EP2196678B1 - Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler - Google Patents

Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler Download PDF

Info

Publication number
EP2196678B1
EP2196678B1 EP08171028A EP08171028A EP2196678B1 EP 2196678 B1 EP2196678 B1 EP 2196678B1 EP 08171028 A EP08171028 A EP 08171028A EP 08171028 A EP08171028 A EP 08171028A EP 2196678 B1 EP2196678 B1 EP 2196678B1
Authority
EP
European Patent Office
Prior art keywords
pump
est
estimate
rotational speed
cavitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08171028A
Other languages
English (en)
French (fr)
Other versions
EP2196678A9 (de
EP2196678A1 (de
Inventor
Tero Ahonen
Jero Ahola
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Oy
Original Assignee
ABB Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Oy filed Critical ABB Oy
Priority to EP08171028A priority Critical patent/EP2196678B1/de
Priority to DK08171028.7T priority patent/DK2196678T3/da
Priority to US12/628,669 priority patent/US20100143157A1/en
Priority to CN200910253636.6A priority patent/CN101750258B/zh
Publication of EP2196678A1 publication Critical patent/EP2196678A1/de
Publication of EP2196678A9 publication Critical patent/EP2196678A9/de
Application granted granted Critical
Publication of EP2196678B1 publication Critical patent/EP2196678B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/669Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps

