EP2186941B1 - Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes - Google Patents

Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes Download PDF

Info

Publication number
EP2186941B1
EP2186941B1 EP20080169283 EP08169283A EP2186941B1 EP 2186941 B1 EP2186941 B1 EP 2186941B1 EP 20080169283 EP20080169283 EP 20080169283 EP 08169283 A EP08169283 A EP 08169283A EP 2186941 B1 EP2186941 B1 EP 2186941B1
Authority
EP
European Patent Office
Prior art keywords
microwave
waveguide
oscillator
absorbing material
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20080169283
Other languages
German (de)
English (en)
Other versions
EP2186941A1 (fr
Inventor
Norio Niwa
Ryousei Noda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUUGEN-KAISHA KANETETUSHOUKAI
Takumi KK
Original Assignee
Yuugen-Kaisha Kanetetushoukai
Takumi KK
Yuugen Kaisha KANETETUSHOUKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuugen-Kaisha Kanetetushoukai, Takumi KK, Yuugen Kaisha KANETETUSHOUKAI filed Critical Yuugen-Kaisha Kanetetushoukai
Priority to EP20080169283 priority Critical patent/EP2186941B1/fr
Publication of EP2186941A1 publication Critical patent/EP2186941A1/fr
Application granted granted Critical
Publication of EP2186941B1 publication Critical patent/EP2186941B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • E01C11/26Permanently installed heating or blowing devices ; Mounting thereof
    • E01C11/265Embedded electrical heating elements ; Mounting thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/642Cooling of the microwave components and related air circulation systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • H05B6/708Feed lines using waveguides in particular slotted waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2214/00Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
    • H05B2214/02Heaters specially designed for de-icing or protection against icing

