af overskudsenergi under anvendelse af komprimeret luft
CN102483243A (zh) 用于向主系统中循环排水的热泵的对称中间蓄水箱
CN102705927A (zh) 一种冰蓄冷蓄热超低温热泵空调
BRPI0820782B1 (pt) método, dispositivo e sistema para injeção de energia em um meio
FR2939874A1 (fr) Dispositif thermodynamique avec ballon d'eau chaude multi-energies mulit-sources
US11519655B2 (en) Thermal energy storage and retrieval systems and methods
WO2010004302A1 (en) Energy absorption and release devices and systems
CN205718534U (zh) 一种绿色综合冷岛设备
CN101936573A (zh) 供热系统以及供热方法
EP3911901B1 (de) Wärmeverteilungsvorrichtung
JP2945973B1 (ja) 熱輸送装置
JPH0271055A (ja) 圧縮空気エネルギー貯蔵システム
CN104654856A (zh) 可组合分割固体粒块蓄热器

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100412

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008011762

Country of ref document: DE

Effective date: 20120126

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120330

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120229

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 535681

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120926

Year of fee payment: 5

Ref country code: IE

Payment date: 20120925

Year of fee payment: 5

Ref country code: MC

Payment date: 20120926

Year of fee payment: 5

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008011762

Country of ref document: DE

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121130

Year of fee payment: 5

Ref country code: FR

Payment date: 20121015

Year of fee payment: 5

Ref country code: NL

Payment date: 20120821

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121001

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130910

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008011762

Country of ref document: DE

Effective date: 20140401

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130910

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130910

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130910