EP2201664A2 - Dieselelektrisches fahrzeug - Google Patents

Dieselelektrisches fahrzeug

Info

Publication number
EP2201664A2
EP2201664A2 EP08803381A EP08803381A EP2201664A2 EP 2201664 A2 EP2201664 A2 EP 2201664A2 EP 08803381 A EP08803381 A EP 08803381A EP 08803381 A EP08803381 A EP 08803381A EP 2201664 A2 EP2201664 A2 EP 2201664A2
Authority
EP
European Patent Office
Prior art keywords
winding
diesel
traction
auxiliary
electric vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP08803381A
Other languages
English (en)
French (fr)
Inventor
Olaf KÖRNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2201664A2 publication Critical patent/EP2201664A2/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/13Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines using AC generators and AC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • H02K3/16Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots for auxiliary purposes, e.g. damping or commutating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the invention relates to a diesel-electric vehicle, in particular a rail vehicle with a diesel generator.
  • Vehicles in particular rail vehicles, which are designed as traction vehicles, are always used with a diesel engine as a primary energy source when the track was not electrified due to lack of load.
  • the key issues with using a diesel engine as a traction drive are the inability to start torque at startup, such as electric motors or steam engines, and the relatively tight binding of power and speed at low consumption.
  • the object of the invention is to provide a supply of the auxiliary plants in a simple manner, using galvanic isolation and observing the applicable protective regulations.
  • the solution of the object is achieved by a diesel-electric vehicle, in particular rail vehicle, with a diesel generator is designed as a permanent-magnet synchronous generator, which is provided with a stand provided in a stator winding, which has a traction winding and one of them electrically isolated auxiliary winding.
  • the additionally electrically isolated auxiliary winding in the stator of the diesel generator which is designed as a permanent-magnet synchronous generator, is no further isolating transformer, which is reflected in costs, in mass and in installation space, necessary for the auxiliary plants. Also, no additional power semiconductor devices with increased reverse voltage are necessary.
  • auxiliary windings are interleaved with the traction winding of the stator of the permanent-magnet synchronous generator. That the auxiliary operating winding is located at least in sections with the traction winding in the same slots of the stator.
  • predetermined portions of the stator are occupied only by the auxiliary operating winding.
  • the auxiliary operation winding is concentrated in the grooves of a portion of the permanent-magnet synchronous machine.
  • the relationship between the numbers of nubs or poles respectively occupied for the traction winding and the auxiliary winding is determined by the ratio of the traction and auxiliary powers.
  • Both winding arrangements ie a distributed auxiliary operating winding as well as the concentrated auxiliary winding lead to comparatively higher winding upper fields, which generally lead to larger machine losses in the rotor and in the stator. Therefore come for highly utilized and at the same time designed for efficiency asynchronous generators and electrically excited conventional generators with damper cage such rotors out of the question. This would lead to high balancing currents in cage rotors.
  • the edge effects lead from the transition of the traction winding to the auxiliary operating winding and, conversely, to comparatively high losses in the case of asynchronous generators and conventional synchronous generators.
  • the rotor of the permanent-magnet synchronous machine is relatively well suited due to the proposed arrangement of the auxiliary operating winding, which leads to increased rotor losses in conventional generators, since the winding upper and / or edge effects have no parasitic effects on the rotor, which ultimately result in increased heat output would. This manifests itself in particular by the fact that when using the dental coil technology in the permanent-magnet synchronous machine which also causes harmonics, the runners are less lossy.
  • auxiliary winding operation and the traction winding are concentrated in the area of the stator of the permanently excited synchronous generator, wherein a predeterminable number of the existing pole pairs form the galvanically separated auxiliary winding.
  • FIG. 1 to 5 arrangements of the prior art 6 shows a circuit according to the invention
  • FIG 7 concentrated auxiliary operating winding 8 distributed auxiliary operating winding
  • 9 shows a schematic representation of a permanent-magnet synchronous generator.
  • FIG. 1 shows in a circuit diagram a tap of a stator winding 4 of a diesel generator 2, wherein the stator winding 4 is designed as a traction winding 5.
  • the traction winding 5 serves in particular for the power supply of the driving motors 8.
  • a transformer 12 is provided as part of an electrical tap, which brings about a galvanic separation between the stator winding 4 and the auxiliary operating rectifier 11.
  • the auxiliary operating rectifier 11 feeds the auxiliary operating converter 10 via an intermediate circuit, which in turn operates the auxiliary equipment, for example air conditioning systems, light, etc.
  • the diesel generator 2 has an electrical excitation 3.
  • the diesel generator 2 is driven by a diesel engine 1.
  • a traction intermediate circuit 18 is fed via a diode rectifier 7. From traction intermediate circuit 18, the traction motors 8 are fed via various traction converters 17. At the traction intermediate circuit 18, the brake chopper 15 and the braking resistor 16 are also electrically arranged.
  • FIG. 2 shows a structure similar to FIG. 1, wherein an auxiliary operating winding 6 in the stator of the diesel generator 2, in addition to the traction winding 5, is to be provided for the electrical feeds of the auxiliary drives 9 completely by the normal stator winding, in this case the traction winding 5.