Definitions

  • the present invention relates to a structure heating system of melting fallen snow on various structures such as roads (for the purpose of the present invention, roads include those where vehicles and people pass (including roads constructed on bridges) and the rooftops and the roofs of buildings) and walls, preventing snow from piling up and water pooled on surfaces from freezing and melting frozen ice by means of microwave and also to a microwave oscillator cooling method.
  • roads include those where vehicles and people pass (including roads constructed on bridges) and the rooftops and the roofs of buildings) and walls, preventing snow from piling up and water pooled on surfaces from freezing and melting frozen ice by means of microwave and also to a microwave oscillator cooling method.
  • both a microwave waveguide and a microwave oscillator need to be buried in the ground or installed on the ground. In either case, very airtight waterproof measures need to be provided in order to establish electric insulation for them.
  • moisture can invades the microwave waveguide. Then, as a microwave propagates through the microwave waveguide, it heats the invading moisture to make it no longer possible to efficiently heat the pavement. Therefore, both the microwave waveguide and the microwave oscillator need to be provided with a very airtight waterproof measures.
  • the output of a magnetron itself for forming a microwave oscillator becomes instable when it keeps on oscillating because it becomes hot as it oscillates. Then, air needs to be blown to it by means of a cooling fan or the like and cooled by air in order to avoid such a problem.
  • the air used to cool the magnetron needs to be discharged to the outside and fresh external air needs to be taken in order to keep on cooling the magnetron.
  • the microwave oscillator is provided with highly airtight waterproof measures as described above, it is then difficult to discharge heated air and introduce external air. Then, the magnetron cannot be cooled effectively. While this problem can be dissolved by adopting an arrangement of laying a cooling pipe for flowing a cooling medium and efficiently cooling the magnetron, it entails a problem of inevitably making the cooling structure of the microwave oscillator a complex and large one to consequently raise the cost.
  • a structure heating system including:
  • the microwave oscillator can be effectively cooled and its output characteristic can be stabilized, while the waterproof property of the microwave oscillator is secured. Additionally, according to the present invention, the heat of the air heated as a result of cooling the microwave oscillator can be discharged effectively to maintain the cooling effect. Furthermore, according to the present invention, the cooling structure of the microwave oscillator can be simplified and downsized and the cost of the arrangement can be reduced.
  • the present invention will be described in greater detail by way of an embodiment, where the structure of the embodiment is a pavement of a road.
  • the structure which is a snow melting heat generation road 1 is constructed typically by laying a pavement 9 which includes a road base 3 laid on a road bed, a concrete or asphalt base layer 5 laid on the road base 3 and a concrete or asphalt surface layer 7 laid on the base layer 5.
  • the surface layer 7 is laid on the base layer 5 to a necessary thickness and made of concrete or asphalt containing a microwave absorbing material 7a selected from ferrite (iron oxide), oxidizing slag, ceramics, permalloy, short or long microfibers containing any of the above listed microwave absorbing materials and rubber chips and pellets impregnated with ferrite.
  • a microwave absorbing material 7a selected from ferrite (iron oxide), oxidizing slag, ceramics, permalloy, short or long microfibers containing any of the above listed microwave absorbing materials and rubber chips and pellets impregnated with ferrite.
  • Temperature sensors 11 are buried in the surface layer 7 to detect the temperature of the surface layer 9.
  • the microwave absorbing material 7a is ferrite (iron oxide), oxidizing slag, ceramics, permalloy or the like, it is regulated to become small pieces with a maximum diameter of about 50 mm and show a content ratio of about 5 to 100% by volume relative to the aggregate 7b contained in the surface layer 7.
  • the microwave absorbing material 7a is microwave absorbing fiber, it is regulated to show a content ratio of about 0.01 to 2% by weight relative to the weight of the cement.
  • Suitable microwave absorbing fibers that can be used for the purpose of the present invention include polyamide fiber, glass fiber, polypropylene fiber and acryl fiber. The expression of 100% as used herein refers to an instance where the aggregate 7b to be mixed with concrete or asphalt is entirely a microwave absorbing material 7a.
  • the surface layer 7 contains aggregate 7b such as crushed stones in addition to the above-described microwave absorbing material 7a so that numerous independent gaps and continuous gaps may be produced by the microwave absorbing material 7a and the aggregate 7b.
  • Such gaps operate as a dielectric layer that absorbs microwaves by way of dielectric loss in addition to the microwave absorbing effect of the microwave absorbing material 7a and serve to make the surface layer 7 generate heat efficiently.
  • the microwave absorbing material 7a contained in the surface layer 7 is distributed in the latter such that the concentration of the microwave absorbing material 7a is higher at the road surface side.
