EP2186161B1 - Radarsensorvorrichtung - Google Patents

Radarsensorvorrichtung Download PDF

Info

Publication number
EP2186161B1
EP2186161B1 EP08786260A EP08786260A EP2186161B1 EP 2186161 B1 EP2186161 B1 EP 2186161B1 EP 08786260 A EP08786260 A EP 08786260A EP 08786260 A EP08786260 A EP 08786260A EP 2186161 B1 EP2186161 B1 EP 2186161B1
Authority
EP
European Patent Office
Prior art keywords
radar
integrated
radar sensor
sensor apparatus
sensor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08786260A
Other languages
English (en)
French (fr)
Other versions
EP2186161A1 (de
Inventor
Thomas Engelberg
Thomas Hansen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2186161A1 publication Critical patent/EP2186161A1/de
Application granted granted Critical
Publication of EP2186161B1 publication Critical patent/EP2186161B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a radar sensor device.
  • a speckle radar sensor device for speed measurement according to the transit time correlation method consists of at least two sensor devices according to the radar principle and an evaluation device for evaluating the detected speckle patterns.
  • Speckle radar sensor devices are usually mounted on the vehicle to send and receive directly perpendicular to the ground.
  • the receive signals mixed down to the baseband are examined for their similarity.
  • a common mathematical method for this is the cross-correlation.
  • An evaluation principle which is favorable in terms of the signal processing effort represents the transit time correlator.
  • the DE 10 2004 059 332 A1 discloses a radar transceiver wherein an oscillator, a mixer and an antenna are arranged on a single chip in a plane next to one another. Since the radiating element is integrated on such chips, one no longer requires cost-intensive HF-suitable printed circuit boards. In addition, you save on complex HF bond or flip-chip technology, which significantly reduces assembly and test costs.
  • the DE 196 42 810 C1 discloses a radar system with an integrated sensor device, wherein in the beam direction in the housing is a dielectric lens which serves on the one hand for beam shaping and on the other hand protects the sensor device and other components from contamination and other environmental influences.
  • a microwave lens antenna assembly for a vehicle proximity warning radar is described.
  • the housing of the microwave lens antenna arrangement has exactly one dielectric lens formed as a stepped lens, in the focal plane of which three mutually horizontally arranged, separately switchable exciters are arranged.
  • the housing of the device also has a dielectric lens, to which several transmitting and receiving elements can be assigned.
  • the inventive radar sensor device defined in claim 1 reduces the cost and space requirements for a radar sensor device, which is preferably used for determining speed vectors of a vehicle relative to the roadway below the vehicle.
  • a cost-effective sensor device with an evaluation device, which has a particularly low computational cost, an attractive solution can be realized that brings greatly reduced overall costs. Due to the highly integrated design, space-saving designs are possible which greatly facilitate the use in the motor vehicle sector.
  • the vertical orientation of the speckle radar device to the ground makes the availability of an evaluable signal particularly in difficult underground situations, such as e.g. Extreme wetness or black ice increased, since with vertical radiation and vertical reception of the radar beam can not be reflected away.
  • the speckle radar system for small velocity vectors has a greater evaluation dynamic than the Doppler approach. This is advantageous for the function of a float angle sensor, since even there low speeds must be detected.
  • a signal processing device for processing the signals of the sensor devices is attached to the substrate. This further increases the compactness of the structure.
  • the signal processing device is then designed as a separate chip, which is connected to the sensor devices via conductor tracks.
  • the integrated sensor devices are integrated into individual chips such that each chip has exactly one antenna device.
  • the integrated sensor devices it is also possible for the integrated sensor devices to be integrated in one or more chips such that at least one chip has a plurality of antenna devices.
  • FIG. 10 is a schematic diagram of a radar sensor device according to a first embodiment of the present invention.
  • Reference numeral 50 denotes a speckle radar sensor device.
  • Integrated sensor devices S1, S2, S3 and a signal evaluation device 20 as a respective chip 411, 412, 413, 21 are mounted on a substrate 52 in the form of a printed circuit board.
  • the substrate 52 has a planar surface O on which the chips 411, 412, 413, 21 are attached, for example by gluing.
  • the sensor devices are designed such that they radiate via a respective antenna device 451, 452, 453 radar signals in a respective direction away from the surface O signal direction SI1, SI2, SI3 and can receive from the respective signal direction SI1, SI2, SI3.
  • On the antenna devices 451, 452, 453, by way of example, in each case a rod-shaped, dielectric beam pre-shaping device or lens 421, 422, 423 is arranged.
  • the speckle radar sensor device 50 has a housing 51 and the substrate 52 encloses.
  • the wall portion W of the housing 51 is preferably aligned parallel to the surface O of the substrate 52.
  • beam-shaping elements 431, 432, 433 which are arranged such that each one Sensor device S1, S2, S3 is associated with a beam-shaping elements 431, 432, 433 in its associated signal direction SI1, SI2, SI3.