  • This auxiliary operation winding 6 must Among other things, to avoid pendulum moments and losses in the damper cage of this conventional diesel generator 2 as the traction winding 5 be constructed, ie the same number of coils with the same coil width. Thus, this Hilfs seswickwick- 6 is very expensive to produce and therefore expensive.
  • FIG. 3 shows, in a further alternative already known, the supply of the auxiliaries 9 directly from the traction intermediate circuit 18, wherein the auxiliary converter 10 must be constructed with power semiconductors of corresponding blocking voltage and a transformer 12 is to be provided in order to ensure electrical isolation. Both the corresponding power semiconductors and an additional transformer are reflected in the costs and also in the mass as well as the electrical losses.
  • auxiliary operating converter 10 shows the supply of the auxiliary operating converter 10 by a pulsed DC voltage from the traction intermediate circuit 18 by means of a step-down converter, which is formed by a chopper 14 and a throttle 13.
  • a step-down converter which is formed by a chopper 14 and a throttle 13.
  • FIG. 5 shows in a further variant already used a comparatively compact and light medium transformer 12 for medium frequency for the supply of the auxiliary operating converter 10 by a pulsed DC voltage. This is a galvanic isolation and there is an additional rectifier available.
  • FIG 6 now shows an inventive arrangement with a diesel generator, which is designed as a permanent-magnet synchronous generator with a simple, galvanically separated auxiliary winding 6 in the stator 30 of the synchronous generator in addition to the traction winding 5.
  • the permanent-magnet synchronous generator feeds the traction intermediate circuit 18 via a rectifier 7. This can via a diode rectifier or an IGBT rectifier happen, the additional an energy reversal in electric brakes of the vehicle allowed.
  • the auxiliary 9 are fed with otherwise dissipated in the braking resistors energy. This energy is transmitted inductively into the auxiliary operating winding 6 and thus supplies the auxiliary 9th.
  • the auxiliary gear 9 must not be powered by the diesel engine 1 in electric braking with energy, which has an additional fuel savings result.
  • the auxiliary converters 10 are supplied on adapted low-voltage level directly from the diesel generator 2 via a diode or IGBT rectifier-powered intermediate circuit with a voltage U d of about 600 to 700 V.
  • FIG. 7 shows in a concrete embodiment a 10-pole permanent-magnet synchronous generator. In the approximately 80% of the diesel power for traction and the remaining 20% for the auxiliary 9 should be available.
  • the three-phase electrical machine is assumed to be equipped with the following stator winding:
  • the winding diagram for a pole pair is shown in FIG. 7.
  • 60 stator coils are required for the 10-pole electrical machine.
  • the circuit of the coils of strand U - X is marked in bold.
  • the terminal X would be part of the star point in a delta connection.
  • the pole pairs are provided with a winding according to FIG. 7, wherein eight poles for the traction winding 5 are connected according to FIG. 6 (parallel, in series, combined).
  • the two remaining poles for the concentrated auxiliary operating winding 6 are connected separately, as shown in FIG.
  • the two winding systems (traction winding 5 and auxiliary winding operation 6) overlap, the stator coil number does not increase.
  • stator number Nl and coil numbers for the example of the 10-pole permanent magnet synchronous generator are listed in the following table, with effort and costs for the winding production based primarily on the number of coils.
  • FIG. 8 shows in an exemplary winding scheme for the arrangement of a distributed auxiliary operating winding 6.
  • the total number of pulses for the stator winding 4 increases from 60 to 75 coils.
  • FIG 8 of the auxiliary operating winding 6 The coils in FIG 8 of the auxiliary operating winding 6 are shown in dashed lines.
  • the circuits of the coils of strand UX of the traction winding 4 are shown in bold. Terminal X would be part of the star in a triangular circuit.
  • Terminal X * would be part of the separate neutral point of the auxiliary operating winding in the case of a triangular circuit.
  • FIG. 7, 8 are not reference numerals but merely numbering of coils or grooves.
  • FIG. 9 shows, in a principal longitudinal section, a diesel generator 2 which is designed to have a permanently excited synchronous generator.
  • the stator 30 has the stator winding 4, which serves as a
  • the sheets of the stator 30 have axially extending cooling channels.
  • the rotor 21, also referred to as a rotor, is designed in particular to be hollow in order to reduce the inertia on the one hand and to guide cooling air over the cavity on the other hand or to position an axial fan 23.
  • permanent magnets 20 are arranged on the surface of the rotor 21 and fixed, for example, via a bandage, not shown.
  • the permanent magnets 20 are in another embodiment. guide form in the rotor 21 as a buried permanent magnets 20 can be arranged.
  • the stand 30 is housed in a housing having a water jacket cooling 24.
  • the housing itself is connected via bearings 28 to a shaft 29 rotated by the diesel engine 1.
  • a cooling air flow is directed from the air inlet via the rotor 21 and the radial fan 26 to the air outlet.
  • Another cooling air flow leads from the air inlet 22 via the cooling channels of the stator 30 and the winding heads via a guide plate to the air outlet 25th
  • a closed cooling gas circuit can also be used, whereby a circulation of the cooling gas is brought about by correspondingly designed fans, which allow the water jacket cooling 24 in a simple manner to dissipate heat. This is achieved, for example, by the heated cooling gas sweeping past the inside of the housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