  • the snow melting heat generation road 1 can generate heat efficiently at the road surface side and reduce the ratio by which the microwave radiated from each microwave waveguide 11 leaks to the outside of the road surface of the snow melting heat generation road 1 as well as reduce microwave troubles to human beings and electronic apparatus mounted in vehicles.
  • the distribution of the microwave absorbing material 7a contained in the surface layer 7 may be defined appropriately according to the relationship of the heat generating efficiency, the microwave leakage and the required road surface strength.
  • a plurality of microwave waveguides 13 are buried in the base layer 5 of the pavement 9 at regular intervals so as to extend transversally and a shield box 15, which is a precast concrete box or a metal-made box, is entirely or partly buried at the side of one of the opposite ends of each microwave waveguide 13 that is located outside the pavement 9 and airtightly connected to the microwave waveguide 13.
  • a shield box 15 which is a precast concrete box or a metal-made box
  • Each shield box 15 contains a microwave oscillation apparatus 23 including a microwave oscillator 17 such as a magnetron, an air blower fan 19 that is an air blower member for forcibly blowing air to the microwave oscillator 17 to cool the latter and a temperature sensor 21 for detecting the surrounding temperature of the microwave oscillator 17.
  • the microwave oscillation apparatus 23 is connected to a control means (not shown) contained in a control box 25 arranged at the corresponding road side or the median strip as will be described hereinafter (although the control box is arranged at the shoulder of the road in FIG. 1 , the present invention is by no means limited thereto) by way of an electric cable (not shown).
  • the air blower fan 19 blows cooling air to and around the microwave oscillator 17 and the air heated as a result of cooling the microwave oscillator 17 is introduced into a microwave waveguide 13, which will be described in greater detail hereinafter.
  • Each microwave oscillator 17 outputs a microwave of a frequency in a microwave frequency band assigned to it by the authority according to the application (e.g., industrial, scientific or medical) and conforming to the Radio Law.
  • the frequency may be 2.45 GHz and the output power may be 0.5 to 5 kW, although the frequency and the output power of the microwave output from the microwave oscillator 17 are by no means limited to the above cited values.
  • the frequency may be selected within a range of about 1 to 20 GHz, while the output power may be selected appropriately according to the road environment such as the environment in a cold district or very cold district.
  • the control box 25 also contains a power supply unit (not shown) and the control means is connected to the temperature sensors 11 buried in the above-described surface layer 7.
  • Each microwave waveguide 13 that guides the microwave output from the corresponding microwave oscillator 17 is a metal member having a width equal to ⁇ /2 ( ⁇ : wavelength) of the microwave output from the microwave oscillator 17 with a square or circular cross section (microwave waveguides having a square cross section are shown in the drawings) in the transversal direction, or in the direction orthogonal to the longitudinal direction, of the road and a length equal to the width of the road. Both the inner and outer surfaces of the microwave waveguide 13 are plated by zinc.
  • Each microwave waveguide 13 is connected to the output section of the corresponding microwave oscillator 17 at an end thereof and equipped with a microwave absorbing material 13a in the opposite end thereof.
  • a large number of slits 13b are formed at predetermined regular intervals ( ⁇ /4) relative to the longitudinal direction on the upper surface of each microwave waveguide 13 (at the side of the surface layer 7 to be described later).
  • the slits serve as transmitting sections for radiating the microwave being propagated in the inside to the surface layer 7 side.
  • the slits 13b may be formed not on the upper surface as shown in FIG. 5 but at the upper corners of the microwave waveguide 5.
  • the microwave can be output with a uniform output level relative to the surface layer 7 when slits 13b are formed on the microwave waveguide 13 at broader intervals at the side of the microwave oscillator 17 but at narrower intervals at the side opposite to the microwave oscillator 17.
  • Each microwave waveguide 13 is provided with an opening 13c near the other end thereof and a shield plate 13d is fitted to the opening 13c.
  • the shield plate 13d is a metal plate where a large number of through holes of a size not greater than 1/4 of the microwave wavelength are cut so as to limit the external leakage of the microwave propagated in the inside of the microwave waveguide 13 and at the same time allows to discharge air from the inside.
  • the circulation pipe 29 is typically a synthetic resin pipe made of vinyl chloride or a metal pipe. It is airtightly connected to the shield box 15 containing the microwave oscillation apparatus 23 at the other end thereof.
  • a waterproof member (not shown) is arranged on the upper surface of each microwave waveguide 13 where a large number of slits 13b are formed so as to airtightly contain the slits 13b.
  • the waterproof member may be silicon resin filled into the slits 13b or a butyl rubber sheet bonded to the upper surface of the microwave waveguide 13 to make the slits 13b waterproof (airtight).
  • a curved pole 31 is installed to stand at a road side of the snow melting heat generation road 1 with its upper part bending above the snow melting heat generation road 1 and a snow fall sensor 33 is fitted to the top end of the pole 31.