Definitions

  • the present invention relates to a method and system of detecting cavitation of a pump, and more particularly to a method and system, with which the cavitation of a pump controlled with a frequency converter can be detected without additional measurements.
  • Cavitation refers to a situation, in which suction pressure into the pump drops below a value in which the liquid to be pumped starts to boil, i.e. below vapour pressure of the liquid. This phenomenon generates vapour bubbles which collapse abruptly once the bubbles enter the higher pressure area in the pump. The abrupt change from gas phase back to liquid phase causes sudden pressure changes which cause audible noise and may damage the mechanical parts of the pump.
  • cavitation or the possibility of cavitation is an important aspect relating to pumping processes. If the cavitation or risk of cavitation can be detected, the mechanical wearing of the pumps is greatly reduced and the pump may be operated safely in a larger operating area.
  • Pumps such as centrifugal pumps, are often controlled using a variable speed drive having a frequency converter which provides controlled voltage to a motor.
  • the shaft of the motor is connected to the pump thereby providing mechanical power for the pumping action.
  • Another approach for detecting cavitation is a model-based solution.
  • a system model is formed for the system starting from electrical or mechanical parameters of the motor and pump.
  • the inputs for the model are, for example, motor currents, voltages and frequency.
  • the pump model estimates the produced volumetric flow rate and head it can deliver. If the volumetric flow rate and the pressure difference (head) are measured simultaneously, error variables can be determined for both quantities. Based on the error variables, the abnormalities in the pump behaviour can be determined and possible malfunctions can be diagnosed.
  • This method suffers from the additional measurements, which are required for producing the error variables. The measurements require additional transducers, which cause further expenses due to costs for installation, maintenance and cabling.
  • the transducers are also a potential risk as to reliability of the whole system, since the transducers are mechanical components which are subjected to possibly harsh conditions. A failure of one transducer makes the detection of cavitation impossible. Further the transducers are difficult to change, which causes possibly long downtimes in the pumping process.
  • US patent 6,663,349 discloses a method for detecting cavitation or likelihood of the pump cavitation comprising all the features of the preamble of claim 1.
  • the net positive suction head required (NPSH R ) and the net positive suction head available (NPSH A ) are determined from values obtained from sensors.
  • the net positive suction head required and the net positive suction head available are compared and the likelihood of cavitation is determined on the basis of the comparison.
  • a problem relating to this method is also the requirement for additional measurement sensors or transducers.
  • Document EP 1286056 A1 discloses a system and method for detecting and diagnosing pump cavitation. In the method of the publication pump flow and pressure data are measured for detecting cavitation.
  • An object of the present invention is to provide a method and a system for implementing the method so as to solve the above problems.
  • the objects of the invention are achieved by a method and a system which are characterized by what is stated in the independent claims.
  • the preferred embodiments of the invention are disclosed in the dependent claims.
  • the invention is based on the idea of forming one or more indicators relating to likelihood of pump cavitation or reverse flow in a pump based on estimated values obtained directly from a frequency converter which drives the pump.
  • these indicators are formed from estimated torque produced by the motor and from estimated rotational speed of the motor.
  • the detection of cavitation also requires some parameters relating to the pump process and to the pump used.
  • An advantage of the method and apparatus of the invention is that cavitation, near cavitation or reverse flow situations can be detected reliably without any additional measurements.
  • the present invention thus eliminates the need of sensors measuring the process variables.
  • the detection of cavitation or the likelihood of cavitation is performed using multiple indicators simultaneously, which indicators are all based on the estimated values from the frequency converter.
  • the use of more than one indicator makes the detection even more reliable basically without any extra costs.
  • the invention also relates to a frequency converter that is adapted to carry out the method of the invention.
  • Figure 1 shows the basic structure of a pump driven by a frequency converter.
  • the frequency converter 2 is connected to a supplying network 1 via three-phase cabling.
  • the frequency converter is further connected to a motor 3, which in turn is mechanically connected to a pump 4.
  • the frequency converter controls the rotation of the motor and the pump in a desired manner.
  • the frequency converter is further connected to an automation system via interface 5.
  • the automation system may be a higher-level controller controlling the process to which the pump is connected.
  • the automation interface gives the instructions for the operation of the pump which the frequency converter tries to implement.
  • all measurements from the system are omitted and the motor and the pumping process are controlled in a sensorless manner.
  • FIG. 2 is a block diagram representing the procedures carried out in the present invention.
  • the frequency converter provides estimates for torque T est and for rotational speed n est .
  • Modern frequency converters are equipped with control systems, which use electrical motor models. Among other values, these motor models use and produce estimated produced torque and rotational speed of the motor. Some control schemes also take torque as a reference value enabling thus direct torque control.
  • the frequency converter which controls the pump, provides torque estimate T est and rotational speed estimate n est of the motor. Since the motor is mechanically connected to the pump, estimates describe also the pump operation. As mentioned, these values are readily available in the control system of the frequency converter.
  • one or more features which indicate cavitation or likelihood of the cavitation of the pump and/or reverse flow of the pump, are formed from the provided estimates.
