EP2185749B1 - Device and method for producing electrically conductive nanostructures by means of electrospinning - Google Patents

Device and method for producing electrically conductive nanostructures by means of electrospinning Download PDF

Info

Publication number
EP2185749B1
EP2185749B1 EP08801617.5A EP08801617A EP2185749B1 EP 2185749 B1 EP2185749 B1 EP 2185749B1 EP 08801617 A EP08801617 A EP 08801617A EP 2185749 B1 EP2185749 B1 EP 2185749B1
Authority
EP
European Patent Office
Prior art keywords
spinning
capillary
substrate
spinning capillary
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08801617.5A
Other languages
German (de)
French (fr)
Other versions
EP2185749A2 (en
Inventor
Stefan BAHNMÜLLER
Andreas Greiner
Joachim H. Wendorff
Roland Dersch
Jacob Belardi
Max c/o Phillips Universität Marburg VON BISTRAM
Stefanie Eiden
Stephan Michael Meier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant International Ltd
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Priority to PL08801617T priority Critical patent/PL2185749T3/en
Publication of EP2185749A2 publication Critical patent/EP2185749A2/en
Application granted granted Critical
Publication of EP2185749B1 publication Critical patent/EP2185749B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide

Definitions

  • the invention is based on known methods for producing structures of electrically conductive material using printing methods.
  • the invention relates to a method with which it is possible to deposit nanofibers targeted with high local precision on any surface. This is made possible by a particularly adapted process of so-called electrospinning in conjunction with a material suitable for this, from which the electrically conductive structures are formed by the structures consist of conductive particles or subjected to a post-treatment to generate conductivity.
  • the optical transparency and gloss are technically demanding in this context. They can only be reached via three routes. Either the substrate material itself is deliberately made conductive without impairing its mechanical and optical properties, or a material is used which is conductive, but visually optically imperceptible to humans and can be easily applied selectively to the surface of the substrate, or a conductive material is used which, although not transparent itself, can be applied to the surface by means of a suitable process such that the resulting structure is suitable for human beings Generally without the aid of optical aids is imperceptible. This does not affect the gloss and transparency properties of the substrate.
  • submicron-scale structures i.e., having a line width of ⁇ ⁇ m are particularly desirable.
  • a method by which structures smaller than 1 ⁇ m can alternatively be represented on polymer surfaces is the so-called hot embossing.
  • By the method have already been Circular surface structures with a diameter of approx. 25 nm are shown [ Appl. Phys. Lett. 1995, 67, 3114 ; Adv. Mater. 2000, 12, 189 ].
  • Disadvantage of hot stamping is the restriction of the structural shape to the shape of the embossing stamp or embossing roll used in each case. A free design of the structure is not possible hereby.
  • Electrospun fibers are only obtained in the form of large, disordered fiber mats. Ordered fibers are so far only possible by spinning on a rotating roll [ Biomacromolecules, 2002, 3, 232 ]. It is also known that in principle conductive fibers can be spun by means of "electrospinning". A corresponding conductive material for such use utilizing the conductivity of carbon nanotubes is also known. [ Langmuir, 2004, 20 (22), 9852 ].
  • US2005-0287366 discloses a method and material that can be used to produce conductive fibers.
  • the method involves electrospinning at a distance of about 200 mm, so that also disordered fiber mats are obtained.
  • the material is a polymer which is rendered conductive via further post-treatment steps involving a thermal treatment. A specific orientation and application of the fibers obtained on a substrate is not disclosed.
  • a device for producing conductive linear structures having a line width of at most 5 .mu.m on a particular non-electrically conductive substrate which is the subject of the invention, at least comprising a substrate holder, a spinning capillary, with a supply of a spinning liquid and an electrical power supply is connected, a controllable movement unit for moving the spinning capillary and / or the substrate holder relative to each other, an optical measuring device, in particular a camera, for tracking the spinning process at the output of the spinning capillary, and a computing unit for controlling the distance of the spinning capillary relative to Substrate support depending on the spinning process.
  • the spinning capillary preferably has an opening width of not more than 1 mm.
  • the spinning capillary has a circular opening with an inner diameter of 0.01 to 1 mm, preferably 0.01 to 0.5 mm, particularly preferably 0.01 to 0.1 mm.
  • the voltage supply delivers an output voltage of up to 10 kV, preferably from 0.1 to 10 kV, particularly preferably from 1 to 10 kV, very particularly preferably from 2 to 6 kV.
  • controllable movement unit serves to move the substrate holder.
  • the spinning capillary is adjustable to a distance of 0.1 to 10 mm, preferably 1 to 5 mm, more preferably 2 to 4 mm to the substrate surface.
  • the stock for the spinning liquid is provided with a conveying device which conveys the spinning liquid into the spinning capillary.
  • a conveying device which conveys the spinning liquid into the spinning capillary.
  • this is a piston syringe, which is provided with a motor spindle as a piston propulsion.
  • the invention also provides a process for producing conductive linear structures having a line width of at most 5 ⁇ m on a, in particular non-electrically conductive substrate by electrospinning, characterized in that a spinning liquid based on an electrically conductive material or a precursor compound for an electrically conductive material from a spinning capillary having an opening width of not more than 1 mm while applying an electrical voltage between substrate or substrate holder and spinning capillary or spinning capillary holder of at least 100 V at a distance of at most 10 mm between the output of the spinning capillary and the surface of the substrate is spun onto the substrate surface and the substrate surface is moved relative to the output of the spinning capillary, wherein the relative movement is controlled depending on the spin flow that removes the solvent of the spinning liquid and optionally the precursor erucun is treated to an electrically conductive material.
  • Suitable substrates are electrically non-conductive or poorly conductive materials such as plastics, glass or ceramic, or semiconducting materials such as silicon, germanium, gallium arsenide and zinc sulfide.
  • the distance between the exit of the spinning capillary and the substrate surface is set to 0.1 to 10 mm, preferably 1 to 5 mm, particularly preferably 2 to 4 mm.
  • the viscosity of the spinning liquid is preferably at most 15 Pa.s, more preferably 0.5 to 15 Pa.s, more preferably 1 to 10 Pa.s, most preferably 1 to 5 Pa.s.
  • the spinning liquid preferably comprises at least one solvent, in particular at least one selected from the group: water, C 1 -C 6 -alcohol, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide and meta-cresol, a polymeric additive, preferably polyethylene oxide, polyacrylonitrile, polyvinylpyrrolidone, Carboxymethylcellulose or polyamide and a conductive material.
  • a solvent in particular at least one selected from the group: water, C 1 -C 6 -alcohol, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide and meta-cresol
  • a polymeric additive preferably polyethylene oxide, polyacrylonitrile, polyvinylpyrrolidone, Carboxymethylcellulose or polyamide and a conductive material.
  • the spin liquid contains as conductive material at least one of the series: conductive polymer, a metal powder, a metal oxide powder, carbon nanotubes, graphite and carbon black.
  • the conductive polymer is particularly preferably selected from the series: polypyrrole, polyaniline, polythiophene, polyphenylenevinylene, polyparaphenylene, polyethylene dioxythiophene, polyfluorene, polyacetylene, particularly preferably polyethylenedioxythiophene / polystyrenesulphonic acid.
  • the spinning liquid as a conductive material preferably at least one metal powder of the metals silver, gold and copper, preferably silver is used as the solvent, a dispersant-containing water and optionally additionally C 1 - C 6 alcohol, wherein the metal powder is present in dispersed form and has a particle diameter of at most 150 nm.
  • the dispersing aid comprises at least one agent selected from the group: alkoxylates, alkylolamides, esters, amine oxides, alkylpolyglucosides, alkylphenols, arylalkylphenols, water-soluble homopolymers, water-soluble random copolymers, water-soluble block copolymers, water-soluble graft polymers, in particular polyvinyl alcohols, copolymers of polyvinyl alcohols and polyvinyl acetates, polyvinylpyrrolidones, Cellulose, starch, gelatin, gelatin derivatives, amino acid polymers, polylysine, polyaspartic acid, polyacrylates, polyethylene sulfonates, polystyrenesulfonates, polymethacrylates, condensation products of aromatic sulfonic acids with formaldehyde, naphthalenesulfonates, lignosulfonates, copolymers of acrylic monomers, polyethyleni
  • a particularly preferred spinning liquid is characterized in that the silver particles a) have an effective particle diameter of 10 to 150 nm, preferably from 40 to 80 nm, determined by laser correlation spectroscopy.
  • the silver particles are preferably contained in the formulation in a proportion of 1 to 35 wt .-%, particularly preferably 15 to 25 wt .-%.
  • the content of dispersing agent in the spinning liquid is preferably 0.02 to 5 wt .-%, particularly preferably 0.04 to 2 wt .-%.
  • a spinning liquid which has a precursor compound for an electrically conductive material which is selected from the series: polyacrylonitrile, polypyrrole, polyaniline, polyethylenedioxythiophene and additionally a metal salt, in particular an iron (III) salt preferably contains iron (III) nitrate.
  • Solvents come here z. For example, acetone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, meta-cresol and water in question.
  • the method is very particularly preferably carried out in such a way that the above-described new apparatus or one of its preferred variants is used for spinning the spinning liquid.
  • the desired fine conductive structures are produced by electrospinning. Depending on the spinning solution used, it will be necessary to post-treat the structures to achieve or increase the desired conductivity.
  • receptacle for capillary and substrate are designed so that a relative positioning of capillary opening to the substrate surface is possible.
  • the capillary can be positioned above the substrate by means of positioning motors, in another it is possible with positioning motors to position the substrate under the capillary during spinning.
  • substrate and capillary can be moved.
  • the substrate is moved under the capillary.
  • the spinning process is stabilized such that the resulting structure on the surface has no breaks.
  • This is preferably achieved by regulating the capillary distance relative to the substrate surface by interrupting the continuation of the line via a control loop as a function of a camera image, if obviously the filament breaks off.
  • the stabilization of the process is achieved so that a computer analyzes the image of the camera and interrupts the relative advancement of the capillary with respect to the substrate if the analysis results in a break, a change in linewidth, or a bubble in the continuous fiber.
  • the camera can be positioned anywhere, eg. B. in transparent substrates below the substrate or near the capillary opening.
  • the minimum voltage to be applied in the process varies linearly with the set distance and is also dependent on the type of spinning fluid.
  • an operating voltage of 0.1 to 10 kV should be used for spinning for structured laying of the fibers, as described above.
  • the material to be spun for carrying out the process should have a viscosity of in particular not more than 15 Pa ⁇ s in order to reliably produce conductive structures with the spinning material.
  • the specified material is desirably on the substrate and may be post-treated as needed to increase conductivity.
  • This post-treatment includes the entry of energy into the generated structures.
  • the polymer particles present in suspension in the solvent are e.g. fused together by heating the suspension on the substrate while the solvent evaporates at least partially.
  • the post-treatment step is carried out at least at the melting temperature of the conductive polymer, more preferably above its melting temperature. This creates continuous tracks.
  • a post-treatment of the structures / fibers on the substrate by means of microwave radiation.
  • the aftertreatment of the generated lines vaporizes the solvent between the dispersed particulates to obtain continuous, carbon nanotube, percolatable webs.
  • the treatment step is in this case carried out in the region of the evaporation temperature of the solvent contained in the material or above, preferably above the evaporation temperature of the solvent. Once the percolation limit has been reached, the desired printed conductors are created.
  • conductive structures can also be produced by depositing a precursor material for an electrically conductive material, for example polyacrylonitrile (PAN), on the substrate and is annealed under changing gaseous media to produce carbon as a conductive substance, as described below.
  • PAN polyacrylonitrile
  • a solution of a polymer e.g., PAN or carboxymethyl cellulose
  • a metal salt e.g., a ferric salt such as ferric nitrate
  • a solvent suitable for both components e.g., DMF
  • the polymer should be convertible to a conductive material stable at such temperatures.
  • Particularly preferred polymers are those which can be converted to carbon by high temperature treatment.
  • Particularly preferred are graphitizable polymers (e.g., polyacrylonitrile at 700-1000 ° C).
  • the metal salts those whose decomposition temperature or decomposition temperature under the reductive atmosphere is below the decomposition temperature of the respective polymer (e.g., ferric nitrate nonahydrate at 150 ° C to 350 ° C) are preferred.
  • the polymer is converted into carbon in the presence of the metal particles.
  • carbon is additionally deposited on the structures from the gas phase, preferably by chemical vapor deposition from hydrocarbons.
  • volatile carbon precursors are passed over the structures at high temperatures. Preference is given here to using short-chain aliphatics, more preferably e.g.
  • Methane, ethane, propane, butane, pentane, or hexane particularly preferably the liquid at room temperature aliphatic n-pentane and n-hexane.
  • the temperatures should be selected so that the metal particles promote the growth of tubular carbon filaments and an additional graphite layer along the fiber.
  • this temperature range is e.g. between 700 and 1000 ° C, preferably between 800-850 ° C.
  • the duration of the vapor deposition in the above case is between 5 minutes and 60 minutes, preferably between 10 to 30 minutes.
  • the aftertreatment can be carried out by heating the entire component or specifically the printed conductors to a temperature at which the metal particles sinter together and the solvent at least partially evaporated.
  • the smallest possible particle diameters are advantageous, since with nanoscale particles the sintering temperature is proportional to the particle size, so that a lower sintering temperature is required for smaller particles.
  • the boiling point of the solvent is as close as possible to the sintering temperature of the particles and is as low as possible to protect the substrate thermally.
  • the solvent of the spinning liquid preferably boils at a temperature ⁇ 250 ° C, especially preferably at a temperature ⁇ 200 ° C, particularly preferably at a temperature ⁇ 100 ° C. All temperatures given here are based on boiling temperatures at a pressure of 1013 hPa.
  • the sintering step is carried out at the indicated temperatures until a continuous conductor has been formed. This is preferably a period of one minute to 24 hours, more preferably from five minutes to 8 hours, particularly preferably from two to eight hours.
  • the new method is used in particular for the production of substrates which have conductive structures on their surface which have a dimension of not more than 1 ⁇ m in one dimension, preferably from 1 ⁇ m to 50 nm, particularly preferably from 500 nm to 50 nm, wherein the conductive material is preferably a suspension of conductive particles as described above, and the substrate is preferably transparent, for example to glass, ceramic, semiconductor material or a transparent polymer as described above.
  • FIG. 1 shows a schematic of the spinning device according to the invention.
  • the viscosity of the resulting solution was about 4.1 Pa ⁇ s.
  • the spinning process was initiated at a distance of 0.6 mm between the capillary opening and the surface of the substrate 9 at a voltage of 1.9 kV between spinning capillary 2 and substrate 9. After setting a stable fiber flow, the voltage was adjusted to 0.47 kV and the distance increased to 2.2 mm. In this setting, the spinning solution 4 was spun onto the surface of the substrate 9 and the substrate moved laterally to produce lines.
  • the substrate 9 with the obtained PAN fibers was subsequently within 90 min. heated from 20 to 200 ° C, then treated for 60 minutes at 200 ° C. Thereafter, the air of the drying oven in which the sample 9 was located, was replaced by argon and the temperature increased to 250 ° C within 30 minutes. Argon was then replaced by hydrogen. Under this hydrogen atmosphere, the temperature was again kept at 250 ° C for 60 minutes. The mixture was then switched back to argon as gas for the drying oven and the sample 9 was heated to a temperature of 800 ° C within two hours. Finally, the argon was added to the argon hexane for seven minutes and finally the sample 9 was cooled back to room temperature under argon. The cooling process was not regulated, but it was waited until the interior of the furnace had reached a temperature of 20 ° C.
  • the result was a conductive line based essentially on carbon. When contacting two points of the line at a distance of 190 microns, a resistance of 1.3 kOhm was measured. The line had a linewidth of about 130 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Coating Apparatus (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Conductive Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung geht aus von bekannten Verfahren zur Erzeugung von Strukturen aus elektrisch leitfähigem Material unter Verwendung von Druckverfahren. Die Erfindung bezieht sich auf ein Verfahren, mit dem es ermöglicht wird Nanofasern gezielt mit hoher örtlicher Präzision auf einer beliebigen Oberfläche abzulegen. Dies wird ermöglicht durch einen besonders angepassten Prozess des sogenannten Elektrospinnens in Verbindung mit einem hierfür geeigneten Material, aus dem die elektrisch leitfähigen Strukturen entstehen, indem die Strukturen aus leitfähigen Partikeln bestehen oder einer Nachbehandlung zur Erzeugung von Leitfähigkeit unterzogen werden.The invention is based on known methods for producing structures of electrically conductive material using printing methods. The invention relates to a method with which it is possible to deposit nanofibers targeted with high local precision on any surface. This is made possible by a particularly adapted process of so-called electrospinning in conjunction with a material suitable for this, from which the electrically conductive structures are formed by the structures consist of conductive particles or subjected to a post-treatment to generate conductivity.