  • the snow fall sensor 33 is connected to the above-described control means to detect the snow fall on the surface of the snow melting heat generation road 1.
  • the control means outputs an oscillation drive signal to the microwave oscillator 17b in each shield box 15 to make it oscillate microwaves under control.
  • an operator in the road administration office located away from the snow melting heat generation road 1 may output an oscillation start directing signal according to the temperature data obtained by the temperature sensors 11 arranged in the snow melting heat generation road 1 or the snow fall data obtained by the snow fall sensor 33 to drive each microwave oscillator 17 to oscillate.
  • the microwave that is oscillated by each microwave oscillator 17 propagates in the inside of the corresponding microwave waveguide 13, constantly reflecting therein. On the way of propagation, the microwave is partly transmitted through the slits 13b and radiated toward the surface layer 7.
  • the microwaves that are radiated toward the surface layer 7 are converted to thermal energy due to the magnetic field loss and the dielectric loss produced by the microwave absorbing material 7a contained in the surface layer 7 and the dielectric loss produced by the voids in the surface layer 7 to heat the entire surface layer 7, which is a phenomenon also referred to as microwave absorption.
  • the temperature of the snow melting heat generation road 1 is raised to about 1 to 5°C by the heat due to the microwave absorption effect produced by the microwave absorbing material 7a and the voids to immediately melt the fallen snow and prevent the water on the road surface from freezing (see FIG. 5 ).
  • each microwave waveguide 13 gets to the terminating end, it is absorbed by the microwave absorbing material 13a.
  • the microwave is reflected to propagate toward the starting end to damage the microwave oscillator 17.
  • the microwave oscillator 17 is prevented from being damaged as the microwave is absorbed by the microwave absorbing material 13a to eliminate any returning microwave.
  • each microwave waveguide 13 While the microwave radiated from the slits 13b of each microwave waveguide 13 is mostly converted to thermal energy by the microwave absorbing material 7a and the voids for absorption, a small part thereof may leak to the outside of the road surface and give rise to microwave troubles to human beings and electronic apparatus mounted in vehicles. However, the leaking microwave can be minimized by raising the concentration of the microwave absorbing material 7a distributed at the road surface side of the surface layer 7 as described above.
  • the air blower fan 19 When each microwave oscillator 17 is driven to oscillate, the air blower fan 19 is driven to blow air and cool the microwave oscillator 17 by air because the output level needs to be prevented from becoming instable due to an overheated magnetron. Air blown by the air blower fan 19 cools the microwave oscillator 17 to heat itself. Subsequently, it is introduced into the microwave waveguide 13 to flow toward the terminal end and then passes through the holes of the shield plate 13d and further the inside of the circulation pipe 29 before it is returned to the inside of the shield box 15. The leakage of microwave to the outside of the microwave waveguide 13 is limited because the size of the holes of the shield plate 13d is defined to be not greater than 1/4 of the wavelength of the microwave.
  • the heated air that flows into the circulation pipe 29 is forced to flow toward the shield box 15 due to the air suction effect of the air blower fan 19.
  • the heated air is cooled as it flows through the inside of the circulation pipe 29 and hence the microwave oscillator 17 can be cooled efficiently by the air returned to the inside of the shield box 15 (see FIG. 6 ).
  • the control means stops driving the microwave oscillator 17 to oscillate but continues to drive the air blower fan 19 in order to circulate air in the inside of the shield box 15, the microwave waveguide 13 and the circulation pipe 29 to cool the microwave oscillator 17.
  • the control means starts driving the microwave oscillator 17 to oscillate once again and has it output a microwave.
  • the control means stops driving each microwave oscillator 17 to oscillate and output a microwave according to the detection signal from the temperature sensor 11.
  • each microwave oscillator 17 When the temperature of the surface layer 6 falls below the above defined temperature after stopping the output of a microwave, the control means once again drives each microwave oscillator 17 to oscillate and output a microwave toward the surface layer 6 in order to heat the latter according to the detection signal from the temperature sensor 11. In this way, each microwave oscillator 17 is controlled according to the temperature detection signal from the temperature sensor 11 so as to intermittently oscillate and keep the temperature of the surface layer 6 substantially to a constant level. Thus, the snow melting heat generation road 1 can keep on melting snow.
  • This embodiment is adapted to forcibly blow air to each microwave oscillator 17 that is heated as the magnetron is driven to oscillate in order to stabilize the oscillation and the output of the microwave oscillator 17, while circulating the air heated as a result of the cooling operation through inside of the shield box 15 and the microwave waveguide 13, which are held in an airtight condition, by means of the circulation pipe 29, so that the microwave oscillator 17 can be efficiently cooled by air.
  • the shield box 15 and the microwave waveguide 13 can be held in an airtight condition to prevent troubles that may be caused by invading water or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Claims (15)