  • the connection between the substrate 52 and the housing 51 can be accomplished in many different ways, for example, by gluing, soldering, welding, screwing, etc.
  • the housing 51 with the integral beam-shaping elements 431, 432, 433 becomes one-piece formed from a moldable or castable material.
  • the Signalauswert worn 20 controls the process of sending and receiving radar signals by the sensor devices S1, S2, S3, with which it is connected via conductor tracks L1, L2, L3.
  • the sensor devices S1, S2, S3 In the arrangement of the sensor devices S1, S2, S3 according to the example of FIG. 1 For example, it is possible to determine a speed along the axis on which the sensor devices S1, S2 lie, and an orthogonal speed along the axis on which the sensor devices S2, S3 are located.
  • the speeds determined in this way can be output as an output signal OUT from the signal evaluation device 20 to the outside of the radar sensor device 50 in order, for example, to be displayed on a display or used for further processing in a vehicle safety system (eg ESP).
  • ESP vehicle safety system
  • Fig. 2a, b are partial enlargements of a sensor device of Fig. 1 ,
  • FIG. 2a is an enlargement of the section A1 of Fig. 1 shown, wherein the sensor device S1 is shown enlarged.
  • FIG. 2b shows the structure of the chip 411 of the sensor device S1 without attached dielectric preforming device 421.
  • the chip 411 in this embodiment combines an RF source 441, a reference source R, an antenna element 451, and a mixer 461.
  • the output of the mixer provides a signal SX, which is used in addition to other signals for cross-correlation detection.
  • the quality of the speckle evaluation can be controlled or set via beam shaping by means of the rod-shaped dielectric lens 421 or beam shaping via the beam-shaping lens 431.
  • the described sensor devices S1, S2, S3 preferably send out electromagnetic waves at a constant frequency in the direction of the roadway.
  • the electromagnetic signals which are reflected perpendicularly and are again received by the respective sensor device S1, S2, S3 are preferably down-converted to baseband (i.e., at the transmission frequency) and fed to the signal processing device 20.
  • baseband i.e., at the transmission frequency
  • a known delay correlator can be used. This will produce one of the baseband signals, e.g. SX are shifted in time until the comparison with the signal from the other sensor means located on the same axis shows a maximum match. From the shift time and distance of the sensor devices on the substrate 52, one can determine a velocity vector over the ground along the relevant axis of the radar sensor device.
  • the output signals of the sensor devices S1, S2, S3 must be freed from the mean value before the comparison in a preferred A / D conversion.
  • the essential speckle information lies in the zero crossings of the signals of the sensor devices S1, S2, S3 freed from the mean value. These signals can be sampled amplitude-limited, for example in an A / D converter, or polarized via the signum function in order to greatly reduce the amount of data to be processed.
  • Fig. 3 is a sensor device of a radar sensor device according to a second embodiment of the present invention.
  • sensor device S1 ' which is integrated in a chip 411', 3 antenna devices 451 a, 451b, 451 c, two mixers 461 a, 461b, a reference source R, and an RF source 441 on.
  • the mixers 461a, 461b provide respective output signals SX1, SX2.
  • the sensor device S1 'of this embodiment operates such that only the antenna element 451a is used to radiate radar signals, whereas the antenna elements 451b, 451c are used exclusively for receiving reflected radar signals. This can improve the signal quality of SX1 and SX2 (e.g., by reducing noise).
  • Fig. 4 is sensor devices of a radar sensor device according to a third embodiment of the present invention.
  • the functionality of the sensor device S1'a, S1'b, S1'c according to Fig. 4 corresponds to the functionality of the sensor device S1 'according to Fig. 3 , However, the components are built on three individual chips 411'a, 411'b, 411'c.
  • the chip 411a includes the antenna element 451'a, the reference source R and the mixer 441.
  • the chip 411'b includes the antenna element 451'b and the mixer 461a '.
  • the chip 411'c contains the antenna element 451'c and the mixer 461 b '.
  • FIG. 10 is an arrangement of sensor devices of a radar sensor device according to a fourth embodiment of the present invention.
  • the arrangement of the sensor devices S11, S21, S23, S31 according to FIG. 5 is cruciform.
  • the sensor device S22 is used only for emitting radar signals, whereas the sensor devices S11, S21, S23, S31 are used only for receiving radar signals.
  • the speed in the direction of travel FR, ie along the x-axis can be determined by means of the sensor devices S21, S22, S23.
  • the speed perpendicular to the direction of travel FR, ie in the y direction can be determined by the sensor devices S11, S22, S31.
  • FIG. 10 is an arrangement of sensor devices of a radar sensor device according to a fifth embodiment of the present invention.
  • arrangement of the sensor devices S01-S09 is provided a matrix-shaped arrangement in columns and rows.
  • all sensors S01-S09 are suitable for emitting and receiving radar signals.
  • the accuracy can be increased or a redundancy can be provided for the case of the failure of one or more of the sensor devices.
  • the evaluation device 20 may be integrated in the radar sensor device 50 or may also be provided in a separate housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