Dieselelektrisches Fahrzeug, insbesondere Schienenfahrzeug, mit einem Dieselgenerator (2) der als permanenterregter Synchrongenerator ausgeführt ist, der mit einer in einem Ständer vorgesehenen Ständerwicklung (4), die eine Traktionswicklung (5) und eine davon galvanisch getrennten Hilfswicklung (6) aufweist, ausgeführt ist.

Description

Beschreibung
Dieselelektrisches Fahrzeug
Die Erfindung betrifft ein dieselelektrisches Fahrzeug, insbesondere ein Schienenfahrzeug mit einem Dieselgenerator.
Fahrzeuge, insbesondere Schienenfahrzeuge, die als Triebfahrzeuge ausgebildet sind, kommen immer dann mit einem Dieselmo- tor als Primärenergiequelle zum Einsatz, wenn die Strecke wegen mangelnder Belastung nicht elektrifiziert wurde.
Die zentralen Probleme beim Einsatz eines Dieselmotors als Traktionsantrieb sind die Unfähigkeit im Anlauf Drehmoment abzugeben, wie dies beispielsweise Elektromotoren oder Dampfmaschinen können und die relativ feste Bindung von Leistung und Drehzahl bei niedriger Verbrauchsziffer.
Bei Straßenfahrzeugen wurden diese Probleme durch Kupplungen und Schaltgetriebe beseitigt. Bei Schienentriebfahrzeugen ist dies nur im kleinen Leistungsbereich wirtschaftlich realisierbar .
Bei Fahrzeugen für den Schienenverkehr mit höherer Leistung kommen deshalb nur eine dieselhydraulische Kraftübertragung mit Föttinger-Wandler und die dieselelektrische Kraftübertragung in Frage.
Bei dieselelektrischen Fahrzeugen und auch allen weiteren Fahrzeugen mit Verbrennungskraftmaschinen (z.B. Gasmotoren,
Gasturbinen) und elektrischer Leistungsübertragung sind neben den Traktionsmotoren auch elektrische Hilfsbetriebe als Verbraucher mit einer niedrigeren verketteten Wechselspannung (z.B. 440 Volt) zu versorgen, die auch umrichtergespeist sein können. Diese Verbraucher müssen aus Schutzgründen galvanisch vom Traktionszwischenkreis elektrisch getrennt werden. Bei höheren Dieselleistungen (insbesondere Leistungen größer 1000 bis 1500 kW) beträgt die Spannung des Traktionszwischenkreises typischerweise mindestens 1800 V.
Zur galvanisch vom Traktionszwischenkreis getrennten Versor- gung der Hilfsbetriebe gibt es folgende bekannten Grundkonzepte, auf die später im Rahmen der Figurenbeschreibung näher eingegangen wird:
Anzapfung der Generatorständerwicklung und Einsatz eines Transformators mit Gleichrichter zur Versorgung des Hilfs- betriebsumrichters .
Einbau einer kompletten galvanisch getrennten Hilfsbetriebs- wicklung im Ständer des Dieselgenerators zusätzlich zur Trak- tionswicklung.
Versorgung der Hilfsbetriebe direkt aus dem Traktionszwischenkreis .
Versorgung des Hilfsbetriebsumrichters mit einer gepulsten Gleichspannung aus dem Traktionszwischenkreis mittels Tief- setzsteller .
Versorgung des Hilfsbetriebsumrichters und einer gepulsten Gleichspannung über einen vergleichsweise kompakten leichteren Mittelfrequenztransformator.
Nachteilig bei all den aufgezeigten Lösungen sind infolge der Verwendung von Leistungshalbleitern mit höherer Sperrspannung oder zusätzlich komplexen Wicklungssystemen oder Transformatoren zur Potentialtrennung die aufwändige und teure Umsetzung.
Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, ei- ne Versorgung der Hilfsbetriebe in einfacher Art und Weise bereit zu stellen, unter Anwendung der galvanischen Trennung und unter Beachtung der geltenden Schutzvorschriften. Die Lösung der gestellten Aufgabe gelingt durch ein dieselelektrisches Fahrzeug, insbesondere Schienenfahrzeug, mit einem Dieselgenerator der als permanenterregter Synchrongenerator ausgeführt ist, der mit einer in einem Ständer vorgesehenen Ständerwicklung, die eine Traktionswicklung und eine davon galvanisch getrennten Hilfswicklung aufweist, ausgeführt ist.
Die damit zusätzlich galvanisch getrennte Hilfsbetriebswick- lung im Ständer des Dieselgenerators, der als permanenterregter Synchrongenerator ausgeführt ist, sind keine weiteren Trenntransformatoren, die sich in Kosten, in Masse und in Bauraum niederschlagen, für die Hilfsbetriebe notwendig. Auch sind keine zusätzlichen Leistungshalbleiterbauelemente mit erhöhter Sperrspannung notwendig.