  • the features, which are obtainable from the estimated values, are explained in detail below.
  • the detection is carried out in Figure 2 in a decision making block 21.
  • the decision making block 21 receives as inputs one or more features which are calculated on the basis of the estimated torque and rotational speed. In Figure 2 the number of inputted features is four.
  • a feature indicating cavitation or likelihood of cavitation and/or reverse flow is formed by comparing an RMS value of alternating component (AC) of the torque estimate with the normal RMS value of alternating component of the torque estimate.
  • Figure 2 shows this indicating feature as Feature1.
  • the calculation of this feature begins by band pass filtering the estimated torque T est in block 22.
  • the pass band of the band pass filter is, for example, as indicated in Figure 2 from 0 to 10 Hz.
  • the band pass filtered value T ac comprises low frequency alternating component content of the estimate, but not the DC component.
  • the AC component T ac is further fed to block 23, which calculates effective value or RMS value of the AC component T ac, RMS .
  • the AC component of the estimated torque can be calculated as follows. Simultaneously, also the DC component is calculated, and its use in the method is explained in detail further below.
  • the DC component can be removed from the sample data of x (x being general representation of any variable, such as torque) by, for example with a high pass filter having a very low cut-off frequency.
  • RMS value of the AC component is calculated, it is compared with normal value of RMS value of the AC component T ac, N .
  • the normal or typical value of RMS of the AC component may be detected and stored before the use of the invention or it can be detected and stored during the use of the method in circumstances in which the pump is certainly operating in normal operation point.
  • the comparison between the normal RMS value and the calculated RMS value is carried out in block 24 in Figure 2 and the comparison is in the form of ratio between a measured RMS value and the normal RMS value.
  • Figure 4 shows measurement results indicating this calculated ratio as a function of ratio of net positive suction head available and net positive suction head required (NPSH A / NPSH R ) which is referred to in this text as the pressure ratio.
  • the pressure ratio should be at least above one since NPSH R represents a situation, in which the head produced by the pump has dropped by 3%.
  • the ratio T ac, RMS / T ac, N starts growing exponentially as the pressure ratio decreases.
  • the measured data points and the pressure ratio are measured using sensors to show the usability of the method to indicate the cavitation.
  • the data points are measured using different volumetric flows as indicated in the legend of Figure 4 . Further an exponential fit curve is drawn in Figure 4 .
  • the ratio T ac, RMS / T ac, N grows when the pump is near cavitation due to the fact that, when cavitation starts or reverse flow occurs, the operation of the pump becomes discontinuous. This is seen in the shaft of the pump as growth of torque ripple (AC component). In other words, the power required by the pump oscillates. Consequently, the RMS value of the low frequency AC component increases, when compared to the normal situation. Thus the cavitation or reverse flow can be determined on the basis of Feature1 presented in Figure 2 .
  • an indicating feature is formed by comparing the RMS value of alternating component of the rotational speed estimate with the normal value of alternating component of the rotational speed estimate.
  • the rotational speed estimate can be used in similar manner to estimate the cavitation or reverse flow as the torque estimate.
  • the estimated speed n est is fed to a band-pass filter 25.
  • the AC component of the estimate n ac is further fed to RMS block 26, which calculates the RMS value of the alternating component n ac,RMS .
  • the RMS or effective value of the alternating component is compared with normal RMS value of the AC component of the rotational speed n ac,N in block 27.
  • the result of this comparison is denoted in Figure 2 as Feature2, which can be used to detect cavitation of the pump or reverse flow in the pump.
  • the estimated rotational speed and estimated torque are treated similarly.
  • the torque fluctuates when operation of the pump is abnormal.
  • the rotational speed fluctuates or oscillates, and this can be seen as higher values of RMS of the alternating component.
  • the normal operating point in which both normal value for alternating component of torque and rotational speed are determined can be, for example a situation, in which the pressure ratio is over 1.5. In operation points where the pressure ratio is above 1.5, the AC component is considerably smaller than in near cavitation situations or reverse flow situations.
  • the normal value has to be determined since the RMS levels depend largely on application, thus each pump and each installation has its own characteristics and the measured RMS values do not have any absolute limits for comparison.
  • Figure 5 shows measurement results of ratio between the RMS value of alternating component of estimated rotational speed and the normal value of alternating component of rotational speed as a function of pressure ratio.
  • the measurement results are for the same pump as the results in Figure 4 .
  • the calculated ratio increases as the pressure ratio approaches one. This means that as the pump approaches cavitation or reverse flow situation, the rotational speed starts to oscillate.
  • Feature2 as indicated in Figure 2 , can be used for detecting cavitation or likelihood of cavitation.
  • Figure 7 shows measurement results in which AC RMS levels of both the torque estimate and the rotational speed estimate are plotted as a function of volumetric flow.
  • Figure 7 has also a vertical line showing the minimum volumetric flow as recommended by the pump manufacturer and a curve showing the efficiency of the pump as a function of volumetric flow.
  • the flow of the pump was reduced by a valve on a pressure side such that the process was led to a reverse flow situation.
  • the AC levels of the estimates start to increase as the volumetric flow is reduced to the minimum flow. Simultaneously, the efficiency of the pump also drops. From Figure 7 it is evident that the AC levels of the produced estimates give clear indication of cavitation resulting from the reverse flow of the pumped liquid.