    STAND DER TECHNIK
  • Die vorliegende Erfindung betrifft eine Radarsensorvorrichtung.
  • Obwohl auf beliebige Radarsensorvorrichtungen anwendbar, werden die vorliegende Erfindung und die ihr zugrundeliegende Problematik im Hinblick auf einen Einsatz in Automobilen erläutert.
  • Analysen haben gezeigt, dass eine erhebliche Anzahl von Verkehrsunfällen durch rechtzeitiges Erkennen von Gefahren und durch entsprechende angemessene Fahrmanöver vermieden werden kann. Eine Vermeidung kann durch geeignete Warnhinweise an den Fahrer oder durch automatische longitudinale und/oder laterale Kontrolle des Fahrzeugs erreicht werden. Eine Voraussetzung für die Wahrnehmung der Gefahrensituation sind geeignete Sensorvorrichtungen.
  • Seit längerer Zeit werden Radarsysteme im Millimeterwellenbereich als Fahrerassistenzsysteme zur Wahrnehmung von Gefahren bzw. als Sensoren eingesetzt. Eine Speckle-Radarsensorvorrichtung zur Geschwindigkeitsmessung nach dem Laufzeit-Korrelationsverfahren besteht aus mindestens zwei Sensoreinrichtungen nach dem Radar-Prinzip und einer Auswertungseinrichtung zum Auswerten der erfassten Speckle-Muster. Speckle-Radarsensorvorrichtungen sind üblicherweise derart am Fahrzeug montiert, dass sie direkt senkrecht zum Boden senden und empfangen. Bei der Speckle-Musterauswertung werden die ins Basisband heruntergemischten Empfangssignale auf ihre Ähnlichkeit hin untersucht. Ein gängiges mathematisches Verfahren dafür ist die Kreuz-Korrelation. Ein gemessen am Signalverarbeitungsaufwand günstiges Auswertungsprinzip stellt der Laufzeit-Korrelator dar.
  • Wenn mehr als zwei Sensoreinrichtungen verwendet werden, kann man über eine differenzielle Auswertung jeweils zweier Sensoreinrichtungen ein vom Mittelwert befreites Signal zur weiteren noch einfacheren Auswertung erzeugen. Wenn man sich beispielsweise auf drei Sensoren beschränkt, kann man den mittleren Sensor doppelt mit den jeweils benachbarten Sensoren zur Differenzbildung ver wenden. Durch ein Polarisieren der Signale kann man, d.h. durch Anwendung der Signum-Funktion, vor der Korrelationsauswertung weiteren Auswerteaufwand reduzieren. Ordnet man mindestens drei Sensoren in einer Ebene an, so kann man über die zweidimensional gewonnenen Geschwindigkeitsvektoren herausfinden, ob sich ein Fahrzeug in einer gefährlichen Fahrsituation, z.B. Schleudern oder Schwimmen, befindet.
  • Um solche Geschwindigkeitsvektoren zweidimensional zu messen bzw. zu erfassen, gibt es ein weiteres Verfahren, bei dem die Sensoreinrichtungen nicht senkrecht, sondern schräg auf die Fahrbahnoberfläche schauen. Die Auswertung der Ausgangssignale dieser Sensoreinrichtungen basieren auf dem Dopplerprinzip. Dabei wird die geschwindigkeitsabhängige Frequenzverschiebung zwischen dem empfangenen und ausgesendeten Signal festgestellt. Für die zweidimensionale Messung der Geschwindigkeitsvektoren sind auch bei diesem Prinzip mehrere Sensoreinrichtungen nach dem Radar-prinzip notwendig.
  • Die DE 10 2004 059 332 A1 offenbart einen Radar-Transceiver, wobei ein Oszillator, ein Mischer und eine Antenne auf einem einzigen Chip in einer Ebene nebeneinander liegend angeordnet sind. Da auf derartigen Chips das abstrahlende Element integriert ist, benötigt man keine kostenintensiven HFtaugliche Leiterplatten mehr. Zusätzlich spart man an aufwendiger HF-Bond- oder Flip-Chip Technologie, was die Bestückungs- und Testkosten erheblich reduziert.
  • Die DE 196 42 810 C1 offenbart ein Radar-System mit einer integrierten Sensoreinrichtung, wobei sich in Strahlrichtung im Gehäuse eine dielektrische Linse befindet, die einerseits zur Strahlformung dient und andererseits die Sensoreinrichtung sowie weitere Bauelemente vor Verschmutzung und sonstigen Umwelteinflüssen schützt.
  • In der DE 44 12 770 A1 ist eine Mikrowellen-Linsenantennenanordnung für ein Kraftfahrzeug-Abstandswarnradar beschrieben. Das Gehäuse der Mikrowellen-Linsenantennenanordnung weist genau eine als Stufenlinse ausgebildete dielektrische Linse auf, in deren Brennebene drei horizontal nebeneinander angeordnete, getrennt einschaltbare Erreger angeordnet sind.