Viele Bauteile (z.B. viele Innenausbauten von Automobilen; Scheiben) und Gegenstände des täglichen Bedarfs (z.B. Getränkeflaschen) bestehen im Wesentlichen aus elektrisch isolierenden Materialien. Dies umfasst sowohl bekannte Polymere, wie Polyvinylchlorid, Polypropylen etc., aber auch Keramik, Glas und andere Mineralwerkstoffe. Vielfach ist die Isolationswirkung des Bauteils gewünscht (z.B. bei Gehäusen von mobilen Computern). Allerdings besteht ebenso häufig ein Bedarf auf solche Bauteile oder Gegenstände eine elektrisch leitfähige Oberfläche, oder Struktur aufzubringen, um zum Beispiel elektronische Funktionen direkt in das Bauteil, oder den Gegenstand zu integrieren.Many components (e.g., many automotive interiors; panes) and everyday necessities (e.g., beverage bottles) are essentially made of electrically insulating materials. This includes both known polymers, such as polyvinyl chloride, polypropylene, etc., but also ceramics, glass and other mineral materials. In many cases, the insulating effect of the component is desired (for example in the case of mobile computer housings). However, there is also a frequent need to provide such components or articles with an electrically conductive surface or structure to, for example, integrate electronic functions directly into the device or article.

Weitere Anforderungen an die Oberfläche von Gebrauchsgegenständen und deren Material sind eine möglichst große gestalterische Freiheit in der Formgebung, positive mechanische Eigenschaften (z.B. hohe Schlagzähigkeit), sowie bestimmte optische Eigenschaften (z.B. Transparenz, Glanz etc.), die insbesondere von den oben beispielhaft aufgeführten Materialien mit unterschiedlicher Gewichtung erreicht werden.Other requirements for the surface of everyday objects and their material are the greatest possible creative freedom in the design, positive mechanical properties (eg high impact resistance), as well as certain optical properties (eg transparency, gloss, etc.), in particular of the above exemplified materials be achieved with different weighting.

Bedarf besteht also die positiven Eigenschaften des Materials zu erhalten und gezielt eine leitfähige Oberfläche zu erzeugen. Insbesondere die optische Transparenz und Glanz sind in diesem Zusammenhang technisch anspruchsvoll. Erreicht werden können sie nur über drei Wege. Entweder wird das Substratmaterial selbst gezielt leitfähig gemacht, ohne dabei seine mechanischen und optischen Eigenschaften zu verschlechtern, oder es wird ein Material benutzt, dass leitfähig, aber visuell optisch für den Menschen nicht wahrnehmbar ist und sich auf der Oberfläche des Substrats leicht gezielt applizieren lässt, oder es wird ein leitfähiges Material verwendet, das zwar selbst nicht transparent ist, aber mittels eines geeigneten Prozesses dergestalt auf der Oberfläche appliziert werden kann, dass die resultierende Struktur für den Menschen im Allgemeinen ohne Zuhilfenahme optischer Hilfsmittel nicht wahrnehmbar ist. Damit werden die Eigenschaften Glanz und Transparenz des Substrats nicht beeinflusst.There is therefore a need to maintain the positive properties of the material and to selectively produce a conductive surface. In particular, the optical transparency and gloss are technically demanding in this context. They can only be reached via three routes. Either the substrate material itself is deliberately made conductive without impairing its mechanical and optical properties, or a material is used which is conductive, but visually optically imperceptible to humans and can be easily applied selectively to the surface of the substrate, or a conductive material is used which, although not transparent itself, can be applied to the surface by means of a suitable process such that the resulting structure is suitable for human beings Generally without the aid of optical aids is imperceptible. This does not affect the gloss and transparency properties of the substrate.

Im Allgemeinen gilt jede Struktur als visuell nicht wahrnehmbar, die aufgebracht auf eine zweidimensionale Oberfläche in einer ihrer beiden Dimensionen auf der Substratebene eine charakteristische Länge von 20 µm nicht überschreitet. Um jegliche Beeinflussung der Oberflächenwahrnehmung sicher zu unterbinden sind Strukturen im submikronen Bereich (d.h. mit einer Linienbreite von ≤ µm) besonders wünschenswert.In general, any structure that is not visually perceptible, which, applied to a two-dimensional surface in one of its two dimensions on the substrate plane, does not exceed a characteristic length of 20 μm. In order to surely suppress any influence on the surface perception, submicron-scale structures (i.e., having a line width of ≤ μm) are particularly desirable.

Zum Applizieren von insbesondere leitfähigem Material, auf Oberflächen existiert eine große Anzahl von Verfahren. Insbesondere gängige Druckverfahren, wie Siebdruck oder Tintenstrahldruck sind hierfür geeignet. Besonders für diese Drucktechniken existieren bereits entsprechende Formulierungen für leitfähige Materialien, - auch Tinten genannt - die in Verbindung mit den Verfahren leitfähige Strukturen auf der Oberfläche darstellbar machen.There are a large number of methods for applying particularly conductive material to surfaces. In particular, common printing methods, such as screen printing or inkjet printing are suitable for this purpose. Particularly for these printing techniques, corresponding formulations for conductive materials already exist - also called inks - which, in conjunction with the methods, make conductive structures on the surface representable.