  • an indicating feature is formed by calculating estimated volumetric flow in the pump from the direct components of the torque estimate and rotational speed estimate using a pump model. After the estimated volumetric flow is calculated, it is compared with minimum allowable volumetric flow. The result of this comparison is used as an indicating feature for detecting the likelihood of cavitation or reverse flow of the pumped media. Especially, this comparison is used in determining the likelihood of reverse flow.
  • the feature relating to the minimum flow is marked as Feature4.
  • the torque estimate T est and a rotational speed estimate n est produced by the frequency converter are low-pass filtered in blocks 28 and 29 to obtain a direct component of the torque estimate T dc, est and a direct component of the rotational speed estimate n dc, est .
  • the direct components refer to low-pass filtered values i.e. to levels, in which the torque estimate and the rotational speed estimate are.
  • DC values of the estimates can be calculated by determining their mean values.
  • the DC values T dc,est and n dc,est are fed to a block 30 containing a pump model, which calculates from the inputted estimates the estimated volumetric flow Q est .
  • the pump model incorporates a database or similar to which data relating to the pump can be stored.
  • the stored data includes Q-P graph of the pump or selected data points from the graph.
  • An example of a Q-P graph is shown in Figure 3b in which power of the pump (P) and volumetric flow (Q) are plotted with different diameters of the pump. Once the power delivered to the pump is known, the graph included in the pump model can estimate the volumetric flow.
  • affinity laws may be applied to the power consumed by the pump P dc,est so that number of mathematical calculations is reduced.
  • the estimated volumetric flow Q est is compared with the minimum allowable volumetric flow Q min , which is provided by the pump manufacturer and stored in the pump model, it can be easily determined if the pump is operating in its normal operating area.
  • the minimum allowable flow Q min depends on the rotational speed of the pump. Therefore the minimum allowable volumetric flow should be calculated using affinity laws at the time of comparison to take into account the operating speed.
  • a reverse flow occur, if the volumetric flow is below 30 - 70 % of the nominal volumetric flow. Reverse flow causes similar sudden pressure changes and discontinuities in the flow as cavitation.
  • the estimated volumetric flow can be used as a feature indicating a possibility of cavitation or reverse flow situation in a pump.
  • Another feature indicating the likelihood of cavitation or reverse flow situation is formed from the comparison of the net positive suction head required (NPSH R ) and the net positive suction head available (NPSH A ) which are calculated on the basis of estimated torque, estimated rotational speed and system parameters.
  • the ratio between the two is called a pressure ratio.
  • NPSH R can be read from a graph provided for the pump in question. Such a graph is shown in Figure 3a , in which NPSH R is plotted as a function of volumetric flow (Q-NPSH R curve). As in Figure 3b , the curves are provided for different pump sizes.
  • the suction head required by the pump has a minimum value and the value obtained with affinity transformation cannot be lower than the minimum value. If the volumetric flow produced by the pump is so low that it does not appear on the manufacturers Q-NPSH R curve, the situation must be considered to be a situation where the AC levels of the estimates may have increased due to cavitation which is formed of the reverse flow. Correspondingly, if the volumetric flow produced by the pump is so high that it does not appear on the manufacturers Q-NPSH R curve, cavitation may occur increasing the AC levels of the estimates.
  • NPSH A H s + p 0 - p f Q - p v Temp ⁇ Temp ⁇ g + v 0 2 ⁇ g
  • H s is the suction head of the pump
  • p 0 is the pressure of the environment
  • p v is the evaporating pressure of the pumped liquid
  • p f is an estimate of the pressure losses on the suction side
  • v 0 is the flow rate in the top of the container
  • g is the gravitation constant
  • Temp the temperature of the fluid
  • the density of the fluid.
  • the static head H s is the most important one.
  • the pressure ratio can be used as a feature indicating likelihood of cavitation, cavitation or reverse flow of the pumped liquid.
  • the pressure ratio should be at least above one.
  • the required pressure ratio depends on the pump used.
  • pressure ratio of 1.5 can be used.
  • the pressure ratio may have values up to four, meaning that the available suction head must be at least four times higher than the required suction head.
  • Figure 8 shows measured and estimated pressure ratio as a function of volumetric flow. It can be seen that the estimated values of the pressure ratio correspond to the measured ones, although there is an error in the volumetric flow estimation.
  • the decision making block 21 may receive any number of indicating features, including one, two, three or the illustrated four features.
  • the block 21 comprises a set of rules, fuzzy logic or similar means for making a decision and outputting it.
  • the decision may be in the form of a number, which indicates the likelihood or severity of cavitation or reverse flow of the liquid.
  • the output 33 of block 21 may be an integer from 1 to 10, where 1 in the output depicts that operation is in the normal operating area, i.e. all features inputted to the decision making block provide indicators of the operation in a normal state. When some indicators begin showing small indications of cavitation or likelihood of the cavitation, the output 33 from the block 21 starts growing, and as all the indicators show signs of cavitation or reverse flow, the block 21 gives 10 to its output.
  • the output 33 of the decision making block may be led to an upper control system for further operations, including for a change of the operation state and for giving alarms, for example.
  • the output 33 of the decision making block may be led to the upper control system via interface 5.
  • the decision making block 21, the pump model 30 and the parameters stored for the operation are preferably implemented in the frequency converter controlling the pump.
  • the method of the invention is preferably carried completely out in a frequency converter, for example, by means of software.
  • the required calculations and the stored data may also be situated in the upper control system, whereby the frequency converter provides only estimated rotational speed and torque, and possibly the pump head and flow rate to the upper control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Claims (11)

