EP2195877A1 - Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas - Google Patents

Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas

Info

Publication number
EP2195877A1
EP2195877A1 EP08803722A EP08803722A EP2195877A1 EP 2195877 A1 EP2195877 A1 EP 2195877A1 EP 08803722 A EP08803722 A EP 08803722A EP 08803722 A EP08803722 A EP 08803722A EP 2195877 A1 EP2195877 A1 EP 2195877A1
Authority
EP
European Patent Office
Prior art keywords
section
coupler
port
coupling
omt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08803722A
Other languages
German (de)
French (fr)
Other versions
EP2195877B1 (en
Inventor
Paddy Perottino
Philippe Lepeltier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2195877A1 publication Critical patent/EP2195877A1/en
Application granted granted Critical
Publication of EP2195877B1 publication Critical patent/EP2195877B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the present invention relates to a very broadband multi-band transceiver coupler-splitter type OMT ("OrthoMode Transducer” that is to say, coupler orthomode) for microwave telecommunications antennas.
  • OMT Organic Multi-Mode Transducer
  • Such a device can also be called “multiplexer” or “OMT multiplexer”. To simplify the description, this device will be called simply “coupler”.
  • FIG. 1 schematizes an OMT termed "linear polarization separator", which is produced using the technique of microwave waveguides.
  • This OMT referenced 1, essentially comprises a first port 2 intended to be connected to a horn facing a microwave telecommunication antenna and two other ports 3, 4 intended to be connected to a transmitter or a receiver.
  • This OMT only works with linear polarizations. These three ports are coaxial.
  • Port 3 corresponds to the horizontal polarization and port 4 to the vertical polarization.
  • Port 3 is rectangular and is connected to port 2 by one or more waveguide sections 5 having dimensions intermediate between those of ports 2 and 3.
  • Port 4 is radially connected to port 2 by two guide sections of FIG. 6A, 6B waves arranged symmetrically with respect to the common axis of the three ports and each having approximately an elongated "U" shape and resulting in diametrically opposite coupling slots of each of the ports 2 and 3.
  • the coupler 7 of FIG. 2 is a so-called "pyramidal" OMT. It essentially comprises a central cavity with parallelepipedal body square section and a pyramid 8 placed at the bottom of this cavity. Ports 9 to 12 end facing the four lateral triangular surfaces of the pyramid of the parallelepiped body.
  • the coupling of electromagnetic waves between the square section central port and the four ports can be broadband. This operating range can be affected or reduced with the use of a transition between the circular section ports and the OMT parallelepipedal body promoting the propagation higher order modes.
  • this coupler does not have a multiplexing function.
  • FIG. 3 shows a conventional OMT 13 with circular sections. It essentially comprises three sections of successive coaxial waveguides 14, 15 and 16 which are generally cavities.
  • the first guide 14 has the largest diameter and has two or four rectangular coupling slots such as the slot 14A, only shown in the drawing, each associated with a port such as ports 14B shown in the drawing.
  • the section 15, of smaller diameter than the section 14 has two or four coupling slots 15 each associated with a port 15B.
  • the section 16, of smaller diameter than that of the section 15 constitutes the propagation port of the highest frequency band, while the section 14 ensures the coupling of the lowest frequencies and the section 15 that of the frequencies of the intermediate value.
  • Such a coupler thus allows a multi-band coupling, but the widths of these bands are small.
  • the coupler 17 of FIG. 4 is of the type comprising a cavity 18 in the shape of a rectangular parallelepiped extending along a parallelepipedic cavity with a square or rectangular section and a port 19 with a square or rectangular cross section and coaxial with the axis of the cavity.
  • the cavity 18 has on each of its two (or four) side faces a coupling slot 18A associated with a coupling port 18B.
  • Such a coupler operates for a relatively wide frequency band, but the transition (not shown), serving as an interface to the connection of a circular section horn, and located between the square or rectangular section cavity 18 and the waveguides
  • the circular section waves connected to it reduce its operating range because of the presence of higher order modes, including harmonics, which impede the propagation of useful signals.
  • FIG. 5 schematizes an OMT 20 as known from US Pat. No. 6,566,976.
  • This OMT comprises a conical body 21 connecting a port 22 with a circular section to a port 23 also having a circular section and having a diameter less than that of the port 22.
  • Coupling slots 21 A associated with ports IB 2 are formed on the conical body 21.
  • Such an OMT only propagates narrow frequency bands.
  • the subject of the present invention is a multi-band broadband transmission-reception coupler of the OMT type for microwave telecommunications antennas which can operate for a very wide bandwidth (greater than one octave), for linear as well as circular polarizations.
  • the coupler according to the invention comprises a port for propagation of all the frequencies, a body and a port for propagation of the high frequency bands, these three parts being coaxial and all having a circular section, coupling slots for the propagation of the low frequency bands being practiced in the body and each associated with a waveguide, and it is characterized in that its body joining the two ports comprises at least one section comprising a coupling section and a blocking section low frequencies, that is to say coupled frequencies, and has a form of revolution whose profile evolves according to a multi-polynomial law, constantly decreasing from the port of larger section to the port of smaller section, each coupling section having two or four broadband coupling slots.
  • the coupling slots allow, after recombination, operation in linear and circular polarizations. If they are two in number and diametrically opposed, it is a single linear polarization, and if they are four in number and arranged at 90 ° relative to each other, they are linear polarizations and circulars. In the coupling regime, all the signals coupled to the losses that are induced by the coupler itself and by the type of treatment of the machined material are recovered (for example: a silver-based finish allows very good conductivity).
  • the blocking section also provides an adaptation function allowing the propagation of high frequencies therethrough, on the other hand it also assists in the overall adaptation of the coupler (between ports P1 and P2).
  • FIGS. 1 to 5 are simplified diagrams of known couplers
  • FIGS. 6 to 8 are simplified diagrams of three embodiments of a coupler according to the present invention.
  • the present invention is described below with reference to three simple examples of couplers, but it is understood that it is not limited to these examples and that the bodies of these couplers may have a large number of other profiles, these profiles are generally defined as evolving according to a multi-polynomial law, constantly decreasing from the port of greater section to the port of pi us small secti on.
