EP2191699B1 - High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement - Google Patents

High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement Download PDF

Info

Publication number
EP2191699B1
EP2191699B1 EP08804107.4A EP08804107A EP2191699B1 EP 2191699 B1 EP2191699 B1 EP 2191699B1 EP 08804107 A EP08804107 A EP 08804107A EP 2191699 B1 EP2191699 B1 EP 2191699B1
Authority
EP
European Patent Office
Prior art keywords
gas
insulator body
arrangement
ionization chamber
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08804107.4A
Other languages
German (de)
French (fr)
Other versions
EP2191699A1 (en
Inventor
Hans-Peter Harmann
Norbert Koch
Günter KORNFELD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electronic Systems GmbH
Original Assignee
Thales Electronic Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Electronic Systems GmbH filed Critical Thales Electronic Systems GmbH
Publication of EP2191699A1 publication Critical patent/EP2191699A1/en
Application granted granted Critical
Publication of EP2191699B1 publication Critical patent/EP2191699B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/53Bases or cases for heavy duty; Bases or cases for high voltage with means for preventing corona or arcing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/38Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames
    • B03C3/383Particle charging or ionising stations, e.g. using electric discharge, radioactive radiation or flames using radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/70Insulation of connections

Definitions

  • the invention relates to a high voltage insulator assembly and an ion accelerator assembly having such a high voltage insulator assembly.
  • the high voltage acts not only between anode and cathode, but also between the anode including the high voltage supply line and other conductive components at a different potential from the anode potential, in particular the ground potential. While separated components are generally sufficiently insulated against flashovers by the vacuum of the surrounding space, in areas in which the working gas occurs, in particular between the anode and a conductive component located upstream of the gas flow in the gas supply line, there is the risk of corona discharges through the corona working gas.
  • Corona discharges can also occur in vacuum applications in other areas and situations between two conductive components which are at potentials separated by a high voltage, wherein in an intermediate pressure region (Paschen Hoch) a voltage flashover by existing gas is facilitated. In between the conductive components continuously open paths can then ignite discharges carrying high currents. A plasma arising in the discharges is able to penetrate into small cracks or gaps. By venting against a surrounding vacuum such areas can indeed be made coronafest by lowering the gas pressure below the critical pressure range, but again in areas with changing gas pressure discharges in the intermediate pressure region may occur, which then can pass through the continuously open paths forming vent openings. Furthermore, it can also come below the critical pressure range by free electrons to a shunt, which z. B. is disturbed by Stromwertverbibschept or power consumption or can ignite a vacuum arc discharge.
  • a pressure-independent isolation between two components, in particular a high-voltage leading component to ground, can be achieved by completely gas-tight enclosing a component, so that there are no continuously open paths between the two components, eg. B. by potting or embedding a component in an insulator body, but this eliminates for releasable conductor connections as a component. It also shows that over such a long period damage also occurs in such potted high-voltage insulator arrangements, which, in particular when used in spacecraft without the possibility of exchanging components, can result in serious damage.
  • a metallic electrode is surrounded by a ceramic tube whose porosity is adjusted so that a fluid, which is typically a transformer oil, but may also be formed by a gas that can pass through the porous tube walls and rinses out any metallic deposits.
  • the present invention has for its object to provide a high-voltage insulator arrangement and an ion accelerator arrangement with such a high-voltage insulator arrangement with improved high-voltage insulation.
  • an insulator body in the gas supply which contains a gas-permeable, open-porous (open-pored) dielectric, such a corona discharge is prevented and at the same time allows a supply of working gas into the ionization chamber.
  • Electrically conductive, in particular metallic, second components of the gas supply including an advantageously provided controllable valve, are arranged inside the gas flow path upstream of the insulator body, whereas the anode electrode and electrically conductive first components located in the flow path of the working gas are arranged downstream of the insulator body.
  • the first components form the electrically conductive, in particular metallic, components located downstream of the insulator body downstream
  • the second components form the conductive, in particular metallic, components located upstream of the insulator body.
  • the gas flow is forced through the gas-permeable insulator body.
  • the gas-permeable insulator body can advantageously be inserted into one or more gas-impermeable insulating dielectric bodies and enclosed laterally by them.
  • the insertion of the gas-permeable insulator body in the flow path of the gas stream in particular also allows a compact design of the gas supply in the ion accelerator, since only a small distance between the grounded gas supply and lying on high voltage anode assembly must be adhered to interposing the insulator body.
  • the distance of the insulator body to conductive parts of the anode assembly and / or the gas supply may be less than the smallest dimension of the insulator body transverse to the main flow direction of the working gas through the insulator body, in particular smaller than the smallest dimension of the insulator body in the main flow direction of the working gas.
  • the insulator body is preferably disk-shaped and aligned with the disk surface transversely to the main flow direction of the working gas.
  • the insulator body is advantageously arranged on the side of the anode arrangement facing away from the ionization chamber.
  • a high voltage insulator assembly having a gas permeable, open porous insulator body between two conductive members on high voltage disconnected potentials, as particularly advantageous between an electrode of an ionization chamber and a conductive member upstream of a gas supply, is commonly used in vacuum applications High voltages and the occurrence of gas in a space between the conductive components, in turn, in an ion accelerator arrangement as a drive in a spacecraft advantageous. It is provided in general application that two conductive components, which are separated by a high voltage different Potentials are isolated by an insulating device against each other and at least part of the insulation device is formed by a gas-permeable, open-porous insulator body.
  • the isolation device can in particular surround one of the conductive components on all sides.
  • Such a high-voltage insulator arrangement is important if gas can occur in a space interspersed by the electrostatic field of the high voltage between the mutually insulated components. If certain pressure and high-voltage conditions exist, a current path, in particular a DC path, can arise via plasma in the gas. A gas flow is possible between the first subspace on the side of the first conductive component and the second subspace on the side of the second conductive component via the gas-permeable insulator body. Gas Finestrompfade over which flow gas bypassing the gas-permeable insulator body and a direct current path could occur, are not provided.
  • Such a Hochnapssisolatoran extract is particularly advantageous for a detachable plug connection between a high voltage source and a z in operation.
  • the connector advantageously allows that from the separate production of a high voltage source and one or more drive modules on test measures to installation in a spacecraft, a conductor connection, especially via an insulated cable, between the high voltage source to an electrode of the drive module repeatedly solved and the overall device significantly can be handled easier than a one-time Isolatorverguss a conductor connection.
  • the gas-permeable, open-porous insulator body in the insulation device proves overall as a long-term resistant as encapsulated or other non-gas-permeable insulation sheaths of a conductive component.
  • This is based on the finding that conventional plastic insulation materials, which are suitable for spacecraft and high voltage applications, often still gas inclusions, in particular between conductors and insulation, in which microplasmas can arise, which can damage the isolation device so far over time, that corona discharges can occur between conductive components.
  • the gas-permeable insulator body such possibly existing gas pockets are easier degraded by discharging the gas into the surrounding space.
  • the gas-permeable porous insulator body is of particular advantage.
  • a plasma can be ignited both inside and outside the cavity of the isolation device, but it is not possible to form a continuous DC path between the conductive components. If the intermediate pressure region left again, which is because of the gas permeability of the porous insulator body inside and outside the cavity of the isolation device takes place, extinguishes an existing plasma or ignites a new one.
  • the gas-permeable insulator body may, for. B. be formed by an open-cell foam or preferably by an open-cell ceramic material.
  • the mean pore size of the open porous dielectric in the direction of the high voltage caused by the electric field between the components is advantageously less than 100 microns.
  • the insulator body is particularly advantageous if the dimensions of the cavities in the gas-permeable insulator body in the direction of the electrical field built up by the high voltage are smaller than the Debye length.
  • the flow paths of the gas through the insulator body are advantageously deflected in relation to a straight path between gas inlet side and gas outlet side.
  • the gas-permeable insulator body can also be formed by a plurality of partial bodies.
  • Fig. 1 is schematically outlined a drive arrangement of an electrostatic ion accelerator for driving a spacecraft.
  • the arrangement has, in a conventional and conventional manner, an ionization chamber IK which is open in one longitudinal direction LR to one side at a jet exit opening AO and in the longitudinal direction of the jet exit opening AO contains an anode arrangement AN at the foot of the ionization chamber.
  • the ionization chamber is laterally through a chamber wall KW of preferably dielectric, z. B. ceramic material limited and may in particular have an annular cross-section.
  • the anode arrangement AN consists in the example outlined of an anode electrode AE and an anode support body AT.
  • a cathode arrangement KA is arranged in the region of the jet outlet opening, preferably laterally offset from the jet outlet opening. Between anode electrode AE and cathode assembly KA there is a high voltage which generates in the ionization chamber an electric field pointing in the longitudinal direction LR, through which ions of a working gas ionized in the ionization chamber are accelerated and ejected as plasma jet PB in the longitudinal direction out of the chamber.
  • the cathode is at ground potential of the spacecraft containing the drive assembly and the anode assembly is at a high voltage potential HV of a high voltage source.
  • a magnetic field is still present, the course of which depends on the design of the drive arrangement and, in a particularly advantageous manner, known per se in the longitudinal direction, contains a plurality of cusp structures with alternating polarity.
  • the magnetic field generating magnet assemblies are known per se, for example from the aforementioned prior art, and in Fig. 1 for the sake of clarity not shown.
  • a working gas AG such as xenon is stored in a Vörrats as a gas source and fed via a gas supply line GL and a controllable valve GV of the ionization chamber IK, wherein in the example sketched the introduction of the working gas into the ionization chamber of the ionization chamber side facing away from the anode assembly and laterally takes place at this past, which is illustrated by the arrows indicating the flow directions.
  • the gas supply line GL and other components of the gas supply are typically at ground potential, so that between these components and the anode assembly AN, the high voltage is effective and during the supply of working gas from the gas source GQ in the Ionisationsuze the risk of corona discharges between the anode assembly and on Ground potential M lying components by the present in an intermediate pressure range working gas.
  • the intermediate pressure range is understood to be the pressure range in which a gas discharge can ignite through a gas.
  • the intermediate pressure range is u. a. dependent on the high voltage.
  • a gas-permeable insulator body IS inserted from an open-porous dielectric, which preferably as open-cell ceramic Body is executed.
  • the insulator body is in an advantageous embodiment, as sketched disk-shaped and aligned with the disk plane transverse to the main flow direction through the insulator body between a gas inlet surface EF and a gas outlet surface AF.
  • the main flow direction through the insulator body extends in the example outlined parallel to the longitudinal direction LR.
  • the disk plane of the insulator body is parallel to the advantageously also disk-shaped components anode electrode and anode support body of the anode assembly.
  • a gas-conducting diaphragm arrangement GB is advantageously inserted, which is preferably metallic and is at anode potential with high voltage to ground.
  • the insulator body is resistant to breakdown for the high voltage occurring during operation of the drive assembly.
  • the high potential potential HV of the anode arrangement and the gas inlet area EF essentially become ground potential M at the gas outlet area AF, so that the gas-filled volumes VM are connected between grounded gas supply line GL and the gas inlet area EF of the isolator.
  • VA between the anode assembly and the gas outlet surface AF are substantially field-free and arise in these volumes VM, VA no corona discharges.
  • the insulator body advantageously has no open structures continuous in a straight line between the gas inlet surface EF and the gas outlet surface.
  • the flow paths of the working gas between the gas inlet surface and gas outlet surface are deflected against a straight course and are formed in particular by interconnected, distributed within the insulator body pore cavities and usually branched.
  • the mean dimension of such pore cavities in the direction perpendicular to the gas inlet surface and gas outlet surface is advantageously less than 100 ⁇ m.
  • the pore size in the direction parallel to the gas inlet surface and gas outlet surface and thus substantially transversely to the direction of the high voltage resulting field is of less importance, so that insulator body of z.
  • fibrous material with fiber direction transverse to the electric field direction can be used.
  • the average dimension of such cavities in the direction perpendicular to the gas inlet surface and gas outlet surface is advantageously smaller than the Debye length, which at given operating parameters, in particular at known maximum pressure of the working gas, which on the side of the gas inlet surface EF typically in the order of 30-150 mbar and on the gas outlet side, for example, below 1 mbar results from known formulas.
  • the smallest transverse dimension of the insulator body in the disk plane is in an advantageous embodiment greater than the distance of the gas outlet surface of the anode assembly and / or the gas inlet surface of the gas supply line, so that can be realized in the flow direction of the working gas small overall length.
  • the insulator body is arranged in an insulator assembly with one or more substantially gas-tight insulator KK, which are mechanically or directly mechanically connected in a schematically illustrated manner with the chamber wall.
  • the insulator body IS fills the entire Cross-section of the gas supply in the arrangement of the insulator KK, so that no leading past the insulator body path is given, over which a corona discharge, a plasma propagation or other current-conducting path could arise.
  • the plug connection is surrounded by an insulation device IV, which extends in the longitudinal direction LL of the two conductors via their insulating jackets M1, M2 and surrounds the plug connection on all sides.
  • an insulation device IV which extends in the longitudinal direction LL of the two conductors via their insulating jackets M1, M2 and surrounds the plug connection on all sides.
  • the insulating device is sealed against the cable sheaths M1, M2 so far that at the junctions no plasma possibly arising in the hollow space HO can penetrate and cause a flashover to the ground potential M.
  • At least part of the cavity HO surrounding the plug connection wall of the insulating device is formed by a gas-permeable open porous insulator body VK, which with comparable properties as the insulating body IS from the example according to Fig. 1 Gas from the cavity HO can escape into the surrounding vacuum, but prevents that a plasma possibly formed in the cavity to strike through to a ground potential lying outside the cavity conductive component.
  • An end cap EK can be placed on the insulating jacket M11 encompassing the end of the insulator body IR and braced in the longitudinal direction against the outer tube AR, if it is ensured that a gas can escape through the insulator body in the surrounding vacuum VA from the cavity to the plug connection and on the other hand, there is no path for a plasma from the cavity to the outside in the vacuum or to a conductive component.
  • the Debye length is in arrangements Fig. 2 and Fig. 3 typically larger than in the example below Fig. 1 , so when aligned with the average pore size of the open porous dielectric for applications Fig. 2 or Fig. 3 a larger value is tolerable than in the example below Fig. 1 ,