  1. Ein Verfahren in Zusammenhang mit einer Pumpe, die mit einem Frequenzumrichter gesteuert wird, das folgende Schritte aufweist
    die Pumpe (4) mit einem Frequenzumrichter (2) steuern, wobei der Frequenzumrichter (2) einen Motor (3) versorgt, der angeschlossen ist, die Pumpe zu betreiben,
    eine Drehmomentschätzung (Test) und/oder eine Schätzung der Rotationsgeschwindigkeit (nest) des Motors von dem Frequenzumrichter zur Verfügung stellen, wobei das Verfahren dadurch gekennzeichnet ist, dass es folgende Schritte aufweist
    ein oder mehrere Kennzeichen (Feature1, Feature2, Feature3, Feature4) bilden, die Kavitation oder eine Wahrscheinlichkeit der Kavitation der Pumpe (4) und/oder einen Rückfluss der Pumpe (4) andeuten, indem nur die zur Verfügung gestellten Schätzungen (Test, nest) verwendet werden, und
    Kavitation oder eine Wahrscheinlichkeit der Kavitation der Pumpe und/oder einen Rückfluss der Pumpe von einem oder mehreren der gebildeten Kennzeichen (Feature1, Feature2, Feature3, Feature4) entdecken.
  2. Ein Verfahren gemäß dem Patentanspruch 1 dadurch gekennzeichnet, dass ein andeutendes Kennzeichen (Feature1) gebildet wird, indem ein RMS-Wert einer alternierenden Komponente der Drehmomentschätzung (Tac,RMS) mit dem normalen RMS-Wert einer alternierenden Komponente der Drehmomentschätzung (Tac,N) verglichen wird.
  3. Ein Verfahren gemäß dem Patentanspruch 1 dadurch gekennzeichnet, dass ein andeutendes Kennzeichen (Feature2) gebildet wird, indem ein RMS-Wert einer alternierenden Komponente der Schätzung der Rotationsgeschwindigkeit (nac, RMS) mit dem normalen RMS-Wert der alternierenden Komponente der Schätzung der Rotationsgeschwindigkeit (nac,N) verglichen wird.
  4. Ein Verfahren gemäß dem Patentanspruch 1 dadurch gekennzeichnet, dass ein andeutendes Kennzeichen (Feature4) gebildet wird, indem
    ein geschätzter volumetrischer Fluss (Qest) von den direkten Komponenten der Drehmomentschätzung (Tdc,est) und der Schätzung der Rotationsgeschwindigkeit (ndc,est) berechnet wird, indem ein Pumpmodell verwendet wird und
    der geschätzte volumetrische Fluss (Qest) mit einem zulässigen Minimum des volumetrischen Flusses (Qmin) verglichen wird, der in die gegenwärtige Rotationsgeschwindigkeit umgewandelt wird.
  5. Ein Verfahren gemäß dem Patentanspruch 1 dadurch gekennzeichnet, dass ein andeutendes Kennzeichen (Feature3) gebildet wird, indem
    die benötigte positive Nettoansaughöhe (NPSHR) von den direkten Komponenten der Drehmomentschätzung (Tdc,est) und der Schätzung der Rotationsgeschwindigkeit (ndc,est) berechnet wird, indem ein Pumpmodell verwendet wird,
    die verfügbare positive Nettoansaughöhe (NPSHA) von den Systemparametern berechnet wird und
    die verfügbare positive Nettoansaughöhe (NPSHA) mit der benötigten positiven Nettoansaughöhe (NPSHR) verglichen wird.
  6. Ein Verfahren gemäß einer Kombination der Patentansprüche 2 und 3 dadurch gekennzeichnet, dass die Berechnung des RMS-Wertes der alternierenden Komponente der Drehmomentschätzung (Tac,RMS) und der Schätzung der Rotationsgeschwindigkeit (nac,N) folgende Schritte aufweist
    alternierende Komponenten mit Niederfrequenz von der Schätzung trennen, um Werte für getrennte alternierende Komponenten (Tac, nac) zu erhalten,
    RMS-Werte von den Werten für getrennte alternierende Komponenten berechnen.