Während Siebdruckverfahren aufgrund der kleinsten verfügbaren Maschenweite der Drucksiebe prinzipiell nicht dazu in der Lage sind Strukturen in einer optischen Auflösung kleiner 1 µm zu erzeugen, wären beispielsweise Tintenstrahldruckverfahren hierzu theoretisch in der Lage, da die Abmessungen der resultierenden Struktur auf dem Substrat bei Tintenstrahldruckverfahren direkt mit dem Düsendurchmesser des verwendeten Druckkopfes korrelieren. Allerdings ist hierbei im Regelfall die charakteristische Länge der minimalen Abmessung der resultierenden Struktur größer, als der Durchmesser des verwendeten Düsenkopfes. [ J. Mater. Sci. 2006, 41, 4153 ; Adv. Mater. 2006, 18, 2101 Dennoch wären prinzipiell Strukturen mit einer Linienbreite unter 1 µm herstellbar, wenn Drucker mit Düsenöffnungen deutlich unter 1 µm verwendet werden könnten. Allerdings ist dies in der Praxis nicht durchführbar, da mit zunehmender Verringerung des Düsendurchmessers die Anforderungen an die verwendbaren Tinten stark ansteigen. Sollte die verwendete Tinte Partikel enthalten, so müsste deren mittlerer Durchmesser der Verringerung der Düsendurchmesser folgen, was bereits alle Tinten mit Partikeln ≥1 µm prinzipiell ausschließt. Weiterhin steigt die Anforderung an die rheologischen Eigenschaften der Tinte (z.B. Viskosität, Oberflächenspannung, etc.), damit sie für den Druckkopf verwendbar bleibt. Vielfach sind diese Parameter aber nicht getrennt vom Verhalten (z.B. Spreitung und Haftung) der Tinte auf dem jeweiligen Substrat einstellbar, was die Kombination Tinte-Druckverfahren für die Erzeugung leitfähiger Strukturen in diesem Größenbereich unbrauchbar macht.While screen printing methods are principally incapable of producing structures in an optical resolution of less than 1 .mu.m because of the smallest available mesh size of the printing screens, ink jet printing methods would theoretically be able to do so since the dimensions of the resulting structure on the substrate in the case of inkjet printing processes can be directly correlated with the Nozzle diameter of the printhead used correlate. However, as a rule, the characteristic length of the minimum dimension of the resulting structure is greater than the diameter of the nozzle head used. [ J. Mater. Sci. 2006, 41, 4153 ; Adv. Mater. 2006, 18, 2101 Nevertheless, structures with a line width of less than 1 μm could in principle be produced if printers with nozzle openings significantly below 1 μm could be used. However, this is impractical in practice, since with increasing reduction of the nozzle diameter, the requirements for the usable inks rise sharply. If the ink used contains particles, then their average diameter would have to follow the reduction of the nozzle diameter, which in principle precludes all inks with particles ≥1 μm. Furthermore, the requirement for the rheological properties of the ink (eg, viscosity, surface tension, etc.) increases to be usable by the printhead. In many cases, however, these parameters are not adjustable separately from the behavior (eg spreading and adhesion) of the ink on the respective substrate, which renders the combination of ink-printing methods unusable for the production of conductive structures in this size range.

Ein Verfahren, mit dem alternativ Strukturen kleiner 1 µm auf Polymeroberflächen dargestellt werden können, ist das sogenannte Heißprägen. Mittels des Verfahrens wurden bereits kreisförmige Oberflächenstrukturen mit einem Durchmesser von ca. 25 nm dargestellt [ Appl. Phys. Lett. 1995, 67, 3114 ; Adv. Mater. 2000, 12, 189 ]. Nachteil des Heißprägens ist jedoch die Beschränkung der Strukturform auf die Form des jeweils verwendeten Prägestempels oder der Prägerolle. Eine freie Gestaltung des Strukturverlaufs ist hiermit nicht möglich.A method by which structures smaller than 1 μm can alternatively be represented on polymer surfaces is the so-called hot embossing. By the method have already been Circular surface structures with a diameter of approx. 25 nm are shown [ Appl. Phys. Lett. 1995, 67, 3114 ; Adv. Mater. 2000, 12, 189 ]. Disadvantage of hot stamping, however, is the restriction of the structural shape to the shape of the embossing stamp or embossing roll used in each case. A free design of the structure is not possible hereby.

Besonders dünne Fasern, die auch potenziell auf der Oberfläche eines geeigneten Substrates applizierbar wären, können mittels eines Verfahrens erzeugt werden, dass sich unter dem Namen "Elektrospinnen" etabliert hat. Hiermit ist es möglich unter Verwendung eines spinnfähigen Materials Fasern von wenigen Nanometern Durchmesser zu erzeugen [ Angew. Chem. 2007, 119, 5770 - 5805 ].Particularly thin fibers, which could also potentially be applied to the surface of a suitable substrate, can be produced by means of a method which has established itself under the name "electrospinning". This makes it possible to produce fibers of a few nanometers diameter using a spinnable material [ Angew. Chem. 2007, 119, 5770-5805 ].

Elektrogesponnene Fasern werden aber nur in Form großer, ungeordneter Fasermatten erhalten. Geordnete Fasern werden bislang nur möglich durch Spinnen auf eine rotierende Rolle [ Biomacromolecules, 2002, 3, 232 ]. Es ist weiterhin bekannt, dass prinzipiell leitfähige Fasern mittels "Elektrospinnen" versponnen werden können. Ein entsprechendes, leitfähiges Material zur solchen Verwendung unter Ausnutzung der Leitfähigkeit von Kohlenstoffnanoröhrchen ist ebenfalls bekannt. [ Langmuir, 2004, 20(22), 9852 ].Electrospun fibers are only obtained in the form of large, disordered fiber mats. Ordered fibers are so far only possible by spinning on a rotating roll [ Biomacromolecules, 2002, 3, 232 ]. It is also known that in principle conductive fibers can be spun by means of "electrospinning". A corresponding conductive material for such use utilizing the conductivity of carbon nanotubes is also known. [ Langmuir, 2004, 20 (22), 9852 ].

In US2001-0045547 werden Methode und Material offenbart, mit denen leitfähige Fasermatten erhalten werden können.In US2001-0045547 discloses methods and materials that can be used to obtain conductive fiber mats.

Ein gezieltes Ablegen von nicht leitenden Fasern auf ebenen Oberflächen konnte erreicht werden, indem man den Abstand des Spinnkopfes zum Substrat verringert. [ Nano Letters, 2006, 6, 839 ].Targeted deposition of non-conductive fibers on flat surfaces could be achieved by reducing the distance between the spinner and the substrate. [ Nano Letters, 2006, 6, 839 ].

Es wurden bislang keine elektrisch leitfähigen Strukturen mit gezielter Anordnung auf einer Substratoberfläche hergestellt mittels Elektrospinnen beschrieben.So far, no electrically conductive structures with a targeted arrangement on a substrate surface prepared by means of electrospinning have been described.

In US2005-0287366 werden eine Methode und ein Material offenbart, mit deren Hilfe leitfähige Fasern erzeugt werden können. Die Methode beinhaltet das Elektrospinnen in einem Abstand von etwa 200 mm, so dass ebenfalls ungeordnete Fasermatten erhalten werden. Das Material ist ein Polymer, das über weitere Nachbehandlungsschritte, beinhaltend eine thermische Behandlung, leitfähig gemacht wird. Eine gezielte Orientierung und Applikation der erhaltenen Fasern auf einem Substrat wird nicht offenbart.In US2005-0287366 discloses a method and material that can be used to produce conductive fibers. The method involves electrospinning at a distance of about 200 mm, so that also disordered fiber mats are obtained. The material is a polymer which is rendered conductive via further post-treatment steps involving a thermal treatment. A specific orientation and application of the fibers obtained on a substrate is not disclosed.

Aufgabe der Erfindung ist es also einen Prozess zu entwickeln, mit dem unter Verwendung der Elektrospinntechnik gezielt, visuell für das menschliche Auge nicht direkt wahrnehmbare, leitfähige Strukturen auf einer Oberfläche erzeugt werden können.It is therefore an object of the invention to develop a process with which targeted, conductive structures can be generated on a surface visually for the human eye using electrospinning technology.

Die Aufgabe wird gelöst durch die Verwendung einer Vorrichtung zur Herstellung leitfähiger linearer Strukturen mit einer Linienbreite von höchstens 5 µm auf einem insbesondere nicht elektrisch leitenden Substrat, welche Gegenstand der Erfindung ist, wenigstens aufweisend eine Substrathalterung, eine Spinnkapillare, die mit einem Vorrat für eine Spinnflüssigkeit und einer elektrischen Spannungsversorgung verbunden ist, eine regelbare Bewegungseinheit zur Bewegung der Spinnkapillare und/oder der Substrathalterung relativ zueinander, eine optische Messeinrichtung, insbesondere eine Kamera, zur Verfolgung des Spinnvorgangs am Ausgang der Spinnkapillare, und eine Recheneinheit zur Regelung des Abstands der Spinnkapillare relativ zur Substrathalterung in Abhängigkeit vom Spinnvorgang.The object is achieved by the use of a device for producing conductive linear structures having a line width of at most 5 .mu.m on a particular non-electrically conductive substrate, which is the subject of the invention, at least comprising a substrate holder, a spinning capillary, with a supply of a spinning liquid and an electrical power supply is connected, a controllable movement unit for moving the spinning capillary and / or the substrate holder relative to each other, an optical measuring device, in particular a camera, for tracking the spinning process at the output of the spinning capillary, and a computing unit for controlling the distance of the spinning capillary relative to Substrate support depending on the spinning process.

Bevorzugt weist die Spinnkapillare eine Öffnungsweite von maximal 1 mm auf.The spinning capillary preferably has an opening width of not more than 1 mm.

Besonders bevorzugt ist eine Vorrichtung, bei der die Spinnkapillare eine kreisrunde Öffnung mit einem Innendurchmesser von 0,01 bis 1 mm, bevorzugt 0,01 bis 0,5 mm, besonders bevorzugt 0,01 bis 0,1 mm, aufweist.Particularly preferred is a device in which the spinning capillary has a circular opening with an inner diameter of 0.01 to 1 mm, preferably 0.01 to 0.5 mm, particularly preferably 0.01 to 0.1 mm.

In einer bevorzugten Ausführung der neuen Vorrichtung liefert die Spannungsversorgung eine Ausgangsspannung bis 10kV, bevorzugt von 0,1 bis 10kV, besonders bevorzugt 1 bis 10 kV ganz besonders bevorzugt 2 bis 6 kV.In a preferred embodiment of the new device, the voltage supply delivers an output voltage of up to 10 kV, preferably from 0.1 to 10 kV, particularly preferably from 1 to 10 kV, very particularly preferably from 2 to 6 kV.

In einer weiteren bevorzugten Ausführung dient die regelbare Bewegungseinheit zur Bewegung der Substrathalterung.In a further preferred embodiment, the controllable movement unit serves to move the substrate holder.

Bevorzugt ist auch eine Vorrichtung, dadurch gekennzeichnet, dass die Spinnkapillare auf einen Abstand von 0,1 bis 10 mm, bevorzugt 1 bis 5 mm, besonders bevorzugt 2 bis 4 mm zur Substratoberfläche einstellbar ist.Also preferred is a device, characterized in that the spinning capillary is adjustable to a distance of 0.1 to 10 mm, preferably 1 to 5 mm, more preferably 2 to 4 mm to the substrate surface.