Vorteilhafter Weise sind dabei die Hilfsbetriebswicklungen mit der Traktionswicklung des Stators des permanenterregten Synchrongenerators verschachtelt. D.h. die Hilfsbetriebswick- lung befindet sich zumindest abschnittsweise mit der Traktionswicklung in den gleichen Nuten des Ständers.
In einer anderen Ausführungsform sind vorgegebene Abschnitte des Ständers nur von der Hilfsbetriebswicklung belegt. Damit ist die Hilfsbetriebswicklung konzentriert in den Nuten eines Abschnitts der permanenterregten Synchronmaschine angeordnet.
Sowohl bei der einen, als auch bei der anderen Ausführungsform wird in erster Näherung das Verhältnis zwischen den Nu- tenzahlen bzw. Polen, die jeweils für die Traktionswicklung und die Hilfsbetriebswicklung belegt werden, durch das Verhältnis der Traktions- und Hilfsbetriebsleistungen bestimmt. Beide Wicklungsanordnungen, d.h. eine verteilte Hilfsbe- triebswicklung als auch die konzentrierte Hilfsbetriebswick- lung führen zu vergleichsweise höheren Wicklungsoberfeldern, die allgemein zu größeren Maschinenverlusten im Rotor und im Ständer führen. Deshalb kommen für hoch ausgenutzte und gleichzeitig auf Wirkungsgrad ausgelegte Asynchrongeneratoren und elektrisch erregte konventionelle Generatoren mit Dämpferkäfig derartige Rotoren nicht in Frage. Dies würde bei Käfigläufern zu hohen Ausgleichsströmen führen.
Bei der konzentrierten Hilfsbetriebswicklung führen die Randeffekte vom Übergang der Traktionswicklung auf die Hilfsbe- triebswicklung und umgekehrt zu vergleichsweise hohen Verlus- ten bei Asynchrongeneratoren und konventionellen Synchrongeneratoren. Der Rotor der permanenterregten Synchronmaschine ist aufgrund der vorgeschlagenen Anordnung der Hilfsbetriebswicklung, die zu erhöhten Läuferverlusten bei konventionellen Generatoren führt, vergleichsweise gut geeignet, da die Wick- lungsoberfeider und/oder Randeffekte keine parasitären Auswirkungen auf den Rotor haben, die sich letztendlich in erhöhten Wärmeabgabe zeigen würden. Dies zeigt sich insbesondere auch dadurch, dass bei Verwendung der Zahnspulentechnik bei der permanenterregten Synchronmaschine die ebenfalls Oberwellen verursacht, die Läufer weniger verlustbehaftet sind.
Die Hilfsbetriebswicklung und die Traktionswicklung sind im Bereich des Ständers des permanenterregten Synchrongenerators konzentriert ausgeführt, wobei eine vorgebbare Anzahl der vorhandenen Polpaare, die galvanisch getrennte Hilfsbetriebswicklung bilden.
Vorteilhafterweise bilden dabei ca. 20% der vorhandenen PoI- paare für die konzentrierte Hilfsbetriebswicklung vorgesehen.
Die Erfindung sowie weitere vorteilhafte Ausgestaltungen der Erfindung werden anhand schematisch dargestellter Ausführungsbeispiele in der Zeichnung näher erläutert. Darin zei- gen:
FIG 1 bis 5 Anordnungen des Standes der Technik, FIG 6 ein erfindungsgemäßes Schaltungsprinzip, FIG 7 konzentrierte Hilfsbetriebswicklung, FIG 8 verteilte Hilfsbetriebswicklung, FIG 9 prinzipielle Darstellung eines permanenterregten Synchrongenerators.
FIG 1 zeigt in einem Schaltbild eine Anzapfung einer Ständerwicklung 4 eines Dieselgenerators 2, wobei die Ständerwicklung 4 als Traktionswicklung 5 ausgelegt ist. Die Traktionswicklung 5 dient insbesondere der Leistungszufuhr der Fahrmo- toren 8. Des Weiteren ist im Rahmen einer elektrischen Anzapfung ein Transformator 12 vorgesehen, der eine galvanische Trennung zwischen der Ständerwicklung 4 und dem Hilfsbe- triebsgleichrichter 11 herbeiführt. Der Hilfsbetriebsgleich- richter 11 speist über einen Zwischenkreis den Hilfsbetrieb- sumrichter 10, der wiederum die Hilfsbetriebe, beispielsweise Klimaanlagen, Licht etc. betreibt. Der Dieselgenerator 2 weist eine elektrische Erregung 3 auf. Der Dieselgenerator 2 wird von einem Dieselmotor 1 angetrieben. Über die Ständerwicklung 4, die in diesem Fall als Traktionswicklung 5 ausge- bildet ist, wird über einen Diodengleichrichter 7 ein Traktionszwischenkreis 18 gespeist. Vom Traktionszwischenkreis 18 werden über verschiedene Traktionsumrichter 17 die Fahrmotoren 8 gespeist. Am Traktionszwischenkreis 18 sind elektrisch ebenfalls der Bremschopper 15 und der Bremswiderstand 16 an- geordnet.