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Particle Accelerators (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfindung betrifft eine Hochspannungsisolatoranordnung und eine lonenbeschleunigeranordnung mit einer solchen Hochspannungsisolatoranordnung.The invention relates to a high voltage insulator assembly and an ion accelerator assembly having such a high voltage insulator assembly.

In elektrostatischen Ionenbeschleunigeranordnungen, wie sie insbesondere zum Antrieb von Raumflugkörpern geeignet sind, wird in einer Ionisationskammer ein Arbeitsgas ionisiert und die Ionen werden unter dem Einfluss eines elektrostatischen Feldes durch eine Öffnung der Kammer ausgestoßen. Das elektrostatische Feld ist zwischen einer außerhalb der Ionisationskammer, typischerweise seitlich gegen deren Öffnung versetzt angeordneten Kathode und einer an dem der Öffnung entgegen gesetzten Fuß der Kammer angeordneten Anode ausgebildet und durchsetzt die Kammer. Zwischen Anode und Kathode liegt eine Hochspannung zur Erzeugung des elektrischen Feldes. Typischerweise liegt die Kathode zumindest annähernd auf dem Massepotential des Raumflugkörpers, auf welchem auch andere metallische Bauteile des Raumflugkörpers liegen, und die Anode liegt auf einem durch die Hochspannung gegen Masse versetzten Anodenpotential. Ein besonders vorteilhafter derartiger Ionenbeschleuniger ist beispielsweise aus der WO03/000550 A bekannt. Andere Ausführungen sind als Hall-Thruster bekannt.In electrostatic ion accelerator arrangements, as are particularly suitable for propulsion of spacecraft, a working gas is ionized in an ionization chamber and the ions are expelled under the influence of an electrostatic field through an opening in the chamber. The electrostatic field is formed between a cathode disposed outside the ionization chamber, typically laterally offset from the opening, and an anode disposed at the foot opposite the opening of the chamber and penetrating the chamber. Between anode and cathode is a high voltage for generating the electric field. Typically, the cathode is at least approximately at the ground potential of the spacecraft, on which are also other metallic components of the spacecraft, and the anode is located on an offset by the high voltage to ground anode potential. A particularly advantageous such ion accelerator is for example from WO03 / 000550 A known. Other designs are known as Hall thrusters.

Die Hochspannung wirkt nicht nur zwischen Anode und Kathode, sondern auch zwischen der Anode einschließlich der Hochspannungszuleitung und anderen leitenden Bauteilen auf einem von dem Anodenpotential verschiedenen Potential, insbesondere dem Massepotential. Während durch das Vakuum des umgebenden Weltraums getrennte Bauteile in der Regel ausreichend gegen Spannungsüberschläge gegeneinander isoliert sind, besteht in Bereichen, in welchen das Arbeitsgas auftritt, insbesondere zwischen der Anode und einem stromaufwärts des Gasstromes in der Gaszuleitung befindlichen leitenden Bauteil die Gefahr von Coronaentladungen durch das Arbeitsgas.The high voltage acts not only between anode and cathode, but also between the anode including the high voltage supply line and other conductive components at a different potential from the anode potential, in particular the ground potential. While separated components are generally sufficiently insulated against flashovers by the vacuum of the surrounding space, in areas in which the working gas occurs, in particular between the anode and a conductive component located upstream of the gas flow in the gas supply line, there is the risk of corona discharges through the corona working gas.