  • Des Weiteren ist in der US 6,366,245 B1 eine Vorrichtung zum gerichteten Abstrahlen und/oder Aufnehmen einer elektromagnetischen Strahlung beschrieben. Auch das Gehäuse der Vorrichtung weist eine dielektrische Linse auf, welcher mehrere Sende- und Empfangselemente zugeordnet werden können.
  • VORTEILE DER ERFINDUNG
  • Die in Anspruch 1 definierte erfindungsgemäße Radarsensorvorrichtung reduziert die Kosten und Bauraumbedarf für eine Radarsensorvorrichtung, die vorzugsweise zur Bestimmung von Geschwindigkeitsvektoren eines Fahrzeugs gegenüber der Fahrbahn unterhalb des Fahrzeugs zum Einsatz kommt. Durch Kombination einer kostengünstigen Sensoreinrichtung mit einer Auswerteeinrichtung, die einen besonders geringen Rechenaufwand hat, lässt sich eine attraktive Lösung realisieren, die stark gesenkte Gesamtkosten mit sich bringt. Durch den stark integrierten Aufbau sind platzsparende Designs möglich, die den Einsatz im Kraftfahrzeugbereich sehr erleichtern.
  • Im Vergleich zu Systemen nach dem Doppler-Radar-Prinzip wird durch eine senkrechte Ausrichtung der Speckle-Radarvorrichtung zum Untergrund die Verfügbarkeit eines auswertbaren Signals insbesondere in schwierigen Untergrundsituationen, wie z.B. extremer Nässe oder Glatteis erhöht, da bei senkrechter Abstrahlung und senkrechtem Empfang der Radarstrahl nicht wegreflektiert werden kann. Prinzipbedingt besitzt das Speckle-Radarsystem für kleine Geschwindigkeitsvektoren eine größere Auswertedynamik als der Doppler-Ansatz. Dies ist von Vorteil für die Funktion eines Schwimmwinkelsensors, da dort schon geringe Geschwindigkeiten detektiert werden müssen.
  • Die in den Unteransprüchen aufgeführten Merkmale beziehen sich auf vorteilhafte Weiterbildungen und Verbesserungen des Gegenstandes der Erfindung.
  • Gemäß einer weiteren bevorzugten Weiterbildung ist eine Signalverarbeitungseinrichtung zum Verarbeiten der Signale der Sensoreinrichtungen am Substrat angebracht. Dies erhöht die Kompaktheit des Aufbaus weiter. Vorzugsweise ist die Signalverarbeitungseinrichtung dann als separater Chip ausgebildet, welcher mit den Sensoreinrichtungen über Leiterbahnen verbunden ist.
  • Gemäß einer weiteren bevorzugten Weiterbildung sind die integrierten Sensoreinrichtungen derart in einzelne Chips integriert, dass jeder Chip genau eine Antenneneinrichtung aufweist. Es ist jedoch auch möglich, dass die integrierten Sensoreinrichtungen derart in einen oder mehrere Chips integriert sind, dass mindestens ein Chip mehrere Antenneneinrichtungen aufweist.
  • ZEICHNUNGEN
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer Radarsensorvorrichtung gemäß einer ersten Ausführungsform der vorliegenden Erfindung;
    Fig. 2a,b
    ausschnittsweise Vergrößerungen einer Sensoreinrichtung von Fig. 1;
    Fig. 3
    eine Sensoreinrichtung einer Radarsensorvorrichtung gemäß einer zweiten Ausführungsform der vorliegenden Erfindung;
    Fig. 4
    Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer dritten Ausführungsform der vorliegenden Erfindung;
    Fig. 5
    eine Anordnung von Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer vierten Ausführungsform der vorliegenden Erfindung; und
    Fig. 6
    eine Anordnung von Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer fünften Ausführungsform der vorliegenden Erfindung.
    BESCHREIBUNG VON AUSFÜHRUNGSBEISPIELEN
  • In den Figuren bezeichnen gleiche Bezugszeichen gleiche bzw. funktionsgleiche Elemente.
  • Fig. 1 ist eine schematische Darstellung einer Radarsensorvorrichtung gemäß einer ersten Ausführungsform der vorliegenden Erfindung.
  • In Fig. 1 bezeichnet Bezugszeichen 50 eine Speckle-Radarsensorvorrichtung. Auf einem Substrat 52 in Form einer Leiterplatte sind integrierte Sensoreinrichtungen S1, S2, S3 und eine Signalauswerteeinrichtung 20 als jeweiliger Chip 411, 412, 413, 21 angebracht. Beim vorliegenden Beispiel weist das Substrat 52 eine ebene Oberfläche O auf, auf der die Chips 411, 412, 413, 21 befestigt sind, beispielsweise durch Kleben. Die Sensoreinrichtungen sind derart gestaltet, dass Sie über eine jeweilige Antenneneinrichtung 451, 452, 453 Radarsignale in einer jeweiligen, von der Oberfläche O weggerichteten Signalrichtung SI1, SI2, SI3 abstrahlen und aus der jeweiligen Signalrichtung SI1, SI2, SI3 empfangen können. Auf den Antenneneinrichtungen 451, 452, 453 ist beispielhaft jeweils eine stabförmige, dielektrische Strahlvorformungseinrichtung bzw. -linse 421, 422, 423 angeordnet.