Der Aufwand dieser Anordnung zeigt sich u.a. darin, dass eine Anzapfung der Ständerwicklung 4 vorgenommen werden muss und zur galvanischen Trennung zwischen Ständerwicklung 4 und Hilfsbetriebsgleichrichter 11 ein Transformator 12 vorzusehen ist .
FIG 2 zeigt einen der FIG 1 ähnlichen Aufbau, wobei zur e- lektrischen Speisungen der Hilfsbetriebe 9 eine von der nor- malen Ständerwicklung, in diesem Fall die Traktionswicklung 5 komplett galvanisch getrennte Hilfsbetriebswicklung 6 im Ständer des Dieselgenerators 2 zusätzlich zur Traktionswicklung 5 vorzusehen ist. Diese Hilfsbetriebswicklung 6 muss u.a. zur Vermeidung von Pendelmomenten und Verlusten im Dämpferkäfig dieses konventionellen Dieselgenerators 2 wie die Traktionswicklung 5 aufgebaut sein, d.h. gleiche Spulenzahl mit gleicher Spulenweite. Damit ist diese Hilfsbetriebswick- lung 6 sehr aufwendig herzustellen und dementsprechend teuer.
FIG 3 zeigt in einer weiteren bereits bekannten Alternative die Versorgung der Hilfsbetriebe 9 direkt aus dem Traktionszwischenkreis 18, wobei der Hilfsbetriebsumrichter 10 mit Leistungshalbleitern von entsprechender Sperrspannung aufgebaut sein muss und ein Transformator 12 vorzusehen ist, um eine galvanische Trennung zu gewährleisten. Sowohl die entsprechenden Leistungshalbleiter als auch ein zusätzlicher Transformator machen sich in den Kosten und auch in der Masse als auch den elektrischen Verlusten bemerkbar.
FIG 4 zeigt die Versorgung des Hilfsbetriebsumrichters 10 durch eine gepulste Gleichspannung aus dem Traktionszwischenkreis 18 mittels eines Tiefsetzstellers, der aus einem Chop- per 14 und einer Drossel 13 gebildet ist. Zur galvanischen
Trennung muss dabei ebenfalls ein Transformator 12 eingesetzt werden .
FIG 5 zeigt in einer weiteren bereits eingesetzten Variante einen vergleichsweise kompakten und leichten Mitteltransformator 12 für Mittelfrequenz zur die Versorgung des Hilfs- betriebsumrichters 10 durch eine gepulste Gleichspannung. Damit liegt eine galvanische Trennung vor und es ist ein zusätzlicher Gleichrichter vorhanden.
FIG 6 zeigt nunmehr eine erfindungsgemäße Anordnung mit einem Dieselgenerator, der als permanenterregter Synchrongenerator ausgeführt ist mit einer einfachen, galvanisch getrennten Hilfsbetriebswicklung 6 im Ständer 30 des Synchrongenerators zusätzlich zur Traktionswicklung 5. Der permanenterregte Synchrongenerator speist über einen Gleichrichter 7 den Traktionszwischenkreis 18. Dies kann über einen Diodengleichrichter oder einen IGBT-Gleichrichter geschehen, der zusätzlich eine Energieumkehr bei elektrischen Bremsen des Fahrzeugs erlaubt .
Damit werden die Hilfsbetriebe 9 mit ansonsten in den Brems- widerständen dissipierten Energie gespeist. Diese Energie wird induktiv in die Hilfsbetriebswicklung 6 übertragen und speist somit die Hilfsbetriebe 9. Damit müssen die Hilfsbetriebe 9 im elektrischen Bremsen nicht vom Dieselmotor 1 mit Energie versorgt werden, was eine zusätzliche Kraftstoffein- sparung zur Folge hat.
Damit werden die Hilfsbetriebsumrichter 10 auf angepasster Niederspannungsebene direkt vom Dieselgenerator 2 über einen Dioden- oder IGBT-Gleichrichter gespeisten Zwischenkreis mit einer Spannung Ud von ca. 600 bis 700 V versorgt.
FIG 7 zeigt in einem konkreten Ausführungsbeispiel einen 10- poligen permanenterregten Synchrongenerator. Bei der ca. 80% der Dieselleistung für die Traktion und die verbleibenden 20% für die Hilfsbetriebe 9 zur Verfügung stehen sollen. Die dreiphasige elektrische Maschine von der ausgegangen wird, ist mit folgender Ständerwicklung ausgestattet:
Nutzahl pro Pol und Strang: q = 2 Polzahl: 2 p = 10 Strangzahl: m = 3
Wicklungsausführung: Zweischichtwicklung Ständernutenzahl: Ni = 60