  7. Ein Verfahren gemäß einem der Patentansprüche 1 bis 6 dadurch gekennzeichnet, dass die direkten Komponenten der Drehmomentschätzung und der Schätzung der Rotationsgeschwindigkeit durch Low-Pass-Filtern oder durch Berechnen der Mittelwerte der der Drehmomentschätzung beziehungsweise der Schätzung der Rotationsgeschwindigkeit bestimmt werden.
  8. Ein Verfahren gemäß dem Patentanspruch 4 dadurch gekennzeichnet, dass die Berechnung des geschätzten volumetrischen Flusses (Qest) die folgenden Schritte aufweist
    den geschätzten Kraftverbrauch (Pest,dc) der Pumpe von den direkten Komponenten der Drehmomentschätzung (Tdc,est) und der Schätzung der Rotationsgeschwindigkeit (ndc,est) berechnen, und
    von den gegebenen Parametern der Pumpe den geschätzten volumetrischen Fluss (Qest) auf der Basis des geschätzten Kraftverbrauchs (Pest,dc) bestimmen.
  9. Ein Verfahren gemäß dem Patentanspruch 5 dadurch gekennzeichnet, dass die Berechnung der benötigten positiven Nettoansaughöhe (NPSHR) die folgenden Schritte aufweist
    den geschätzten Kraftverbrauch (Pest,dc) der Pumpe von den direkten Komponenten der Drehmomentschätzung (Tdc,est) und der Schätzung der Rotationsgeschwindigkeit (ndc,est) berechnen,
    von den gegebenen Parametern der Pumpe den geschätzten volumetrischen Fluss (Qest) auf der Basis des geschätzten Kraftverbrauchs (Pest,dc) bestimmen, und
    von den gegebenen Parametern der Pumpe die geschätzte benötigte positive Nettoansaughöhe (NPSHR) auf der Basis des geschätzten volumetrischen Flusses (Qest) bestimmen.
  10. Ein mit einem Frequenzumrichter gesteuertes Pumpsystem, wobei das System Folgendes aufweist
    einen Frequenzumrichter (2), der die Pumpe (4) steuert, wobei der Frequenzumrichter (2) einen Motor (3) versorgt, der angeschlossen ist, die Pumpe zu betreiben,
    Mittel, um eine Drehmomentschätzung (Test) und/oder eine Schätzung der Rotationsgeschwindigkeit (nest) des Motors von dem Frequenzumrichter zur Verfügung zu stellen, dadurch gekennzeichnet, dass das System weiterhin Folgendes aufweist
    Mittel, um ein oder mehrere Kennzeichen (Feature1, Feature2, Feature3, Feature4) zu bilden, die Kavitation oder eine Wahrscheinlichkeit der Kavitation der Pumpe (4) und/oder einen Rückfluss der Pumpe (4) andeuten, indem nur die zur Verfügung gestellten Schätzungen (Test, nest) verwendet werden, und
    Mittel, um Kavitation oder eine Wahrscheinlichkeit der Kavitation der Pumpe und/oder einen Rückfluss der Pumpe von einem oder mehreren der gebildeten Kennzeichen (Feature1, Feature2, Feature3, Feature4) zu entdecken.
  11. Ein Frequenzumrichter dadurch gekennzeichnet, dass der Frequenzumrichter angepasst ist, das Verfahren gemäß den Patentansprüchen 1 bis 9 durchzuführen.
EP08171028A 2008-12-09 2008-12-09 Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler Active EP2196678B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08171028A EP2196678B1 (de) 2008-12-09 2008-12-09 Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler
DK08171028.7T DK2196678T3 (da) 2008-12-09 2008-12-09 Fremgangsmåde og system til detektering af kavitation i en pumpe og frekvensomformer
US12/628,669 US20100143157A1 (en) 2008-12-09 2009-12-01 Method and system for detecting cavitation of pump and frequency converter
CN200910253636.6A CN101750258B (zh) 2008-12-09 2009-12-07 用于检测泵的汽蚀的方法和系统以及频率转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08171028A EP2196678B1 (de) 2008-12-09 2008-12-09 Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler

Publications (3)

Publication Number Publication Date
EP2196678A1 EP2196678A1 (de) 2010-06-16
EP2196678A9 EP2196678A9 (de) 2010-10-27
EP2196678B1 true EP2196678B1 (de) 2012-07-11

Family

ID=40547561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08171028A Active EP2196678B1 (de) 2008-12-09 2008-12-09 Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler

Country Status (4)

Country Link
US (1) US20100143157A1 (de)
EP (1) EP2196678B1 (de)
CN (1) CN101750258B (de)
DK (1) DK2196678T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372221A1 (de) * 2022-11-18 2024-05-22 Cattron North America, Inc. Kavitationsdetektion unter verwendung von drehmomentbelastung und/oder sofortigem kraftstoffverbrauch

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9777748B2 (en) * 2010-04-05 2017-10-03 Eaton Corporation System and method of detecting cavitation in pumps
DE102011086572B4 (de) * 2010-11-17 2019-08-14 KSB SE & Co. KGaA Verfahren und Regelvorrichtung zur drehzahlvariablen Regelung eines Verdrängerpumpenaggregates sowie Verdrängerpumpenanordnung
CN102022348B (zh) * 2010-12-07 2013-04-24 北京航空航天大学 一种水泵汽蚀测量方法
EP2505846A1 (de) 2011-03-31 2012-10-03 ABB Oy Verfahren und Anordnung zur Einschätzung der Flussrate einer Pumpe
EP2505848B1 (de) 2011-03-31 2013-10-02 ABB Oy Strömungsabrisserkennung bei Ventilatoren mit Frequenzwandler
US9689396B2 (en) * 2011-11-01 2017-06-27 Regal Beloit America, Inc. Entrapment detection for variable speed pump system using load coefficient
NL2008774C2 (en) * 2012-03-19 2013-09-23 Contronics Engineering B V A determination method and a control method for a fluid displacement device, controller and system.
US9546652B2 (en) * 2012-03-28 2017-01-17 Imo Industries, Inc. System and method for monitoring and control of cavitation in positive displacement pumps
EP2696175B1 (de) 2012-08-07 2021-09-15 Grundfos Holding A/S Verfahren zum Erfassen der Durchflussmenge einer Kreiselpumpe
EP2733358A1 (de) * 2012-11-15 2014-05-21 ABB Oy Verfahren zur Annäherung der Druckhöhe stromab einer Pumpe
CN103967806B (zh) * 2014-04-16 2016-04-06 浙江大学 一种水泵汽蚀试验方法和装置
US10281903B2 (en) * 2015-07-27 2019-05-07 Hitachi, Ltd. Process for design and manufacture of cavitation erosion resistant components
DE202020003345U1 (de) 2020-02-28 2020-08-18 Diehl Metering Gmbh Ultraschalldurchflussmesseinrichtung mit Signalqualitätsüberwachung
CN112270144B (zh) * 2020-11-29 2022-04-08 江苏省水利工程科技咨询股份有限公司 一种检测轴流泵站间隙汽蚀的方法
EP4361445A1 (de) 2022-10-28 2024-05-01 Siemens Aktiengesellschaft Verfahren zur steuerung und/oder überwachung eines betriebs eines pumpensystems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT364252B (de) * 1980-05-20 1981-10-12 Rosenbauer Kg Konrad Feuerloeschkreiselpumpe
US6260004B1 (en) * 1997-12-31 2001-07-10 Innovation Management Group, Inc. Method and apparatus for diagnosing a pump system
US6757665B1 (en) 1999-09-28 2004-06-29 Rockwell Automation Technologies, Inc. Detection of pump cavitation/blockage and seal failure via current signature analysis
US6663349B1 (en) 2001-03-02 2003-12-16 Reliance Electric Technologies, Llc System and method for controlling pump cavitation and blockage
US6655922B1 (en) * 2001-08-10 2003-12-02 Rockwell Automation Technologies, Inc. System and method for detecting and diagnosing pump cavitation
SE0103371D0 (sv) 2001-10-09 2001-10-09 Abb Ab Flow measurements
US7637723B2 (en) * 2005-07-25 2009-12-29 Emerson Electric Co Cavitation detection device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372221A1 (de) * 2022-11-18 2024-05-22 Cattron North America, Inc. Kavitationsdetektion unter verwendung von drehmomentbelastung und/oder sofortigem kraftstoffverbrauch