  • Die Speckle-Radarsensorvorrichtung 50 gemäß dieser Ausführungsform weist ein Gehäuse 51 auf, und das Substrat 52 umschließt. Der Wandbereich W des Gehäuses 51 ist vorzugsweise parallel ist zur Oberfläche O des Substrats 52 ausgerichtet. Innerhalb des Wandbereichs W des Gehäuses 51 integriert sind strahlformende Elemente 431, 432, 433, welche derart angeordnet sind, dass jeder Sensoreinrichtung S1, S2, S3 ein strahlformende Elemente 431, 432, 433 in seiner zugehörigen Signalrichtung SI1, SI2, SI3 zugeordnet ist. Es sei erwähnt, dass die Verbindung zwischen Substrat 52 und Gehäuse 51 auf viele verschiedene Arten und Weisen bewerkstelligt werden kann, beispielsweise durch Kleben, Löten, Schweißen, Schrauben usw. Vorzugsweise wird das Gehäuse 51 mit den integrierten strahlformenden Elementen 431, 432, 433 einteilig aus einem formbaren oder gießbaren Material gebildet.
  • Die Signalauswerteeinrichtung 20 steuert den Ablauf des Aussendens und Empfangens von Radarsignalen durch die Sensoreinrichtungen S1, S2, S3, mit denen sie über Leiterbahneinrichtungen L1, L2, L3 verbunden ist.
  • Bei der Anordnung der Sensoreinrichtungen S1, S2, S3 gemäß dem Beispiel von Figur 1 lassen sich beispielsweise eine Geschwindigkeit entlang der Achse, auf der die Sensoreinrichtungen S1, S2 liegen, und eine dazu orthogonale Geschwindigkeit entlang der Achse, auf der die Sensoreinrichtungen S2, S3 liegen, ermitteln. Die derart ermittelten Geschwindigkeiten lassen sich als Ausgangssignal OUT von der Signalauswerteeinrichtung 20 nach außerhalb der Radarsensorvorrichtung 50 geben, um beispielsweise auf einem Display angezeigt zu werden oder zur weiteren Verarbeitung in einem Fahrzeugssicherheitssystem (z.B. ESP) verwendet zu werden.
  • Fig. 2a,b sind ausschnittsweise Vergrösserungen einer Sensoreinrichtung von Fig. 1.
  • In Fig. 2a ist eine Vergrößerung des Ausschnitts A1 von Fig. 1 gezeigt, worin die Sensoreinrichtung S1 vergrößert dargestellt ist. In Fig. 2b ist der Aufbau des Chips 411 der Sensoreinrichtung S1 ohne aufgesetzte dielektrische Vorformungseinrichtung 421 dargestellt. Der Chip 411 vereinigt bei diesem Ausführungsbeispiel eine HF-Quelle 441, eine Referenzquelle R, ein Antenneelement 451 und einen Mischer 461 auf sich. Der Ausgang des Mischers liefert ein Signal SX, welches neben weiteren Signalen zur Kreuz-Korrelationsermittlung herangezogen wird. Über die Strahlvorformung mittels der Stabförmigen dielektrischen Linse 421 bzw. die Strahlformung über die strahlformende Linse 431 kann die Qualität der Speckle-Auswertung gesteuert, bzw. eingestellt werden.
  • Die beschriebenen Sensoreinrichtungen S1, S2, S3 senden vorzugsweise senkrecht elektromagnetische Wellen mit einer konstanten Frequenz in Richtung Fahrbahn aus. Die senkrecht reflektierten und von der jeweiligen Sensoreinrichtung S1, S2, S3 wieder empfangenen elektromagnetischen Signale werden vorzugsweise ins Basisband, (d.h. mit der Sendefrequenz) heruntergemischt und der Signalverarbeitungseinrichtung 20 zugeführt. Als kostengünstige Signalverarbeitungsmethode kann ein bekannter Laufzeit-Korrelator verwendet werden. Hierdurch wird eines der Basisband-Signale, z.B. SX in der Zeit solange verschoben, bis der Vergleich mit dem Signal der auf der Selben Achse liegenden anderen Sensoreinrichtung eine maximale Übereinstimmung zeigt. Aus der Verschiebungszeit und dem Abstand der Sensoreinrichtungen auf dem Substrat 52 kann man einen Geschwindigkeitsvektor über den Grund entlang der betreffenden Achse der Radarsensorvorrichtung bestimmen.