Coronaentladungen können in Vakuumanwendungen auch in anderen Bereichen und Situationen zwischen zwei leitenden Bauteilen, welche auf durch eine Hochspannung getrennten Potentialen liegen, auftreten, wobei in einem Zwischendruckbereich (Paschenbereich) ein Spannungsüberschlag durch vorhandenes Gas erleichtert wird. In zwischen den leitenden Bauteilen durchgehend offenen Pfade können dann Entladungen zünden, die hohe Ströme tragen. Ein in den Entladungen entstehendes Plasma ist in der Lage, auch in kleine Risse oder Spalte einzudringen. Über Entgasungsöffnungen gegen ein umgebendes Vakuum können solche Bereiche zwar durch Absenkung des Gasdrucks unter den kritischen Druckbereich coronafest gemacht werden, wobei aber in Bereichen mit wechselndem Gasdruck wiederum Entladungen in dem Zwischendruckbereich auftreten können, welche dann auch durch die durchgehend offenen Pfade bildenden Entgasungsöffnungen durchgreifen können. Ferner kann es auch unterhalb des kritischen Druckbereichs durch freie Elektronen zu einem Nebenschluss kommen, welcher z. B. durch Stromwertverfälschungen oder Leistungsverbrauch störend ist oder auch eine Vakuumbogenentladung zünden kann.Corona discharges can also occur in vacuum applications in other areas and situations between two conductive components which are at potentials separated by a high voltage, wherein in an intermediate pressure region (Paschenbereich) a voltage flashover by existing gas is facilitated. In between the conductive components continuously open paths can then ignite discharges carrying high currents. A plasma arising in the discharges is able to penetrate into small cracks or gaps. By venting against a surrounding vacuum such areas can indeed be made coronafest by lowering the gas pressure below the critical pressure range, but again in areas with changing gas pressure discharges in the intermediate pressure region may occur, which then can pass through the continuously open paths forming vent openings. Furthermore, it can also come below the critical pressure range by free electrons to a shunt, which z. B. is disturbed by Stromwertverfälschungen or power consumption or can ignite a vacuum arc discharge.

Eine druckunabhängige Isolation zwischen zwei Bauteilen, insbesondere eines eine Hochspannung führenden Bauteils gegen Masse, ist durch vollständiges gasdichtes Umschließen eines Bauteils erreichbar, so dass keine durchgehend offenen Pfade zwischen den beiden Bauteilen vorliegen, z. B. durch Verguss oder Einbetten eines Bauteils in einen Isolatorkörper, was aber für lösbare Leiterverbindungen als Bauteil ausscheidet. Es zeigt sich ferner, dass über einen längeren Zeitraum auch in solchen vergossenen Hochspannungsisolatoranordnungen Schäden auftreten, was insbesondere bei Anwendung in Raumflugkörpern ohne die Möglichkeit des Austausches von Komponenten schwere Schäden nach sich ziehen kann.A pressure-independent isolation between two components, in particular a high-voltage leading component to ground, can be achieved by completely gas-tight enclosing a component, so that there are no continuously open paths between the two components, eg. B. by potting or embedding a component in an insulator body, but this eliminates for releasable conductor connections as a component. It also shows that over such a long period damage also occurs in such potted high-voltage insulator arrangements, which, in particular when used in spacecraft without the possibility of exchanging components, can result in serious damage.

In der US 2 775 640 A ist ein Verfahren und eine Anordnung zur Isolation einer Hochspannungselektrode gegen eine Gehäusewand an einer Wanddurchführung anzugeben. Dabei ist eine metallische Elektrode von einem Keramikrohr umgeben, dessen Porösität so eingestellt ist, dass ein Fluid, welches typischerweise ein Transformatorenöl ist, aber auch durch ein Gas gebildet sein kann, die porösen Rohrwände passieren kann und eventuelle metallische Ablagerungen ausspült.In the US 2 775 640 A is a method and an arrangement for isolating a high voltage electrode against a housing wall to indicate a wall bushing. In this case, a metallic electrode is surrounded by a ceramic tube whose porosity is adjusted so that a fluid, which is typically a transformer oil, but may also be formed by a gas that can pass through the porous tube walls and rinses out any metallic deposits.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Hochspannungsisolatoranordnung und eine Ionenbeschleunigeranordnung mit einer solchen Hochspannungsisolatoranordnung mit verbesserter Hochspannungsisolation anzugeben.The present invention has for its object to provide a high-voltage insulator arrangement and an ion accelerator arrangement with such a high-voltage insulator arrangement with improved high-voltage insulation.

Erfindungsgemäße Lösungen sind in den unabhängigen Ansprüchen beschrieben. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung.Solutions according to the invention are described in the independent claims. The dependent claims contain advantageous refinements and developments of the invention.

Bei einer elektrostatischen Ionenbeschleunigeranordnung mit einer Ionisationskammer und einer in der Ionisationskammer angeordneten Anoden-Elektrode und einer Gaszuführung zur Einleitung von Arbeitsgas in die Ionisationskammer liegt während der Einleitung von Arbeitsgas typischerweise ein Druckbereich des Arbeitsgases vor, in welchem bei der im Betrieb zwischen der Elektrode und dem Massepotential anliegenden Hochspannung im Kilovoltbereich eine Coronaentladung von der Anodenelektrode als erstem Bauteil durch das Arbeitsgas zu einem leitendem zweiten Bauteil auftreten könnte, welches stromaufwärts in der Gaszuführung, d. h. in Strömungsrichtung des zugeführten Arbeitsgases vor der Ionisationskammer angeordnet ist. Durch Einfügen eines Isolatorkörpers in die Gaszuführung, welcher ein gasdurchlässiges offen poröses (offenporiges) Dielektrikum enthält, wird eine solche Coronaentladung verhindert und zugleich eine Zuführung von Arbeitsgas in die Ionisationskammer ermöglicht. Elektrisch leitende, insbesondere metallische zweite Bauteile der Gaszuführung einschließlich eines vorteilhafterweise vorgesehenen steuerbaren Ventils sind innerhalb des Gasströmungspfads stromaufwärts des Isolatorkörpers angeordnet, wogegen die Anodenelektrode und im Strömungspfad des Arbeitsgases liegende elektrisch leitende erste Bauteile stromabwärts des Isolatorkörpers angeordnet sind. Insbesondere bilden die ersten Bauteile die dem Isolatorkörper stromabwärts nächstgelegen elektrisch leitenden, insbesondere metallischen Bauteile und die zweiten Bauteile die dem Isolatorkörper stromaufwärts nächstgelegenen leitenden, insbesondere metallischen Bauteile. Der Gasstrom erfolgt zwangsweise durch den gasdurchlässigen Isolatorkörper. Nebenstrompfade des Arbeitsgases unter Umgehung des Isolatorkörpers, über welche wiederum ein Hochspannungsüberschlag möglich wäre, sind nicht vorgesehen. Der gasdurchlässige Isolatorkörper kann vorteilhafterweise in einen oder mehrere gasundurchlässige isolierende dielektrische Körper eingesetzt und seitlich von diesen umschlossen sein.In an electrostatic Ionenbeschleunigeranordnung with an ionization chamber and an arranged in the ionization chamber anode electrode and a gas supply for introducing working gas into the ionization chamber is during the introduction of working gas is typically a pressure range of the working gas, in which when in operation between the electrode and the ground voltage applied high voltage in the kilovolt range, a corona discharge from the anode electrode as the first component by the working gas could occur to a conductive second component, which is upstream in the gas supply, ie arranged in the flow direction of the supplied working gas in front of the ionization chamber. By inserting an insulator body in the gas supply, which contains a gas-permeable, open-porous (open-pored) dielectric, such a corona discharge is prevented and at the same time allows a supply of working gas into the ionization chamber. Electrically conductive, in particular metallic, second components of the gas supply, including an advantageously provided controllable valve, are arranged inside the gas flow path upstream of the insulator body, whereas the anode electrode and electrically conductive first components located in the flow path of the working gas are arranged downstream of the insulator body. In particular, the first components form the electrically conductive, in particular metallic, components located downstream of the insulator body downstream, and the second components form the conductive, in particular metallic, components located upstream of the insulator body. The gas flow is forced through the gas-permeable insulator body. Nebenstrompfade the working gas, bypassing the insulator body, which in turn would be possible high-voltage flashover, are not provided. The gas-permeable insulator body can advantageously be inserted into one or more gas-impermeable insulating dielectric bodies and enclosed laterally by them.

Die Einfügung des gasdurchlässigen Isolatorkörper in den Strömungspfad des Gasstroms ermöglicht insbesondere auch eine kompakte Bauweise der Gaszuführung in dem Ionenbeschleuniger, da nur ein geringer Abstand zwischen der auf Masse liegenden Gaszuführung und der auf Hochspannung liegenden Anodenanordnung unter Zwischenfügen des Isolatorkörpers eingehalten werden muss. Vorteilhafterweise kann der Abstand des Isolatorkörpers zu leitenden Teilen der Anodenanordnung und/oder der Gaszuführung geringer sein als die kleinste Abmessung des Isolatorkörpers quer zur Hauptströmungsrichtung des Arbeitsgases durch den Isolatorkörper, insbesondere auch kleiner als die kleinste Abmessung des Isolatorkörpers in Hauptströmungsrichtung des Arbeitsgases. Der Isolatorkörper ist vorzugsweise scheibenförmig ausgebildet und mit der Scheibenfläche quer zur Hauptströmungsrichtung des Arbeitsgases ausgerichtet. Der Isolatorkörper ist vorteilhafterweise auf der der Ionisationskammer abgewandten Seite der Anodenanordnung angeordnet.The insertion of the gas-permeable insulator body in the flow path of the gas stream in particular also allows a compact design of the gas supply in the ion accelerator, since only a small distance between the grounded gas supply and lying on high voltage anode assembly must be adhered to interposing the insulator body. Advantageously, the distance of the insulator body to conductive parts of the anode assembly and / or the gas supply may be less than the smallest dimension of the insulator body transverse to the main flow direction of the working gas through the insulator body, in particular smaller than the smallest dimension of the insulator body in the main flow direction of the working gas. The insulator body is preferably disk-shaped and aligned with the disk surface transversely to the main flow direction of the working gas. The insulator body is advantageously arranged on the side of the anode arrangement facing away from the ionization chamber.