Das Wicklungsschema für ein Polpaar zeigt FIG 7. Es werden für die 10-polige elektrische Maschine 60 Ständerspulen benötigt. Die Zweischichtwicklung ist gesehnt und weist ein Verhältnis der Spulenweite zur Polteilung von W/τp = 5/6 auf. Die Schaltung der Spulen von Strang U - X ist fett gekenn- zeichnet. Die Klemme X wäre bei einer Dreieckschaltung Teil des Sternpunkts. Für die erfindungsgemäß vorgeschlagene konzentrierte Hilfsbe- triebswicklung sind die Polpaare mit einer Wicklung nach FIG 7 versehen, wobei acht Pole für die Traktionswicklung 5 gemäße FIG 6 entsprechend verschaltet sind (parallel, in Reihe, kombiniert) . Die beiden verbleibenden Pole für die konzentrierte Hilfsbetriebswicklung 6 werden separat verschaltet, wie in FIG 7 dargestellt. Die beiden Wicklungssysteme (Traktionswicklung 5 und Hilfsbetriebswicklung 6) überlappen sich, Die Ständerspulenzahl erhöht sich dabei nicht.
Die Ständernutenzahlen Nl und Spulenzahlen für das Beispiel des 10-poligen permanenterregten Synchrongenerators sind im folgenden tabellarisch aufgeführt, wobei sich Aufwand und Kosten für die Wicklungsherstellung in erster Linie an der Spulenzahl orientieren.
Um dies bei konventionellen Generatoren umsetzen zu können, wären zusätzliche 60 Spulen für die Hilfsbetriebswicklung notwendig um eine zur Traktionswicklung symmetrische Hilfsbe- triebswicklung herzustellen. Dadurch würde sich der Fertigungsaufwand für die Ständerwicklung 4 verdoppeln.
Für die erfindungsgemäße vorgeschlagene verteilte Hilfsbe- triebswicklung 6 erhöhen sich die Nutenzahlen pro Pol und Strang, in diesem Beispiel um 0,5 auf q = 2,5, wobei von der Traktionswicklung 5 wie zuvor nur zwei Nuten pro Pol und Strang belegt werden.
FIG 8 zeigt in einem beispielhaften Wicklungsschema für die Anordnung einer verteilten Hilfsbetriebswicklung 6. Die Ge- samtspulenzahl für die Ständerwicklung 4 erhöht sich von 60 auf 75 Spulen. Es liegt ebenfalls eine gesehnte Zweischichtwicklung mit verteilter Hilfsbetriebswicklung 6 für ein PoI- paar (Traktionswicklung q = 2, Hilfsbetriebswicklung qHB =
0,5, Spulenweite zu Polteilung W/τp = 7/7,5) vor. Die Spulen in FIG 8 der Hilfsbetriebswicklung 6 sind gestrichelt dargestellt. Die Schaltungen der Spulen von Strang U-X der Traktionswicklung 4 sind fett dargestellt. Klemme X wäre bei einer Dreiecksschaltung Teil des Sterns. Des Weiteren ist der An- schluss des Strangs R der Hilfsbetriebswicklung dargestellt. Klemme X* wäre bei einer Dreiecksschaltung Teil des separaten Sternpunkts der Hilfsbetriebswicklung.
Die Zahlen in FIG 7,8 sind keine Bezugszeichen sondern lediglich Nummerierungen von Spulen oder Nuten.
FIG 9 zeigt in einem prinzipiellen Längsschnitt einen permanenterregten Synchrongenerator ausgeführten Dieselgenerator 2. Der Ständer 30 weist die Ständerwicklung 4 auf, die als
Traktionswicklung 5 und als Hilfsbetriebswicklung 6 wie oben beschrieben ausgeführt ist. Die Bleche des Ständers 30 weisen axial verlaufende Kühlkanäle auf. Der Rotor 21, auch als Läufer bezeichnet, ist insbesondere hohl ausgeführt, um zum ei- nen die Trägheit zu reduzieren und zum anderen über den Hohlraum Kühlluft zu führen und oder einen Axiallüfter 23 zu positionieren .
In dieser Ausführungsform sind Permanentmagnete 20 an der Oberfläche des Rotors 21 angeordnet und beispielsweise über eine nicht näher dargestellte Bandage fixiert. Selbstverständlich sind die Permanentmagnete 20 in einer anderen Aus- führungsform auch im Rotor 21 als vergrabene Permanentmagnete 20 anordenbar.
Der Ständer 30 ist in einem Gehäuse untergebracht, das eine Wassermantelkühlung 24 aufweist. Das Gehäuse selbst ist über Lager 28 mit einer vom Dieselmotor 1 in Rotation versetzten Welle 29 verbunden.
Über zumindest einen Axiallüfter 23, der beispielhaft im Ro- tor 21 angeordnet ist, wird ein Kühlluftstrom vom Lufteintritt über den Rotor 21 und den Radiallüfter 26 zum Luftaustritt gelenkt.
Ein weiterer Kühlluftstrom führt vom Lufteintritt 22 über die Kühlkanäle des Ständers 30 und die Wickelköpfe über ein Leitblech zum Luftaustritt 25.
Zusammen mit der Wassermantelkühlung 24 liegt damit eine äußerst effiziente Kühlung des permanenterregten Synchrongene- rators an.
Anstatt der Durchzugsbelüftung kann ebenso ein geschlossener Kühlgaskreislauf eingesetzt werden, wobei durch dementsprechend gestaltete Lüfter eine Zirkulation des Kühlgases her- beigeführt wird, die der Wassermantelkühlung 24 in einfacher Art und Weise den Wärmeabtransport ermöglichen. Die gelingt beispielsweise dadurch, dass das erwärmte Kühlgas auf der Innenseite des Gehäuses vorbei streicht.