  • Zur Auswertung müssen die Ausgangssignale der Sensoreinrichtungen S1, S2, S3 vor dem Vergleich in einer vorzugsweisen A/D Wandlung vom Mittelwert befreit werden. Eine Möglichkeit, um direkt ein vom Mittelwert befreites Signal zu erhalten, ergibt sich durch die Differenzbildung der Ausgangssignale zweier Sensoren.
  • Die wesentlichen Speckle-Informationen liegen in den Nulldurchgängen der vom Mittelwert befreiten Signale der Sensoreinrichtungen S1, S2, S3. Diese Signale kann man beispielsweise in einem A/D Wandler amplitudenbegrenzt abtasten bzw. über die Signum-Funktion polarisieren, um so die zu verarbeitende Datenmenge stark zu reduzieren.
  • Fig. 3 ist eine Sensoreinrichtung einer Radarsensorvorrichtung gemäß einer zweiten Ausführungsform der vorliegenden Erfindung.
  • Die in Fig. 3 gezeigte Sensoreinrichtung S1', welche in einen Chip 411' integriert ist, weist 3 Antenneneinrichtungen 451 a, 451b, 451 c , zwei Mischer 461 a, 461b, eine Referenzquelle R, sowie eine HF-Quelle 441 auf. Die Mischer 461a, 461b liefern jeweilige Ausgangssignale SX1, SX2.
  • Die Sensoreinrichtung S1' dieser Ausführungsform arbeitet derart, dass nur das Antennenelement 451 a zum Abstrahlen von Radar-Signalen verwendet wird, wohingegen die Antennenelemente 451 b, 451 c ausschließlich zum Empfangen reflektierter Radarsignale verwendet werden. Dies kann die Signalqualität von SX1 und SX2 verbessern (z.B. durch Reduzierung von Störungen).
  • Fig. 4 ist Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer dritten Ausführungsform der vorliegenden Erfindung.
  • Die Funktionalität der Sensoreinrichtung S1'a, S1'b, S1'c gemäß Fig. 4 entspricht der Funktionalität der Sensoreinrichtung S1' gemäß Fig. 3. Jedoch sind die Komponenten auf drei einzelnen Chips 411'a, 411'b, 411'c aufgebaut. Der Chip 411a enthält das Antennenelement 451'a, die Referenzquelle R und den Mischer 441. Der Chip 411'b enthält das Antennenelement 451'b und den Mischer 461 a'. Der Chip 411'c enthält das Antennenelement 451'c und den Mischer 461 b'.
  • Um die selbe Funktionalität wie bei der Sensoreinrichtung gemäß Figur 3 zu erzielen, sind die Mischer 461 a', 461 b' und die HF-Quelle 441 über Leiterbahneinrichtungen La, Lb, Lc miteinander verschaltet.
  • Fig. 5 ist eine Anordnung von Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer vierten Ausführungsform der vorliegenden Erfindung.
  • Die Anordnung der Sensoreinrichtungen S11, S21, S23, S31 gemäß Figur 5 ist kreuzförmig. Vorzugsweise wird die Sensoreinrichtung S22 nur zum Abstrahlen von Radarsignalen verwendet, wohingegen die Sensoreinrichtungen S11, S21, S23, S31 nur zum Empfangen von Radarsignalen verwendet werden. Die Geschwindigkeit in Fahrtrichtung FR, also entlang der x-Achse lässt sich mittels der Sensoreinrichtungen S21, S22, S23 ermitteln. Die Geschwindigkeit senkrecht zur Fahrtrichtung FR, also in y-Richtung lässt sich durch die Sensoreinrichtungen S11, S22, S31 ermitteln.
  • Fig. 6 ist eine Anordnung von Sensoreinrichtungen einer Radarsensorvorrichtung gemäß einer fünften Ausführungsform der vorliegenden Erfindung.
  • Bei der in Fig. 6 gezeigten Anordnung der Sensoreinrichtungen S01-S09 ist eine matrixförmige Anordnung in Spalten und Zeilen vorgesehen. Bei diesem Beispiel sind alle Sensoren S01-S09 zum Abstrahlen und Empfangen von Radarsignalen geeignet. Durch die Verwendung einer derartigen Vielzahl von Sensoreinrichtungen S01-S09 kann beispielsweise die Genauigkeit erhöht werden bzw. eine Redundanz für den Fall des Ausfallens einer oder mehrerer der Sensoreinrichtungen vorgesehen werden.
  • Obwohl die vorliegende Erfindung vorstehend anhand bevorzugter Ausführungsbeispiele beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
  • Obwohl bei den oben beschriebenen Ausführungsformen von Anwendungen im Automobilbereich die Rede war, ist die vorliegende Erfindung darauf nicht beschränkt. Auch können beliebige Auswerteverfahren bzw. Anordnungen der Sensoreinrichtungen vorgesehen werden und nicht nur die oben erläuterten. Die Auswerteeinrichtung 20 kann in der Radarsensorvorrichtung 50 integriert sein oder kann auch in einem separaten Gehäuse vorgesehen sein.