  • All the couplers according to the invention described below mainly comprise the following elements: a first port P1 followed by a body and a second port P2, these three main elements all having a circular section and being coaxial.
  • the inner diameter of the port P1 is greater than that of the port P2, while the inner diameter of the coupling section is equal to that of the port P1 at their junction and decreases constantly between its junction with P1 and its junction with P2.
  • the body comprises at least one section consisting of a coupling section and a frequency blocking section relating to the coupling section of the same assembly.
  • the embodiments described herein each include only one such section, but it is understood that the invention is not limited to a single section, and that the coupler of the invention has as many such sections that There are intermediate frequency bands to be processed (in coupling and separation).
  • the profile of the blocking section may comprise one or more parties with different evolution laws.
  • the port Pl ensures the propagation of all the useful bandwidths (representing the coupling of low and high subbands) and is connected (not shown) to a horn propagating in transmission and in reception of the electromagnetic waves in association with a focusing system such as a microwave telecommunications antenna, while the P2 port only ensures the propagation of high sub-bands and the coupling ports of the coupling section ensure that of the sub-bands bass.
  • the P2 port and the ports of the link section are connected (from not shown) to transceiver systems.
  • the law of evolution of the longitudinal profile of each coupling section is an essential element of the invention and will be described in detail below for each of the embodiments shown. Note that the coupling section may have only two or four coupling slots, because a different number would be useless purely and simply.
  • the examples of coupling section profiles described below are simple to perform by machining, whether they are linear or defined by splines.
  • the body 24 of the coupler 25 of FIG. 6 has a profile consisting of two consecutive linear parts 26 (determining the coupling section) and 27 (determining the low frequency blocking section) with different slopes (the slopes are to be considered in FIG. the plane of the figure, with respect to the longitudinal axis of the coupler). It is understood that this profile may comprise more than two parts with different slopes. In the example shown in the drawing, the slope of the portion 26 is greater than that of the portion 27, but the opposite is also possible
  • Each section of the separator favors the coupling of the low bands by presenting a slope of angle ⁇ l (slope 26) of approximately 10 to 15 ° and the following section of slope of angle ⁇ 2 (slope 27) bypasses (prevents) these same low bands to propagate through the coupler.
  • the whole also favoring a good adaptation (in terms of ROS, that is to say stationary wave rates) of the overall coupler for all frequency bands to propagate and separate.
  • Broadband rectangular 24A coupling slots are formed in the body of the section 24.
  • Each slots extend parallel to the longitudinal axis of the section 24. In this case, there are two or four. Two slots are used to couple at least one linear polarization and four slots are used to couple two linear polarizations and two circular polarizations. A recombination system (not shown) is necessary for their restitution. Only one of these slots is visible on the drawing.
  • Each slots is associated with a waveguide 24B rectangular section. Each set of coupling slot and associated waveguide is referred to herein as "coupling arm". The dimensions of the coupling slots are initially determined as those of a conventional rectangular waveguide to allow the propagation of the lowest frequencies to be coupled.
  • one or more conventional filtering cells intended for eliminate any residual frequencies that would be outside the bandwidth to be coupled relative to the arms 24B and which must pass only longitudinally through the section 24.
  • the equation defining the spline 30 can have various forms provided that, as specified above, the diameter of the corresponding portion of the section 28 is constantly decreasing from the port of larger section to the port of smaller section, or more precisely to the junction with the part defined by profile 31.
  • the coupler 32 of FIG. 8 comprises a coupling section 33, the profile of which consists of two different successive splines 34, 35 each satisfying the same conditions as the spline 30 of FIG. 7. It is understood that the profile of the section of FIG. coupling of the coupler of the invention may have more than two splines.
  • the number of splines results from the sizes of the bandwidths to be coupled (percentage of relative band), the number of bandwidths to be coupled and their frequency distance from each other.
  • the possibility of mechanically making the coupler can also limit this number of splines: a compromise will then be necessary. For example, a sine squared function was used to define the spline in a coupler made to couple the L band and separate the C and Ku bands.
  • This spline defined a zone of short-circuit favoring the coupling of the low bands (L) and a good adaptation of the bands more high (C and Ku) propagating through the coupler.
  • the spline 34 providing the coupling was a first order polynomial (linear profile).
  • the coupler of the invention processes the broad Ku and Ka subbands both in transmission and in reception (coupling and separation function of the coupler), whether in linear polarization or in circular polarization, giving a total of four subbands, as follows.
  • the transmitted frequency band ranges from 10.95 to 12.75 GHz and the received frequency band ranges from 13.75 to 14.5 GHz.
  • Such a coupler can therefore be described as "very wide band", since the total frequency band covered (from 10.95 to 30 GHz) extends over more than one octave.
  • the signals of the band Ka are circularly polarized (right and left in transmission and reception), and those of the Ku band are linearly polarized (orthogonal horizontal and vertical emission and reception).
  • the entire Ku (transmit and receive) band passes through the four coupling arms of the coupling body and represents 27.9% of coupled relative band, while the Ka band crossing the coupler represents 51.6% of separate relative band .
  • the percentage of relative band PBR is defined as follows:
  • the distance between the low band (s) to be coupled and the high band (s) to be propagated through the splitter-splitter indicates whether the coupler is achievable. This frequency distance should not be too small, otherwise there is a risk of coupling also the beginning of the highest bands.
  • the use of a selective filter microwave iris with circular contour of defined thickness having a cross-shaped recess, placed between the coupling section and the blocking section or just after the blocking section, can help in the where bandwidths to be coupled and separated are very close. This coupler makes it possible to use only one very broadband antenna for transmission (transmission and reception) of the four sub-bands.