Eine Hochspannungsisolatoranordnung mit einem gasdurchlässigen, offen porösen Isolatorkörper zwischen zwei leitenden Bauteilen auf durch eine Hochspannung getrennten Potentialen, wie sie in der beschriebenen Weise von besonderem Vorteil zwischen einer Elektrode einer Ionisationskammer und einem leitenden Bauteil stromaufwärts einer Gaszuführung vorliegt, ist in allgemeiner Verwendung in Vakuumanwendungen mit Hochspannungen und dem Auftreten von Gas in einem Raum zwischen den leitenden Bauteilen, insbesondere wiederum bei einer Ionenbeschleunigeranordnung als Antrieb in einem Raumflugkörper vorteilhaft. Hierbei ist in allgemeiner Anwendung vorgesehen, dass zwei leitende Bauteile, welche auf durch eine Hochspannung getrennten unterschiedlichen Potentialen liegen, durch eine Isolationsvorrichtung gegeneinander isoliert sind und wenigstens ein Teil der Isolationsvorrichtung durch einen gasdurchlässigen, offen porösen Isolatorkörper gebildet ist. Die Isolationsvorrichtung kann insbesondere eines der leitenden Bauteile allseitig umgeben. eine solche Hochspannungs-Isolatoranordnung ist von Bedeutung, wenn in einem von dem elektrostatischen Feld der Hochspannung durchsetzten Raum zwischen den gegeneinander isolierten Bauteilen Gas auftreten kann. Wenn bestimmte Druck- und Hochspannungsverhältnisse vorliegen, kann über Plasma in dem Gas ein Strompfad, insbesondere Gleichstrompfad entstehen. Ein Gasstrom ist zwischen dem ersten Teilraum auf Seiten des ersten leitenden Bauteils und dem zweiten Teilraum auf Seiten des zweiten leitenden Bauteils über den gasdurchlässigen Isolatorkörper möglich. Gas-Nebenstrompfade, über welche unter Umgehung des gasdurchlässigen Isolatorkörpers Gas strömen und ein Gleichstrompfad entstehen könnte, sind nicht vorgesehen.A high voltage insulator assembly having a gas permeable, open porous insulator body between two conductive members on high voltage disconnected potentials, as particularly advantageous between an electrode of an ionization chamber and a conductive member upstream of a gas supply, is commonly used in vacuum applications High voltages and the occurrence of gas in a space between the conductive components, in turn, in an ion accelerator arrangement as a drive in a spacecraft advantageous. It is provided in general application that two conductive components, which are separated by a high voltage different Potentials are isolated by an insulating device against each other and at least part of the insulation device is formed by a gas-permeable, open-porous insulator body. The isolation device can in particular surround one of the conductive components on all sides. Such a high-voltage insulator arrangement is important if gas can occur in a space interspersed by the electrostatic field of the high voltage between the mutually insulated components. If certain pressure and high-voltage conditions exist, a current path, in particular a DC path, can arise via plasma in the gas. A gas flow is possible between the first subspace on the side of the first conductive component and the second subspace on the side of the second conductive component via the gas-permeable insulator body. Gas Nebenstrompfade over which flow gas bypassing the gas-permeable insulator body and a direct current path could occur, are not provided.

Eine solche Hochspannungsisolatoranordnung ist insbesondere von Vorteil bei einer lösbaren Steckverbindung zwischen einer Hochspannungsquelle und einer im Betrieb z. B. eines Ionenbeschleunigers auf Hochspannung gegen ein Massepotential liegenden Elektrode. Die Steckverbindung ermöglicht vorteilhafterweise, dass von der getrennten Herstellung einer Hochspannungsquelle und eines oder mehrerer Antriebsmodule über Erprobungsmaßnahmen bis zum Einbau in einen Raumflugkörper eine Leiterverbindung, insbesondere über ein isoliertes Kabel, zwischen der Hochspannungsquelle zu einer Elektrode des Antriebsmoduls immer wieder gelöst und die Gesamtvorrichtung dadurch wesentlich einfacher gehandhabt werden kann als bei einmaligem Isolatorverguss einer Leiterverbindung.Such a Hochspannungsisolatoranordnung is particularly advantageous for a detachable plug connection between a high voltage source and a z in operation. B. an ion accelerator at high voltage against a ground potential electrode. The connector advantageously allows that from the separate production of a high voltage source and one or more drive modules on test measures to installation in a spacecraft, a conductor connection, especially via an insulated cable, between the high voltage source to an electrode of the drive module repeatedly solved and the overall device significantly can be handled easier than a one-time Isolatorverguss a conductor connection.

Darüber hinaus erweist sich der gasdurchlässige, offen poröse Isolatorkörper in der Isolationsvorrichtung insgesamt als langzeitbeständiger als vergossene oder andere nicht gasdurchlässige Isolationsummantelungen eines leitenden Bauteils. Dem liegt die Erkenntnis zugrunde, dass herkömmliche Kunststoff-Isolationsmaterialien, welche für Raumflugkörper- und Hochspannungsanwendungen geeignet sind, häufig noch Gaseinschlüsse, insbesondere zwischen Leiter und Isolierung aufweisen, in welchen Mikroplasmen entstehen können, welche die Isolationsvorrichtung im Lauf der Zeit so weit schädigen können, dass Coronaentladungen zwischen leitenden Bauteilen entstehen können. Durch den gasdurchlässigen Isolatorkörper werden solche eventuell vorhandenen Gaseinschlüsse durch Ableiten des Gases in den umgebenden Weltraum leichter abgebaut.In addition, the gas-permeable, open-porous insulator body in the insulation device proves overall as a long-term resistant as encapsulated or other non-gas-permeable insulation sheaths of a conductive component. This is based on the finding that conventional plastic insulation materials, which are suitable for spacecraft and high voltage applications, often still gas inclusions, in particular between conductors and insulation, in which microplasmas can arise, which can damage the isolation device so far over time, that corona discharges can occur between conductive components. By the gas-permeable insulator body such possibly existing gas pockets are easier degraded by discharging the gas into the surrounding space.

Auch in Umgebungen, in welchen um die Isolationsvorrichtung ein Gas in einem Zwischendruckbereich oder einem Hochdruckbereich, insbesondere auch bei wechselndem Gasdruck, vorliegt, ist der gasdurchlässige poröse Isolatorkörper von besonderem Vorteil. zwar kann bei Vorliegen von Gas in einem Zwischendruckbereich sowohl innerhalb als auch außerhalb des Hohlraums der Isolationsvorrichtung ein Plasma zünden, es kann sich aber kein zwischen den leitenden Bauteilen durchgehender Gleichstrompfad ausbilden. Wird der Zwischendruckbereich wieder verlassen, was wegen der Gasdurchlässigkeit des porösen Isolatorkörpers innerhalb und außerhalb des Hohlraums der Isolationsvorrichtung erfolgt, erlischt ein bestehendes Plasma bzw. zündet kein neues.Also in environments in which there is a gas in the intermediate pressure region or a high-pressure region around the insulation device, in particular also with changing gas pressure, the gas-permeable porous insulator body is of particular advantage. Although, in the presence of gas in an intermediate pressure region, a plasma can be ignited both inside and outside the cavity of the isolation device, but it is not possible to form a continuous DC path between the conductive components. If the intermediate pressure region left again, which is because of the gas permeability of the porous insulator body inside and outside the cavity of the isolation device takes place, extinguishes an existing plasma or ignites a new one.

Der gasdurchlässige Isolatorkörper kann z. B. durch einen offenporigen Schaum oder vorzugsweise durch ein offenporiges Keramikmaterial gebildet sein. Die mittlere Porengröße des offenen porösen Dietektrikums in Richtung des durch die Hochspannung bewirkten elektrischen Feldes zwischen den Bauteilen liegt vorteilhafterweise unter 100 µm. Der Isolatorkörper ist besonders vorteilhaft, wenn die Abmessungen der Hohlräume in dem gasdurchlässigen Isolatorkörper in Richtung des durch die Hochspannung aufgebauten elektrischen Feldes kleiner sind als die Debye-Länge. Die Strömungspfade des Gases durch den Isolatorkörper sind vorteilhafterweise gegenüber einem zwischen Gaseintrittsseite und Gasaustrittsseite geraden Verlauf umgelenkt. Der gasdurchlässige Isolatorkörper kann auch durch mehrere Teilkörper gebildet sein.The gas-permeable insulator body may, for. B. be formed by an open-cell foam or preferably by an open-cell ceramic material. The mean pore size of the open porous dielectric in the direction of the high voltage caused by the electric field between the components is advantageously less than 100 microns. The insulator body is particularly advantageous if the dimensions of the cavities in the gas-permeable insulator body in the direction of the electrical field built up by the high voltage are smaller than the Debye length. The flow paths of the gas through the insulator body are advantageously deflected in relation to a straight path between gas inlet side and gas outlet side. The gas-permeable insulator body can also be formed by a plurality of partial bodies.