In einer besonders bevorzugten Variante der Vorrichtung ist der Vorrat für die Spinnflüssigkeit mit einer Fördereinrichtung versehen, die die Spinnflüssigkeit in die Spinnkapillare fördert. Beispielsweise dient hierzu eine Kolbenspritze, die mit einer Motorspindel als Kolbenvortrieb versehen ist.In a particularly preferred variant of the device, the stock for the spinning liquid is provided with a conveying device which conveys the spinning liquid into the spinning capillary. For example, this is a piston syringe, which is provided with a motor spindle as a piston propulsion.

Gegenstand der Erfindung ist auch ein Verfahren zur Herstellung leitfähiger linearer Strukturen mit einer Linienbreite von höchstens 5 µm auf einem, insbesondere nicht elektrisch leitenden Substrat durch Elektrospinnen, dadurch gekennzeichnet, dass eine Spinnflüssigkeit auf Basis eines elektrisch leitenden Materials oder einer Vorläuferverbindung für ein elektrisch leitendes Material aus einer Spinnkapillare mit einer Öffnungsweite von maximal 1 mm unter Anlegen einer elektrischen Spannung zwischen Substrat oder Substrathalterung und Spinnkapillare oder Spinnkapillarenfassung von mindestens 100 V bei einem Abstand von höchstens 10 mm zwischen dem Ausgang der Spinnkapillare und der Oberfläche des Substrats auf die Substratoberfläche gesponnen wird und die Substratoberfläche relativ zum Ausgang der Spinnkapillare bewegt wird, wobei die Relativbewegung abhängig vom Spinnfluss gesteuert wird, dass das Lösungsmittel der Spinnflüssigkeit entfernt und gegebenenfalls die Vorläuferverbindung zu einem elektrisch leitenden Material nachbehandelt wird.The invention also provides a process for producing conductive linear structures having a line width of at most 5 μm on a, in particular non-electrically conductive substrate by electrospinning, characterized in that a spinning liquid based on an electrically conductive material or a precursor compound for an electrically conductive material from a spinning capillary having an opening width of not more than 1 mm while applying an electrical voltage between substrate or substrate holder and spinning capillary or spinning capillary holder of at least 100 V at a distance of at most 10 mm between the output of the spinning capillary and the surface of the substrate is spun onto the substrate surface and the substrate surface is moved relative to the output of the spinning capillary, wherein the relative movement is controlled depending on the spin flow that removes the solvent of the spinning liquid and optionally the precursor erverbindung is treated to an electrically conductive material.

Geeignete Substrate sind elektrisch nicht oder schlecht leitende Materialien wie Kunststoffe, Glas oder Keramik, oder halbleitende Stoffe wie Silizium, Germanium, Galliumarsenid und Zinksulfid. In einem bevorzugten Verfahren wird der Abstand zwischen dem Ausgang der Spinnkapillare und der Substratoberfläche auf 0,1 bis 10 mm, bevorzugt 1 bis 5 mm, besonders bevorzugt 2 bis 4 mm eingestellt.Suitable substrates are electrically non-conductive or poorly conductive materials such as plastics, glass or ceramic, or semiconducting materials such as silicon, germanium, gallium arsenide and zinc sulfide. In a preferred method, the distance between the exit of the spinning capillary and the substrate surface is set to 0.1 to 10 mm, preferably 1 to 5 mm, particularly preferably 2 to 4 mm.

Die Viskosität der Spinnflüssigkeit beträgt vorzugsweise höchstens 15 Pa•s, insbesondere bevorzugt 0,5 bis 15 Pa•s, besonders bevorzugt 1 bis 10 Pa•s, ganz besonders bevorzugt 1 bis 5 Pa•s.The viscosity of the spinning liquid is preferably at most 15 Pa.s, more preferably 0.5 to 15 Pa.s, more preferably 1 to 10 Pa.s, most preferably 1 to 5 Pa.s.

Die Spinnflüssigkeit besteht bevorzugt mindestens aus einem Lösungsmittel, insbesondere wenigstens einem ausgewählt aus der Reihe: Wasser, C1 - C6-Alkohol, Aceton, Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid und meta-Cresol, einem polymeren Zusatzstoff, bevorzugt Polyethylenoxid, Polyacrylnitril, Polyvinylpyrrolidon, Carboxymethylcellulose oder Polyamid und einem leitfähigen Material.The spinning liquid preferably comprises at least one solvent, in particular at least one selected from the group: water, C 1 -C 6 -alcohol, acetone, dimethylformamide, dimethylacetamide, dimethylsulfoxide and meta-cresol, a polymeric additive, preferably polyethylene oxide, polyacrylonitrile, polyvinylpyrrolidone, Carboxymethylcellulose or polyamide and a conductive material.

Besonders bevorzugt ist ein Verfahren, in dem die Spinnflüssigkeit als leitfähiges Material wenigstens eines aus der Reihe: leitfähiges Polymer, ein Metallpulver, ein Metalloxidpulver, Kohlenstoffnanoröhrchen, Graphit und Ruß enthält.Particularly preferred is a method in which the spin liquid contains as conductive material at least one of the series: conductive polymer, a metal powder, a metal oxide powder, carbon nanotubes, graphite and carbon black.

Besonders bevorzugt ist das leitfähige Polymer ausgewählt aus der Reihe: Polypyrrol, Polyanilin, Polythiophen, Polyphenylenvinylen, Polyparaphenylen, Polyethylendioxythiophen, Polyfluoren, Polyacetylen, besonders bevorzugt Polyethylendioxythiophen/Polystyrolsulfonsäure.The conductive polymer is particularly preferably selected from the series: polypyrrole, polyaniline, polythiophene, polyphenylenevinylene, polyparaphenylene, polyethylene dioxythiophene, polyfluorene, polyacetylene, particularly preferably polyethylenedioxythiophene / polystyrenesulphonic acid.

In dem Falle, dass die Spinnflüssigkeit als leitfähiges Material bevorzugt wenigstens ein Metallpulver der Metalle Silber, Gold und Kupfer, bevorzugt Silber aufweist wird als Lösungsmittel ein Dispergiermittel enthaltendes Wasser und gegebenenfalls zusätzlich C1 - C6-Alkohol verwendet, wobei das Metallpulver dispergiert vorliegt und einen Partikeldurchmesser von höchstens 150 nm aufweist.In the event that the spinning liquid as a conductive material preferably at least one metal powder of the metals silver, gold and copper, preferably silver is used as the solvent, a dispersant-containing water and optionally additionally C 1 - C 6 alcohol, wherein the metal powder is present in dispersed form and has a particle diameter of at most 150 nm.

Bevorzugt umfasst das Dispergierhilfsmittel wenigstens ein Mittel ausgewählt aus der Gruppe: Alkoxylate, Alkylolamide, Ester, Aminoxide, Alkylpolyglukoside, Alkylphenole, Arylalkylphenole, wasserlösliche Homopolymere, wasserlösliche statistische Copolymere, wasserlösliche Blockcopolymere, wasserlösliche Pfropfpolymere, insbesondere Polyvinylalkohole, Copolymere aus Polyvinylalkoholen und Polyvinylacetaten, Polyvinylpyrrolidone, Cellulose, Stärke, Gelatine, Gelatinederivate, Aminosäurepolymere, Polylysin, Polyasparaginsäure, Polyacrylate, Polyethylensulfonate, Polystyrolsulfonate, Polymethacrylate, Kondensationsprodukte von aromatischen Sulfonsäuren mit Formaldehyd, Naphthalinsulfonate, Ligninsulfonate, Copolymerisate acrylischer Monomere, Polyethylenimine, Polyvinylamine, Polyallylamine, Poly(2-vinylpyridine), Block-Copolyether, Block-Copolyether mit Polystyrolblöcken und/oder Polydiallyldimethylammoniumchlorid ist.Preferably, the dispersing aid comprises at least one agent selected from the group: alkoxylates, alkylolamides, esters, amine oxides, alkylpolyglucosides, alkylphenols, arylalkylphenols, water-soluble homopolymers, water-soluble random copolymers, water-soluble block copolymers, water-soluble graft polymers, in particular polyvinyl alcohols, copolymers of polyvinyl alcohols and polyvinyl acetates, polyvinylpyrrolidones, Cellulose, starch, gelatin, gelatin derivatives, amino acid polymers, polylysine, polyaspartic acid, polyacrylates, polyethylene sulfonates, polystyrenesulfonates, polymethacrylates, condensation products of aromatic sulfonic acids with formaldehyde, naphthalenesulfonates, lignosulfonates, copolymers of acrylic monomers, polyethylenimines, polyvinylamines, polyallylamines, poly (2-vinylpyridines), Block copolyether, block copolyether with polystyrene blocks and / or polydiallyldimethylammonium chloride.

Eine besonders bevorzugte Spinnflüssigkeit ist dadurch gekennzeichnet, dass die Silberpartikel a) einen effektiven Partikeldurchmesser von 10 bis 150 nm aufweisen, bevorzugt von 40 bis 80 nm, ermittelt mit der Laserkorrelationsspektrokopie.A particularly preferred spinning liquid is characterized in that the silver particles a) have an effective particle diameter of 10 to 150 nm, preferably from 40 to 80 nm, determined by laser correlation spectroscopy.

Die Silberpartikel sind bevorzugt in der Formulierung zu einem Anteil von 1 bis 35 Gew.-%, besonders bevorzugt 15 bis 25 Gew.-% enthalten.The silver particles are preferably contained in the formulation in a proportion of 1 to 35 wt .-%, particularly preferably 15 to 25 wt .-%.

Der Gehalt an Dispergierhilfsmittel in der Spinnflüssigkeit beträgt bevorzugt 0,02 bis 5 Gew.-%, besonders bevorzugt 0,04 bis 2 Gew.- %.The content of dispersing agent in the spinning liquid is preferably 0.02 to 5 wt .-%, particularly preferably 0.04 to 2 wt .-%.

Die Größenbestimmung mittels Laserkorrelationsspektroskopie ist literaturbekannt und z. B. beschrieben in T. Allen, Particle Size Measurements, Bd. 1., Kluver Academic Publishers, 1999 .The size determination by means of laser correlation spectroscopy is known from the literature and z. B. described in T. Allen, Particle Size Measurements, Vol. 1, Kluver Academic Publishers, 1999 ,

In einer anderen Variante des neuen Verfahren wird eine Spinnflüssigkeit verwendet, die eine Vorläuferverbindung für ein elektrisch leitendes Material aufweist, die ausgewählt ist aus der Reihe: Polyacrylnitril, Polypyrrol, Polyanilin, Polyethylendioxythiophen und die zusätzlich ein Metallsalz insbesondere eine Eisen(III)salz, besonders bevorzugt Eisen(III)nitrat enthält. Als Lösungsmittel kommen hierbei z. B. Aceton, Dimethylacetamid, Dimethylformamid, Dimethylsulfoxid, meta-Cresol und Wasser in Frage.In another variant of the new method, a spinning liquid is used which has a precursor compound for an electrically conductive material which is selected from the series: polyacrylonitrile, polypyrrole, polyaniline, polyethylenedioxythiophene and additionally a metal salt, in particular an iron (III) salt preferably contains iron (III) nitrate. When Solvents come here z. For example, acetone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, meta-cresol and water in question.

Das Verfahren wird ganz besonders bevorzugt so durchgeführt, dass zum Verspinnen der Spinnflüssigkeit die oben beschriebene neue Vorrichtung oder eine ihrer bevorzugten Varianten zum Einsatz kommt.The method is very particularly preferably carried out in such a way that the above-described new apparatus or one of its preferred variants is used for spinning the spinning liquid.