Claims

Patentansprüche
1. Dieselelektrisches Fahrzeug, insbesondere Schienenfahrzeug, mit einem Dieselgenerator (2) der als permanenterregter Synchrongenerator ausgeführt ist, der mit einer in einem
Ständer (30) vorgesehenen Ständerwicklung (4), die eine Traktionswicklung (5) und eine davon galvanisch getrennten Hilfs- wicklung (6) aufweist, ausgeführt ist.
2. Dieselelektrisches Fahrzeug nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Hilfsbe- triebswicklung (6) mit der Traktionswicklung (5) verschachtelt angeordnet ist.
3. Dieselelektrisches Fahrzeug nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Hilfs- betriebswicklung (6) und die Traktionswicklung (5) im Bereich des Ständers (30) des permanenterregten Synchrongenerators konzentriert ausgeführt sind, wobei eine vorgebbare Anzahl der vorhandenen Polpaare (p) die galvanisch getrennte Hilfs- betriebswicklung (6) bilden.
4. Dieselelektrisches Fahrzeug nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Traktionswicklung (5) und/oder die Hilfsbetriebswicklung (6) als Zahnspulen ausgeführt sind.
5. Dieselelektrisches Fahrzeug nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Permanentmagnete sich auf der Oberfläche oder in axial verlaufenden Ausnehmungen eines Rotors der permanenterregten Synchronmaschine befinden.
6. Dieselelektrisches Fahrzeug nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Traktionswicklung (5) den Traktionszwischenkreis (18) über zumindest einen Gleichrichter (7) speist, der mit IGBT-Modulen ausgeführt ist.
EP08803381A 2007-09-21 2008-08-29 Dieselelektrisches fahrzeug Ceased EP2201664A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007045314A DE102007045314A1 (de) 2007-09-21 2007-09-21 Dieselelektrisches Fahrzeug
PCT/EP2008/061383 WO2009040211A2 (de) 2007-09-21 2008-08-29 Dieselelektrisches fahrzeug

Publications (1)

Publication Number Publication Date
EP2201664A2 true EP2201664A2 (de) 2010-06-30

Family

ID=40373430

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08803381A Ceased EP2201664A2 (de) 2007-09-21 2008-08-29 Dieselelektrisches fahrzeug

Country Status (3)