Die Erfindung ist nachfolgend anhand bevorzugter Ausführungsbeispiele noch eingehend veranschaulicht. Dabei zeigt:

Fig. 1
eine Gaszuführung mit einem Isolatorkörper,
Fig. 2
eine lösbare Leiterverbindung mit einem Isolatorkörper,
Fig. 3
eine Abwandlung der Anordnung nach Fig. 2.
The invention is illustrated below with reference to preferred embodiments in detail. Showing:
Fig. 1
a gas supply with an insulator body,
Fig. 2
a detachable conductor connection with an insulator body,
Fig. 3
a modification of the arrangement according to Fig. 2 ,

In Fig. 1 ist schematisch eine Antriebsanordnung eines elektrostatischen lonenbeschleunigers zum Antrieb eines Raumflugkörpers skizziert. Die Anordnung weist in an sich gebräuchlicher und bekannter Art eine Ionisationskammer IK auf, welche in einer Längsrichtung LR nach einer Seite an einer Strahlaustrittsöffnung AO offen ist und in Längsrichtung der Strahlaustrittsöffnung AO entgegen gesetzt eine Anodenanordnung AN beim Fußpunkt der lonisationskammer enthält. Die Ionisationskammer ist seitlich durch eine Kammerwand KW aus vorzugsweise dielektrischem, z. B. keramischem Material begrenzt und kann insbesondere einen ringförmigen Querschnitt besitzen. Die Anodenanordnung AN besteht im skizzierten Beispiel aus einer Anodenelektrode AE und einem Anodenträgerkörper AT. Im Bereich der Strahlaustrittsöffnung, vorzugsweise seitlich gegen die Strahlaustrittsöffnung versetzt, ist eine Kathodenanordnung KA angeordnet. Zwischen Anodenelektrode AE und Kathodenanordnung KA liegt eine Hochspannung, welche in der Ionisationskammer ein in Längsrichtung LR weisendes elektrisches Feld erzeugt, durch welches Ionen eines in der Ionisationskammer ionisierten Arbeitsgases beschleunigt und als Plasmastrahl PB in Längsrichtung aus der Kammer ausgestoßen werden. Typischerweise liegt die Kathode auf Massepotential des die Antriebsanordnung enthaltenden Raumflugkörpers und die Anodenanordnung auf einem Hochspannungspotential HV einer Hochspannungsquelle. In der Ionisationskammer ist noch ein Magnetfeld vorhanden, dessen Verlauf von der Bauart der Antriebsanordnung abhängt und in besonders vorteilhafter, in an sich bekannter Ausführung in Längsrichtung beabstandet mehrere Cusp-Strukturen mit alternierender Polarität enthält. Die ein Magnetfeld erzeugenden Magnetanordnungen sind an sich bekannt, beispielsweise aus dem eingangs genannten Stand der Technik, und in Fig. 1 der Übersichtlichkeit halber nicht mit eingezeichnet.In Fig. 1 is schematically outlined a drive arrangement of an electrostatic ion accelerator for driving a spacecraft. The arrangement has, in a conventional and conventional manner, an ionization chamber IK which is open in one longitudinal direction LR to one side at a jet exit opening AO and in the longitudinal direction of the jet exit opening AO contains an anode arrangement AN at the foot of the ionization chamber. The ionization chamber is laterally through a chamber wall KW of preferably dielectric, z. B. ceramic material limited and may in particular have an annular cross-section. The anode arrangement AN consists in the example outlined of an anode electrode AE and an anode support body AT. In the region of the jet outlet opening, preferably laterally offset from the jet outlet opening, a cathode arrangement KA is arranged. Between anode electrode AE and cathode assembly KA there is a high voltage which generates in the ionization chamber an electric field pointing in the longitudinal direction LR, through which ions of a working gas ionized in the ionization chamber are accelerated and ejected as plasma jet PB in the longitudinal direction out of the chamber. Typically, the cathode is at ground potential of the spacecraft containing the drive assembly and the anode assembly is at a high voltage potential HV of a high voltage source. In the ionization chamber, a magnetic field is still present, the course of which depends on the design of the drive arrangement and, in a particularly advantageous manner, known per se in the longitudinal direction, contains a plurality of cusp structures with alternating polarity. The magnetic field generating magnet assemblies are known per se, for example from the aforementioned prior art, and in Fig. 1 for the sake of clarity not shown.

Ein Arbeitsgas AG, beispielsweise Xenon ist in einem Vörratsbehälter GQ als Gasquelle gespeichert und über eine Gaszuleitung GL und ein steuerbares Ventil GV der Ionisationskammer IK zugeleitet, wobei im skizzierten Beispiel die Einleitung des Arbeitsgases in die Ionisationskammer von der der Ionisationskammer abgewandten Seite der Anodenanordnung und seitlich an dieser vorbei erfolgt, was durch die die Strömungsrichtungen anzeigenden Pfeile veranschaulicht ist.A working gas AG, such as xenon is stored in a Vörratsbehälter GQ as a gas source and fed via a gas supply line GL and a controllable valve GV of the ionization chamber IK, wherein in the example sketched the introduction of the working gas into the ionization chamber of the ionization chamber side facing away from the anode assembly and laterally takes place at this past, which is illustrated by the arrows indicating the flow directions.

Die Gaszuleitung GL und andere Bauteile der Gaszuführung liegen typischerweise auf Massepotential, so dass auch zwischen diesen Bauteilen und der Anodenanordnung AN die Hochspannung wirksam ist und während der Zuleitung von Arbeitsgas von der Gasquelle GQ in die Ionisationsquelle die Gefahr von Coronaentladungen zwischen der Anodenanordnung und den auf Massepotential M liegenden Bauteilen durch das in einem Zwischendruckbereich vorliegenden Arbeitsgas besteht. Als Zwischendruckbereich wird der Druckbereich verstanden, in welchem eine Gasentladung durch ein Gas zünden kann. Der Zwischendruckbereich ist u. a. von der Hochspannung abhängig.The gas supply line GL and other components of the gas supply are typically at ground potential, so that between these components and the anode assembly AN, the high voltage is effective and during the supply of working gas from the gas source GQ in the Ionisationsquelle the risk of corona discharges between the anode assembly and on Ground potential M lying components by the present in an intermediate pressure range working gas. The intermediate pressure range is understood to be the pressure range in which a gas discharge can ignite through a gas. The intermediate pressure range is u. a. dependent on the high voltage.

In den Strömungsweg des Arbeitsgases ist zwischen den auf Massepotential liegenden Bauteilen der Gaszuführung, z. B. der Gaszuleitung GL, und der Anodenanordnung ein gasdurchlässiger Isolatorkörper IS aus einem offen porösen Dielektrikum eingefügt, welcher vorzugsweise als offenporiger keramischer Körper ausgeführt ist. Der Isolatorkörper ist in vorteilhafter Ausführungsform wie skizziert scheibenförmig ausgebildet und mit der Scheibenebene quer zur Hauptströmungsrichtung durch den Isolatorkörper zwischen einer Gaseintrittsfläche EF und einer Gasaustrittsfläche AF ausgerichtet. Die Hauptströmungsrichtung durch den Isolatorkörper verläuft im skizzierten Beispiel parallel zur Längsrichtung LR. Die Scheibenebene des Isolatorkörpers liegt parallel zu den vorteilhafterweise gleichfalls scheibenförmigen Bauteilen Anodenelektrode und Anodenträgerkörper der Anodenanordnung. Zwischen Anodenträgerkörper AT und Isolatorkörper IS ist vorteilhafterweise eine gasleitende Blendenanordnung GB eingefügt, welche vorzugsweise metallisch ist und auf Anodenpotential mit Hochspannung gegen Masse liegt.In the flow path of the working gas is located between the components lying at ground potential of the gas supply, z. B. the gas supply line GL, and the anode assembly, a gas-permeable insulator body IS inserted from an open-porous dielectric, which preferably as open-cell ceramic Body is executed. The insulator body is in an advantageous embodiment, as sketched disk-shaped and aligned with the disk plane transverse to the main flow direction through the insulator body between a gas inlet surface EF and a gas outlet surface AF. The main flow direction through the insulator body extends in the example outlined parallel to the longitudinal direction LR. The disk plane of the insulator body is parallel to the advantageously also disk-shaped components anode electrode and anode support body of the anode assembly. Between the anode support body AT and the insulator body IS, a gas-conducting diaphragm arrangement GB is advantageously inserted, which is preferably metallic and is at anode potential with high voltage to ground.

Der Isolatorkörper ist für die im Betrieb der Antriebsanordnung auftretende Hochspannung durchschlagfest. Im Betrieb der Anordnung stellt sich schnell an der Gasaustrittsfläche AF im wesentlichen das Hochspannungspotential HV der Anodenanordnung und an der Gaseintrittsfläche EF im wesentlichen das Massepotential M ein, so dass die gasgefüllten Volumina VM zwischen auf Massepotential liegender Gaszuleitung GL und der Gaseintrittsfläche EF des Isolators bzw. VA zwischen der Anodenanordnung und der Gasaustrittsfläche AF im wesentlichen feldfrei sind und in diesen Volumina VM, VA keine Coronaentladungen entstehen.The insulator body is resistant to breakdown for the high voltage occurring during operation of the drive assembly. During operation of the arrangement, the high potential potential HV of the anode arrangement and the gas inlet area EF essentially become ground potential M at the gas outlet area AF, so that the gas-filled volumes VM are connected between grounded gas supply line GL and the gas inlet area EF of the isolator. VA between the anode assembly and the gas outlet surface AF are substantially field-free and arise in these volumes VM, VA no corona discharges.