Mittels der Vorrichtung werden die erwünschten feinen leitfähigen Strukturen durch Elektrospinnen erzeugt. Je nach verwendeter Spinnlösung ist es erforderlich die Strukturen nachzubehandeln werden, um die gewünschte Leitfähigkeit zu erzielen oder zu erhöhen.By means of the device, the desired fine conductive structures are produced by electrospinning. Depending on the spinning solution used, it will be necessary to post-treat the structures to achieve or increase the desired conductivity.

An der Öffnung der Kapillare bildet sich bei Anlegen der Spannung zwischen Kapillare bzw. Kapillarenfassung und Substrathalterung ein Tropfen, aus dem der Spinnfaden austritt.When the voltage is applied between the capillary or capillary holder and the substrate holder, a drop forms at the opening of the capillary, from which the filament emerges.

Weiterhin sind Aufnahme für Kapillare und Substrat so gestaltet, dass eine relative Positionierung von Kapillarenöffnung zur Substratoberfläche möglich ist. In einer besonderen Ausführungsform ist die Kapillare über dem Substrat mittels Stellmotoren positionierbar, in einer anderen ist es möglich mit Stellmotoren das Substrat unter der Kapillare während des Verspinnens zu positionieren. Insbesondere können Substrat und Kapillare bewegt werden. Bevorzugt wird das Substrat unter der Kapillare bewegt.Furthermore, receptacle for capillary and substrate are designed so that a relative positioning of capillary opening to the substrate surface is possible. In a particular embodiment, the capillary can be positioned above the substrate by means of positioning motors, in another it is possible with positioning motors to position the substrate under the capillary during spinning. In particular, substrate and capillary can be moved. Preferably, the substrate is moved under the capillary.

Um die gewünschten leitfähigen Strukturen aus der Spinnflüssigkeit zu erzeugen sollte sichergestellt werden, dass der Spinnprozess dergestalt stabilisiert wird, dass die resultierende Struktur auf der Oberfläche keine Unterbrechungen aufweist. Bevorzugt wird dies über eine Regelung des Kapillarenabstands relativ zur Substratoberfläche erreicht, indem über eine Regelschleife in Abhängigkeit von einem Kamerabild die Fortführung der Linie unterbrochen wird, wenn offenbar der Spinnfaden abbricht. Besonders bevorzugt wird die Stabilisierung des Vorgangs so erreicht, dass ein Rechner das Bild der Kamera analysiert und den relativen Vorschub der Kapillare bezüglich des Substrats unterbricht, wenn die Analyse einen Abbruch, eine Änderung der Linienbreite oder eine Blase in der kontinuierlichen Faser ergibt.In order to produce the desired conductive structures from the spinning liquid, it should be ensured that the spinning process is stabilized such that the resulting structure on the surface has no breaks. This is preferably achieved by regulating the capillary distance relative to the substrate surface by interrupting the continuation of the line via a control loop as a function of a camera image, if obviously the filament breaks off. More preferably, the stabilization of the process is achieved so that a computer analyzes the image of the camera and interrupts the relative advancement of the capillary with respect to the substrate if the analysis results in a break, a change in linewidth, or a bubble in the continuous fiber.

Die Kamera kann beliebig positioniert werden, z. B. bei transparenten Substraten unterhalb des Substrates oder nahe der Kapillarenöffnung.The camera can be positioned anywhere, eg. B. in transparent substrates below the substrate or near the capillary opening.

Die im Verfahren minimal anzulegende Spannung variiert linear mit dem eingestellten Abstand und ist auch abhängig von der Art der Spinnflüssigkeit. Bevorzugt sollte für das Verspinnen zum strukturierten Ablegen der Fasern eine Betriebsspannung von 0,1 bis 10 kV verwendet werden, wie oben beschrieben.The minimum voltage to be applied in the process varies linearly with the set distance and is also dependent on the type of spinning fluid. Preferably, an operating voltage of 0.1 to 10 kV should be used for spinning for structured laying of the fibers, as described above.

Besonders gute Ergebnisse wurden erzielt wenn der Abstand zwischen Kopf der Kapillare und Substratoberfläche 0,1 bis 10 mm betrug.Particularly good results were obtained when the distance between the head of the capillary and substrate surface was 0.1 to 10 mm.

Es wurde weiterhin gefunden, dass das zu verspinnende Material für die Durchführung des Verfahrens eine Viskosität von insbesondere höchstens 15 Pa•s ausweisen sollte um sicher leitfähige Strukturen mit dem Spinnmaterial zu erzeugen.It has furthermore been found that the material to be spun for carrying out the process should have a viscosity of in particular not more than 15 Pa · s in order to reliably produce conductive structures with the spinning material.

Nach den oben beschriebenen Schritten befindet sich das spezifizierte Material in gewünschter Weise auf dem Substrat und kann bedarfsweise zur Erhöhung der Leitfähigkeit nachbehandelt werden.After the steps described above, the specified material is desirably on the substrate and may be post-treated as needed to increase conductivity.

Z.B. umfasst diese Nachbehandlung den Eintrag von Energie in die erzeugten Strukturen. Im Fall leitfähiger Polymere (insbesondere Polyethylendioxythiophen) werden die im Lösungsmittel in Suspension vorliegenden Polymerpartikel z.B. durch Erwärmung der Suspension auf dem Substrat miteinander verschmolzen, während das Lösungsmittel mindestens teilweise verdampft. Bevorzugt wird der Nachbehandlungsschritt mindestens bei der Schmelztemperatur des leitfähigen Polymers durchgeführt, besonders bevorzugt oberhalb dessen Schmelztemperatur. Dadurch entstehen durchgängige Leiterbahnen. Ebenfalls bevorzugt ist eine Nachbehandlung der Strukturen/Fasern auf dem Substrat mittels Mikrowellenstrahlung.For example, This post-treatment includes the entry of energy into the generated structures. In the case of conductive polymers (especially polyethylenedioxythiophene), the polymer particles present in suspension in the solvent are e.g. fused together by heating the suspension on the substrate while the solvent evaporates at least partially. Preferably, the post-treatment step is carried out at least at the melting temperature of the conductive polymer, more preferably above its melting temperature. This creates continuous tracks. Also preferred is a post-treatment of the structures / fibers on the substrate by means of microwave radiation.

Im Fall eines Kohlenstoffnanoröhrchen enthaltenden Spinnmaterials wird durch die Nachbehandlung der erzeugten Linien das Lösungsmittel zwischen den dispergiert vorliegenden Partikeln verdampft, um durchgängige, perkolationsfähige Bahnen aus Kohlenstoffnanoröhrchen zu erhalten. Der Behandlungsschritt wird hierbei im Bereich der Verdampfungstemperatur des im Material enthaltenen Lösungsmittels oder darüber durchgeführt, bevorzugt oberhalb der Verdampfungstemperatur des Lösungsmittels. Ist die Perkolationsgrenze erreicht, entstehen die gewünschten Leiterbahnen.In the case of a spun carbon nanotube-containing material, the aftertreatment of the generated lines vaporizes the solvent between the dispersed particulates to obtain continuous, carbon nanotube, percolatable webs. The treatment step is in this case carried out in the region of the evaporation temperature of the solvent contained in the material or above, preferably above the evaporation temperature of the solvent. Once the percolation limit has been reached, the desired printed conductors are created.

Alternativ können leitende Strukturen auch dadurch erzeugt werden, dass ein Vorläufermaterial für ein elektrisch leitfähiges Material, z.B. Polyacrylnitril (PAN), auf dem Substrat abgelegt wird und unter wechselnden gasförmigen Medien getempert wird, zur Erzeugung von Kohlenstoff als leitfähige Substanz, wie nachstehend beschrieben wird.Alternatively, conductive structures can also be produced by depositing a precursor material for an electrically conductive material, for example polyacrylonitrile (PAN), on the substrate and is annealed under changing gaseous media to produce carbon as a conductive substance, as described below.

In diesem Fall wird eine Lösung aus einem Polymer (z.B. PAN oder Carboxymethylcellulose) und einem Metallsalz (z.B. einem Eisen(III)salz wie Eisennitrat) in einem für beide Komponenten geeigneten Lösemittel (z.B. DMF) hergestellt. Das Polymer sollte sich in ein bei solchen Temperaturen stabiles leitfähiges Material umwandeln lassen. Besonders bevorzugte Polymere sind solche, die durch Hochtemperaturbehandlung zu Kohlenstoff umgewandelt werden können. Insbesondere bevorzugt sind graphitisierbare Polymere (z.B. Polyacrylnitril bei 700-1000°C). Bei den Metallsalzen werden solche bevorzugt, deren Zerfallstemperatur oder Zersetzungstemperatur unter reduktiver Atmosphäre unterhalb der Zersetzungstemperatur des jeweiligen Polymers liegen (z.B. Eisen(III)-Nitrat-Nonahydrat bei 150°C bis 350°C). Nach der Umwandlung der Metallsalze in Metallpartikel, bevorzugt durch rein thermischen Zerfall oder gasförmige Reduktionsmittel, besonders bevorzugt durch Wasserstoff, wird in Anwesenheit der Metallpartikel das Polymer in Kohlenstoff umgesetzt. Schließlich wird gegebenenfalls zusätzlich aus der Gasphase Kohlenstoff auf den Strukturen abgeschieden, bevorzugt durch chemische Gasphasenabscheidung aus Kohlenwasserstoffen. Hierzu werden flüchtige Kohlenstoff-Vorläufer bei hohen Temperaturen über die Strukturen geleitet. Bevorzugt sind hier kurzkettige Aliphaten zu verwenden, besonders bevorzugt z.B. Methan, Ethan, Propan, Butan, Pentan, oder Hexan, insbesondere bevorzugt die bei Raumtemperatur flüssigen Aliphaten n-Pentan und n-Hexan. Hierbei sind die Temperaturen so zu wählen, dass die Metallpartikel das Wachstum von röhrenförmigen Kohlenstofffilamenten und einer zusätzlichen Graphitschicht entlang der Faser fördern. Bei Eisenpartikeln liegt dieser Temperaturbereich z.B. zwischen 700 und 1000°C, bevorzugt zwischen 800-850°C. Die Dauer der Gasphasenabscheidung im obigen Fall liegt zwischen 5 Minuten und 60 Minuten, bevorzugt zwischen 10 bis 30 Minuten.In this case, a solution of a polymer (e.g., PAN or carboxymethyl cellulose) and a metal salt (e.g., a ferric salt such as ferric nitrate) is prepared in a solvent suitable for both components (e.g., DMF). The polymer should be convertible to a conductive material stable at such temperatures. Particularly preferred polymers are those which can be converted to carbon by high temperature treatment. Particularly preferred are graphitizable polymers (e.g., polyacrylonitrile at 700-1000 ° C). Among the metal salts, those whose decomposition temperature or decomposition temperature under the reductive atmosphere is below the decomposition temperature of the respective polymer (e.g., ferric nitrate nonahydrate at 150 ° C to 350 ° C) are preferred. After the conversion of the metal salts into metal particles, preferably by purely thermal decomposition or gaseous reducing agents, particularly preferably by hydrogen, the polymer is converted into carbon in the presence of the metal particles. Finally, if appropriate, carbon is additionally deposited on the structures from the gas phase, preferably by chemical vapor deposition from hydrocarbons. For this purpose, volatile carbon precursors are passed over the structures at high temperatures. Preference is given here to using short-chain aliphatics, more preferably e.g. Methane, ethane, propane, butane, pentane, or hexane, particularly preferably the liquid at room temperature aliphatic n-pentane and n-hexane. In this case, the temperatures should be selected so that the metal particles promote the growth of tubular carbon filaments and an additional graphite layer along the fiber. For iron particles, this temperature range is e.g. between 700 and 1000 ° C, preferably between 800-850 ° C. The duration of the vapor deposition in the above case is between 5 minutes and 60 minutes, preferably between 10 to 30 minutes.