Claims (14)

  1. Radarsensorvorrichtung (50) für ein Fahrzeug mit:
    einer ersten Mehrzahl integrierter Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09), welche auf einer Oberfläche (O) eines Substrats (52) angebracht sind;
    wobei die integrierten Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) derart gestaltet sind, dass sie über eine jeweilige Antenneneinrichtung (451, 452, 453; 451 a, 451b, 451 c; 451 a', 451 b', 451 c') Radarsignale in einer jeweiligen, von der Oberfläche (O) weggerichteten Signalrichtung (SI1, SI2, SI3) abstrahlen und/oder aus der jeweiligen Signalrichtung (SI1, SI2, SI3) empfangen können; und
    einem Gehäuse (51) zum Verpacken der ersten Mehrzahl integrierter Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09), wobei das Gehäuse (51) einen Wandbereich (W) aufweist, in welchem mindestens ein strahlformendes Element (431, 432, 433) integriert ist;
    dadurch gekennzeichnet, dass
    eine zweite Mehrzahl strahlformender Elemente (431, 432, 433) in dem Wandbereich (W) des Gehäuses (51) integriert ist;
    wobei die strahlformenden Elemente (431, 432, 433) derart in dem Wandbereich (W) angeordnet sind, dass jeder Sensoreinrichtung (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) ein einziges strahlformendes Element (431, 432, 433) in seiner zugehörigen Signalrichtung (SI1, SI2, SI3) zugeordnet ist; und
    wobei die integrierten Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) derart angeordnet sind, um eine erste Geschwindigkeit des Fahrzeugs mit der Radarsensorvorrichtung (50) gegenüber der Fahrbahn unterhalb des Fahrzeugs entlang einer ersten Achse und eine zweite Geschwindigkeit des Fahrzeugs mit der Radarsensorvorrichtung (50) gegenüber der Fahrbahn unterhalb des Fahrzeugs entlang einer zweiten, zur ersten Achse orthogonalen Achse zu ermitteln.
  2. Radarsensorvorrichtung (50) nach Anspruch 1, wobei eine Signalverarbeitungseinrichtung (20) zum Verarbeiten der Signale der Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) am Substrat (52) angebracht ist.
  3. Radarsensorvorrichtung (50) nach Anspruch 2, wobei die Signalverarbeitungseinrichtung (20) als separater Chip ausgebildet ist, welcher mit den Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) über Leiterbahnen (L1, L2, L3) verbunden ist.
  4. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei die integrierten Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) derart in einzelne Chips (411, 412, 413) integriert sind, dass jeder Chip (411, 412, 413) genau eine Antenneneinrichtung (451, 452, 453; 451 a, 451 b, 451 c; 451a', 451b', 451 c') aufweist.
  5. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei die integrierten Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) derart in einen oder mehrere Chips integriert sind, dass mindestens ein Chip (S1') mehrere Antenneneinrichtungen aufweist.
  6. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei die integrierten Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) matrixförmig angeordnet sind.
  7. Radarsensorvorrichtung (50) nach der vorhergehenden Ansprüche, wobei eine zentrale Sensoreinrichtung (S22) zum ausschließlichen Abstrahlen von Radarsignalen und mehrere die zentrale Sensoreinrichtung (S22) umgebende periphere Sensoreinrichtungen (S11, S21, S23, S31) zum ausschließlichen Empfangen von Radarsignalen vorgesehen sind.
  8. Radarsensorvorrichtung (50) nach Anspruch 7, wobei die peripheren Sensoreinrichtungen (S11, S21, S23, S31) in zwei orthogonalen Linien angeordnet sind.
  9. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei auf den Antenneneinrichtungen (451, 452, 453; 451 a, 451b, 451 c; 451 a', 451 b', 451 c') jeweils eine stabförmige Strahlvorformungseinrichtung (421, 422, 423) vorgesehen ist.
  10. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei das Substrat (52) eine Leiterplatte ist.
  11. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, wobei das Gehäuse (51) das Substrat (52) derart quaderförmig umschließt, dass der Wandbereich (W) die Quaderoberseite ist.
  12. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, welche zur Messung der Geschwindigkeit nach einem Laufzeit-Korrelationsverfahren ausgelegt ist.
  13. Radarsensorvorrichtung (50) nach einem der vorhergehenden Ansprüche, welche ausgelegt ist, nach dem Speckle-Verfahren zu arbeiten.
  14. Radarsensorvorrichtung (50) nach Anspruch 2, wobei die Signalverarbeitungseinrichtung (20) in einer der Sensoreinrichtungen (S1, S2, S3; S1'; S1'a, S1'b, S1'c; S11-S31; S01-S09) integriert ist.
EP08786260A 2007-08-23 2008-07-18 Radarsensorvorrichtung Not-in-force EP2186161B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710039834 DE102007039834A1 (de) 2007-08-23 2007-08-23 Radarsensorvorrichtung
PCT/EP2008/059480 WO2009024421A1 (de) 2007-08-23 2008-07-18 Radarsensorvorrichtung