Der Isolatorkörper besitzt Vorteilhafterweise keine in gerader Linie zwischen der Gaseintrittsfläche EF und der Gasaustrittsfläche durchgehenden offenen Strukturen. Die Strömungspfade des Arbeitsgases zwischen Gaseintrittsfläche und Gasaustrittsfläche sind gegen einen geraden Verlauf umgelenkt und sind insbesondere durch untereinander verbundene, innerhalb des Isolatorkörpers verteilte Poren-Hohlräume gebildet und in der Regel verzweigt. Die mittlere Abmessung solcher Poren-Hohlräume in Richtung senkrecht zu Gaseintrittsfläche und Gasaustrittsfläche ist vorteilhafterweise kleiner als 100 µm. Die Porengröße in Richtung parallel zu Gaseintrittsfläche und Gasaustrittsfläche und damit im wesentlichen quer zur Richtung des aus der Hochspannung resultierenden Feldes ist demgegenüber von geringerer Bedeutung, so dass auch Isolatorkörper aus z. B. faserigem Material mit Faserrichtung quer zur elektrischen Feldrichtung zum Einsatz kommen können. Die mittlere Abmessung solcher Hohlräume in Richtung senkrecht zu Gaseintrittsfläche und Gasaustrittsfläche ist vorteilhafterweise kleiner als die Debye-Länge, welche sich bei gegebenen Betriebsparametern, insbesondere bei bekanntem maximalem Druck des Arbeitsgases, welcher auf der Seite der Gaseintrittsfläche EF typischerweise in der Größenordnung von 30-150 mbar und auf der Gasaustrittsseite beispielsweise unter 1 mbar liegt, aus bekannten Formeln ergibt.The insulator body advantageously has no open structures continuous in a straight line between the gas inlet surface EF and the gas outlet surface. The flow paths of the working gas between the gas inlet surface and gas outlet surface are deflected against a straight course and are formed in particular by interconnected, distributed within the insulator body pore cavities and usually branched. The mean dimension of such pore cavities in the direction perpendicular to the gas inlet surface and gas outlet surface is advantageously less than 100 μm. The pore size in the direction parallel to the gas inlet surface and gas outlet surface and thus substantially transversely to the direction of the high voltage resulting field is of less importance, so that insulator body of z. B. fibrous material with fiber direction transverse to the electric field direction can be used. The average dimension of such cavities in the direction perpendicular to the gas inlet surface and gas outlet surface is advantageously smaller than the Debye length, which at given operating parameters, in particular at known maximum pressure of the working gas, which on the side of the gas inlet surface EF typically in the order of 30-150 mbar and on the gas outlet side, for example, below 1 mbar results from known formulas.

Die kleinste Querabmessung des Isolatorkörpers in der Scheibenebene ist in vorteilhafter Ausführung größer als der Abstand der Gasaustrittsfläche von der Anodenanordnung und/oder der Gaseintrittsfläche von der Gaszuleitung, so dass sich eine in Strömungsrichtung des Arbeitsgases geringe Baulänge realisieren lässt. Der Isolatorkörper ist in einer Isolierkörperanordnung mit einem oder mehreren im wesentlichen gasdichten Isolierkörpern KK angeordnet, welche in schematisch dargestellter Weise mit der Kammerwand direkt oder indirekt mechanisch verbunden sind. Der Isolatorkörper IS füllt den gesamten Querschnitt der Gaszuführung in der Anordnung der Isolierkörper KK aus, so dass kein an dem Isolatorkörper vorbei führender Pfad gegeben ist, über welchem eine Coronaentladung, eine Plasmaausbreitung oder ein sonstiger stromleitender Pfad entstehen könnte.The smallest transverse dimension of the insulator body in the disk plane is in an advantageous embodiment greater than the distance of the gas outlet surface of the anode assembly and / or the gas inlet surface of the gas supply line, so that can be realized in the flow direction of the working gas small overall length. The insulator body is arranged in an insulator assembly with one or more substantially gas-tight insulator KK, which are mechanically or directly mechanically connected in a schematically illustrated manner with the chamber wall. The insulator body IS fills the entire Cross-section of the gas supply in the arrangement of the insulator KK, so that no leading past the insulator body path is given, over which a corona discharge, a plasma propagation or other current-conducting path could arise.

In Fig. 2 ist eine Anwendung einer Hochspannungsisolatoranordnung mit einem gasdurchlässigen offen porösen Isolatorkörper an einer Steckerverbindung als hochspannungsführendem Bauteil skizziert. In der Steckerverbindung SV seien zwei Leitungsabschnitte K1, K2 stromführend miteinander verbunden, um z. B. elektrische Leistung von einer Hochspannungsquelle auf Hochspannungspotential HV an eine Elektrode wie z. B. die Anodenanordnung AN nach Fig. 1 zu leiten. Die beiden Leitungsabschnitte K1, K2 weisen jeweils einen Innenleiter L1 bzw. L2 und einen isolierenden Mantel M1 bzw. M2 auf. Insbesondere kann der Leitungsabschnitt K1 ein von einer Hochspannungsquelle kommendes flexibles Kabel und der Leitungsabschnitt K2 ein Anschlussstutzen an einem Ionenbeschleuniger-Antriebsmodul sein. Der Isoliermantel M1 kann dann z. B. ein flexibler Kabelmantel, z. B. aus PTFE sein, der Isoliermantel M1 kann z. B. auch ein Rohr aus Isoliermaterial sein.In Fig. 2 an application of a high voltage insulator assembly with a gas permeable open porous insulator body is sketched on a plug connection as a high voltage leading component. In the connector SV, two line sections K1, K2 are energized connected to each other, for. B. electrical power from a high voltage source to high voltage potential HV to an electrode such. B. the anode assembly AN after Fig. 1 to lead. The two line sections K1, K2 each have an inner conductor L1 or L2 and an insulating jacket M1 or M2. In particular, the line section K1 may be a flexible cable coming from a high voltage source and the line section K2 may be a connection stub to an ion accelerator drive module. The insulating jacket M1 can then z. B. a flexible cable sheath, z. B. be made of PTFE, the insulating jacket M1 can, for. B. also be a tube of insulating material.

Die Steckerverbindung (oder eine andere zerstörungsfrei lösbare Verbindung) ermöglicht vorteilhafterweise das zerstörungsfreie Lösen der elektrischen Verbindung der beiden Innenleiter, wodurch z. B. für eine Erprobungsphase einer Antriebsanordnung die Verbindung hergestellt, während des Einbaus von Antriebsanordnung und Hochspannungsquelle in einen Raumflugkörper getrennt und danach wieder zusammengefügt werden kann, wobei auch während der Erprobungsphase die hochspannungsführende Steckerverbindung gegen auf Massepotential M liegende Bauteile durchschlagfest sein muss.The plug connection (or other non-destructive releasable connection) advantageously allows the non-destructive release of the electrical connection of the two inner conductors, whereby z. B. for a trial phase of a drive assembly made the connection, during the installation of drive assembly and high voltage source in a spacecraft separated and then reassembled, wherein also during the Test phase, the high-voltage plug connection must be resistant to breakdown to ground potential M components.

Die Steckerverbindung ist von einer Isolationsvorrichtung IV umgeben, welche sich in Längsrichtung LL der beiden Leiter über deren Isoliermäntel M1, M2 erstreckt und die Steckerverbindung allseitig umgibt. Wenn Hochspannung von der Hochspannungsquelle an den Innenleitern anliegt, liegt in der Regel außerhalb der Isolationsvorrichtung ein Vakuum vor. Innerhalb der Isoliervorrichtung in dem Hohlraum HO um die freiliegende Steckerverbindung kann zum einen vom Einbau her noch Gas vorhanden sein oder auch nach längerer Zeit insbesondere aus der Grenzschicht zwischen Innenleitern L1, L2 und Isoliermänteln M1, M2 in den Raum um die Steckerverbindung eintreten. Gas in dem Hohlraum um die Steckerverbindung kann zum Entstehen von Plasmen in dem Hohlraum führen, welche über längere Zeit auch die Isoliervorrichtung beschädigen können. Die Isoliervorrichtung ist gegen die Kabelmäntel M1, M2 soweit abgedichtet, dass an den Verbindungsstellen kein im Hohlraum HO eventuell entstehendes Plasma hindurch dringen und einen Überschlag zum Massepotential M bewirken kann. Zumindest ein Teil der den Hohlraum HO um die Steckerverbindung begrenzenden Wandung der Isoliervorrichtung ist durch einen gasdurchlässigen offen porösen Isolatorkörper VK gebildet, welcher mit vergleichbaren Eigenschaften wie der Isolierkörper IS aus dem Beispiel nach Fig. 1 Gas aus dem Hohlraum HO in das umgebende Vakuum entweichen lässt, aber verhindert, dass ein im Hohlraum eventuell entstehendes Plasma zu einem auf Massepotential außerhalb des Hohlraums liegenden leitenden Bauteil durchschlägt. Trifft im Betrieb einer die in Fig. 2 skizzierte Hochspannungsisolatoranordnung enthaltenden Einrichtung, z. B. einem Ionenbeschleunigerantrieb eines Raumflugkörpes im Weltraum ein Gasstoß, z. B. aus einer Gasblase zwischen einem Innenleiter und einem Isoliermantel, in dem Hohlraum HO auf, so kann sich dort ein Plasma bilden, welches aber nicht durch den Isolatorkörper VK nach außen dringen kann und wegen des durch den offen porösen Isolatorkörper nach außen entweichenden Gases schnell wieder erlischt. Im Unterschied dazu könnte bei einem gasdichten Verguss der Steckverbindung mit einem isolierenden Vergussmaterial beim Auftreten von Gas im Bereich der Steckerverbindung ein darin gezündetes Plasma länger brennen und/oder immer wieder erneut zünden und u. U. einen für Plasma durchlässigen Pfad in Richtung eines auf Masse liegenden Bauteils freilegen. Das durch den Isolatorkörper nach außen entweichende Gas erreicht außerhalb der Isolationsvorrichtung IV nicht den zur Bildung eines Plasmas oder einer Coronaentladung erforderlichen kritischen Druck.The plug connection is surrounded by an insulation device IV, which extends in the longitudinal direction LL of the two conductors via their insulating jackets M1, M2 and surrounds the plug connection on all sides. When high voltage from the high voltage source is applied to the inner conductors, there is usually a vacuum outside of the isolation device. Inside the insulating device in the hollow space HO around the exposed plug connection, on the one hand, there may still be gas from the installation or even after a longer time, in particular from the boundary layer between inner conductors L1, L2 and insulating jackets M1, M2, entering the space around the plug connection. Gas in the cavity around the plug connection can lead to the formation of plasmas in the cavity, which can also damage the insulating device for a long time. The insulating device is sealed against the cable sheaths M1, M2 so far that at the junctions no plasma possibly arising in the hollow space HO can penetrate and cause a flashover to the ground potential M. At least part of the cavity HO surrounding the plug connection wall of the insulating device is formed by a gas-permeable open porous insulator body VK, which with comparable properties as the insulating body IS from the example according to Fig. 1 Gas from the cavity HO can escape into the surrounding vacuum, but prevents that a plasma possibly formed in the cavity to strike through to a ground potential lying outside the cavity conductive component. Meets in operation one in Fig. 2 sketched high voltage insulator arrangement containing device, for. B. a Ionenbeschleunigerantrieb a Raumflugkörpes in space a gas shock, z. Example, from a gas bubble between an inner conductor and an insulating jacket, in the cavity HO, so there can form a plasma, but which can not penetrate through the insulator body VK to the outside and because of the escaping through the open porous insulator body to the outside gas quickly goes out again. In contrast, in a gas-tight encapsulation of the connector with an insulating potting material in the presence of gas in the region of the plug connection, a plasma ignited therein could burn longer and / or ignite again and again and u. U. expose a path for plasma permeable path in the direction of a grounded component. The gas escaping through the insulator body does not reach the critical pressure required to form a plasma or a corona discharge outside of the insulation device IV.