Verwendet man gemäß bevorzugter Vorgehensweise die oben beschriebenen Suspensionen von Edelmetallnanopartikeln in Lösungsmitteln als Spinnflüssigkeit zur Erzeugung leitfähiger Strukturen, so kann die Nachbehandlung erfolgen, indem man das gesamte Bauteil oder gezielt die Leiterbahnen auf eine Temperatur erwärmt, bei der die Metallpartikel miteinander versintern und das Lösungsmittel zumindest teilweise verdampft. Hierbei sind möglichst kleine Partikeldurchmesser vorteilhaft, da bei nanoskaligen Partikeln die Sintertemperatur zu der Partikelgröße proportional ist, so dass bei kleineren Partikeln eine niedrigere Sintertemperatur erforderlich ist. Hierbei liegt der Siedepunkt des Lösungsmittels möglichst nah an der Sintertemperatur der Partikel und ist möglichst niedrig, um das Substrat thermisch zu schonen. Bevorzugt siedet das Lösungsmittel der Spinnflüssigkeit bei einer Temperatur < 250 °C, besonders bevorzugt bei einer Temperatur < 200 °C, insbesondere bevorzugt bei einer Temperatur≤ 100 °C. Alle hier angegebenen Temperaturen beziehen sich auf Siedetemperaturen bei einem Druck von 1013 hPa. Der Sinterschritt wird bei den angegebenen Temperaturen so lange durchgeführt, bis eine durchgängige Leiterbahn entstanden ist. Dies ist bevorzugt eine Zeitdauer von einer Minute bis 24 Stunden, besonders bevorzugt von fünf Minuten bis 8 Stunden, insbesondere bevorzugt von zwei bis 8 Stunden.If, in accordance with a preferred procedure, the above-described suspensions of noble metal nanoparticles in solvents are used as spinning liquid for producing conductive structures, the aftertreatment can be carried out by heating the entire component or specifically the printed conductors to a temperature at which the metal particles sinter together and the solvent at least partially evaporated. In this case, the smallest possible particle diameters are advantageous, since with nanoscale particles the sintering temperature is proportional to the particle size, so that a lower sintering temperature is required for smaller particles. Here, the boiling point of the solvent is as close as possible to the sintering temperature of the particles and is as low as possible to protect the substrate thermally. The solvent of the spinning liquid preferably boils at a temperature <250 ° C, especially preferably at a temperature <200 ° C, particularly preferably at a temperature ≤ 100 ° C. All temperatures given here are based on boiling temperatures at a pressure of 1013 hPa. The sintering step is carried out at the indicated temperatures until a continuous conductor has been formed. This is preferably a period of one minute to 24 hours, more preferably from five minutes to 8 hours, particularly preferably from two to eight hours.

Das neue Verfahren findet insbesondere Anwendung zur Herstellung von Substraten, die an ihrer Oberfläche leitfähige Strukturen aufweisen, die in einer Dimension eine Abmessung von nicht mehr als 1 µm haben, bevorzugt von 1 µm bis 50 nm, besonders bevorzugt von 500 nm bis 50 nm, wobei das leitfähige Material bevorzugt eine Suspension leitfähiger Partikel ist, wie sie oben beschrieben sind, und das Substrat bevorzugt transparent ist, beispielsweise auf Glas, Keramik, Halbleitermaterial oder ein transparentes Polymer wie oben beschrieben.The new method is used in particular for the production of substrates which have conductive structures on their surface which have a dimension of not more than 1 μm in one dimension, preferably from 1 μm to 50 nm, particularly preferably from 500 nm to 50 nm, wherein the conductive material is preferably a suspension of conductive particles as described above, and the substrate is preferably transparent, for example to glass, ceramic, semiconductor material or a transparent polymer as described above.

Die Erfindung wird nachstehend unter Verwendung der Figur 1 beispielhaft näher erläutert. Figur 1 zeigt ein Schema der erfindungsgemäßen Spinnvorrichtung.The invention will be described below using the FIG. 1 exemplified in more detail. FIG. 1 shows a schematic of the spinning device according to the invention.

BeispieleExamples Beispiel 1example 1 (Leitfähige Nanostrukturen mit Kohlenstoffnanoröhrchen):(Conductive nanostructures with carbon nanotubes):

Zum Verspinnen der Spinnlösung wurde folgende Apparatur (siehe Fig. 1) verwendet:

  • Die Halterung 1 für das Substrat 9, eine Siliziumscheibe und die metallische Fassung 13 der Spinnkapillare 2, welche mit einem Flüssigkeitsvorrat 3 für die Spinnlösung 4 versehen ist. sind mit einer elektrischen Spannungsversorgung 5 verbunden. Die Spannungsversorgung 5 stellt elektrische Gleichspannung bis zu 10 kV zur Verfügung. Die Spinnkapillare 2 ist eine Glaskapillare mit einem Innendurchmesser von 100 µm. Der regelbare Stellmotor 6 dient zur Bewegung der Spinnkapillare 2 und der Stellmotor 6' zur Bewegung der Substrathalterung 1 relativ zueinander um den Abstand zwischen diesen einzustellen. Die Kamera 7 ist zur Verfolgung des Spinnvorgangs auf den Ausgang der Spinnkapillare 2 ausgerichtet, und mit einem Rechner 8 mit Bildverarbeitungssoftware zur Auswertung der Bilddaten der Kamera verbunden. Der Vortrieb des Motors 6' der Substrathalterung 1 wird vom Rechner 8 geregelt in Abhängigkeit vom Austritt der Spinnlösung 4 aus der Spinnkapillare 2.
For spinning the spinning solution, the following apparatus (see Fig. 1 ) used:
  • The holder 1 for the substrate 9, a silicon wafer and the metallic frame 13 of the spinning capillary 2, which is provided with a liquid supply 3 for the spinning solution 4. are connected to an electrical power supply 5. The power supply 5 provides electrical DC voltage up to 10 kV available. The spinning capillary 2 is a glass capillary with an internal diameter of 100 μm. The controllable servo motor 6 is used to move the spinning capillary 2 and the servomotor 6 'to move the substrate holder 1 relative to each other to adjust the distance between them. The camera 7 is aligned to follow the spinning process to the output of the spinning capillary 2, and connected to a computer 8 with image processing software for evaluating the image data of the camera. The propulsion of the motor 6 'of the substrate holder 1 is controlled by the computer 8 in dependence on the exit of the spinning solution 4 from the spinning capillary 2.

Eine Spinnlösung 4 von 10 Gew-% Polyacrylnitril (PAN: mittleres Molekulargewicht 210.000 g/mol) und 5 Gew-% Eisen(III)-Nitrat-Nonahydrat in Dimethylformamid wurde hergestellt. Die Viskosität der resultierenden Lösung betrug etwa 4,1 Pa•s. Der Spinnprozess wurde bei einem Abstand von 0,6 mm zwischen Kapillarenöffnung und Oberfläche des Substrats 9 bei einer Spannung von 1,9 kV zwischen Spinnkapillare 2 und Substrat 9 initialisiert. Nach Einstellen eines stabilen Faserverlaufes wurde die Spannung auf 0,47 kV eingeregelt und der Abstand auf 2,2 mm erhöht. In dieser Einstellung wurde die Spinnlösung 4 auf die Oberfläche des Substrats 9 versponnen und das Substrat zur Erzeugung von Linien seitlich bewegt.A spinning solution 4 of 10% by weight of polyacrylonitrile (PAN: average molecular weight 210,000 g / mol) and 5% by weight of iron (III) nitrate nonahydrate in dimethylformamide was prepared. The viscosity of the resulting solution was about 4.1 Pa · s. The spinning process was initiated at a distance of 0.6 mm between the capillary opening and the surface of the substrate 9 at a voltage of 1.9 kV between spinning capillary 2 and substrate 9. After setting a stable fiber flow, the voltage was adjusted to 0.47 kV and the distance increased to 2.2 mm. In this setting, the spinning solution 4 was spun onto the surface of the substrate 9 and the substrate moved laterally to produce lines.

Das Substrat 9 mit den erhaltenen PAN-Fasern wurde nachfolgend innerhalb von 90 min. von 20 auf 200°C aufgeheizt, dann für 60 Minuten bei 200°C behandelt. Hiernach wurde die Luft des Trockenofens, in dem sich die Probe 9 befand, durch Argon ersetzt und innerhalb von 30 Minuten die Temperatur auf 250 °C erhöht. Es wurde danach Argon durch Wasserstoff ersetzt. Unter dieser Wasserstoff-Atmosphäre wurde die Temperatur wiederum für 60 Minuten bei 250 °C gehalten. Anschließend wurde wieder auf Argon als Gas für den Trockenofen umgestellt und die Probe 9 innerhalb von zwei Stunden auf eine Temperatur von 800 °C erwärmt. Schließlich wurde für sieben Minuten dem Argon Hexan zudosiert und abschließend die Probe 9 unter Argon wieder auf Raumtemperatur abgekühlt. Der Abkühlprozess wurde hierbei nicht geregelt, sondern es wurde solange gewartet, bis das Innere des Ofens wieder eine Temperatur von 20 °C erreicht hatte.The substrate 9 with the obtained PAN fibers was subsequently within 90 min. heated from 20 to 200 ° C, then treated for 60 minutes at 200 ° C. Thereafter, the air of the drying oven in which the sample 9 was located, was replaced by argon and the temperature increased to 250 ° C within 30 minutes. Argon was then replaced by hydrogen. Under this hydrogen atmosphere, the temperature was again kept at 250 ° C for 60 minutes. The mixture was then switched back to argon as gas for the drying oven and the sample 9 was heated to a temperature of 800 ° C within two hours. Finally, the argon was added to the argon hexane for seven minutes and finally the sample 9 was cooled back to room temperature under argon. The cooling process was not regulated, but it was waited until the interior of the furnace had reached a temperature of 20 ° C.

Es entstand eine leitfähige Linie die im wesentlichen auf Kohlenstoff basiert. Bei Kontaktierung von zwei Punkten der Linie in einem Abstand von 190 µm, wurde ein Widerstand von 1,3 kOhm gemessen. Die Linie hatte eine Linienbreite von ca. 130 nm.The result was a conductive line based essentially on carbon. When contacting two points of the line at a distance of 190 microns, a resistance of 1.3 kOhm was measured. The line had a linewidth of about 130 nm.