  1. Système de chauffage de structure, comprenant :
    une structure contenant un matériau absorbant les micro-ondes (7a) ; un oscillateur à micro-ondes (17) contenu dans une boîte de protection (15) enterrée dans la structure pour faire osciller une micro-onde d'une fréquence prédéterminée et d'un niveau de sortie prédéterminé ; un guide d'ondes à micro-ondes (13) enterré dans la structure et connecté à une section de sortie de l'oscillateur à micro-ondes (17) de manière à pouvoir émettre une micro-onde à propager dans une direction longitudinale vers le matériau absorbant les micro-ondes (7a), et formé par un grand nombre de sections de transmission fermées par un matériau n'absorbant pas les micro-ondes ; l'oscillateur à micro-ondes (17) étant adapté pour osciller sous contrôle de manière à émettre une micro-onde depuis les sections de transmission vers le matériau absorbant les micro-ondes (7a), la propageant à travers le guide d'ondes à micro-ondes (13) et le matériau absorbant les micro-ondes (7a) absorbant la micro-onde et chauffant pour chauffer à son tour la structure ; caractérisé en
    ce qu'un élément souffleur d'air (19) servant à souffler de l'air sur l'oscillateur à micro-ondes ; et un élément rayonnant la chaleur/circulateur d'air (29) connecté de manière étanche à l'air à l'extrémité de raccordement du guide d'ondes à micro-ondes (13) et à la boîte de protection (15) de manière à pouvoir refroidir l'air introduit dans le guide d'ondes à micro-ondes (13) après avoir refroidi l'oscillateur à micro-ondes (17) en réponse à une opération consistant à amener l'élément souffleur d'air (19) sur le trajet de circulation depuis l'extrémité de raccordement vers la boîte de protection (15) sont disposés pour permettre la circulation de l'air dans la boîte de protection (15) et le guide d'ondes à micro-ondes (13).
  2. Système de chauffage de structure selon la revendication 1, l'élément souffleur d'air (19) étant disposé du côté qui n'est pas une sortie de l'oscillateur à micro-ondes dans la boîte de protection (15).
  3. Système de chauffage de structure selon la revendication 1, l'élément souffleur d'air (19) étant disposé du côté qui n'est pas une sortie de l'oscillateur à micro-ondes (17) disposé le long de l'élément rayonnant la chaleur/circulateur d'air (29).
  4. Système de chauffage de structure selon la revendication 1, les sections de transmission étant remplies de résine imperméable à l'eau et rendues étanches à l'air.
  5. Système de chauffage de structure selon la revendication 1, le guide d'ondes à micro-ondes (13) étant recouvert d'un matériau imperméable à l'eau pour recouvrir les sections de transmission.
  6. Système de chauffage de structure selon la revendication 1, le guide d'ondes à micro-ondes (13) étant formé en connectant une pluralité de guides d'ondes individuels à un angle requis et à un élément de réflexion étant disposé à chaque section de connexion des guides d'ondes individuels de manière à accorder entre elles lignes axiales des guides d'ondes individuels.
  7. Système de chauffage de structure selon la revendication 1, la structure où un guide d'ondes à micro-ondes (13) est enterré étant réalisée pour présenter une forte concentration du matériau absorbant les micro-ondes (7a) du côté de la couche de surface pour limiter les fuites de micro-ondes depuis la structure.
  8. Appareil à guide d'ondes à oscillation de micro-ondes comprenant : Une boîte de protection (15) contenant de manière étanche à l'air un oscillateur à micro-ondes (17), un guide d'ondes à micro-ondes (13) fixé de manière étanche à l'air à une des extrémités de la boîte de protection correspondant à une section de sortie de l'oscillateur à micro-ondes (17), dont la longueur de propagation des micro-ondes est une longueur prédéterminée, un grand nombre de sections de transmission étant formés sur une de ses surfaces dans une direction longitudinale pour permettre qu'une micro-onde passe à travers, chaque section de transmission étant disposée de manière étanche à l'air, un matériau absorbant les micro-ondes (7a) étant disposé à son autre extrémité ; caractérisé par un élément rayonnant la chaleur/circulateur d'air (29) disposé entre l'extrémité de raccordement du guide d'ondes à micro-ondes et la boîte de protection pour faire circuler l'air dans le guide d'ondes à micro-ondes ; et un élément souffleur d'air (19) servant à souffler l'air vers l'oscillateur à micro-ondes et faisant circuler l'air dans le guide d'ondes à micro-ondes vers l'intérieur de la boîte de protection au moyen de l'élément rayonnant la chaleur/circulateur d'air (29).