Also Published As

Publication number Publication date
EP2196678A9 (de) 2010-10-27
US20100143157A1 (en) 2010-06-10
CN101750258B (zh) 2014-08-27
CN101750258A (zh) 2010-06-23
DK2196678T3 (da) 2012-08-06
EP2196678A1 (de) 2010-06-16

Similar Documents

Publication Publication Date Title
EP2196678B1 (de) Verfahren und System zum Erkennen der Kavitation einer Pumpe und Frequenzwandler
US6715996B2 (en) Method for the operation of a centrifugal pump
US8353676B2 (en) Method for determining faults during the operation of a pump unit
US8774972B2 (en) Intelligent pump system
CN102439318B (zh) 用于确定做功机械的工作点的方法和装置
CN100470008C (zh) 改进的离心泵性能恶化检测
EP2156007B1 (de) Bestimmung und steuerung der bohrlochfluidhöhe, ausgangsströmung und gewünschten pumpenbetriebsgeschwindigkeit unter verwendung eines steuersystems für eine in dem bohrloch angeordnete zentrifugalpumpe
EP2354556A1 (de) Pumpenverfahren mit einer frequenzwandlerbetriebenen Pumpe
EP3371453B1 (de) Schutzverfahren und schutzvorrichtung für eine pumpe
CA2707376A1 (en) Device and method for gas lock detection in an electrical submersible pump assembly
WO2009003099A1 (en) Device, method and program product to automatically detect and break gas locks in an esp
EP2541067A2 (de) Pumpgrenzenanzeiger
EP3308020B1 (de) Lastverteilung bei parallelen pumpen
EP3456972B1 (de) Verfahren zum betrieb eines elektrischen induktionsmotors bei leistungsverlust
EP2306020B1 (de) Verfahren und Vorrichtung im Zusammenhang mit einem Pumpenantrieb
EP2618002B1 (de) Verfahren zur Erkennung der richtigen Drehrichtung eines zentrifugalen Vorrichtung und zentrifugale Vorrichtungsanordnung
JPH0875617A (ja) ポンプの故障診断方法
EP4293231A1 (de) Zustandsüberwachungsverfahren für eine pumpenanordnung und stromwandlersystem für eine pumpenanordnung mit diesem verfahren
EP4361445A1 (de) Verfahren zur steuerung und/oder überwachung eines betriebs eines pumpensystems
EP4191866A1 (de) Verfahren zum einrichten einer elektrischen motordrehzahlregelung in einem fluidischen system
EP4001652B1 (de) Zentrifugalpumpenbetrieb
EP3754201A1 (de) An/aus-steuerung einer pumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100909

17Q First examination report despatched

Effective date: 20101005

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 15/00 20060101AFI20120117BHEP

Ipc: F04D 29/66 20060101ALI20120117BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 566290

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120715

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008017078

Country of ref document: DE

Effective date: 20120906

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120711

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 566290

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121111

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121112

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121012

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121022

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

26N No opposition filed

Effective date: 20130412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121011

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008017078

Country of ref document: DE

Effective date: 20130412

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180823 AND 20180829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008017078

Country of ref document: DE

Owner name: ABB SCHWEIZ AG, CH

Free format text: FORMER OWNER: ABB OY, HELSINKI, FI

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 16

Ref country code: FR

Payment date: 20231221

Year of fee payment: 16

Ref country code: FI

Payment date: 20231220

Year of fee payment: 16

Ref country code: DK

Payment date: 20231227

Year of fee payment: 16

Ref country code: DE

Payment date: 20231214

Year of fee payment: 16