Claims (16)

  1. Apparatus for producing conductive linear structures having a line width of at most 5 µm on a specifically non-electrically conducting substrate (9), comprising at least a substrate holder (1), a spinning capillary (2), which is connected to a reservoir (3) for a spinning liquid (4) and to an electrical voltage supply (5), an adjustable movement unit (6, 6') for moving the spinning capillary (2) and/or the substrate holder (1) relative to each other, an optical measuring device (7), specifically a camera, for tracking the spinning process at the point of exit from the spinning capillary (2) and an arithmetic processing unit (8) for controlling the distance of the spinning capillary (2) from the substrate holder (1) according to the spinning process.
  2. Apparatus according to Claim 1, characterized in that the spinning capillary (2) has an opening width of not more than 1 mm.
  3. Apparatus according to Claim 2, characterized in that the spinning capillary (2) has a circularly round opening with an internal diameter of 0.01 to 1 mm, preferably 0.25 to 0.75 mm, more preferably 0.5 to 0.3 mm.
  4. Apparatus according to any of Claims 1 to 3, characterized in that the voltage supply (5) delivers an output voltage of up to 10 kV, preferably of 0.1 to 10 kV, more preferably 1 kV to 10 kV, most preferably 2 to 6 kV.
  5. Apparatus according to any of Claims 1 to 3, characterized in that the adjustable movement unit (6') serves to move the substrate holder (1).
  6. Apparatus according to any of Claims 1 to 3, characterized in that the spinning capillary (2) is adjustable to a distance of 0.1 to 10 mm, preferably 1 to 5 mm, more preferably 2 to 4 mm from the substrate surface.
  7. Apparatus according to any of Claims 1 to 3, characterized in that the reservoir (3) comprises a conveying device (12) which conveys the spinning liquid (4) into the spinning capillary (2).
  8. Method for producing conductive linear structures having a line width of at most 5 µm on a specifically non-electrically conducting substrate (9) by electrospinning, characterized in that a spinning liquid (4) based on an electrically conducting material or a precursor compound for an electrically conducting material is spun onto the substrate surface (10) from a spinning capillary (2) having an opening width of no more than 1 mm by applying an electrical voltage of at least 100 V between the substrate (9) or substrate holder (1) and the spinning capillary (2) or spinning capillary holder (13) at a distance of at most 10 mm between the point of exit (11) of the spinning capillary (2) and the surface of the substrate (9) and the substrate surface (10) is moved relative to the point of exit (11) of the spinning capillary (2), wherein the relative movement is controlled according to the spin flux, removing the solvent of the spinning liquid (4) and post-treating any precursor compound to form an electrically conducting material.
  9. Method according to Claim 8, characterized in that the distance between the point of exit (11) of the spinning capillary (2) and the substrate surface (10) is adjusted to 0.1 to 10 mm, preferably 1 to 5 mm, more preferably 2 to 4 mm.
  10. Method according to Claim 8 or 9, characterized in that the viscosity of the spinning liquid (4) is at most 15 Pa•s, preferably 0.5 to 15 Pa•s, more preferably 1 to 10 Pa•s, most preferably 1 to 5 Pa•s.
  11. Method according to any of Claims 8 to 10, characterized in that the spinning liquid (4) consists at least of a solvent, specifically selected from the series: water, C1-C6 alcohol, acetone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide and meta-cresol, a polymeric additive, preferably polyethylene oxide, polyacrylonitrile, polyvinylpyrrolidone, carboxymethylcellulose or polyamide, and a conductive material.
  12. Method according to Claim 11, characterized in that the spinning liquid (4) contains as conductive material at least one from the series: conductive polymer, a metal powder, a metal oxide powder, carbon nanotubes, graphite and carbon black.
  13. Method according to Claim 12, characterized in that the conductive polymer is selected from the series: polypyrrole, polyaniline, polythiophene, polyphenylenevinylene, polyparaphenylene, polyethylenedioxythiophene, polyfluorene, polyacetylene, preferably polyethylenedioxythiophene/polystyrene sulfonic acid.
  14. Method according to any of Claims 11 to 13, characterized in that the spinning liquid (4) includes as conductive material at least one metal powder of the metals silver, gold and copper, preferably silver and, as solvent, water containing a dispersant and optionally C1-C6 alcohol, wherein the metal powder is present in disperse form and has a particle diameter of at most 150 nm.
  15. Method according to any of Claims 8 to 10, characterized in that the spinning liquid (4) includes a precursor compound for an electrically conducting material, said precursor compound being selected from the series: polyacrylonitrile, polypyrrole, polyaniline, polyethylenedioxythiophene and additional metal salt specifically iron (III) salt.
  16. Method according to any of Claims 8 to 15, characterized in that the spinning liquid (4) is spun using apparatus according to any of Claims 1 to 7.
EP08801617.5A 2007-08-29 2008-08-19 Device and method for producing electrically conductive nanostructures by means of electrospinning Not-in-force EP2185749B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08801617T PL2185749T3 (en) 2007-08-29 2008-08-19 Device and method for producing electrically conductive nanostructures by means of electrospinning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007040762A DE102007040762A1 (en) 2007-08-29 2007-08-29 Device and method for producing electrically conductive nanostructures by means of electrospinning
PCT/EP2008/006792 WO2009030355A2 (en) 2007-08-29 2008-08-19 Device and method for producing electrically conductive nanostructures by means of electrospinning

Publications (2)

Publication Number Publication Date
EP2185749A2 EP2185749A2 (en) 2010-05-19
EP2185749B1 true EP2185749B1 (en) 2013-08-07

Family

ID=40298894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08801617.5A Not-in-force EP2185749B1 (en) 2007-08-29 2008-08-19 Device and method for producing electrically conductive nanostructures by means of electrospinning

Country Status (12)

Country Link
US (1) US8495969B2 (en)
EP (1) EP2185749B1 (en)
JP (2) JP5326076B2 (en)
KR (1) KR20100051088A (en)
CN (1) CN101790601B (en)
DE (1) DE102007040762A1 (en)
DK (1) DK2185749T3 (en)
ES (1) ES2434241T3 (en)
HK (1) HK1146737A1 (en)
PL (1) PL2185749T3 (en)
PT (1) PT2185749E (en)
WO (1) WO2009030355A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148460A2 (en) 2016-03-01 2017-09-08 Bisping Medizintechnik Gmbh Device and method for structure-controlled electrospinning

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636493B2 (en) * 2007-11-08 2014-01-28 The University Of Akron Method of characterization of viscoelastic stress in elongated flow materials
KR101182412B1 (en) * 2008-12-19 2012-09-13 한국전자통신연구원 The method for forming fine patern of polymeric thin film
US8518319B2 (en) 2009-03-19 2013-08-27 Nanostatics Corporation Process of making fibers by electric-field-driven spinning using low-conductivity fluid formulations
DE102009015226A1 (en) 2009-04-01 2010-10-14 Kim, Gyeong-Man, Dr. Template-based patterning process of nanofibers in the electrospinning process and its applications
KR101009442B1 (en) * 2009-04-15 2011-01-19 한국과학기술연구원 Method for fabrication of conductive film using conductive frame and conductive film
CN102470570B (en) * 2009-07-15 2017-03-29 阿克伦大学 Multi-functional conductive/transparent/manufacture of flexible film
KR101743153B1 (en) * 2010-01-13 2017-06-05 삼성전자주식회사 Nanofiber composite, manufacturing method thereof and FET transistor using the same
JP5467396B2 (en) * 2010-03-31 2014-04-09 国立大学法人信州大学 Manufacturing method of “three-dimensional structure using polymer nanofiber”
JP5889276B2 (en) * 2010-04-06 2016-03-22 エヌディーエスユー リサーチ ファウンデーション Liquid silane-based compositions and methods for producing silicon-based materials
JP5630074B2 (en) * 2010-05-28 2014-11-26 三菱レイヨン株式会社 Method for producing nanocarbon structure fiber and nanocarbon structure fiber
JP5552904B2 (en) * 2010-05-28 2014-07-16 三菱レイヨン株式会社 Method for producing nanocarbon-containing fiber and nanocarbon structure fiber, and nanocarbon-containing fiber and nanocarbon structure fiber obtained by these methods
WO2011153111A2 (en) 2010-05-29 2011-12-08 Scott Ashley S Apparatus, methods, and fluid compositions for electrostatically-driven solvent ejection or particle formation
KR101374401B1 (en) * 2010-10-07 2014-03-17 포항공과대학교 산학협력단 Electric field aided robotic nozzle printer and method for fabrication of aligned organic wire patterns
JP2012122155A (en) * 2010-12-06 2012-06-28 Toptec Co Ltd Apparatus for producing nanofiber and method for producing nanofiber
CN102031574B (en) * 2011-01-19 2012-05-09 哈尔滨工业大学 Method for preparing one-dimensional ordered PAMPS (2-Acrylamide-2-methylpro panesulfonic acid)/PNIPAAm (Poly(N-Isoprolacrylamide)) micro-nanofibers
JP5883301B2 (en) 2011-02-07 2016-03-15 日本バイリーン株式会社 Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
KR101370867B1 (en) * 2011-04-11 2014-03-31 주식회사 포스포 Carbon fiber by polyacene compounds and its manufacturing method for thereof
KR101902927B1 (en) * 2011-08-10 2018-10-02 삼성전자주식회사 strechable conductive nano fiber, strechable conductive electrode using the same and method for producing the same
CN102358959B (en) * 2011-08-16 2013-11-06 中山大学 Method and device for preparing electrospinning fiber bracket with three-dimensional structure
CN102321927A (en) * 2011-08-31 2012-01-18 青岛大学 Rotary disc induction electrification type electrostatic spinning device
CN103649786B (en) * 2011-09-02 2016-08-17 英派尔科技开发有限公司 There is the manufacture method of the fiber of the nanostructure producing optical effect
US20150118141A1 (en) * 2011-10-06 2015-04-30 Nanoridge Materials, Incorporated Dry-jet wet spun carbon fibers and processes for making them using a nucleophilic filler/pan precurson
CN102522568B (en) * 2011-12-10 2015-06-24 中国科学院金属研究所 Method for preparing electrode material for all-vanadium flow battery
EP2629244A1 (en) 2012-02-15 2013-08-21 Bayer Intellectual Property GmbH Method of generating a tag for an RFID system
US9370096B2 (en) * 2012-04-18 2016-06-14 Cornell University Method of making conducting polymer nanofibers
KR101511284B1 (en) * 2012-06-04 2015-04-10 주식회사 아모그린텍 A conductive pressure-sensitive adhesive tape and preparation method thereof
US9148969B2 (en) * 2012-07-30 2015-09-29 Rohm And Haas Electronic Materials Llc Method of manufacturing high aspect ratio silver nanowires
US9353229B2 (en) 2012-08-14 2016-05-31 Gabae Technologies Llc Compositions incorporating dielectric additives for particle formation, and methods of particle formation using same
CA2887914A1 (en) * 2012-10-12 2014-04-17 Gabae Technologies Ulc High dielectric compositions for particle formation and methods of forming particles using same
US9295153B2 (en) * 2012-11-14 2016-03-22 Rohm And Haas Electronic Materials Llc Method of manufacturing a patterned transparent conductor
US10561605B2 (en) 2013-01-22 2020-02-18 Robert F. Wallace Electrospun therapeutic carrier and implant
CN103198932B (en) * 2013-02-27 2017-05-03 国家纳米科学中心 Carbon-based composite fiber electrode material, manufacturing method and application thereof
CN103147179B (en) * 2013-03-27 2015-08-26 中原工学院 Electrostatic spinning nano fiber sir jet spinning machines and using method
KR101457022B1 (en) * 2013-04-23 2014-10-31 사단법인 전북대학교자동차부품금형기술혁신센터 electro spinning apparatus
CN103202566B (en) * 2013-04-27 2014-06-18 北京化工大学 Robot eletrospinning direct-clothing device
CN103255485B (en) * 2013-05-20 2015-08-05 江苏菲特滤料有限公司 A kind of most advanced and sophisticated formula needle-less electrospinning device
EP2999809A1 (en) 2013-05-21 2016-03-30 Gabae Technologies, LLC High dielectric compositions for particle formation and methods of forming particles using same
CN103320877B (en) * 2013-07-09 2016-08-10 苏州大学 The preparation method of a kind of degradable organizational project three-dimensional rack and equipment
US11286372B2 (en) 2013-08-28 2022-03-29 Eaton Intelligent Power Limited Heat sink composition for electrically resistive and thermally conductive circuit breaker and load center and method of preparation therefor
CN103465628B (en) * 2013-09-03 2015-10-28 华中科技大学 A kind of static spray printing nanofiber diameter closed loop control method and device
CN103645751B (en) * 2013-12-09 2016-01-20 华中科技大学 The nanofiber diameter control method regulated based on substrate speed and control device
JP6571008B2 (en) * 2014-01-27 2019-09-04 国立大学法人福井大学 Method for producing conductive nanofiber
US10401240B2 (en) 2014-02-06 2019-09-03 Japan Science And Technology Agency Sheet for pressure sensor, pressure sensor, and method for producing sheet for pressure sensor
CN104241661B (en) * 2014-09-23 2017-04-19 中国科学院金属研究所 Preparation method for combination electrode for all-vanadium redox flow battery
CN104742369B (en) * 2015-03-16 2017-05-10 东莞劲胜精密组件股份有限公司 3D printing device and method
CA2980799A1 (en) * 2015-03-24 2016-09-29 Helsingin Yliopisto Device and method to produce nanofibers and constructs thereof
CN104775168B (en) * 2015-04-03 2017-07-11 大连民族学院 Electrospinning fibre spray configuration monitoring device
CN105058786B (en) * 2015-07-14 2017-05-24 大连理工大学 Coaxial focusing electro stream printing method
CN105332163B (en) * 2015-11-17 2018-05-01 北京理工大学 A kind of CMC nano fibrous membranes for being loaded with silver nano-grain and preparation method thereof
KR101715387B1 (en) 2016-03-25 2017-03-22 충남대학교 산학협력단 Portable electrospinning device
NL2016652B1 (en) 2016-04-21 2017-11-16 Innovative Mechanical Engineering Tech B V Electrospinning device and method.
CN105970309B (en) * 2016-06-21 2018-07-10 闽江学院 A kind of nano-fibre yams and preparation method thereof
CN107994383B (en) 2016-10-27 2024-04-02 泰科电子(上海)有限公司 Connector with a plurality of connectors
CN106757786A (en) * 2016-12-09 2017-05-31 彭州市运达知识产权服务有限公司 A kind of PAn conducting membrane and preparation method thereof
FR3063660B1 (en) * 2017-03-09 2019-03-22 Universite Claude Bernard Lyon I DEVICE FOR DEPOSITION UNDER ELECTRIC FIELD WITH ELECTRICAL DEFLECTOR
WO2019040564A1 (en) 2017-08-24 2019-02-28 Northwestern University Additive-free carbon nanoparticle dispersions, pastes, gels and doughs
GB201820411D0 (en) * 2018-12-14 2019-01-30 Univ Birmingham Electrospinning
CN109695097A (en) * 2019-02-15 2019-04-30 南通苏源化纤有限公司 A kind of method that electrostatic spraying prepares conductivity type non-woven fabrics
CN109834937A (en) * 2019-03-07 2019-06-04 南京大学 Print the adjustable 3D printing device of line weight
CN110220468A (en) * 2019-06-21 2019-09-10 广东工业大学 A kind of spinning equipment, wire vent detection device and yarn examination method out