Abstract

The present invention relates to a very broadband multiband transmission-reception coupler-separator of OMT (“OrthoMode Transducer”) type for RF frequency telecommunications antennas. This coupler comprises a port (P1) for propagating all the frequencies, a body and a port (P2) for propagating the high frequency bands, these three parts being coaxial, and broadband coupling slots (24A) for propagating the low frequency bands cut in the body and each associated with a waveguide, and it is characterized in that its body (24) joining the two ports exhibits a shape of revolution whose profile evolves according to a multi-polynomial law, constantly decreasing from the port of larger cross section (P1) to the port of smaller cross section (P2). This coupler can operate so as to couple and separate very wide passbands (the overall use of this coupler-separator being greater than one octave), two or four broadband coupling slots are necessary for propagating linear polarizations as well as circular polarizations after recombination.

Description

COUPLEUR-SEPARATEUR D 'EMISSION-RECEPTION MULTIBANDE A MULTIBAND A TRANSMITTER-RECEPTION SEPARATOR-SEPARATOR
LARGE BANDE DE TYPE OMT POUR ANTENNES DEWIDE BAND TYPE OMT FOR ANTENNAS OF
TELECOMMUNICATIONS HYPERFREQUENCESHYPERFREQUENCY TELECOMMUNICATIONS
La présente invention se rapporte à un coupleur-séparateur d'émission- réception multibande à très large bande de type OMT (« OrthoMode Transducer » c'est-à-dire coupleur orthomode) pour antennes de télécommunications hyperfréquences. Un tel dispositif peut être également dénommé « multiplexeur » ou « OMT multiplexant ». Pour simplifier la description, ce dispositif sera appelé simplement « coupleur ».The present invention relates to a very broadband multi-band transceiver coupler-splitter type OMT ("OrthoMode Transducer" that is to say, coupler orthomode) for microwave telecommunications antennas. Such a device can also be called "multiplexer" or "OMT multiplexer". To simplify the description, this device will be called simply "coupler".
On a schématisé en figure 1 un OMT dit « séparateur de polarisations linéaires », qui est réalisé selon la technique des guides d'ondes hyperfréquences. Cet OMT, référencé 1, comprend essentiellement un premier port 2 destiné à être relié à un cornet faisant face à une antenne de télécommunication hyperfréquences et deux autres ports 3, 4 destinés à être reliés à un émetteur ou un récepteur. Cet OMT ne fonctionne qu'avec des polarisations linéaires. Ces trois ports sont coaxiaux. Le port 3 correspond à la polarisation horizontale et le port 4 à la polarisation verticale. Le port 3 est rectangulaire et est relié au port 2 par un ou plusieurs tronçons de guide d'ondes 5 ayant des dimensions intermédiaires entre ceux des ports 2 et 3. Le port 4 est relié radialement au port 2 par deux tronçons de guides d'ondes 6A, 6B disposés symétriquement par rapport à l'axe commun des trois ports et ayant chacun approximativement une forme en « U » allongé et aboutissant à des fentes de couplage diamétralement opposées de chacun des ports 2 et 3.FIG. 1 schematizes an OMT termed "linear polarization separator", which is produced using the technique of microwave waveguides. This OMT, referenced 1, essentially comprises a first port 2 intended to be connected to a horn facing a microwave telecommunication antenna and two other ports 3, 4 intended to be connected to a transmitter or a receiver. This OMT only works with linear polarizations. These three ports are coaxial. Port 3 corresponds to the horizontal polarization and port 4 to the vertical polarization. Port 3 is rectangular and is connected to port 2 by one or more waveguide sections 5 having dimensions intermediate between those of ports 2 and 3. Port 4 is radially connected to port 2 by two guide sections of FIG. 6A, 6B waves arranged symmetrically with respect to the common axis of the three ports and each having approximately an elongated "U" shape and resulting in diametrically opposite coupling slots of each of the ports 2 and 3.
Le coupleur 7 de la figure 2 est un OMT dit « pyramidal ». Il comprend essentiellement une cavité centrale à corps parallélépipédique à section carrée et une pyramide 8 posée au fond de cette cavité. Des ports 9 à 12 aboutissent face aux quatre surfaces triangulaires latérales de la pyramide du corps parallélépipédique . Avec un tel OMT, le couplage des ondes électromagnétiques entre le port central à section carrée et les quatre ports peut être large bande. Cette plage de fonctionnement peut être affectée ou réduite avec l'utilisation d'une transition entre les ports à section circulaire et le corps parallélépipédique de l'OMT favorisant la propagation des modes d'ordres supérieurs. De plus, ce coupleur ne possède pas de fonction multiplexante.The coupler 7 of FIG. 2 is a so-called "pyramidal" OMT. It essentially comprises a central cavity with parallelepipedal body square section and a pyramid 8 placed at the bottom of this cavity. Ports 9 to 12 end facing the four lateral triangular surfaces of the pyramid of the parallelepiped body. With such an OMT, the coupling of electromagnetic waves between the square section central port and the four ports can be broadband. This operating range can be affected or reduced with the use of a transition between the circular section ports and the OMT parallelepipedal body promoting the propagation higher order modes. In addition, this coupler does not have a multiplexing function.
On a représenté en figure 3 un OMT classique 13 à sections circulaires. Il comporte essentiellement trois tronçons de guides d'ondes successifs coaxiaux 14, 15 et 16 qui sont généralement des cavités. Le premier guide 14 a le plus grand diamètre et comporte deux ou quatre fentes de couplage rectangulaires telles que la fente 14A, seule représentée sur le dessin, associées chacune à un port tel que les ports 14B représentés sur le dessin. De façon analogue, le tronçon 15, de diamètre inférieur à celui du tronçon 14, comporte deux ou quatre fentes de couplage 15 A associées chacune à un port 15B. Enfin, le tronçon 16, de diamètre inférieur à celui du tronçon 15, constitue le port de propagation de la bande de fréquences la plus élevée, alors que le tronçon 14 assure le couplage des fréquences les plus basses et le tronçon 15 celui des fréquences de valeur intermédiaire. Un tel coupleur permet donc un couplage multi-bandes, mais les largeurs de ces bandes sont faibles. Le coupleur 17 de la figure 4 est du type comportant une cavité 18 en forme de parallélépipède rectangle se prolongeant par une cavité parallélépipédique à section carrée ou rectangulaire et un port 19 à section carré ou rectangulaire et coaxial à l'axe de Ia cavité. La cavité 18 comporte sur chacune de ses deux (ou quatre) faces latérales une fente de couplage 18A associée à un port de couplage 18B. Un tel coupleur fonctionne pour une bande de fréquences relativement large, mais la transition (non représentée), servant d'interface à Ia connexion d'un cornet à section circulaire, et située entre la cavité 18 à section carrée ou rectangulaire et les guides d'ondes à section circulaire qui lui sont reliés, réduit sa plage de fonctionnement à cause de Ia présence de modes d'ordre supérieur, et notamment d'harmoniques, gênant la propagation des signaux utiles.FIG. 3 shows a conventional OMT 13 with circular sections. It essentially comprises three sections of successive coaxial waveguides 14, 15 and 16 which are generally cavities. The first guide 14 has the largest diameter and has two or four rectangular coupling slots such as the slot 14A, only shown in the drawing, each associated with a port such as ports 14B shown in the drawing. Similarly, the section 15, of smaller diameter than the section 14, has two or four coupling slots 15 each associated with a port 15B. Finally, the section 16, of smaller diameter than that of the section 15, constitutes the propagation port of the highest frequency band, while the section 14 ensures the coupling of the lowest frequencies and the section 15 that of the frequencies of the intermediate value. Such a coupler thus allows a multi-band coupling, but the widths of these bands are small. The coupler 17 of FIG. 4 is of the type comprising a cavity 18 in the shape of a rectangular parallelepiped extending along a parallelepipedic cavity with a square or rectangular section and a port 19 with a square or rectangular cross section and coaxial with the axis of the cavity. The cavity 18 has on each of its two (or four) side faces a coupling slot 18A associated with a coupling port 18B. Such a coupler operates for a relatively wide frequency band, but the transition (not shown), serving as an interface to the connection of a circular section horn, and located between the square or rectangular section cavity 18 and the waveguides The circular section waves connected to it reduce its operating range because of the presence of higher order modes, including harmonics, which impede the propagation of useful signals.