Publications (2)

Publication Number Publication Date
EP2186161A1 EP2186161A1 (de) 2010-05-19
EP2186161B1 true EP2186161B1 (de) 2012-11-14

Family

ID=39952410

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08786260A Not-in-force EP2186161B1 (de) 2007-08-23 2008-07-18 Radarsensorvorrichtung

Country Status (3)

Country Link
EP (1) EP2186161B1 (de)
DE (1) DE102007039834A1 (de)
WO (1) WO2009024421A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014014860B3 (de) * 2014-10-06 2015-09-17 Audi Ag Radarsensoranordnung und Kraftfahrzeug
US20190207303A1 (en) * 2016-07-01 2019-07-04 Cambridge Communication Systems Limited An antenna for a communications system
GB2551840A (en) * 2016-07-01 2018-01-03 Cambridge Communication Systems Ltd An antenna for a communications system
US10852418B2 (en) * 2016-08-24 2020-12-01 Magna Electronics Inc. Vehicle sensor with integrated radar and image sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412770A1 (de) * 1994-04-13 1995-10-19 Siemens Ag Mikrowellen-Linsenantennenanordnung für Kraftfahrzeug-Abstandswarnradar
US6366245B1 (en) * 1998-12-21 2002-04-02 Robert Bosch Gmbh Device for directionally emitting and/or receiving electromagnetic radiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642810C1 (de) 1996-10-17 1998-04-02 Bosch Gmbh Robert Radarsystem, insbesondere Kraftfahrzeug-Radarsystem
DE10237790A1 (de) 2002-08-17 2004-02-26 Robert Bosch Gmbh Einrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeugs
US6897819B2 (en) 2003-09-23 2005-05-24 Delphi Technologies, Inc. Apparatus for shaping the radiation pattern of a planar antenna near-field radar system
DE102004007315A1 (de) * 2004-02-14 2005-08-25 Robert Bosch Gmbh Nahbereichsradar mit Mehrfachsensorik zur Ortung von in einem Medium eingeschlossenen Objekten
DE102004037907A1 (de) * 2004-08-05 2006-03-16 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
DE102004059332A1 (de) 2004-12-09 2006-06-14 Robert Bosch Gmbh Radar-Transceiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412770A1 (de) * 1994-04-13 1995-10-19 Siemens Ag Mikrowellen-Linsenantennenanordnung für Kraftfahrzeug-Abstandswarnradar
US6366245B1 (en) * 1998-12-21 2002-04-02 Robert Bosch Gmbh Device for directionally emitting and/or receiving electromagnetic radiation

Also Published As

Publication number Publication date
DE102007039834A1 (de) 2009-02-26
EP2186161A1 (de) 2010-05-19
WO2009024421A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
EP3198678B1 (de) Mimo-radarvorrichtung zum entkoppelten bestimmen eines elevationswinkels und eines azimutwinkels eines objekts und verfahren zum betreiben einer mimo-radarvorrichtung
EP3140882B1 (de) Antennenvorrichtung für ein fahrzeug
EP2191295B1 (de) Kfz-fmcw-radar beabstandeten, linearen frequenz-rampen unterschiedlicher steigung, die unterschiedlichen winkelbereichen zugeordnet sind
DE112010005193B4 (de) Hindernis-Erfassungsvorrichtung
EP1478942B1 (de) Radarsensor für kraftfahrzeuge mit einer auf die strassenoberfläche gerichteten antennennebenkeule
DE112018002210T5 (de) Radarantennenarray für dreidimensionale Bildgebung
DE60203661T2 (de) Verfahren und Radar zur Abstandsdetektion eines Zieles
EP1506432B1 (de) Sensor zum aussenden und empfangen von elektromagnetischen signalen
DE112010005194T5 (de) Hinderniserfassungsvorrichtung
DE102004059915A1 (de) Radarsystem
WO2020052719A1 (de) Radarsystem mit einer kunststoffantenne mit reduzierter empfindlichkeit auf störwellen auf der antenne sowie auf reflektionen von einer sensorabdeckung
DE102006049879A1 (de) Radarsystem für Kraftfahrzeuge
EP2186161B1 (de) Radarsensorvorrichtung
DE102018124503A1 (de) Radarsystem für ein Fahrzeug
WO2006066781A2 (de) Kraftfahrzeug-radarsystem mit segmentweisem phasendifferenz-auswerteverfahren
EP3646055A1 (de) Nahfeld-radareinrichtung, land-, luft- oder wasser-fahrzeug, verwendung einer radareinrichtung, verfahren zum betrieb einer radareinrichtung sowie computerprogramm
EP2983008B1 (de) Sensorvorrichtung mit kombiniertem ultraschallsensor und radarsensor zum erfassen eines objekts in einem umfeld eines kraftfahrzeugs und kraftfahrzeug
WO2003050562A1 (de) Verfahren zur hinderniserkennung für ein kfz mit mindestens drei abstandssensoren zum erfassen der lateralen ausdehnund objekts
EP1969394A1 (de) Radarvorrichtung
DE102012224062A1 (de) Streifenleiterantenne, Gruppenantenne und Radarvorrichtung
DE102017212722A1 (de) Radarsensor mit mehreren Hauptstrahlrichtungen
DE102019114331A1 (de) Multimodale radarantenne
WO2018108537A1 (de) Synthetik-apertur-radarverfahren und synthetik-apertur-radarsystem
DE102016221693B4 (de) Kraftfahrzeug mit mehreren Radarsensoren
WO2024115348A1 (de) Antennenanordnung für ein radarsystem mit wenigstens einem quadratischen antennenelementfeld, radarsystem, fahrerassistenzsystem, fahrzeug und verfahren zum betreiben eines radarsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100323

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20100607

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 584393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121115

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008653

Country of ref document: DE

Effective date: 20130110

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130225

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008653

Country of ref document: DE

Effective date: 20130815

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008008653

Country of ref document: DE

Effective date: 20140201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 584393

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121114