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264762B2 (en) 2000-01-06 2007-09-04 Drexel University Electrospinning ultrafine conductive polymeric fibers
US6800155B2 (en) 2000-02-24 2004-10-05 The United States Of America As Represented By The Secretary Of The Army Conductive (electrical, ionic and photoelectric) membrane articlers, and method for producing same
JP2005105510A (en) * 2003-09-10 2005-04-21 Mitsubishi Rayon Co Ltd Carbon nanotube-containing fiber and method for producing the same
US7618704B2 (en) * 2003-09-29 2009-11-17 E.I. Du Pont De Nemours And Company Spin-printing of electronic and display components
JP4448946B2 (en) 2004-05-20 2010-04-14 国立大学法人山梨大学 A method for producing vinyl-based conductive polymer fibers, and a vinyl-based conductive polymer fiber obtained by the method.
WO2006001719A1 (en) * 2004-06-24 2006-01-05 Massey University Polymer filaments
US20060204539A1 (en) * 2005-03-11 2006-09-14 Anthony Atala Electrospun cell matrices
KR101396737B1 (en) 2005-10-31 2014-05-26 더 트러스티즈 오브 프린스턴 유니버시티 Electrohydrodynamic printing and manufacturing
US7981353B2 (en) * 2005-12-12 2011-07-19 University Of Washington Method for controlled electrospinning
JP2007177363A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Fiber structure comprising electroconductive polymer and method for producing the same, and three-dimensional knit-type actuator and component for vehicle using the fiber structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017148460A2 (en) 2016-03-01 2017-09-08 Bisping Medizintechnik Gmbh Device and method for structure-controlled electrospinning

Also Published As

Publication number Publication date
WO2009030355A3 (en) 2009-07-23
PL2185749T3 (en) 2014-03-31
DE102007040762A1 (en) 2009-03-05
CN101790601A (en) 2010-07-28
US20090130301A1 (en) 2009-05-21
ES2434241T3 (en) 2013-12-16
EP2185749A2 (en) 2010-05-19
HK1146737A1 (en) 2011-07-08
CN101790601B (en) 2013-09-11
DK2185749T3 (en) 2013-11-18
JP2013076203A (en) 2013-04-25
PT2185749E (en) 2013-11-13
WO2009030355A2 (en) 2009-03-12
US8495969B2 (en) 2013-07-30
JP2010537438A (en) 2010-12-02
JP5326076B2 (en) 2013-10-30
KR20100051088A (en) 2010-05-14

Similar Documents

Publication Publication Date Title
EP2185749B1 (en) Device and method for producing electrically conductive nanostructures by means of electrospinning
EP1275757B1 (en) Tubes with inside diameters on the nanometric scale
EP1969166B1 (en) Thermoelectric nanomaterials
DE102017203069B4 (en) Ink composition, method of preparation and printing method
EP2295617B1 (en) Method for producing flat size or distance variations in nanostructures on surfaces
DE60015725T2 (en) Production of materials
EP2242809A1 (en) Printable composition for producing electroconductive coatings, and method for the production thereof
Khalil et al. Synthesis and morphology analysis of electrospun copper nanowires
EP2106466A2 (en) Particle-modified nanofibers and mesofibers
WO2010049382A1 (en) Method for preparing a suspension of nanoparticulate metal borides
DE10226969A1 (en) Activated carbon fibers and process for their manufacture
EP2422001A1 (en) Water-based production of metal-oxide and metal nanofibers
DE112020000740T5 (en) Aqueous MONODISPERSE STARCH GOLD NANOPARTICLES AND METHOD OF MANUFACTURING THE SAME
WO2018114645A1 (en) Method for producing fibres and nonwoven fabrics by solution blow spinning and nonwoven fabric produced thereby
EP1960309B1 (en) Method for producing nanostructures on a substrate
DE102005009212A1 (en) Method for dimensioning of preparation of meso- and nano structures with dimensions in region of 1 nm to 1000 microns, using cutting edge and suitable cooling
DE102012102319A1 (en) Nonlinear nano-wire useful e.g. for producing transparent electrodes e.g. in the fields of display, touch screen and in the field of printed electronics, comprises two linear portions and curved portion arranged between the linear portions
DE102019109069A1 (en) Process for spinning polyacrylonitrile fibers from solutions
DE102016015668A1 (en) Apparatus and method for producing carbon fibers or textile structures formed with carbon fibers
EP2206153B1 (en) Method for the production of a nanostructure by means of spinodal decrosslinking
KR101058279B1 (en) Composite with ag - carbon nanotubes and manufacture method thereof
KR20030011398A (en) Method of manufacturing carbon nanotubes-thin film
WO2021152014A1 (en) Device and method for manufacturing a component by means of an additive manufacturing method
DE102007043396A1 (en) Method for manufacturing electrical conducting structures, involves producing channels on surface of substrate by mechanical and additionally thermal effects and ink is applied on channels
DE202014005013U1 (en) Apparatus for applying textile films to various substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100329

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EIDEN, STEFANIE

Inventor name: WENDORFF, JOACHIM, H.

Inventor name: VON BISTRAM, MAXC/O PHILLIPS UNIVERSITAET MARBURG

Inventor name: BELARDI, JACOB

Inventor name: GREINER, ANDREAS

Inventor name: DERSCH, ROLAND

Inventor name: MEIER, STEPHAN, MICHAEL

Inventor name: BAHNMUELLER, STEFAN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER TECHNOLOGY SERVICES GMBH

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008010444

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D01D0005000000

Ipc: D01F0001090000

RIC1 Information provided on ipc code assigned before grant

Ipc: D01D 5/00 20060101ALI20121126BHEP

Ipc: D01F 1/09 20060101AFI20121126BHEP

Ipc: D01F 6/18 20060101ALI20121126BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 625821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008010444

Country of ref document: DE

Effective date: 20131002

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20131106

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20131111

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2434241

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20131216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130828

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131207

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131107

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CLARIANT INTERNATIONAL AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019719

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008010444

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008010444

Country of ref document: DE

Representative=s name: PACZKOWSKI, MARCUS, DIPL.-CHEM. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008010444

Country of ref document: DE

Representative=s name: PACZKOWSKI, MARCUS, DIPL.-CHEM. DR. RER. NAT., DE

Effective date: 20140827

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008010444

Country of ref document: DE

Owner name: CLARIANT INTERNATIONAL LTD., CH

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

Effective date: 20140827

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130819

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150619

Year of fee payment: 8

Ref country code: DK

Payment date: 20150612

Year of fee payment: 8

Ref country code: CH

Payment date: 20150611

Year of fee payment: 8

Ref country code: SE

Payment date: 20150612

Year of fee payment: 8

Ref country code: GB

Payment date: 20150611

Year of fee payment: 8

Ref country code: PT

Payment date: 20150608

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20150611

Year of fee payment: 8

Ref country code: BE

Payment date: 20150616

Year of fee payment: 8

Ref country code: NL

Payment date: 20150610

Year of fee payment: 8

Ref country code: FR

Payment date: 20150623

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150629

Year of fee payment: 8

Ref country code: FI

Payment date: 20150818

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20150615

Year of fee payment: 8

Ref country code: HU

Payment date: 20150731

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150625

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008010444

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20160831

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20160901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 625821

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160819

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160820

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181128