On a schématisé en figure 5 un OMT 20 tel que connu d'après le brevet US 6 566 976. Cet OMT comporte un corps conique 21 reliant un port 22 à section circulaire à un port 23 également à section circulaire et ayant un diamètre inférieur à celui du port 22. Des fentes de couplage 21 A associées à des ports 2 IB sont pratiquées sur le corps conique 21. Un tel OMT ne permet de propager que des bandes de fréquences étroites. La présente invention a pour objet un coupleur d'émission-réception multibande à très large bande de type OMT pour antennes de télécommunications hyperfréquences qui puisse fonctionner pour une très large bande passante (supérieure à une octave), pour des polarisations linéaires aussi bien que circulaires, Le coupleur conforme à l'invention comporte un port de propagation de la totalité des fréquences, un corps et un port de propagation des bandes de fréquences hautes, ces trois parties étant coaxiales et ayant toutes trois une section circulaire, des fentes de couplage pour la propagation des bandes de fréquences basses étant pratiquées dans le corps et associées chacune à un guide d'ondes, et il est caractérisé en ce que son corps joignant les deux ports comporte au moins une section comprenant un tronçon de couplage et un tronçon de blocage des fréquences basses, c'est-à-dire des fréquences couplées, et présente une forme de révolution dont le profil évolue selon une loi multi-polynomiale, constamment décroissante depuis le port de plus grande section jusqu'au port de plus petite section, chaque tronçon de couplage comportant deux ou quatre fentes de couplage large bande.FIG. 5 schematizes an OMT 20 as known from US Pat. No. 6,566,976. This OMT comprises a conical body 21 connecting a port 22 with a circular section to a port 23 also having a circular section and having a diameter less than that of the port 22. Coupling slots 21 A associated with ports IB 2 are formed on the conical body 21. Such an OMT only propagates narrow frequency bands. The subject of the present invention is a multi-band broadband transmission-reception coupler of the OMT type for microwave telecommunications antennas which can operate for a very wide bandwidth (greater than one octave), for linear as well as circular polarizations. The coupler according to the invention comprises a port for propagation of all the frequencies, a body and a port for propagation of the high frequency bands, these three parts being coaxial and all having a circular section, coupling slots for the propagation of the low frequency bands being practiced in the body and each associated with a waveguide, and it is characterized in that its body joining the two ports comprises at least one section comprising a coupling section and a blocking section low frequencies, that is to say coupled frequencies, and has a form of revolution whose profile evolves according to a multi-polynomial law, constantly decreasing from the port of larger section to the port of smaller section, each coupling section having two or four broadband coupling slots.
Les fentes de couplage permettent, après recombinaison, un fonctionnement en polarisations linéaires et circulaires. Si elles sont au nombre de deux et diamétralement opposées, il s'agit d'une seule polarisation linéaire, et si elles sont au nombre de quatre et disposées à 90° les unes par rapport aux voisines, il s'agit de polarisations linéaires et circulaires . En régime de couplage, on récupère ensuite la totalité des signaux couplés aux pertes près induites par le coupleur lui-même et par le type de traitement du matériau usiné (par exemple : une finition à base d'argent permet une très bonne conductivité).The coupling slots allow, after recombination, operation in linear and circular polarizations. If they are two in number and diametrically opposed, it is a single linear polarization, and if they are four in number and arranged at 90 ° relative to each other, they are linear polarizations and circulars. In the coupling regime, all the signals coupled to the losses that are induced by the coupler itself and by the type of treatment of the machined material are recovered (for example: a silver-based finish allows very good conductivity).
Le tronçon de blocage assure aussi une fonction d'adaptation permettant la propagation des fréquences hautes en son travers, d'autre part il aide aussi à l'adaptation globale du coupleur (entre les ports Pl et P2).The blocking section also provides an adaptation function allowing the propagation of high frequencies therethrough, on the other hand it also assists in the overall adaptation of the coupler (between ports P1 and P2).
La présente invention sera mieux comprise à la lecture de la description détaillée d'un mode de réalisation, pris à titre d'exemple non limitatif et illustré par le dessin annexé, sur lequel : - les figures 1 à 5, déjà décrites ci-dessus, sont des schémas simplifiés de coupleurs connus, etThe present invention will be better understood on reading the detailed description of an embodiment, taken by way of nonlimiting example and illustrated by the appended drawing, in which: FIGS. 1 to 5, already described above, are simplified diagrams of known couplers, and
- les figures 6 à 8 sont des schémas simplifiés de trois modes de réalisation d'un coupleur conforme à la présente invention. La présente invention est décrite ci-dessous en référence à trois exemples simples de coupleurs, mais il est bien entendu qu'elle n'est pas limitées à ces exemples et que les corps de ces coupleurs peuvent présenter un grand nombre d'autres profils, ces profils étant définis de façon générale comme évoluant selon une loi multi-polynomiale, constamment décroissante depuis le port de plus grande section j usqu ' au port de pi us petite secti on .- Figures 6 to 8 are simplified diagrams of three embodiments of a coupler according to the present invention. The present invention is described below with reference to three simple examples of couplers, but it is understood that it is not limited to these examples and that the bodies of these couplers may have a large number of other profiles, these profiles are generally defined as evolving according to a multi-polynomial law, constantly decreasing from the port of greater section to the port of pi us small secti on.
Tous les coupleurs conformes à l'invention décrits ci-dessous comportent principalement les éléments suivants : un premier port Pl suivi d'un corps et d'un deuxième port P2, ces trois éléments principaux ayant tous une section circulaire et étant coaxiaux. Le diamètre intérieur du port Pl est supérieur à celui du port P2, tandis que le diamètre intérieur du tronçon de couplage est égal à celui du port Pl au niveau de leur jonction et décroît constamment entre sa jonction avec Pl et sa jonction avec P2. Le corps comprend au moins une section se composant d'un tronçon de couplage et d'un tronçon de blocage de fréquences relatives au tronçon de couplage du même ensemble. Les modes de réalisation décrits ici ne comportent chacun qu'une seule telle section, mais il est bien entendu que l'invention n'est pas limitée à une seule telle section, et que le coupleur de l'invention comporte autant de telles sections qu'il y a de bandes de fréquences intermédiaires à traiter (en couplage et en séparation). Le profil du tronçon de blocage peut comporter une ou plusieurs parties à lois d'évolution différentes. Pour chacun de ces coupleurs, le port Pl assure la propagation de la totalité des bandes passantes utiles (représentant le couplage de sous-bandes basses et de sous-bandes hautes) et est relié (de