  9. Un procédé de refroidissement d'un oscillateur à micro-ondes à utiliser avec un système de chauffage de structure servant à chauffer une structure contenant un matériau absorbant les micro-ondes (7a) et comportant un oscillateur à micro-ondes (17) contenu dans une boîte de protection (15) enterrée dans la structure pour faire osciller une micro-onde d'une fréquence prédéterminée et d'un niveau de sortie prédéterminé et un guide d'ondes à micro-ondes (13) enterré dans la structure et connecté à la section de sortie de l'oscillateur à micro-ondes (17) de manière à pouvoir émettre une micro-onde à propager dans la direction longitudinale vers le matériau absorbant les micro-ondes (7a), un grand nombre de sections de transmission fermées par un matériau n'absorbant pas les micro-ondes, l'oscillateur à micro-ondes (17) étant adapté pour osciller sous contrôle de manière à émettre une micro-onde depuis les sections de transmission vers le matériau absorbant les micro-ondes (7a), la propageant à travers le guide d'ondes à micro-ondes (13) et le matériau absorbant les micro-ondes (7a) absorbant la micro-onde et chauffant pour chauffer à son tour la structure, le procédé étant caractérisé par le refroidissement de l'air soufflé vers l'oscillateur à micro-ondes (17) et introduit dans le guide d'ondes à micro-ondes (13) par un moyen circulateur d'air (29) connecté de manière étanche à l'air entre l'extrémité de raccordement du guide d'ondes à micro-ondes (13) et la boîte de protection (15) et l'élément souffleur d'air (19) sur le chemin du retour depuis l'extrémité de raccordement vers la boîte de protection (15).
  10. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, l'élément souffleur d'air (19) étant disposé du côté qui n'est pas une sortie de l'oscillateur à micro-ondes (17) dans la boîte de protection (15).
  11. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, l'élément souffleur d'air (19) étant disposé du côté qui n'est pas une sortie de l'oscillateur à micro-ondes (17) disposé le long de l'élément rayonnant la chaleur/circulateur d'air (29).
  12. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, les sections de transmission étant remplies de résine imperméable à l'eau et rendues étanches à l'air.
  13. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, le guide d'ondes à micro-ondes (13) étant recouvert d'un matériau imperméable à l'eau pour recouvrir les sections de transmission.
  14. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, le guide d'ondes à micro-ondes (13) étant formé en connectant une pluralité de guides d'ondes individuels à un angle requis et à un élément de réflexion étant disposé à chaque section de connexion des guides d'ondes individuels de manière à accorder entre elles lignes axiales des guides d'ondes individuels.
  15. Procédé de refroidissement d'oscillateur à micro-ondes selon la revendication 9, la structure où un guide d'ondes à micro-ondes (13) est enterré étant réalisée pour présenter une forte concentration du matériau absorbant les micro-ondes (7a) du côté de la couche de surface pour limiter les fuites de micro-ondes depuis la structure.
EP20080169283 2008-11-17 2008-11-17 Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes Expired - Fee Related EP2186941B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20080169283 EP2186941B1 (fr) 2008-11-17 2008-11-17 Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20080169283 EP2186941B1 (fr) 2008-11-17 2008-11-17 Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes

Publications (2)

Publication Number Publication Date
EP2186941A1 EP2186941A1 (fr) 2010-05-19
EP2186941B1 true EP2186941B1 (fr) 2011-10-12

Family

ID=40521929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080169283 Expired - Fee Related EP2186941B1 (fr) 2008-11-17 2008-11-17 Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes

Country Status (1)

Country Link
EP (1) EP2186941B1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515562B1 (de) * 2014-03-20 2016-01-15 Peter Ing Kuntschitsch Fahrzeugpositionsabhängige hochenergetisch-elektromagnetische Energieeinspeisung zwischen Fahrbahn und Fahrzeug
CN103938521B (zh) * 2014-05-14 2016-04-13 上海海事大学 高速公路除冰雪系统及其除雪方法
CN108521681B (zh) * 2018-03-30 2020-10-27 重庆尚沛电子科技有限公司 具有防冻功能的建筑结构
CN113719847B (zh) * 2021-09-16 2023-11-10 合肥市义禾自动化控制设备有限公司 一种智能rto有机废气蓄热式氧化炉系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB943500A (en) * 1961-01-30 1963-12-04 Nat Res Dev Improvements in dielectric heating apparatus
BE640095A (fr) * 1962-10-01
US6193793B1 (en) * 1988-01-28 2001-02-27 Howard W. Long Asphaltic compositions and uses therefor
BE1015246A6 (nl) * 2002-12-11 2004-12-07 Hoebeek Nv Industriele microgolfoven voor het thermisch behandelen van producten en werkwijze daarbij toegepast, meer speciaal voor het doden van insecten in hout.
JP4543377B2 (ja) 2004-11-15 2010-09-15 株式会社巧 融雪用発熱舗装体及び舗装体の融雪方法

Also Published As

Publication number Publication date
EP2186941A1 (fr) 2010-05-19

Similar Documents

Publication Publication Date Title
EP2186941B1 (fr) Système de chauffage de structure par micro-ondes, appareil de guide d'onde d'oscillations de micro-ondes et procédé de refroidissement d'oscillateur de micro-ondes
JP2008145067A (ja) 加熱パネルユニット及び加熱方法
US20140088756A1 (en) Method for electronic temperature controlled curing of concrete and accelerating concrete maturity or equivalent age of precast concrete structures and objects and apparatus for same
JP4784891B2 (ja) マイクロ波による構造体加熱システム、マイクロ波発振導波装置及びマイクロ波発振器冷却方法
CN2773151Y (zh) 路面和桥梁冬季除雪防滑电磁感应加热装置
US3601448A (en) Method for fracturing concrete and other materials with microwave energy
US20100116821A1 (en) Structure heating system by microwave, microwave oscillation waveguide apparatus and microwave oscillator cooling method
US4590348A (en) System for heating materials with electromagnetic waves
KR101411261B1 (ko) 마이크로파를 이용한 터널 콘크리트 라이닝 시공용 고효율 균일 발열 시스템 및 그를 이용한 터널 콘크리트 라이닝 시공 방법
US6197395B1 (en) Hollow reinforcing members and composites containing the same
JP2006225954A (ja) 融雪路及び流体加熱方法
JP5441616B2 (ja) トンネル覆工用型枠および覆工方法
JP4543377B2 (ja) 融雪用発熱舗装体及び舗装体の融雪方法
KR20140125669A (ko) 마이크로파에 의해 발열되는 발열체 조성물, 이를 포함하는 마이크로파에 의해 발열되는 균일 발열 장치 및 그 시공 방법
JP3217711B2 (ja) 床暖房方法及び床暖房に使用する放熱管
JP4660454B2 (ja) 融雪ブロック
KR0151943B1 (ko) 동절기 콘크리트구조체의 시공방법
US6255623B1 (en) Surface heating system formed by a fluid-conducting inner pipe surrounded by a heat-destructible sheathing tube structure
KR20120139285A (ko) 마이크로파를 이용한 발열장치
KR20130063598A (ko) 마이크로파를 이용한 발열 거푸집용 슬라이딩 장치
CN104929016A (zh) 一种新型防冻路面
WO2015102211A1 (fr) Système de chauffage hautement efficace et uniforme utilisant des micro-ondes et procédé pour la construction d'une structure en béton l'utilisant
KR102298311B1 (ko) 마이크로파를 이용한 유로폼 거푸집
Foley et al. Placing winter concrete: pearl harbor memorial bridge
JP4833107B2 (ja) 融雪舗装体及びそれに用いられる間隙部材並びに融雪舗装体の施工方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

17P Request for examination filed

Effective date: 20101111

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: YUUGEN-KAISHA KANETETUSHOUKAI

Owner name: KABUSHIKI KAISHA TAKUMI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008010357

Country of ref document: DE

Effective date: 20111208

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008010357

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & SKORA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008010357

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008010357

Country of ref document: DE

Effective date: 20120713

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121130

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121122

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121217

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131117

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008010357

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131117

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202