Bei nur sehr geringen in den Hohlraum HO aus den Leitern K1, K2 eintretenden Gasmengen entsteht von vornherein kein Plasma in dem Hohlraum, da ein kritischer Mindestdruck nicht erreicht wird und wegen der Gasdurchlässigkeit des Isolatorkörpers eine Akkumulation mehrerer sehr kleiner Gasmengen nicht stattfindet.With only very small amounts of gas entering the hollow space HO from the conductors K1, K2, no plasma is formed in the cavity from the outset, since a critical minimum pressure is not reached and because of the gas permeability of the insulator body, an accumulation of several very small amounts of gas does not take place.

Fig. 3 zeigt eine Hochspannungsisolatoranordnung in einer Abwandlung des Beispiels nach Fig. 2. Ein rohrförmiger Isolatorkörper IR umgibt hier unmittelbar den Innenleiter L32 eines nicht flexiblen Leitungsabschnitts K32 und setzt sich bis über den Isoliermantel M1 des Leitungsabschnitts K1, welcher als gleich zu Fig. 2 angenommen sei, fort. Der Isolatorkörper kann nochmals von einem Außenrohr AR umgeben sein, welches auch leitend sein und auf Massepotential liegen kann. Eine Endkappe EK kann auf das den Isoliermantel M11 umgreifende Ende des Isolatorkörpers IR aufgesetzt und in Längsrichtung gegen das Außenrohr AR verspannt sein, wenn gewährleistet ist, dass zum einen Gas durch den Isolatorkörper in das umgebende Vakuum VA aus dem Hohlraum um die Steckerverbindung entweichen kann und zum anderen kein Pfad für ein Plasma aus dem Hohlraum nach außen in das Vakuum oder zu einem leitenden Bauteil besteht. Fig. 3 shows a high voltage insulator arrangement in a modification of the example Fig. 2 , A tubular insulator body IR here directly surrounds the inner conductor L32 of a non-flexible line section K32 and continues over the insulating jacket M1 of the line section K1, which is equal to Fig. 2 Let us suppose. The insulator body can again be surrounded by an outer tube AR, which can also be conductive and can be at ground potential. An end cap EK can be placed on the insulating jacket M11 encompassing the end of the insulator body IR and braced in the longitudinal direction against the outer tube AR, if it is ensured that a gas can escape through the insulator body in the surrounding vacuum VA from the cavity to the plug connection and on the other hand, there is no path for a plasma from the cavity to the outside in the vacuum or to a conductive component.

Da bei Hochspannungsisolatoranordnungen nach Art der Beispiele in Fig. 2 und Fig. 3 ein kurzzeitig in dem Hohlraum anfallender, für die Entstehung eines Plasmas in dem Hohlraum ausreichender Gasdruck typischerweise deutlich unter dem Druck des Arbeitsgases an und in dem Isolatorkörper IS in dem Ausführungsbeispiel nach Fig. 1 liegt und damit auch die Elektronendichte in einem solchen Plasma geringer ist, ist die Debye-Länge in Anordnungen nach Fig. 2 und Fig. 3 typischerweise größer als in dem Beispiel nach Fig. 1, so dass bei Ausrichtung der mittleren Porengröße des offen porösen Dielektrikums für Anwendungen nach Fig. 2 oder Fig. 3 ein größerer Wert tolerierbar ist als in dem Beispiel nach Fig. 1.As in Hochspannungsisolatoranordnungen on the type of examples in Fig. 2 and Fig. 3 a short time in the cavity accumulating, sufficient for the formation of a plasma in the cavity sufficient gas pressure typically well below the pressure of the working gas and in the insulator body IS in the embodiment according to Fig. 1 and thus the electron density in such a plasma is lower, the Debye length is in arrangements Fig. 2 and Fig. 3 typically larger than in the example below Fig. 1 , so when aligned with the average pore size of the open porous dielectric for applications Fig. 2 or Fig. 3 a larger value is tolerable than in the example below Fig. 1 ,

Für den Fall, dass außerhalb des Hohlraums der Hochspannungsisolatoranordnungen nach Fig. 2 oder Fig. 3 ein Gasdruck in einem Zwischendruckbereich auftritt, kann sowohl innerhalb als auch außerhalb des Hohlraums ein Plasma zünden, wenn die Zündbedingungen erfüllt sind. Die Plasmen können aber nicht den porösen Isolatorkörper durchdringen, so dass kein durchgehender Gleichstrompfad zwischen den Bauteilen aufgebaut werden kann. Nach Wegfall des Zwischendruckbereichs, insbesondere Einstellen eines Vakuums um die Hochspannungsisolatoranordnung ist wieder die bereits beschriebene Isolationsfunktion gegeben.In the event that outside the cavity of the Hochspannungsisolatoranordnungen after Fig. 2 or Fig. 3 If a gas pressure occurs in an intermediate pressure range, a plasma can ignite both inside and outside the cavity when the ignition conditions are met. The plasmas can but not penetrate the porous insulator body, so that no continuous DC path between the components can be constructed. After elimination of the intermediate pressure range, in particular setting a vacuum around the high-voltage insulator arrangement, the already described isolation function is given again.

Die vorstehend und die in den Ansprüchen angegebenen sowie die den Abbildungen entnehmbaren Merkmale sind sowohl einzeln als auch in verschiedener Kombination vorteilhaft realisierbar. Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern sie ist in den beigefügten Anprüche definiert.The features indicated above and in the claims, as well as the features which can be seen in the figures, can be implemented advantageously both individually and in various combinations. The invention is not limited to the described embodiments but is defined in the appended claims.