façon non représentée) à un cornet propageant en émission et en réception des ondes électromagnétiques en association avec un système focalisant tel qu'une antenne de télécommunications hyperfréquences, tandis que le port P2 assure uniquement la propagation de sous- bandes hautes et les ports de couplage du tronçon de couplage assurent celle de sous-bandes basses. Le port P2 et les ports du tronçon de couplage sont reliés (de façon non représentée) à des systèmes émetteur-récepteur. La loi d'évolution du profil longitudinal de chaque tronçon de couplage est un élément essentiel de l'invention et sera décrite en détail ci-dessous pour chacun des modes de réalisation représentés. On notera que le tronçon de couplage ne peut comporter que deux ou quatre fentes de couplage, car un nombre différent serait inutile purement et simplement. Les exemples de profils de tronçons de couplage décrits ci-dessous sont simples à réaliser par usinage, qu'ils soient linéaires ou définis par des splines.All the couplers according to the invention described below mainly comprise the following elements: a first port P1 followed by a body and a second port P2, these three main elements all having a circular section and being coaxial. The inner diameter of the port P1 is greater than that of the port P2, while the inner diameter of the coupling section is equal to that of the port P1 at their junction and decreases constantly between its junction with P1 and its junction with P2. The body comprises at least one section consisting of a coupling section and a frequency blocking section relating to the coupling section of the same assembly. The embodiments described herein each include only one such section, but it is understood that the invention is not limited to a single section, and that the coupler of the invention has as many such sections that There are intermediate frequency bands to be processed (in coupling and separation). The profile of the blocking section may comprise one or more parties with different evolution laws. For each of these couplers, the port Pl ensures the propagation of all the useful bandwidths (representing the coupling of low and high subbands) and is connected (not shown) to a horn propagating in transmission and in reception of the electromagnetic waves in association with a focusing system such as a microwave telecommunications antenna, while the P2 port only ensures the propagation of high sub-bands and the coupling ports of the coupling section ensure that of the sub-bands bass. The P2 port and the ports of the link section are connected (from not shown) to transceiver systems. The law of evolution of the longitudinal profile of each coupling section is an essential element of the invention and will be described in detail below for each of the embodiments shown. Note that the coupling section may have only two or four coupling slots, because a different number would be useless purely and simply. The examples of coupling section profiles described below are simple to perform by machining, whether they are linear or defined by splines.
Le corps 24 du coupleur 25 de la figure 6 a un profil se composant de deux parties linéaires consécutives 26 (déterminant le tronçon de couplage) et 27 (déterminant le tronçon de blocage de fréquences basses) à pentes différentes (les pentes sont à considérer dans le plan de la figure, par rapport à l'axe longitudinal du coupleur). Il est bien entendu que ce profil peut comporter plus de deux parties à pentes différentes. Dans l'exemple représenté sur le dessin, la pente de la partie 26 est plus grande que celle de la partie 27, mais le contraire est également possibleThe body 24 of the coupler 25 of FIG. 6 has a profile consisting of two consecutive linear parts 26 (determining the coupling section) and 27 (determining the low frequency blocking section) with different slopes (the slopes are to be considered in FIG. the plane of the figure, with respect to the longitudinal axis of the coupler). It is understood that this profile may comprise more than two parts with different slopes. In the example shown in the drawing, the slope of the portion 26 is greater than that of the portion 27, but the opposite is also possible
Les rapports entre les valeurs de ces pentes sont différents selon le cas concerné, car ils dépendent de la mission à remplir, à savoir : les pourcentages en valeur de bande relative des sous-bandes à coupler et à séparer et de leur éloignement fréquentiel des unes par rapport aux autres. Chaque tronçon du séparateur favorise le couplage des bandes basses en présentant une pente d'angle θl (pente 26) d'environ 10 à 15° et le tronçon suivant de pente d'angle Θ2 (pente 27) court-circuite (empêche) ces mêmes bandes basses de se propager au travers du coupleur. Le tout favorisant aussi une bonne adaptation (en termes de ROS, c'est-à-dire de taux d'ondes stationnai res) de la globalité du coupleur pour toutes les bandes de fréquences à propager et à séparer. Des fentes de couplage 24A rectangulaires large bande sont pratiquées dans le corps du tronçon 24. Ces fentes s'étendent parallèlement à l'axe longitudinal du tronçon 24. Dans le cas présent, elles sont au nombre de deux ou de quatre. Deux fentes servent à coupler au moins une polarisation linéaire et quatre fentes servent à coupler deux polarisations linéaires et deux polarisations circulaires. Un système de recombinaison (non représenté) est nécessaire à leur restitution. Une seule de ces fentes est visible sur le dessin. Chacune des fentes est associée à un guide d'ondes 24B à section rectangulaire. Chaque ensemble fente de couplage et guide d'ondes associé est dénommé ici « bras de couplage ». Les dimensions des fentes de couplage sont déterminées initialement comme celles d'un guide d'ondes rectangulaire classique afin de permettre la propagation des fréquences les plus basses à coupler.The relationships between the values of these slopes are different according to the case concerned, because they depend on the mission to be fulfilled, namely: percentages in relative band value of the subbands to be coupled and separated and their frequency away from each other. compared to others. Each section of the separator favors the coupling of the low bands by presenting a slope of angle θl (slope 26) of approximately 10 to 15 ° and the following section of slope of angle Θ2 (slope 27) bypasses (prevents) these same low bands to propagate through the coupler. The whole also favoring a good adaptation (in terms of ROS, that is to say stationary wave rates) of the overall coupler for all frequency bands to propagate and separate. Broadband rectangular 24A coupling slots are formed in the body of the section 24. These slots extend parallel to the longitudinal axis of the section 24. In this case, there are two or four. Two slots are used to couple at least one linear polarization and four slots are used to couple two linear polarizations and two circular polarizations. A recombination system (not shown) is necessary for their restitution. Only one of these slots is visible on the drawing. Each slots is associated with a waveguide 24B rectangular section. Each set of coupling slot and associated waveguide is referred to herein as "coupling arm". The dimensions of the coupling slots are initially determined as those of a conventional rectangular waveguide to allow the propagation of the lowest frequencies to be coupled.
De préférence, pour le mode de réalisation de la figure 6, comme pour tous les modes de réalisation conformes à l'invention, on dispose aux extrémités de chacun des guides des bras de couplage une ou plusieurs cellules filtrantes classiques (non représentées) destinées à éliminer d'éventuels résidus de fréquences qui seraient en dehors de la bande passante à coupler relative aux bras 24B et qui ne doivent passer que longitudinalement en traversant le tronçon 24.Preferably, for the embodiment of FIG. 6, as for all the embodiments in accordance with the invention, at the ends of each of the guides of the coupling arms, one or more conventional filtering cells (not shown) intended for eliminate any residual frequencies that would be outside the bandwidth to be coupled relative to the arms 24B and which must pass only longitudinally through the section 24.