Country Link
EP (1) EP2201664A2 (de)
DE (1) DE102007045314A1 (de)
WO (1) WO2009040211A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421266B2 (en) * 2010-05-06 2013-04-16 General Electric Company Power distribution systems for powered rail vehicles
FR2963761B1 (fr) * 2010-08-16 2014-02-28 Alstom Transport Sa Locomotive diesel-electrique
DE102012211543A1 (de) 2012-07-03 2014-01-09 Bombardier Transportation Gmbh Versorgung von elektrischen Traktionsmotoren und zusätzlichen elektrischen Hilfsbetrieben eines Schienenfahrzeugs mit elektrischer Energie
US9079503B2 (en) * 2012-09-06 2015-07-14 General Electric Company Systems and methods for generating power in a vehicle
EP3184349A1 (de) * 2015-12-22 2017-06-28 Siemens Aktiengesellschaft Energieversorgungssystem für ein fahrzeug und fahrzeug elektrischem traktionssystem
EP3382861A1 (de) * 2017-03-30 2018-10-03 Siemens Aktiengesellschaft Fahrzeug mit dieselelektrischer energieerzeugung
EP3382862A1 (de) 2017-03-30 2018-10-03 Siemens Aktiengesellschaft Fahrzeug mit dieselelektrischer energieerzeugung
EP3736168A1 (de) * 2019-05-07 2020-11-11 Siemens Aktiengesellschaft Antriebssystem für ein diesel-elektrisches fahrzeug
EP3778285A1 (de) * 2019-08-16 2021-02-17 Siemens Aktiengesellschaft Antriebssystem eines diesel-elektrischen fahrzeugs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010536A1 (de) * 2006-03-07 2007-09-20 Siemens Ag Dieselelektrisches Antriebssystem mit einem permanent erregten Synchrongenerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325661A (en) * 1964-02-28 1967-06-13 Mawdsley S Ltd Rotating electrical machinery
DE4302704A1 (de) * 1993-02-01 1994-08-04 Krupp Verkehrstechnik Gmbh Energieversorgungsanlage auf dieselelektrischen Lokomotiven
EP1042853A2 (de) * 1997-11-28 2000-10-11 Abb Ab Verfahren und vorrichtung zur steverung des magnetischen flusses mit einer hilfswicklung in einer rotierenden hochspannungsmachine der wechselstrom-banart
US6965183B2 (en) * 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
JP2005073450A (ja) * 2003-08-27 2005-03-17 Matsushita Electric Ind Co Ltd モータジェネレータ
DE10341774A1 (de) * 2003-09-10 2005-04-28 Siemens Ag Dieselelektrische Lokomotive
US7256513B2 (en) * 2004-12-02 2007-08-14 General Electric Company Locomotive auxiliary power system
DE102006002900B4 (de) * 2006-01-20 2007-12-20 Siemens Ag Elektrische Maschine mit einem dreisträngigen Wicklungssystem
US7535116B2 (en) * 2007-04-16 2009-05-19 General Electric Company System and method for controlling an output of an auxiliary power source of a diesel powered system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006010536A1 (de) * 2006-03-07 2007-09-20 Siemens Ag Dieselelektrisches Antriebssystem mit einem permanent erregten Synchrongenerator

Also Published As

Publication number Publication date
DE102007045314A1 (de) 2009-04-23
WO2009040211A2 (de) 2009-04-02
WO2009040211A3 (de) 2009-06-25

Similar Documents

Publication Publication Date Title
WO2009040211A2 (de) Dieselelektrisches fahrzeug
DE60018022T2 (de) Rotierende elektrische Maschine für Fahrzeuge
DE2823261C2 (de) Elektrische Maschine
DE10242833B4 (de) Elektrische Antriebsvorrichtung
DE102015217587B4 (de) Elektrische rotierende Maschinen
EP1188218A1 (de) Elektrische maschine
EP1966871B1 (de) Elektrische maschine, insbesondere wechselstrommaschine
DE10103538A1 (de) Elektromotorisch angetriebenes Schienenfahrzeug mit Verbrennungsmotor
DE102011114139A1 (de) Elektromotor, insbesondere polumschaltbarer Motor, Verfahren zum Betreiben eines Elektromotors und Elektromotor
EP2399769A2 (de) Transportfahrzeug mit einer Mehrzahl elektrischer Maschinen
EP2264888A2 (de) Anordnung zum Betreiben einer elektrischen Maschine
DE102005059760B4 (de) Antriebssystem für ein Wasserfahrzeug
DE2928770A1 (de) Elektrischer drehmomentwandler, insbesondere fuer kraftfahrzeuge
DE202016001273U1 (de) Elektrische Maschine für elektrisches Fahrzeug
DE102007058910A1 (de) Elektrische Maschine
DE102009055112A1 (de) Elektrische Maschine, insbesondere Wechselstrommaschine
DE102010001207A1 (de) Elektrische Maschine zum Starten von Brennkraftmaschinen
DE951506C (de) Thermoelektrischer Fahrzeugantrieb
DE102017130869A1 (de) Elektrisches Getriebe und Verfahren zum Betreiben eines Elektromotors
DE102009046952A1 (de) Verfahren zur Regelung der Spannung in einem Bordnetz eines Kraftfahrzeugs
DE102016221416A1 (de) Elektrische Maschine
WO2015086311A1 (de) Elektrischer generator sowie elektrischer motor
DE386044C (de) Selbsttaetige Regelungs- und Bremseinrichtung durch Stromrueckgewinnung von Bahnmotoren
DE202016106526U1 (de) Elektrische Maschine, insbesondere Generator in einer Windkraftanlage
WO2018178172A1 (de) Fahrzeug mit dieselelektrischer energieerzeugung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100308

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

17Q First examination report despatched

Effective date: 20170824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20200213