Claims (9)

  1. High-voltage insulator arrangement having a first (SV) and a second (M) conductive component, between which a high voltage can be applied and which are separated by means of a space through which the electrical field of the high voltage passes and which may contain gas, at least part of the time, and having in the space an insulation device (IV), which insulates the two conductive components from one another, wherein the insulation device is formed at least in part by an insulator body (VK, IR) composed of an open-porous, gas-permeable dielectric, characterized in that the first of the two components is formed by an anode electrode and conductive elements of an electrostatic ion accelerator arrangement connected thereto and the second of the two components is formed by parts of a gas feed system, by way of which a working gas can be introduced into an ionization chamber of the ion accelerator arrangement, and in that the insulator body is flowed through by the working gas and fills the cross section of the flow path.
  2. Arrangement according to Claim 1, characterized by a porous ceramic as the open-porous dielectric.
  3. Arrangement according to Claim 2, characterized in that gas-guiding paths through the insulator body are deflected with regard to a straight progression.
  4. Arrangement according to one of Claims 1 to 3, characterized in that pore cavities in the insulator body are shorter than the Debye length in a direction parallel to the field direction of the electrical field brought about by the high voltage.
  5. Arrangement according to one of Claims 1 to 4, characterized in that the average pore size of the open-porous dielectric lies below 100 µm.
  6. Arrangement according to one of Claims 1 to 5, characterized in that the anode electrode (AE) is arranged at the foot of the ionization chamber (IK), opposite a beam exit opening (AO), and in that the insulator body (IS) is arranged on the side of the anode electrode that is facing away from the ionization chamber (IK).
  7. Arrangement according to Claim 6, characterized in that a surface of the insulator body that is facing the anode electrode is away from a metallic surface that lies at the potential of the anode in the direction of the anode electrode by a distance that is less than the extent of the insulator body transversely to this direction.
  8. Arrangement according to one of Claims 1 to 7, characterized in that the insulator body is configured in the form of a disc and the average direction of the gas flow through the insulator body runs perpendicularly to the surface of the disc.
  9. Use of a high-voltage insulator arrangement according to one of Claims 1 to 8 in an electrostatic ion accelerator arrangement having an ionization chamber (IK) and an anode electrode (AE) arranged in the ionization chamber as a first conductive component, as well as a gas feed system (GV, GL, GQ) for introducing working gas (AG) into the ionization chamber and a field that passes through the ionization chamber and accelerates electrostatically positively charged ions in the direction of a beam exit opening, the anode electrode (AE) being at a high voltage (HV) with respect to a second conductive component (GL, GV, GQ) situated upstream in the gas feed system, a gas-permeable insulator body (IS) composed of an open-porous dielectric being arranged in the flow path of the gas feed system and the working gas (AG) flowing through the insulator body to the ionization chamber (IK) and the anode electrode and components that are at its potential lying completely downstream of the insulator body in the flow path of the working gas.
EP08804107.4A 2007-09-14 2008-09-12 High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement Active EP2191699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007044070A DE102007044070A1 (en) 2007-09-14 2007-09-14 Ion accelerator assembly and suitable high voltage insulator assembly
PCT/EP2008/062142 WO2009037195A1 (en) 2007-09-14 2008-09-12 High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement

Publications (2)

Publication Number Publication Date
EP2191699A1 EP2191699A1 (en) 2010-06-02
EP2191699B1 true EP2191699B1 (en) 2015-11-11

Family

ID=40040047

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804107.4A Active EP2191699B1 (en) 2007-09-14 2008-09-12 High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement

Country Status (8)

Country Link
US (1) US8587202B2 (en)
EP (1) EP2191699B1 (en)
JP (1) JP5449166B2 (en)
KR (1) KR101468118B1 (en)
CN (1) CN101855948B (en)
DE (1) DE102007044070A1 (en)
RU (1) RU2481753C2 (en)
WO (1) WO2009037195A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767497B (en) * 2012-05-22 2014-06-18 北京卫星环境工程研究所 Fuel-free spacecraft propelling system based on spatial atomic oxygen and propelling method
US9212785B2 (en) * 2012-10-11 2015-12-15 Varian Semiconductor Equipment Associates, Inc. Passive isolation assembly and gas transport system
CN103775297B (en) * 2014-03-04 2016-06-01 哈尔滨工业大学 Multistage most advanced and sophisticated cusped magnetic field plasma thruster segmentation pottery passage
DE102016207370A1 (en) * 2016-04-29 2017-11-02 Airbus Ds Gmbh Gas inlet for an ion engine
DE102016223746B4 (en) * 2016-11-30 2018-08-30 Arianegroup Gmbh Gas inlet for an ion engine
CN108187913B (en) * 2018-01-31 2024-03-12 佛山市科蓝环保科技股份有限公司 Electric field porcelain insulator protection device of industrial oil smoke purifying equipment
WO2021117681A1 (en) * 2019-12-12 2021-06-17 弘樹 渋谷 Static electricity eliminating device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2775640A (en) * 1952-10-01 1956-12-25 Exxon Research Engineering Co Method and means for insulating high voltage electrodes
US3270498A (en) * 1963-11-05 1966-09-06 Gen Electric Controllable vaporizing gas accelerator
US3343022A (en) * 1965-03-16 1967-09-19 Lockheed Aircraft Corp Transpiration cooled induction plasma generator
US3328960A (en) * 1965-08-16 1967-07-04 Thomas W Martin Ion propulsion system employing lifecycle wastes as a source of ionizable gas
DE2052014A1 (en) * 1970-10-23 1972-04-27 Messerschmitt Boelkow Blohm Ion thruster
JPS60264016A (en) * 1984-06-12 1985-12-27 Mitsubishi Electric Corp Hollow cathode
JPS6477764A (en) * 1987-09-18 1989-03-23 Toshiba Corp Hall type ion thruster
US5490910A (en) * 1992-03-09 1996-02-13 Tulip Memory Systems, Inc. Circularly symmetric sputtering apparatus with hollow-cathode plasma devices
FR2692730B1 (en) * 1992-06-19 1994-08-19 Air Liquide Device for forming excited or unstable gas molecules and uses of such a device.
RU2079985C1 (en) * 1995-05-03 1997-05-20 Институт электрофизики Уральского отделения РАН Travelling-wave vacuum diode
AU5203699A (en) * 1998-06-05 1999-12-20 Primex Aerospace Company Uniform gas distribution in ion accelerators with closed electron drift
US6215124B1 (en) * 1998-06-05 2001-04-10 Primex Aerospace Company Multistage ion accelerators with closed electron drift
US6612105B1 (en) * 1998-06-05 2003-09-02 Aerojet-General Corporation Uniform gas distribution in ion accelerators with closed electron drift
DE10130464B4 (en) 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasma accelerator configuration
US6982520B1 (en) 2001-09-10 2006-01-03 Aerojet-General Corporation Hall effect thruster with anode having magnetic field barrier
US20030157000A1 (en) * 2002-02-15 2003-08-21 Kimberly-Clark Worldwide, Inc. Fluidized bed activated by excimer plasma and materials produced therefrom
DE10215660B4 (en) * 2002-04-09 2008-01-17 Eads Space Transportation Gmbh High frequency electron source, in particular neutralizer
DE602004024993D1 (en) * 2004-09-22 2010-02-25 Elwing Llc Drive system for spacecraft
KR20080041285A (en) * 2005-08-30 2008-05-09 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 Delivery of low pressure dopant gas to a high voltage ion source

Also Published As

Publication number Publication date
RU2010114721A (en) 2011-10-20
US20110089836A1 (en) 2011-04-21
RU2481753C2 (en) 2013-05-10
KR101468118B1 (en) 2014-12-03
JP2010539373A (en) 2010-12-16
EP2191699A1 (en) 2010-06-02
KR20100098594A (en) 2010-09-08
JP5449166B2 (en) 2014-03-19
DE102007044070A1 (en) 2009-04-02
CN101855948A (en) 2010-10-06
US8587202B2 (en) 2013-11-19
CN101855948B (en) 2012-11-21
WO2009037195A1 (en) 2009-03-26

Similar Documents

Publication Publication Date Title
EP2191699B1 (en) High-voltage insulator arrangement, and ion accelerator arrangement comprising such a high-voltage insulator arrangement
DE602004013401T2 (en) Plasma accelerator with closed electron path
DE102005025624B4 (en) Arrangement for generating intense short-wave radiation based on a gas discharge plasma
DE2633778C3 (en) Ion thruster
DE3111305C2 (en) Microwave Discharge Ion Source
DE3429591A1 (en) ION SOURCE WITH AT LEAST TWO IONIZATION CHAMBERS, IN PARTICULAR FOR THE FORMATION OF CHEMICALLY ACTIVE ION RAYS
DE19701752A1 (en) Spark plug with a magnetic field device for generating an arc of variable length
DE2552783A1 (en) METHOD AND ARRANGEMENT FOR GENERATING IONS
DE1222589B (en) Device for generating a space-charge-neutralized beam of charged particles
DE2445603C3 (en) Ion source
DE102014119446B4 (en) ion optical element
DE1789071B1 (en) Device for the investigation of plasma physical processes
DE2249523A1 (en) OVERVOLTAGE PROTECTIVE DEVICE AND METHOD OF MANUFACTURING IT
DE1153463B (en) Plasma generator for generating a continuous plasma jet
DE2602078B2 (en) LOW PRESSURE GAS DISCHARGE TUBE
DE3942307C2 (en)
DE102006034988B4 (en) Ion source for generating negatively charged ions
DE1190590B (en) Ion source
EP1953877A1 (en) Power supply to at least one electricity consumer
EP1654914B1 (en) Extreme uv and soft x ray generator
DE1236675B (en) Device for generating and heating an ion-electron plasma
DE1240199B (en) Discharge device for generating a high-energy arc discharge
DE2712829C3 (en) Ion source
DE2025987A1 (en) Ion source
DE1640824A1 (en) Connection for high voltage coaxial cable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100414

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES AIR SYSTEMS & ELECTRON DEVICES GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES ELECTRONIC SYSTEMS GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008013572

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05H0001540000

Ipc: H05H0007000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 27/00 20060101ALI20150611BHEP

Ipc: H01R 13/53 20060101ALI20150611BHEP

Ipc: B03C 3/38 20060101ALI20150611BHEP

Ipc: H05H 7/00 20060101AFI20150611BHEP

INTG Intention to grant announced

Effective date: 20150706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 761023

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008013572

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160311

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160212

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008013572

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

26N No opposition filed

Effective date: 20160812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160912

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160912

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 761023

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160912

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151111

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230921

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230919

Year of fee payment: 16

Ref country code: DE

Payment date: 20230930

Year of fee payment: 16