Le profil du tronçon de couplage 28 du coupleur 29 de la figure 7, considéré depuis le port Pl jusqu'au port P2, se compose d'une spline 30 suivie d'un segment linéaire 31. L'équation définissant la spline 30 peut avoir diverses formes à condition que, comme précisé ci-dessus, le diamètre de la partie correspondante du tronçon 28 soit constamment décroissant depuis le port de plus grande section jusqu'au port de plus petite section, ou plus précisément jusqu'à la jonction avec la partie définie par le profil 31.The profile of the coupling section 28 of the coupler 29 of FIG. 7, considered from the port P1 to the port P2, consists of a spline 30 followed by a linear segment 31. The equation defining the spline 30 can have various forms provided that, as specified above, the diameter of the corresponding portion of the section 28 is constantly decreasing from the port of larger section to the port of smaller section, or more precisely to the junction with the part defined by profile 31.
Le coupleur 32 de Ia figure 8 comporte un tronçon de couplage 33 dont le profil se compose de deux splines successives différentes 34, 35 répondant chacune aux mêmes conditions que la spline 30 de la figure 7. Il est bien entendu que le profil du tronçon de couplage du coupleur de l'invention peut comporter plus de deux splines. Le nombre de splines découle des tailles des bandes passantes à coupler (pourcentage de bande relative), du nombre de bandes passantes à coupler et de leur éloignement fréquentiel des unes par rapport aux autres. La possibilité de réaliser mécaniquement le coupleur peut aussi venir limiter ce nombre de splines : un compromis sera alors nécessaire. A titre d'exemple, une fonction sinus carré a été utilisée pour définir la spline 35 dans un coupleur réalisé pour coupler la bande L et séparer les bandes C et Ku. Cette spline définissait une zone de court-circuit favorisant le couplage des bandes basses (L) et une bonne adaptation des bandes plus hautes (C et Ku) se propageant au travers du coupleur. La spline 34 assurant le couplage était un polynôme d'ordre 1 (profil linéaire).The coupler 32 of FIG. 8 comprises a coupling section 33, the profile of which consists of two different successive splines 34, 35 each satisfying the same conditions as the spline 30 of FIG. 7. It is understood that the profile of the section of FIG. coupling of the coupler of the invention may have more than two splines. The number of splines results from the sizes of the bandwidths to be coupled (percentage of relative band), the number of bandwidths to be coupled and their frequency distance from each other. The possibility of mechanically making the coupler can also limit this number of splines: a compromise will then be necessary. For example, a sine squared function was used to define the spline in a coupler made to couple the L band and separate the C and Ku bands. This spline defined a zone of short-circuit favoring the coupling of the low bands (L) and a good adaptation of the bands more high (C and Ku) propagating through the coupler. The spline 34 providing the coupling was a first order polynomial (linear profile).
Selon un exemple de réalisation non limitatif, le coupleur de l'invention traite les sous-bandes larges Ku et Ka aussi bien en émission qu'en réception (fonction de couplage et de séparation du coupleur), que ce soit en polarisation linéaire ou en polarisation circulaire, ce qui donne au total quatre sous-bandes, comme suit. En bande Ku, la bande de fréquences émises s'étend de 10,95 à 12,75 GHz et la bande de fréquences reçues s'étend de 13,75 à 14,5 GHz. En bande Ka, la bande de fréquences émises s'étend de 17,7 à 20,2 GHz et Ia bande de fréquences reçues s'étend de 27,5 à 30 GHz. Le plus petit guide d'onde circulaire connu étant le C890 (rayon = 1,194 mm), les plus petits coupleurs peuvent être réalisés en électrodéposition ou électroformage si l'usinage classique en limite la réalisation. La complexité de la loi polynomiale des tronçons doit être choisie de sorte à prendre en compte les contraintes du cahier des charges tout en ne contraignant pas trop la possibilité de réalisation. Un tel coupleur peut donc être qualifié de « très large bande », puisque la bande totale de fréquences couverte (de 10,95 à 30 GHz) s'étend sur plus d'une octave. Dans cet exemple, les signaux de la bande Ka sont à polarisation circulaire (droite et gauche en émission et en réception), et ceux de la bande Ku sont à polarisation linéaire (orthogonales horizontales et verticales en émission et en réception). La totalité de la bande Ku (émission et réception) passe par les quatre bras de couplage du corps de couplage et représente 27,9% de bande relative couplée, tandis que la bande Ka traversant le coupleur représente 51,6% de bande relative séparée. Le pourcentage de bande relative PBR est défini de la manière suivante :According to a non-limiting exemplary embodiment, the coupler of the invention processes the broad Ku and Ka subbands both in transmission and in reception (coupling and separation function of the coupler), whether in linear polarization or in circular polarization, giving a total of four subbands, as follows. In the Ku-band, the transmitted frequency band ranges from 10.95 to 12.75 GHz and the received frequency band ranges from 13.75 to 14.5 GHz. In Ka-band, the transmitted frequency band ranges from 17.7 to 20.2 GHz and the received frequency band ranges from 27.5 to 30 GHz. Since the smallest known circular waveguide is the C890 (radius = 1.194 mm), the smallest couplers can be made in electroplating or electroforming if the conventional machining limits its realization. The complexity of the polynomial law of the sections must be chosen so as to take into account the constraints of the specifications while not constraining the possibility of realization. Such a coupler can therefore be described as "very wide band", since the total frequency band covered (from 10.95 to 30 GHz) extends over more than one octave. In this example, the signals of the band Ka are circularly polarized (right and left in transmission and reception), and those of the Ku band are linearly polarized (orthogonal horizontal and vertical emission and reception). The entire Ku (transmit and receive) band passes through the four coupling arms of the coupling body and represents 27.9% of coupled relative band, while the Ka band crossing the coupler represents 51.6% of separate relative band . The percentage of relative band PBR is defined as follows:
Fmax- F minFmax- F min
PBR = , ce qui donne pour la bande Ku :P BR =, which gives for the Ku band:
FmoyFmoy
Fmax- Fmin 14.5GHz -10.95GHzFmax- Fmin 14.5GHz -10.95GHz
PBR = = ≈ 27.9%PBR = = ≈ 27.9%
Fmoy 12.125GHz La distance entre la ou les bandes basses à coupler et la ou les bandes hautes à propager au travers du coupleur-séparateur (ici de 14.5 à 17.7 GHz c'est-à-dire l'interbande entre Ku et Ka) indique si le coupleur est réalisable. Cette distance fréquentielle ne doit pas être trop petite, sinon il y a risque de coupler aussi le début des bandes les plus hautes. L'utilisation d'un filtre sélectif (iris hyperfréquences à contour circulaire d'épaisseur définie comportant un évidement en forme de croix), placé entre le tronçon de couplage et le tronçon de blocage ou juste après le tronçon de blocage, peut aider dans le cas ou les bandes passantes à coupler et à séparer sont très proches. Ce coupleur permet de n'utiliser qu'une seule antenne très large bande pour la transmission (émission et réception) des quatre sous-bandes. Fmoy 12.125GHz The distance between the low band (s) to be coupled and the high band (s) to be propagated through the splitter-splitter (here from 14.5 to 17.7 GHz, ie the interband between Ku and Ka) indicates whether the coupler is achievable. This frequency distance should not be too small, otherwise there is a risk of coupling also the beginning of the highest bands. The use of a selective filter (microwave iris with circular contour of defined thickness having a cross-shaped recess), placed between the coupling section and the blocking section or just after the blocking section, can help in the where bandwidths to be coupled and separated are very close. This coupler makes it possible to use only one very broadband antenna for transmission (transmission and reception) of the four sub-bands.

Claims

REVENDICATIONS
1. Coupleur-séparateur d'émission-réception multibande à très large bande de type coupleur orthomode (OMT) pour antennes de télécommunications hyperfréquences, comportant un port de propagation de la totalité des fréquences (Pl), un corps (24, 28, 33) et un port de propagation des bandes de fréquences hautes (P2), ces trois parties étant coaxiales et ayant toutes trois une section circulaire, et des fentes de couplage pour la propagation des bandes de fréquences basses (24A, 28A, 33A) pratiquées dans le corps et associées chacune à un guide d'ondes (24B, 28B, 33B), caractérisé en ce que son corps (24, 28, 33) joignant les deux ports comporte au moins une section comprenant un tronçon de couplage et un tronçon de blocage des fréquences basses, c'est-à-dire des fréquences couplées, et présente une forme de révolution dont le profil évolue selon une loi multi-polynomiale, constamment décroissante depuis le port de plus grande section jusqu'au port de plus petite section, chaque tronçon de couplage comportant deux ou quatre fentes de couplage large bande.1. Very broadband coupler-receiver multi-band transceiver coupler-coupler (OMT) for microwave telecommunication antennas, having a port for propagation of all frequencies (P1), a body (24, 28, 33) ) and a propagation port of the high frequency bands (P2), these three parts being coaxial and all having a circular section, and coupling slots for the propagation of the low frequency bands (24A, 28A, 33A) practiced in the body and each associated with a waveguide (24B, 28B, 33B), characterized in that its body (24, 28, 33) joining the two ports comprises at least one section comprising a coupling section and a section of blocking of low frequencies, that is to say coupled frequencies, and presents a form of revolution whose profile evolves according to a multi-polynomial law, constantly decreasing from the port of greater section to the port of smaller e section, each coupling section having two or four broadband coupling slots.
2. Coupleur selon la revendication 1, caractérisé en ce que le profil comporte au moins deux parties linéaires (26, 27) de pentes différentes par rapport à l'axe commun desdites trois parties du coupleur.2. Coupler according to claim 1, characterized in that the profile comprises at least two linear portions (26, 27) of different slopes relative to the common axis of said three parts of the coupler.
3. Coupleur selon la revendication 1, caractérisé en ce que le profil comporte au moins une spline (30) suivie d'un segment linéaire (31).3. Coupler according to claim 1, characterized in that the profile comprises at least one spline (30) followed by a linear segment (31).
4. Coupleur selon la revendication 1, caractérisé en ce que le profil comporte au moins deux splines successives différentes (34, 35).4. Coupler according to claim 1, characterized in that the profile comprises at least two different successive splines (34, 35).
5. Coupleur selon la revendication 1, caractérisé en ce que le profil comporte une cascade de plusieurs ensembles composés chacun d'un tronçon de couplage linéaire ou spline avec deux ou quatre fentes de couplage suivi d'un tronçon linéaire ou spline sans fente de couplage. 5. Coupler according to claim 1, characterized in that the profile comprises a cascade of several sets each composed of a linear or spline coupling section with two or four coupling slots followed by a linear section or spline without coupling slot .
EP08803722.1A 2007-09-07 2008-09-05 Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas Active EP2195877B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0706284A FR2920915B1 (en) 2007-09-07 2007-09-07 OMT TYPE BROADBAND MULTIBAND MULTIBAND TRANSCEIVER SEPARATOR - SEPARATOR FOR MICROWAVE TELECOMMUNICATIONS ANTENNAS.
PCT/EP2008/061753 WO2009030737A1 (en) 2007-09-07 2008-09-05 Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas

Publications (2)

Publication Number Publication Date
EP2195877A1 true EP2195877A1 (en) 2010-06-16
EP2195877B1 EP2195877B1 (en) 2013-05-29

Family

ID=39182985

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08803722.1A Active EP2195877B1 (en) 2007-09-07 2008-09-05 Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas

Country Status (10)

Country Link
US (1) US8508312B2 (en)
EP (1) EP2195877B1 (en)
JP (1) JP5716248B2 (en)
KR (1) KR101489538B1 (en)
CN (1) CN101689691B (en)
CA (1) CA2696279C (en)
ES (1) ES2422604T3 (en)
FR (1) FR2920915B1 (en)
RU (1) RU2497242C2 (en)
WO (1) WO2009030737A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009051370A1 (en) * 2009-06-04 2010-12-09 Rohde & Schwarz Gmbh & Co Kg Measuring coupler in stripline technology
EP2454780B1 (en) * 2009-07-13 2015-12-16 Indian Space Research Organisation Symmetrical branching ortho mode transducer (omt) with enhanced bandwidth
WO2014108203A1 (en) * 2013-01-11 2014-07-17 Thrane & Thrane A/S A polarizer and a method of operating the polarizer
KR101514155B1 (en) * 2013-12-24 2015-04-21 단국대학교 천안캠퍼스 산학협력단 Waveguide diplexer
CN103956548B (en) * 2014-05-23 2016-03-23 成都赛纳赛德科技有限公司 E face channel-splitting filter
US9401536B2 (en) * 2014-11-12 2016-07-26 Ayecka Communication Systems Dual band antenna configuration
FR3030907B1 (en) * 2014-12-19 2016-12-23 Thales Sa ORTHOGONAL MODE JUNCTION COUPLER AND POLARIZATION AND FREQUENCY SEPARATOR THEREFOR
CN111937228B (en) 2018-04-04 2022-01-14 华为技术有限公司 OMT part and OMT device
EP3595082B8 (en) * 2018-07-10 2020-11-04 Rohde & Schwarz GmbH & Co. KG Integrated device and manufacturing method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT946090B (en) * 1971-11-24 1973-05-21 Siemens Spa Italiana SIGNAL EXTRACTION CIRCUIT ERROR POINTING A MICROWAVE ANTENNA TOWARDS A MOBILE TARGET
US4052724A (en) * 1974-12-20 1977-10-04 Mitsubishi Denki Kabushiki Kaisha Branching filter
JPS6058702A (en) * 1983-09-09 1985-04-04 Mitsubishi Electric Corp Branching filter
CA1260609A (en) * 1986-09-12 1989-09-26 Her Majesty The Queen, In Right Of Canada, As Represented By The Minister Of National Defence Wide bandwidth multiband feed system with polarization diversity
US4937533A (en) * 1989-08-16 1990-06-26 Rockwell International Corporation Deformable diplexer filter signal coupling element apparatus
RU2075801C1 (en) * 1993-06-08 1997-03-20 Новосибирский электротехнический институт связи им.Н.Д.Псурцева Device for integration of incoherent signals
RU2081481C1 (en) * 1993-07-01 1997-06-10 Ростовский научно-исследовательский институт радиосвязи Frequency-selective shf matrix
EP0674355B1 (en) * 1994-03-21 2003-05-21 Hughes Electronics Corporation Simplified tracking antenna
US5784033A (en) * 1996-06-07 1998-07-21 Hughes Electronics Corporation Plural frequency antenna feed
JPH11145701A (en) * 1997-11-13 1999-05-28 Nec Corp Orthogonal polarization coupler
RU2150770C1 (en) * 1998-11-02 2000-06-10 Кисляков Юрий Вячеславович Multiplexer
KR100314819B1 (en) * 1999-10-06 2001-11-30 임학규 Orthogonal mode transducer for Ka-band
US6313714B1 (en) * 1999-10-15 2001-11-06 Trw Inc. Waveguide coupler
US6657516B1 (en) * 2000-01-31 2003-12-02 Northrop Grumman Corporation Wideband TE11 mode coaxial turnstile junction
US6566976B2 (en) 2001-06-12 2003-05-20 Northrop Grumman Corporation Symmetric orthomode coupler for cellular application
CN1158537C (en) * 2002-08-06 2004-07-21 东南大学 Heterodyne millimetric wave space electricity-feeding transmission method and its focal array imaging structure
US7432780B2 (en) * 2005-11-23 2008-10-07 Northrop Grumman Corporation Rectangular-to-circular mode power combiner/divider

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009030737A1 *

Also Published As

Publication number Publication date
CA2696279C (en) 2015-04-14
KR20100063698A (en) 2010-06-11
KR101489538B1 (en) 2015-02-03
CN101689691B (en) 2012-10-31
CA2696279A1 (en) 2009-03-12
ES2422604T3 (en) 2013-09-12
JP2010538559A (en) 2010-12-09
FR2920915B1 (en) 2009-10-23
JP5716248B2 (en) 2015-05-13
RU2497242C2 (en) 2013-10-27
US20100207702A1 (en) 2010-08-19
WO2009030737A1 (en) 2009-03-12
CN101689691A (en) 2010-03-31
FR2920915A1 (en) 2009-03-13
EP2195877B1 (en) 2013-05-29
US8508312B2 (en) 2013-08-13
RU2010100973A (en) 2011-07-20

Similar Documents

Publication Publication Date Title
EP2195877B1 (en) Omt type broadband multiband transmission-reception coupler-separator for rf frequency telecommuncations antennas
EP0426972B1 (en) Flat antenna
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP0880193B1 (en) Antenna source for the transmission and reception of microwaves
EP2345104B1 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
FR2623020A1 (en) DEVICE FOR EXCITATION OF A WAVEGUIDE IN CIRCULAR POLARIZATION BY A FLANE ANTENNA
EP3726642B1 (en) Polarising screen with wideband polarising radiofrequency cell(s)
EP3086409B1 (en) Structural antenna module including elementary radiating sources with individual orientation, radiating panel, radiating network and multibeam antenna comprising at least one such module
EP0098192B1 (en) Multiplexing device for combining two frequency bands
EP3180816B1 (en) Multiband source for a coaxial horn used in a monopulse radar reflector antenna.
FR2831997A1 (en) DUAL CIRCULAR CIRCULAR FREQUENCY SEPARATOR GUIDE MODULE AND RECEIVER-TRANSMITTER HAVING THE SAME
EP0018261B1 (en) Wide-band waveguide with double polarisation
EP0430136A1 (en) Band elimination filter for microwave waveguide
EP2281320B1 (en) Coupler for a multiband radiofrequency system
EP3249823A1 (en) Compact bi-polarity, multi-frequency radiofrequency exciter for a primary source of an antenna and primary source of an antenna provided with such a radiofrequency exciter
EP0520919B1 (en) Filtering device for electromagnetic waves in a waveguide with symmetry around the rotational axis, and inserted pieces of rectangular waveguide
WO2024047573A1 (en) Six-port orthomode junction
EP3035445B1 (en) Orthogonal mode junction coupler and associated polarization and frequency separator
FR2544554A1 (en) Radiating element or receiver of left and right circularly polarised microwave signals and plane antenna comprising an array of such elements juxtaposed

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091116

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 614912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SERVOPATENT GMBH, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008025051

Country of ref document: DE

Effective date: 20130801

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2422604

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130912

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 614912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130830

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

BERE Be: lapsed

Owner name: THALES

Effective date: 20130930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

26N No opposition filed

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008025051

Country of ref document: DE

Effective date: 20140303

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130905

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130905

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080905

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: WANNERSTRASSE 9/1, 8045 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230829

Year of fee payment: 16

Ref country code: GB

Payment date: 20230817

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230830

Year of fee payment: 16

Ref country code: FR

Payment date: 20230821

Year of fee payment: 16

Ref country code: DE

Payment date: 20230816

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231004

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231001

Year of fee payment: 16